Network Working Group                Audio-Video Transport Working Group
Request for Comments: 1890                                H. Schulzrinne
Category: Standards Track                                      GMD Fokus
                                                           January 1996


   RTP Profile for Audio and Video Conferences with Minimal Control

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This memo describes a profile for the use of the real-time transport
  protocol (RTP), version 2, and the associated control protocol, RTCP,
  within audio and video multiparticipant conferences with minimal
  control. It provides interpretations of generic fields within the RTP
  specification suitable for audio and video conferences.  In
  particular, this document defines a set of default mappings from
  payload type numbers to encodings.

  The document also describes how audio and video data may be carried
  within RTP. It defines a set of standard encodings and their names
  when used within RTP. However, the encoding definitions are
  independent of the particular transport mechanism used. The
  descriptions provide pointers to reference implementations and the
  detailed standards. This document is meant as an aid for implementors
  of audio, video and other real-time multimedia applications.

1.  Introduction

  This profile defines aspects of RTP left unspecified in the RTP
  Version 2 protocol definition (RFC 1889). This profile is intended
  for the use within audio and video conferences with minimal session
  control. In particular, no support for the negotiation of parameters
  or membership control is provided. The profile is expected to be
  useful in sessions where no negotiation or membership control are
  used (e.g., using the static payload types and the membership
  indications provided by RTCP), but this profile may also be useful in
  conjunction with a higher-level control protocol.






Schulzrinne                 Standards Track                     [Page 1]

RFC 1890                       AV Profile                   January 1996


  Use of this profile occurs by use of the appropriate applications;
  there is no explicit indication by port number, protocol identifier
  or the like.

  Other profiles may make different choices for the items specified
  here.

2.  RTP and RTCP Packet Forms and Protocol Behavior

  The section "RTP Profiles and Payload Format Specification"
  enumerates a number of items that can be specified or modified in a
  profile. This section addresses these items. Generally, this profile
  follows the default and/or recommended aspects of the RTP
  specification.

  RTP data header: The standard format of the fixed RTP data header is
       used (one marker bit).

  Payload types: Static payload types are defined in Section 6.

  RTP data header additions: No additional fixed fields are appended to
       the RTP data header.

  RTP data header extensions: No RTP header extensions are defined, but
       applications operating under this profile may use such
       extensions. Thus, applications should not assume that the RTP
       header X bit is always zero and should be prepared to ignore the
       header extension. If a header extension is defined in the
       future, that definition must specify the contents of the first
       16 bits in such a way that multiple different extensions can be
       identified.

  RTCP packet types: No additional RTCP packet types are defined by
       this profile specification.

  RTCP report interval: The suggested constants are to be used for the
       RTCP report interval calculation.

  SR/RR extension: No extension section is defined for the RTCP SR or
       RR packet.

  SDES use: Applications may use any of the SDES items described.
       While CNAME information is sent every reporting interval, other
       items should be sent only every fifth reporting interval.

  Security: The RTP default security services are also the default
       under this profile.




Schulzrinne                 Standards Track                     [Page 2]

RFC 1890                       AV Profile                   January 1996


  String-to-key mapping:  A user-provided string ("pass phrase") is
       hashed with the MD5 algorithm to a 16-octet digest. An n-bit key
       is extracted from the digest by taking the first n bits from the
       digest. If several keys are needed with a total length of 128
       bits or less (as for triple DES), they are extracted in order
       from that digest. The octet ordering is specified in RFC 1423,
       Section 2.2. (Note that some DES implementations require that
       the 56-bit key be expanded into 8 octets by inserting an odd
       parity bit in the most significant bit of the octet to go with
       each 7 bits of the key.)

  It is suggested that pass phrases are restricted to ASCII letters,
  digits, the hyphen, and white space to reduce the the chance of
  transcription errors when conveying keys by phone, fax, telex or
  email.

  The pass phrase may be preceded by a specification of the encryption
  algorithm. Any characters up to the first slash (ASCII 0x2f) are
  taken as the name of the encryption algorithm. The encryption format
  specifiers should be drawn from RFC 1423 or any additional
  identifiers registered with IANA. If no slash is present, DES-CBC is
  assumed as default. The encryption algorithm specifier is case
  sensitive.

  The pass phrase typed by the user is transformed to a canonical form
  before applying the hash algorithm. For that purpose, we define
  return, tab, or vertical tab as well as all characters contained in
  the Unicode space characters table. The transformation consists of
  the following steps: (1) convert the input string to the ISO 10646
  character set, using the UTF-8 encoding as specified in Annex P to
  ISO/IEC 10646-1:1993 (ASCII characters require no mapping, but ISO
  8859-1 characters do); (2) remove leading and trailing white space
  characters; (3) replace one or more contiguous white space characters
  by a single space (ASCII or UTF-8 0x20); (4) convert all letters to
  lower case and replace sequences of characters and non-spacing
  accents with a single character, where possible. A minimum length of
  16 key characters (after applying the transformation) should be
  enforced by the application, while applications must allow up to 256
  characters of input.

  Underlying protocol: The profile specifies the use of RTP over
       unicast and multicast UDP. (This does not preclude the use of
       these definitions when RTP is carried by other lower-layer
       protocols.)

  Transport mapping: The standard mapping of RTP and RTCP to
       transport-level addresses is used.




Schulzrinne                 Standards Track                     [Page 3]

RFC 1890                       AV Profile                   January 1996


  Encapsulation: No encapsulation of RTP packets is specified.

3.  Registering Payload Types

  This profile defines a set of standard encodings and their payload
  types when used within RTP. Other encodings and their payload types
  are to be registered with the Internet Assigned Numbers Authority
  (IANA). When registering a new encoding/payload type, the following
  information should be provided:

       o name and description of encoding, in particular the RTP
        timestamp clock rate; the names defined here are 3 or 4
        characters long to allow a compact representation if needed;

       o indication of who has change control over the encoding (for
        example, ISO, CCITT/ITU, other international standardization
        bodies, a consortium or a particular company or group of
        companies);

       o any operating parameters or profiles;

       o a reference to a further description, if available, for
        example (in order of preference) an RFC, a published paper, a
        patent filing, a technical report, documented source code or a
        computer manual;

       o for proprietary encodings, contact information (postal and
        email address);

       o the payload type value for this profile, if necessary (see
        below).

  Note that not all encodings to be used by RTP need to be assigned a
  static payload type. Non-RTP means beyond the scope of this memo
  (such as directory services or invitation protocols) may be used to
  establish a dynamic mapping between a payload type drawn from the
  range 96-127 and an encoding. For implementor convenience, this
  profile contains descriptions of encodings which do not currently
  have a static payload type assigned to them.

  The available payload type space is relatively small. Thus, new
  static payload types are assigned only if the following conditions
  are met:

       o The encoding is of interest to the Internet community at
        large.





Schulzrinne                 Standards Track                     [Page 4]

RFC 1890                       AV Profile                   January 1996


       o It offers benefits compared to existing encodings and/or is
        required for interoperation with existing, widely deployed
        conferencing or multimedia systems.

       o The description is sufficient to build a decoder.

4.  Audio

4.1 Encoding-Independent Recommendations

  For applications which send no packets during silence, the first
  packet of a talkspurt (first packet after a silence period) is
  distinguished by setting the marker bit in the RTP  data header.
  Applications without silence suppression set the bit to zero.

  The RTP clock rate used for generating the RTP timestamp is
  independent of the number of channels and the encoding; it equals the
  number of sampling periods per second.  For N-channel encodings, each
  sampling period (say, 1/8000 of a second) generates N samples. (This
  terminology is standard, but somewhat confusing, as the total number
  of samples generated per second is then the sampling rate times the
  channel count.)

  If multiple audio channels are used, channels are numbered left-to-
  right, starting at one. In RTP audio packets, information from
  lower-numbered channels precedes that from higher-numbered channels.
  For more than two channels, the convention followed by the AIFF-C
  audio interchange format should be followed [1], using the following
  notation:

  l    left
  r    right
  c    center
  S    surround
  F    front
  R    rear



  channels    description                 channel
                              1     2     3     4     5     6
  ___________________________________________________________
  2           stereo          l     r
  3                           l     r     c
  4           quadrophonic    Fl    Fr    Rl    Rr
  4                           l     c     r     S
  5                           Fl    Fr    Fc    Sl    Sr
  6                           l     lc    c     r     rc    S



Schulzrinne                 Standards Track                     [Page 5]

RFC 1890                       AV Profile                   January 1996


  Samples for all channels belonging to a single sampling instant must
  be within the same packet. The interleaving of samples from different
  channels depends on the encoding. General guidelines are given in
  Section 4.2 and 4.3.

  The sampling frequency should be drawn from the set: 8000, 11025,
  16000, 22050, 24000, 32000, 44100 and 48000 Hz. (The Apple Macintosh
  computers have native sample rates of 22254.54 and 11127.27, which
  can be converted to 22050 and 11025 with acceptable quality by
  dropping 4 or 2 samples in a 20 ms frame.) However, most audio
  encodings are defined for a more restricted set of sampling
  frequencies. Receivers should be prepared to accept multi-channel
  audio, but may choose to only play a single channel.

  The following recommendations are default operating parameters.
  Applications should be prepared to handle other values. The ranges
  given are meant to give guidance to application writers, allowing a
  set of applications conforming to these guidelines to interoperate
  without additional negotiation. These guidelines are not intended to
  restrict operating parameters for applications that can negotiate a
  set of interoperable parameters, e.g., through a conference control
  protocol.

  For packetized audio, the default packetization interval should have
  a duration of 20 ms, unless otherwise noted when describing the
  encoding. The packetization interval determines the minimum end-to-
  end delay; longer packets introduce less header overhead but higher
  delay and make packet loss more noticeable. For non-interactive
  applications such as lectures or links with severe bandwidth
  constraints, a higher packetization delay may be appropriate. A
  receiver should accept packets representing between 0 and 200 ms of
  audio data. This restriction allows reasonable buffer sizing for the
  receiver.

4.2 Guidelines for Sample-Based Audio Encodings

  In sample-based encodings, each audio sample is represented by a
  fixed number of bits. Within the compressed audio data, codes for
  individual samples may span octet boundaries. An RTP audio packet may
  contain any number of audio samples, subject to the constraint that
  the number of bits per sample times the number of samples per packet
  yields an integral octet count. Fractional encodings produce less
  than one octet per sample.

  The duration of an audio packet is determined by the number of
  samples in the packet.





Schulzrinne                 Standards Track                     [Page 6]

RFC 1890                       AV Profile                   January 1996


  For sample-based encodings producing one or more octets per sample,
  samples from different channels sampled at the same sampling instant
  are packed in consecutive octets. For example, for a two-channel
  encoding, the octet sequence is (left channel, first sample), (right
  channel, first sample), (left channel, second sample), (right
  channel, second sample), .... For multi-octet encodings, octets are
  transmitted in network byte order (i.e., most significant octet
  first).

  The packing of sample-based encodings producing less than one octet
  per sample is encoding-specific.

4.3 Guidelines for Frame-Based Audio Encodings

  Frame-based encodings encode a fixed-length block of audio into
  another block of compressed data, typically also of fixed length. For
  frame-based encodings, the sender may choose to combine several such
  frames into a single message. The receiver can tell the number of
  frames contained in a message since the frame duration is defined as
  part of the encoding.

  For frame-based codecs, the channel order is defined for the whole
  block. That is, for two-channel audio, right and left samples are
  coded independently, with the encoded frame for the left channel
  preceding that for the right channel.

  All frame-oriented audio codecs should be able to encode and decode
  several consecutive frames within a single packet. Since the frame
  size for the frame-oriented codecs is given, there is no need to use
  a separate designation for the same encoding, but with different
  number of frames per packet.




















Schulzrinne                 Standards Track                     [Page 7]

RFC 1890                       AV Profile                   January 1996


4.4 Audio Encodings

          encoding    sample/frame    bits/sample    ms/frame
          ____________________________________________________
          1016        frame           N/A            30
          DVI4        sample          4
          G721        sample          4
          G722        sample          8
          G728        frame           N/A            2.5
          GSM         frame           N/A            20
          L8          sample          8
          L16         sample          16
          LPC         frame           N/A            20
          MPA         frame           N/A
          PCMA        sample          8
          PCMU        sample          8
          VDVI        sample          var.

                Table 1: Properties of Audio Encodings

  The characteristics of standard audio encodings are shown in Table 1
  and their payload types are listed in Table 2.

4.4.1 1016

  Encoding 1016 is a frame based encoding using code-excited linear
  prediction (CELP) and is specified in Federal Standard FED-STD 1016
  [2,3,4,5].

  The U. S. DoD's Federal-Standard-1016 based 4800 bps code excited
  linear prediction voice coder version 3.2 (CELP 3.2) Fortran and C
  simulation source codes are available for worldwide distribution at
  no charge (on DOS diskettes, but configured to compile on Sun SPARC
  stations) from: Bob Fenichel, National Communications System,
  Washington, D.C. 20305, phone +1-703-692-2124, fax +1-703-746-4960.

4.4.2 DVI4

  DVI4 is specified, with pseudo-code, in [6] as the IMA ADPCM wave
  type. A specification titled "DVI ADPCM Wave Type" can also be found
  in the Microsoft Developer Network Development Library CD ROM
  published quarterly by Microsoft. The relevant section is found under
  Product Documentation, SDKs, Multimedia Standards Update, New
  Multimedia Data Types and Data Techniques, Revision 3.0, April 15,
  1994. However, the encoding defined here as DVI4 differs in two
  respects from these recommendations:





Schulzrinne                 Standards Track                     [Page 8]

RFC 1890                       AV Profile                   January 1996


       o The header contains the predicted value rather than the first
        sample value.

       o IMA ADPCM blocks contain odd number of samples, since the
        first sample of a block is contained just in the header
        (uncompressed), followed by an even number of compressed
        samples. DVI4 has an even number of compressed samples only,
        using the 'predict' word from the header to decode the first
        sample.

  Each packet contains a single DVI block. The profile only defines the
  4-bit-per-sample version, while IMA also specifies a 3-bit-per-sample
  encoding.

  The "header" word for each channel has the following structure:

    int16  predict;  /* predicted value of first sample
                        from the previous block (L16 format) */
    u_int8 index;    /* current index into stepsize table */
    u_int8 reserved; /* set to zero by sender, ignored by receiver */

  Packing of samples for multiple channels is for further study.

  The document, "IMA Recommended Practices for Enhancing Digital Audio
  Compatibility in Multimedia Systems (version 3.0)", contains the
  algorithm description.  It is available from:

  Interactive Multimedia Association
  48 Maryland Avenue, Suite 202
  Annapolis, MD 21401-8011
  USA
  phone: +1 410 626-1380

4.4.3 G721

  G721 is specified in ITU recommendation G.721. Reference
  implementations for G.721 are available as part of the CCITT/ITU-T
  Software Tool Library (STL) from the ITU General Secretariat, Sales
  Service, Place du Nations, CH-1211 Geneve 20, Switzerland. The
  library is covered by a license.

4.4.4 G722

  G722 is specified in ITU-T recommendation G.722, "7 kHz audio-coding
  within 64 kbit/s".

  G728 is specified in ITU-T recommendation G.728, "Coding of speech at
  16 kbit/s using low-delay code excited linear prediction".



Schulzrinne                 Standards Track                     [Page 9]

RFC 1890                       AV Profile                   January 1996


4.4.6 GSM

  GSM (group speciale mobile) denotes the European GSM 06.10
  provisional standard for full-rate speech transcoding, prI-ETS 300
  036, which is based on RPE/LTP (residual pulse excitation/long term
  prediction) coding at a rate of 13 kb/s [7,8,9]. The standard can be
  obtained from

  ETSI (European Telecommunications Standards Institute)
  ETSI Secretariat: B.P.152
  F-06561 Valbonne Cedex
  France
  Phone: +33 92 94 42 00
  Fax: +33 93 65 47 16

4.4.7 L8

  L8 denotes linear audio data, using 8-bits of precision with an
  offset of 128, that is, the most negative signal is encoded as zero.

4.4.8 L16

  L16 denotes uncompressed audio data, using 16-bit signed
  representation with 65535 equally divided steps between minimum and
  maximum signal level, ranging from -32768 to 32767. The value is
  represented in two's complement notation and network byte order.

4.4.9 LPC

  LPC designates an experimental linear predictive encoding contributed
  by Ron Frederick, Xerox PARC, which is based on an implementation
  written by Ron Zuckerman, Motorola, posted to the Usenet group
  comp.dsp on June 26, 1992.

4.4.10 MPA

  MPA denotes MPEG-I or MPEG-II audio encapsulated as elementary
  streams. The encoding is defined in ISO standards ISO/IEC 11172-3 and
  13818-3. The encapsulation is specified in work in progress [10],
  Section 3. The authors can be contacted at

  Don Hoffman
  Sun Microsystems, Inc.
  Mail-stop UMPK14-305
  2550 Garcia Avenue
  Mountain View, California 94043-1100
  USA
  electronic mail: [email protected]



Schulzrinne                 Standards Track                    [Page 10]

RFC 1890                       AV Profile                   January 1996


  Sampling rate and channel count are contained in the payload. MPEG-I
  audio supports sampling rates of 32000, 44100, and 48000 Hz (ISO/IEC
  11172-3, section 1.1; "Scope"). MPEG-II additionally supports ISO/IEC
  11172-3 Audio...").

4.4.11 PCMA

  PCMA is specified in CCITT/ITU-T recommendation G.711. Audio data is
  encoded as eight bits per sample, after logarithmic scaling. Code to
  convert between linear and A-law companded data is available in [6].
  A detailed description is given by Jayant and Noll [11].

4.4.12 PCMU

  PCMU is specified in CCITT/ITU-T recommendation G.711. Audio data is
  encoded as eight bits per sample, after logarithmic scaling. Code to
  convert between linear and mu-law companded data is available in [6].
  PCMU is the encoding used for the Internet media type audio/basic.  A
  detailed description is given by Jayant and Noll [11].

4.4.13 VDVI

  VDVI is a variable-rate version of DVI4, yielding speech bit rates of
  between 10 and 25 kb/s. It is specified for single-channel operation
  only. It uses the following encoding:

                   DVI4 codeword    VDVI bit pattern
                   __________________________________
                               0    00
                               1    010
                               2    1100
                               3    11100
                               4    111100
                               5    1111100
                               6    11111100
                               7    11111110
                               8    10
                               9    011
                              10    1101
                              11    11101
                              12    111101
                              13    1111101
                              14    11111101
                              15    11111111







Schulzrinne                 Standards Track                    [Page 11]

RFC 1890                       AV Profile                   January 1996


5.  Video

  The following video encodings are currently defined, with their
  abbreviated names used for identification:

5.1 CelB

  The CELL-B encoding is a proprietary encoding proposed by Sun
  Microsystems.  The byte stream format is described in work in
  progress [12].  The author can be contacted at

  Michael F. Speer
  Sun Microsystems Computer Corporation
  2550 Garcia Ave MailStop UMPK14-305
  Mountain View, CA 94043
  United States
  electronic mail: [email protected]

5.2 JPEG

The encoding is specified in ISO Standards 10918-1 and 10918-2. The
RTP payload format is as specified in work in progress [13].  Further
information can be obtained from

  Steven McCanne
  Lawrence Berkeley National Laboratory
  M/S 46A-1123
  One Cyclotron Road
  Berkeley, CA 94720
  United States
  Phone: +1 510 486 7520
  electronic mail: [email protected]

5.3 H261

  The encoding is specified in CCITT/ITU-T standard H.261. The
  packetization and RTP-specific properties are described in work in
  progress [14]. Further information can be obtained from

  Thierry Turletti
  Office NE 43-505
  Telemedia, Networks and Systems
  Laboratory for Computer Science
  Massachusetts Institute of Technology
  545 Technology Square
  Cambridge, MA 02139
  United States
  electronic mail: [email protected]



Schulzrinne                 Standards Track                    [Page 12]

RFC 1890                       AV Profile                   January 1996


5.4 MPV

  MPV designates the use MPEG-I and MPEG-II video encoding elementary
  streams as specified in ISO Standards ISO/IEC 11172 and 13818-2,
  respectively. The RTP payload format is as specified in work in
  progress [10], Section 3. See the description of the MPA audio
  encoding for contact information.

5.5 MP2T

  MP2T designates the use of MPEG-II transport streams, for either
  audio or video. The encapsulation is described in work in progress,
  [10], Section 2. See the description of the MPA audio encoding for
  contact information.

5.6 nv

  The encoding is implemented in the program 'nv', version 4, developed
  at Xerox PARC by Ron Frederick. Further information is available from
  the author:

  Ron Frederick
  Xerox Palo Alto Research Center
  3333 Coyote Hill Road
  Palo Alto, CA 94304
  United States
  electronic mail: [email protected]

6.  Payload Type Definitions

  Table 2 defines this profile's static payload type values for the PT
  field of the RTP data header. A new RTP payload format specification
  may be registered with the IANA by name, and may also be assigned a
  static payload type value from the range marked in Section 3.

  In addition, payload type values in the range 96-127 may be defined
  dynamically through a conference control protocol, which is beyond
  the scope of this document. For example, a session directory could
  specify that for a given session, payload type 96 indicates PCMU
  encoding, 8,000 Hz sampling rate, 2 channels. The payload type range
  marked 'reserved' has been set aside so that RTCP and RTP packets can
  be reliably distinguished (see Section "Summary of Protocol
  Constants" of the RTP protocol specification).

  An RTP source emits a single RTP payload type at any given time; the
  interleaving of several RTP payload types in a single RTP session is
  not allowed, but multiple RTP sessions may be used in parallel to
  send multiple media. The payload types currently defined in this



Schulzrinne                 Standards Track                    [Page 13]

RFC 1890                       AV Profile                   January 1996


  profile carry either audio or video, but not both. However, it is
  allowed to define payload types that combine several media, e.g.,
  audio and video, with appropriate separation in the payload format.
  Session participants agree through mechanisms beyond the scope of
  this specification on the set of payload types allowed in a given
  session.  This set may, for example, be defined by the capabilities
  of the applications used, negotiated by a conference control protocol
  or established by agreement between the human participants.

  Audio applications operating under this profile should, at minimum,
  be able to send and receive payload types 0  (PCMU)  and 5 (DVI4).
  This allows interoperability without format negotiation and
  successful negotation with a conference control protocol.

  All current video encodings use a timestamp frequency of 90,000 Hz,
  the same as the MPEG presentation time stamp frequency. This
  frequency yields exact integer timestamp increments for the typical
  24 (HDTV), 25 (PAL), and 29.97 (NTSC) and 30 Hz (HDTV) frame rates
  and 50, 59.94 and 60 Hz field rates. While 90 kHz is the recommended
  rate for future video encodings used within this profile, other rates
  are possible. However, it is not sufficient to use the video frame
  rate (typically between 15 and 30 Hz) because that does not provide
  adequate resolution for typical synchronization requirements when
  calculating the RTP timestamp corresponding to the NTP timestamp in
  an RTCP SR packet [15]. The timestamp resolution must also be
  sufficient for the jitter estimate contained in the receiver reports.

  The standard video encodings and their payload types are listed in
  Table 2.

7.  Port Assignment

  As specified in the RTP protocol definition, RTP data is to be
  carried on an even UDP port number and the corresponding RTCP packets
  are to be carried on the next higher (odd) port number.

  Applications operating under this profile may use any such UDP port
  pair. For example, the port pair may be allocated randomly by a
  session management program. A single fixed port number pair cannot be
  required because multiple applications using this profile are likely
  to run on the same host, and there are some operating systems that do
  not allow multiple processes to use the same UDP port with different
  multicast addresses.








Schulzrinne                 Standards Track                    [Page 14]

RFC 1890                       AV Profile                   January 1996


     PT         encoding      audio/video    clock rate    channels
                name          (A/V)          (Hz)          (audio)
     _______________________________________________________________
     0          PCMU          A              8000          1
     1          1016          A              8000          1
     2          G721          A              8000          1
     3          GSM           A              8000          1
     4          unassigned    A              8000          1
     5          DVI4          A              8000          1
     6          DVI4          A              16000         1
     7          LPC           A              8000          1
     8          PCMA          A              8000          1
     9          G722          A              8000          1
     10         L16           A              44100         2
     11         L16           A              44100         1
     12         unassigned    A
     13         unassigned    A
     14         MPA           A              90000        (see text)
     15         G728          A              8000          1
     16--23     unassigned    A
     24         unassigned    V
     25         CelB          V              90000
     26         JPEG          V              90000
     27         unassigned    V
     28         nv            V              90000
     29         unassigned    V
     30         unassigned    V
     31         H261          V              90000
     32         MPV           V              90000
     33         MP2T          AV             90000
     34--71     unassigned    ?
     72--76     reserved      N/A            N/A           N/A
     77--95     unassigned    ?
     96--127    dynamic       ?

  Table 2: Payload types (PT) for standard audio and video encodings

  However, port numbers 5004 and 5005 have been registered for use with
  this profile for those applications that choose to use them as the
  default pair. Applications that operate under multiple profiles may
  use this port pair as an indication to select this profile if they
  are not subject to the constraint of the previous paragraph.
  Applications need not have a default and may require that the port
  pair be explicitly specified. The particular port numbers were chosen
  to lie in the range above 5000 to accomodate port number allocation
  practice within the Unix operating system, where port numbers below
  1024 can only be used by privileged processes and port numbers
  between 1024 and 5000 are automatically assigned by the operating



Schulzrinne                 Standards Track                    [Page 15]

RFC 1890                       AV Profile                   January 1996


  system.

8. Bibliography

  [1] Apple Computer, "Audio interchange file format AIFF-C," Aug.
      1991.  (also ftp://ftp.sgi.com/sgi/aiff-c.9.26.91.ps.Z).

  [2] Office of Technology and Standards, "Telecommunications: Analog
      to digital conversion of radio voice by 4,800 bit/second code
      excited linear prediction (celp)," Federal Standard FS-1016, GSA,
      Room 6654; 7th & D Street SW; Washington, DC 20407 (+1-202-708-
      9205), 1990.

  [3] J. P. Campbell, Jr., T. E. Tremain, and V. C. Welch, "The
      proposed Federal Standard 1016 4800 bps voice coder: CELP,"
      Speech Technology , vol. 5, pp. 58--64, April/May 1990.

  [4] J. P. Campbell, Jr., T. E. Tremain, and V. C. Welch, "The federal
      standard 1016 4800 bps CELP voice coder," Digital Signal
      Processing, vol. 1, no. 3, pp. 145--155, 1991.

  [5] J. P. Campbell, Jr., T. E. Tremain, and V. C. Welch, "The dod 4.8
      kbps standard (proposed federal standard 1016)," in Advances in
      Speech Coding (B. Atal, V. Cuperman, and A. Gersho, eds.), ch.
      12, pp. 121--133, Kluwer Academic Publishers, 1991.

  [6] IMA Digital Audio Focus and Technical Working Groups,
      "Recommended practices for enhancing digital audio compatibility
      in multimedia systems (version 3.00)," tech. rep., Interactive
      Multimedia Association, Annapolis, Maryland, Oct. 1992.

  [7] M. Mouly and M.-B. Pautet, The GSM system for mobile
      communications Lassay-les-Chateaux, France: Europe Media
      Duplication, 1993.

  [8] J. Degener, "Digital speech compression," Dr. Dobb's Journal,
      Dec.  1994.

  [9] S. M. Redl, M. K. Weber, and M. W. Oliphant, An Introduction to
      GSM Boston: Artech House, 1995.

 [10] D. Hoffman and V. Goyal, "RTP payload format for MPEG1/MPEG2
      video," Work in Progress, Internet Engineering Task Force, June
      1995.

 [11] N. S. Jayant and P. Noll, Digital Coding of Waveforms--
      Principles and Applications to Speech and Video Englewood Cliffs,
      New Jersey: Prentice-Hall, 1984.



Schulzrinne                 Standards Track                    [Page 16]

RFC 1890                       AV Profile                   January 1996


 [12] M. F. Speer and D. Hoffman, "RTP payload format of CellB video
      encoding," Work in Progress, Internet Engineering Task Force,
      Aug.  1995.

 [13] W. Fenner, L. Berc, R. Frederick, and S. McCanne, "RTP
      encapsulation of JPEG-compressed video," Work in Progress,
      Internet Engineering Task Force, Mar. 1995.

 [14] T. Turletti and C. Huitema, "RTP payload format for H.261 video
      streams," Work in Progress, Internet Engineering Task Force, July
      1995.

 [15] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RTP: A
      transport protocol for real-time applications." Work in Progress,
      Mar. 1995.

9.  Security Considerations

  Security issues are discussed in section 2.

10.  Acknowledgements

  The comments and careful review of Steve Casner are gratefully
  acknowledged.

11.  Author's Address

  Henning Schulzrinne
  GMD Fokus
  Hardenbergplatz 2
  D-10623 Berlin
  Germany

  EMail: [email protected]

















Schulzrinne                 Standards Track                    [Page 17]

RFC 1890                       AV Profile                   January 1996


  Current Locations of Related Resources


  UTF-8

  Information on the UCS Transformation Format 8 (UTF-8) is available
  at

           http://www.stonehand.com/unicode/standard/utf8.html


  1016

  An implementation is available at

             ftp://ftp.super.org/pub/speech/celp_3.2a.tar.Z

  DVI4

  An implementation is available from Jack Jansen at

               ftp://ftp.cwi.nl/local/pub/audio/adpcm.shar


  G721

  An implementation is available at

      ftp://gaia.cs.umass.edu/pub/hgschulz/ccitt/ccitt_tools.tar.Z


  GSM

  A reference implementation was written by Carsten Borman and Jutta
  Degener (TU Berlin, Germany). It is available at

           ftp://ftp.cs.tu-berlin.de/pub/local/kbs/tubmik/gsm/


  LPC

  An implementation is available at

           ftp://parcftp.xerox.com/pub/net-research/lpc.tar.Z







Schulzrinne                 Standards Track                    [Page 18]