Network Working Group                                         W. Simpson
Request for Comments: 1853                                    Daydreamer
Category: Informational                                     October 1995


                          IP in IP Tunneling


Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard.  Distribution of this memo is
  unlimited.


IESG Note:

  Note that this memo is an individual effort of the author.  This
  document reflects a current informal practice in the internet.  There
  is an effort underway within the IETF Mobile-IP Working Group to
  provide an appropriate proposed standard to address this issue.


Abstract

  This document discusses implementation techniques for using IP
  Protocol/Payload number 4 Encapsulation for tunneling with IP
  Security and other protocols.


Table of Contents

    1.     Introduction ..........................................    2

    2.     Encapsulation .........................................    3

    3.     Tunnel Management .....................................    5
       3.1       Tunnel MTU Discovery ............................    5
       3.2       Congestion ......................................    6
       3.3       Routing Failures ................................    6
       3.4       Other ICMP Messages .............................    6

    SECURITY CONSIDERATIONS ......................................    7
    REFERENCES ...................................................    7
    ACKNOWLEDGEMENTS .............................................    8
    AUTHOR'S ADDRESS .............................................    8





Simpson                      Informational                      [Page 1]

RFC 1853                     IP Tunnelling                  October 1995


1.  Introduction

  The IP in IP encapsulation Protocol/Payload number 4 [RFC-1700] has
  long been used to bridge portions of the Internet which have disjoint
  capabilities or policies.  This document describes implementation
  techniques used for many years by the Amateur Packet Radio network
  for joining a large mobile network, and also by early implementations
  of IP Security protocols.

  Use of IP in IP encapsulation differs from later tunneling techniques
  (for example, protocol numbers 98 [RFC-1241], 94 [IDM91a], 53
  [swIPe], and 47 [RFC-1701]) in that it does not insert its own
  special glue header between IP headers.  Instead, the original
  unadorned IP Header is retained, and simply wrapped in another
  standard IP header.

  This information applies principally to encapsulation of IP version
  4.  Other IP versions will be described in separate documents.

































Simpson                      Informational                      [Page 2]

RFC 1853                     IP Tunnelling                  October 1995


2.  Encapsulation

  The encapsulation technique is fairly simple.  An outer IP header is
  added before the original IP header.  Between them are any other
  headers for the path, such as security headers specific to the tunnel
  configuration.

  The outer IP header Source and Destination identify the "endpoints"
  of the tunnel.  The inner IP header Source and Destination identify
  the original sender and recipient of the datagram.

  Each header chains to the next using IP Protocol values [RFC-1700].

                                         +---------------------------+
                                         |      Outer IP Header      |
                                         +---------------------------+
                                         |      Tunnel Headers       |
     +---------------------------+       +---------------------------+
     |         IP Header         |       |      Inner IP Header      |
     +---------------------------+ ====> +---------------------------+
     |                           |       |                           |
     |         IP Payload        |       |         IP Payload        |
     |                           |       |                           |
     +---------------------------+       +---------------------------+

  The format of IP headers is described in [RFC-791].

  Type Of Service  copied from the inner IP header.  Optionally,
                   another TOS may be used between cooperating peers.

                   This is in keeping with the transparency principle
                   that if the user was expecting a given level of
                   service, then the tunnel should provide the same
                   service.  However, some tunnels may be constructed
                   specifically to provide a different level of service
                   as a matter of policy.

  Identification   A new number is generated for each outer IP header.

                   The encapsulated datagram may have already been
                   fragmented, and another level of fragmentation may
                   occur due to the tunnel encapsulation.  These tunnel
                   fragments will be reassembled by the decapsulator,
                   rather than the final destination.

  Reserved
                   ignored (set to zero).




Simpson                      Informational                      [Page 3]

RFC 1853                     IP Tunnelling                  October 1995


                   This unofficial flag has seen experimental use, and
                   while it remains in the inner IP header, does not
                   affect the tunnel.

  Don't Fragment   copied from the inner IP header.  This allows the
                   originator to control the level of performance
                   tradeoffs.  See "Tunnel MTU Discovery".

  More Fragments   set as required when fragmenting.

                   The flag is not copied for the same reason that a
                   separate Identification is used.

  Time To Live     the default value specified in the most recent
                   "Assigned Numbers" [RFC-1700].  This ensures that
                   long unanticipated tunnels do not interrupt the flow
                   of datagrams between endpoints.

                   The inner TTL is decremented once before
                   encapsulation, and is not affected by decapsulation.

  Protocol         the next header; 4 for the inner IP header, when no
                   intervening tunnel headers are in use.

  Source           an IP address associated with the interface used to
                   send the datagram.

  Destination      an IP address of the tunnel decapsulator.

  Options          not copied from the inner IP header.  However, new
                   options particular to the path MAY be added.

                   Timestamp, Loose Source Route, Strict Source Route,
                   and Record Route are deliberately hidden within the
                   tunnel.  Often, tunnels are constructed to overcome
                   the inadequacies of these options.

                   Any supported flavors of security options of the
                   inner IP header MAY affect the choice of security
                   options for the tunnel.  It is not expected that
                   there be a one-to-one mapping of such options to the
                   options or security headers selected for the tunnel.









Simpson                      Informational                      [Page 4]

RFC 1853                     IP Tunnelling                  October 1995


3.  Tunnel Management

  It is possible that one of the routers along the tunnel interior
  might encounter an error while processing the datagram, causing it to
  return an ICMP [RFC-792] error message to the encapsulator at the IP
  Source of the tunnel.  Unfortunately, ICMP only requires IP routers
  to return 8 bytes (64 bits) of the datagram beyond the IP header.
  This is not enough to include the entire encapsulated header.  Thus,
  it is not generally possible for an encapsulating router to
  immediately reflect an ICMP message from the interior of a tunnel
  back to the originating host.

  However, by carefully maintaining "soft state" about its tunnels, the
  encapsulator can return accurate ICMP messages in most cases.  The
  router SHOULD maintain at least the following soft state information
  about each tunnel:

   - Reachability of the end of the tunnel.
   - Congestion of the tunnel.
   - MTU of the tunnel.

  The router uses the ICMP messages it receives from the interior of a
  tunnel to update the soft state information for that tunnel.  When
  subsequent datagrams arrive that would transit the tunnel, the router
  checks the soft state for the tunnel.  If the datagram would violate
  the state of the tunnel (such as the MTU is greater than the tunnel
  MTU when Don't Fragment is set), the router sends an appropriate ICMP
  error message back to the originator, but also forwards the datagram
  into the tunnel.  Forwarding the datagram despite returning the error
  message ensures that changes in tunnel state will be learned.

  Using this technique, the ICMP error messages from encapsulating
  routers will not always match one-to-one with errors encountered
  within the tunnel, but they will accurately reflect the state of the
  network.


3.1.  Tunnel MTU Discovery

  When the Don't Fragment bit is set by the originator and copied into
  the outer IP header, the proper MTU of the tunnel will be learned
  from ICMP (Type 3 Code 4) "Datagram Too Big" errors reported to the
  encapsulator.  To support originating hosts which use this
  capability, all implementations MUST support Path MTU Discovery
  [RFC-1191, RFC-1435] within their tunnels.






Simpson                      Informational                      [Page 5]

RFC 1853                     IP Tunnelling                  October 1995


  As a benefit of Tunnel MTU Discovery, any fragmentation which occurs
  because of the size of the encapsulation header is done only once
  after encapsulation.  This prevents more than one fragmentation of a
  single datagram, which improves processing efficiency of the path
  routers and tunnel decapsulator.


3.2.  Congestion

  Tunnel soft state will collect indications of congestion, such as an
  ICMP (Type 4) Source Quench in datagrams from the decapsulator
  (tunnel peer).  When forwarding another datagram into the tunnel,
  it is appropriate to send Source Quench messages to the originator.


3.3.  Routing Failures

  Because the TTL is reset each time that a datagram is encapsulated,
  routing loops within a tunnel are particularly dangerous when they
  arrive again at the encapsulator.  If the IP Source matches any of
  its interfaces, an implementation MUST NOT further encapsulate.
  Instead, the datagram is forwarded normally.

  ICMP (Type 11) Time Exceeded messages report routing loops within the
  tunnel itself.  ICMP (Type 3) Destination Unreachable messages report
  delivery failures to the decapsulator.  This soft state MUST be
  reported to the originator as (Type 3 Code 0) Network Unreachable.


3.4.  Other ICMP Messages

  Most ICMP error messages are not relevant to the use of the tunnel.
  In particular, parameter problems are likely to be a result of
  misconfiguration of the encapsulator, and MUST NOT be reported to the
  originator.
















Simpson                      Informational                      [Page 6]

RFC 1853                     IP Tunnelling                  October 1995


Security Considerations

  Security issues are briefly discussed in this memo.  The use of
  tunneling may obviate some older IP security options (labelling), but
  will better support newer IP Security headers.


References

  [IDM91a] Ioannidis, J., Duchamp, D., Maguire, G., "IP-based
           protocols for mobile internetworking", Proceedings of
           SIGCOMM '91, ACM, September 1991.

  [RFC-791]
           Postel, J., "Internet Protocol", STD 5, RFC 791,
           USC/Information Sciences Institute, September 1981.

  [RFC-792]
           Postel, J., "Internet Control Message Protocol", STD 5,
           RFC 792, USC/Information Sciences Institute, September
           1981.

  [RFC-1191]
           Mogul, J., and S. Deering, "Path MTU Discovery", RFC 1191,
           DECWRL, Stanford University, November 1990.

  [RFC-1241]
           Mills, D., and R. Woodburn, "A Scheme for an Internet
           Encapsulation Protocol: Version 1", UDEL, July 1991.

  [RFC-1435]
           Knowles, S., "IESG Advice from Experience with Path MTU
           Discovery", RFC 1435, FTP Software, March 1993.

  [RFC-1700]
           Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC
           1700, USC/Information Sciences Institute, October 1994.

  [RFC-1701]
           Hanks, S., Li, T., Farinacci, D., and P. Traina, "Generic
           Routing Encapsulation (GRE)", RFC 1701, October 1994.

  [swIPe]  Ioannidis, J., and Blaze, M., "The Architecture and
           Implementation of Network-Layer Security Under Unix", Fourth
           Usenix Security Symposium Proceedings, October 1993.






Simpson                      Informational                      [Page 7]

RFC 1853                     IP Tunnelling                  October 1995


Acknowledgements

  These implementation details of IP Tunneling are derived in large
  part from independent work in 1990 by Phil Karn and the TCP-Group
  hams using KA9Q NOS.

  Special thanks to John Ioannidis (then of Columbia University) for
  inspiration and experimentation which began this most recent round of
  IP Mobility and IP Security development.  Some of this text was
  derived from [IDM91a] and [swIPe].

  The chaining of headers was also described in "Simple Internet
  Protocol", by Steve Deering (Xerox PARC).

  The overall organization and some of this text was derived from
  [RFC-1241], by David Mills (U Delaware) and Robert Woodburn (SAIC).

  Some of the text on tunnel soft state was derived from "IP Address
  Encapsulation (IPAE)", by Robert E. Gilligan, Erik Nordmark, and Bob
  Hinden (all of Sun Microsystems).


Author's Address

  Questions about this memo can also be directed to:

     William Allen Simpson
     Daydreamer
     Computer Systems Consulting Services
     1384 Fontaine
     Madison Heights, Michigan  48071

     [email protected]
         [email protected]

















Simpson                      Informational                      [Page 8]