Network Working Group                                            P. Karn
Request for Comments: 1829                                      Qualcomm
Category: Standards Track                                     P. Metzger
                                                               Piermont
                                                             W. Simpson
                                                             Daydreamer
                                                            August 1995


                      The ESP DES-CBC Transform



Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.


Abstract

  This document describes the DES-CBC security transform for the IP
  Encapsulating Security Payload (ESP).


Table of Contents

    1.     Introduction ..........................................    1
       1.1       Keys ............................................    1
       1.2       Initialization Vector ...........................    1
       1.3       Data Size .......................................    2
       1.4       Performance .....................................    2

    2.     Payload Format ........................................    3

    3.     Algorithm .............................................    5
       3.1       Encryption ......................................    5
       3.2       Decryption ......................................    5

    SECURITY CONSIDERATIONS ......................................    6
    ACKNOWLEDGEMENTS .............................................    7
    REFERENCES ...................................................    8
    AUTHOR'S ADDRESS .............................................   10





Karn, Metzger & Simpson     Standards Track                     [Page i]

RFC 1829                      ESP DES-CBC                    August 1995


1.  Introduction

  The Encapsulating Security Payload (ESP) [RFC-1827] provides
  confidentiality for IP datagrams by encrypting the payload data to be
  protected.  This specification describes the ESP use of the Cipher
  Block Chaining (CBC) mode of the US Data Encryption Standard (DES)
  algorithm [FIPS-46, FIPS-46-1, FIPS-74, FIPS-81].

  All implementations that claim conformance or compliance with the
  Encapsulating Security Payload specification MUST implement this
  DES-CBC transform.

  This document assumes that the reader is familiar with the related
  document "Security Architecture for the Internet Protocol"
  [RFC-1825], which defines the overall security plan for IP, and
  provides important background for this specification.



1.1.  Keys

  The secret DES key shared between the communicating parties is eight
  octets in length.  This key consists of a 56-bit quantity used by the
  DES algorithm.  The 56-bit key is stored as a 64-bit (eight octet)
  quantity, with the least significant bit of each octet used as a
  parity bit.



1.2.  Initialization Vector

  This mode of DES requires an Initialization Vector (IV) that is eight
  octets in length.

  Each datagram contains its own IV.  Including the IV in each datagram
  ensures that decryption of each received datagram can be performed,
  even when other datagrams are dropped, or datagrams are re-ordered in
  transit.

  The method for selection of IV values is implementation dependent.

  Notes:
     A common acceptable technique is simply a counter, beginning with
     a randomly chosen value.  While this provides an easy method for
     preventing repetition, and is sufficiently robust for practical
     use, cryptanalysis may use the rare serendipitous occurrence when
     a corresponding bit position in the first DES block increments in
     exactly the same fashion.


Karn, Metzger & Simpson     Standards Track                     [Page 1]

RFC 1829                      ESP DES-CBC                    August 1995


     Other implementations exhibit unpredictability, usually through a
     pseudo-random number generator.  Care should be taken that the
     periodicity of the number generator is long enough to prevent
     repetition during the lifetime of the session key.



1.3.  Data Size

  The DES algorithm operates on blocks of eight octets.  This often
  requires padding after the end of the unencrypted payload data.

  Both input and output result in the same number of octets, which
  facilitates in-place encryption and decryption.

  On receipt, if the length of the data to be decrypted is not an
  integral multiple of eight octets, then an error is indicated, as
  described in [RFC-1825].



1.4.  Performance

  At the time of writing, at least one hardware implementation can
  encrypt or decrypt at about 1 Gbps [Schneier94, p. 231].

























Karn, Metzger & Simpson     Standards Track                     [Page 2]

RFC 1829                      ESP DES-CBC                    August 1995


2.  Payload Format


  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                Security Parameters Index (SPI)                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                   Initialization Vector (IV)                  ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                          Payload Data                         ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            ... Padding           |  Pad Length   | Payload Type  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Security Parameters Index (SPI)

     A 32-bit value identifying the Security Parameters for this
     datagram.  The value MUST NOT be zero.

  Initialization Vector (IV)

     The size of this field is variable, although it is constant for
     all DES-CBC datagrams of the same SPI and IP Destination.  Octets
     are sent in network order (most significant octet first)
     [RFC-1700].

     The size MUST be a multiple of 32-bits.  Sizes of 32 and 64 bits
     are required to be supported.  The use of other sizes is beyond
     the scope of this specification.  The size is expected to be
     indicated by the key management mechanism.

     When the size is 32-bits, a 64-bit IV is formed from the 32-bit
     value followed by (concatenated with) the bit-wise complement of
     the 32-bit value.  This field size is most common, as it aligns
     the Payload Data for both 32-bit and 64-bit processing.

     All conformant implementations MUST also correctly process a
     64-bit field size.  This provides strict compatibility with
     existing hardware implementations.

        It is the intent that the value not repeat during the lifetime
        of the encryption session key.  Even when a full 64-bit IV is
        used, the session key SHOULD be changed at least as frequently
        as 2**32 datagrams.


Karn, Metzger & Simpson     Standards Track                     [Page 3]

RFC 1829                      ESP DES-CBC                    August 1995


  Payload Data

     The size of this field is variable.

     Prior to encryption and after decryption, this field begins with
     the IP Protocol/Payload header specified in the Payload Type
     field.  Note that in the case of IP-in-IP encapsulation (Payload
     Type 4), this will be another IP header.

  Padding

     The size of this field is variable.

     Prior to encryption, it is filled with unspecified implementation
     dependent (preferably random) values, to align the Pad Length and
     Payload Type fields at an eight octet boundary.

     After decryption, it MUST be ignored.

  Pad Length

     This field indicates the size of the Padding field.  It does not
     include the Pad Length and Payload Type fields.  The value
     typically ranges from 0 to 7, but may be up to 255 to permit
     hiding of the actual data length.

     This field is opaque.  That is, the value is set prior to
     encryption, and is examined only after decryption.

  Payload Type

     This field indicates the contents of the Payload Data field, using
     the IP Protocol/Payload value.  Up-to-date values of the IP
     Protocol/Payload are specified in the most recent "Assigned
     Numbers" [RFC-1700].

     This field is opaque.  That is, the value is set prior to
     encryption, and is examined only after decryption.

        For example, when encrypting an entire IP datagram (Tunnel-
        Mode), this field will contain the value 4, which indicates
        IP-in-IP encapsulation.








Karn, Metzger & Simpson     Standards Track                     [Page 4]

RFC 1829                      ESP DES-CBC                    August 1995


3.  Algorithm

  In DES-CBC, the base DES encryption function is applied to the XOR of
  each plaintext block with the previous ciphertext block to yield the
  ciphertext for the current block.  This provides for
  re-synchronization when datagrams are lost.

  For more explanation and implementation information for DES, see
  [Schneier94].



3.1.  Encryption

  Append zero or more octets of (preferably random) padding to the
  plaintext, to make its modulo 8 length equal to 6.  For example, if
  the plaintext length is 41, 5 octets of padding are added.

  Append a Pad Length octet containing the number of padding octets
  just added.

  Append a Payload Type octet containing the IP Protocol/Payload value
  which identifies the protocol header that begins the payload.

  Provide an Initialization Vector (IV) of the size indicated by the
  SPI.

  Encrypt the payload with DES in CBC mode, producing a ciphertext of
  the same length.

  Octets are mapped to DES blocks in network order (most significant
  octet first) [RFC-1700].  Octet 0 (modulo 8) of the payload
  corresponds to bits 1-8 of the 64-bit DES input block, while octet 7
  (modulo 8) corresponds to bits 57-64 of the DES input block.

  Construct an appropriate IP datagram for the target Destination, with
  the indicated SPI, IV, and payload.

  The Total/Payload Length in the encapsulating IP Header reflects the
  length of the encrypted data, plus the SPI, IV, padding, Pad Length,
  and Payload Type octets.



3.2.  Decryption

  First, the SPI field is removed and examined.  This is used as an
  index into the local Security Parameter table to find the negotiated


Karn, Metzger & Simpson     Standards Track                     [Page 5]

RFC 1829                      ESP DES-CBC                    August 1995


  parameters and decryption key.

  The negotiated form of the IV determines the size of the IV field.
  These octets are removed, and an appropriate 64-bit IV value is
  constructed.

  The encrypted part of the payload is decrypted using DES in the CBC
  mode.

  The Payload Type is removed and examined.  If it is unrecognized, the
  payload is discarded with an appropriate ICMP message.

  The Pad Length is removed and examined.  The specified number of pad
  octets are removed from the end of the decrypted payload, and the IP
  Total/Payload Length is adjusted accordingly.

  The IP Header(s) and the remaining portion of the decrypted payload
  are passed to the protocol receive routine specified by the Payload
  Type field.



Security Considerations

  Users need to understand that the quality of the security provided by
  this specification depends completely on the strength of the DES
  algorithm, the correctness of that algorithm's implementation, the
  security of the key management mechanism and its implementation, the
  strength of the key [CN94], and upon the correctness of the
  implementations in all of the participating nodes.

  Among other considerations, applications may wish to take care not to
  select weak keys, although the odds of picking one at random are low
  [Schneier94, p 233].

  The cut and paste attack described by [Bell95] exploits the nature of
  all Cipher Block Chaining algorithms.  When a block is damaged in
  transmission, on decryption both it and the following block will be
  garbled by the decryption process, but all subsequent blocks will be
  decrypted correctly.  If an attacker has legitimate access to the
  same key, this feature can be used to insert or replay previously
  encrypted data of other users of the same engine, revealing the
  plaintext.  The usual (ICMP, TCP, UDP) transport checksum can detect
  this attack, but on its own is not considered cryptographically
  strong.  In this situation, user or connection oriented integrity
  checking is needed [RFC-1826].

  At the time of writing of this document, [BS93] demonstrated a


Karn, Metzger & Simpson     Standards Track                     [Page 6]

RFC 1829                      ESP DES-CBC                    August 1995


  differential cryptanalysis based chosen-plaintext attack requiring
  2^47 plaintext-ciphertext pairs, and [Matsui94] demonstrated a linear
  cryptanalysis based known-plaintext attack requiring only 2^43
  plaintext-ciphertext pairs.  Although these attacks are not
  considered practical, they must be taken into account.

  More disturbingly, [Weiner94] has shown the design of a DES cracking
  machine costing $1 Million that can crack one key every 3.5 hours.
  This is an extremely practical attack.

  One or two blocks of known plaintext suffice to recover a DES key.
  Because IP datagrams typically begin with a block of known and/or
  guessable header text, frequent key changes will not protect against
  this attack.

  It is suggested that DES is not a good encryption algorithm for the
  protection of even moderate value information in the face of such
  equipment.  Triple DES is probably a better choice for such purposes.

  However, despite these potential risks, the level of privacy provided
  by use of ESP DES-CBC in the Internet environment is far greater than
  sending the datagram as cleartext.



Acknowledgements

  This document was reviewed by the IP Security Working Group of the
  Internet Engineering Task Force (IETF).  Comments should be submitted
  to the [email protected] mailing list.

  Some of the text of this specification was derived from work by
  Randall Atkinson for the SIP, SIPP, and IPv6 Working Groups.

  The use of DES for confidentiality is closely modeled on the work
  done for SNMPv2 [RFC-1446].

  Steve Bellovin, Steve Deering, Karl Fox, Charles Lynn, Craig Metz,
  Dave Mihelcic and Jeffrey Schiller provided useful critiques of
  earlier versions of this draft.










Karn, Metzger & Simpson     Standards Track                     [Page 7]

RFC 1829                      ESP DES-CBC                    August 1995


References

  [Bell95]  Bellovin, S., "An Issue With DES-CBC When Used Without
           Strong Integrity", Proceedings of the 32nd IETF, Danvers,
           MA, April 1995.

  [BS93]   Biham, E., and Shamir, A., "Differential Cryptanalysis of
           the Data Encryption Standard", Berlin: Springer-Verlag,
           1993.

  [CN94]   Carroll, J.M., and Nudiati, S., "On Weak Keys and Weak Data:
           Foiling the Two Nemeses", Cryptologia, Vol. 18 No. 23 pp.
           253-280, July 1994.

  [FIPS-46]
           US National Bureau of Standards, "Data Encryption Standard",
           Federal Information Processing Standard (FIPS) Publication
           46, January 1977.

  [FIPS-46-1]
           US National Bureau of Standards, "Data Encryption Standard",
           Federal Information Processing Standard (FIPS) Publication
           46-1, January 1988.

  [FIPS-74]
           US National Bureau of Standards, "Guidelines for
           Implementing and Using the Data Encryption Standard",
           Federal Information Processing Standard (FIPS) Publication
           74, April 1981.

  [FIPS-81]
           US National Bureau of Standards, "DES Modes of Operation"
           Federal Information Processing Standard (FIPS) Publication
           81, December 1980.

  [Matsui94]
           Matsui, M., "Linear Cryptanalysis method dor DES Cipher,"
           Advances in Cryptology -- Eurocrypt '93 Proceedings, Berlin:
           Springer-Verlag, 1994.

  [RFC-1446]
           Galvin, J., and McCloghrie, K., "Security Protocols for
           Version 2 of the Simple Network Management Protocol
           (SNMPv2)", RFC-1446, DDN Network Information Center, April
           1993.

  [RFC-1700]
           Reynolds, J., and Postel, J., "Assigned Numbers", STD 2,

Karn, Metzger & Simpson     Standards Track                     [Page 8]

RFC 1829                      ESP DES-CBC                    August 1995


           RFC-1700, USC/Information Sciences Institute, October 1994.

  [RFC-1800]
           Postel, J., "Internet Official Protocol Standards", STD 1,
           RFC-1800, USC/Information Sciences Institute, July 1995.

  [RFC-1825]
           Atkinson, R., "Security Architecture for the Internet
           Protocol", RFC-1825, Naval Research Laboratory, July 1995.

  [RFC-1826]
           Atkinson, R., "IP Authentication Header", RFC-1826, Naval
           Research Laboratory, July 1995.

  [RFC-1827]
           Atkinson, R., "IP Encapsulating Security Protocol (ESP)",
           RFC-1827, Naval Research Laboratory, July 1995.

  [Schneier94]
           Schneier, B., "Applied Cryptography", John Wiley & Sons, New
           York, NY, 1994.  ISBN 0-471-59756-2

  [Weiner94]
           Wiener, M.J., "Efficient DES Key Search", School of Computer
           Science, Carleton University, Ottawa, Canada, TR-244, May
           1994.  Presented at the Rump Session of Crypto '93.
























Karn, Metzger & Simpson     Standards Track                     [Page 9]

RFC 1829                      ESP DES-CBC                    August 1995


Author's Address

  Questions about this memo can also be directed to:

     Phil Karn
     Qualcomm, Inc.
     6455 Lusk Blvd.
     San Diego, California  92121-2779

     [email protected]


     Perry Metzger
     Piermont Information Systems Inc.
     160 Cabrini Blvd., Suite #2
     New York, NY  10033

     [email protected]


     William Allen Simpson
     Daydreamer
     Computer Systems Consulting Services
     1384 Fontaine
     Madison Heights, Michigan  48071

     [email protected]
         [email protected]






















Karn, Metzger & Simpson     Standards Track                    [Page 10]