Network Working Group                                    L. Wells, Chair
Request for Comments: 1795             Internetwork Technology Institute
Obsoletes: 1434                                        A. Bartky, Editor
Category: Informational                              Sync Research, Inc.
                                                             April 1995


            Data Link Switching: Switch-to-Switch Protocol
      AIW DLSw RIG: DLSw Closed Pages, DLSw Standard Version 1.0

Status of this Memo

  This memo provides information for the Internet community.  This memo
  does not specify an Internet standard of any kind.  Distribution of
  this memo is unlimited.

Abstract

  This RFC describes use of Data Link Switching over TCP/IP. The RFC is
  being distributed to members of the Internet community in order to
  solicit their reactions to the proposals contained in it.  While the
  issues discussed may not be directly relevant to the research
  problems of the Internet, they may be interesting to a number of
  researchers and Implementers.

  This RFC was created as a joint effort of the Advanced Peer-to-Peer
  Networking (APPN) Implementers Workshop (AIW) Data Link Switching
  (DLSw) Related Interest Group (RIG).  The APPN Implementers Workshop
  is a group sponsored by IBM and consists of representatives of member
  companies implementing current and future IBM Networking
  interoperable products. The DLSw Related Interest Group was formed in
  this forum in order to produce a single version of the Switch to
  Switch Protocol (SSP) which could be implemented by all vendors,
  which would fix documentation problems with the existing RFC 1434,
  and which would enhance and evolve the protocol to add new functions
  and features.

  This document is based on RFC 1434.  This document contains
  significant changes to RFC 1434 and therefore obsoletes that
  document.

  Any questions or comments relative to the contents of this RFC should
  be sent to the following Internet address:
  [email protected].

  NOTE 1: This is a widely subscribed mailing list and messages sent to
  this address will be sent to all members of the DLSw mailing list.
  For specific questions relating to subscribing to the AIW and any of



Wells & Bartky                                                  [Page 1]

RFC 1795                  Data Link Switching                 April 1995


  it's working groups send email to: [email protected]

  Information regarding all of the AIW working groups and the work they
  are producing can be obtained by copying, via anonymous ftp, the file
  aiwinfo.psbin or aiwinfo.txt from the Internet host
  networking.raleigh.ibm.com, located in directory aiw.

  NOTE 2:  These mailing lists and addresses are subject to change.

1.  Introduction

  Data Link Switching (DLSw) is a forwarding mechanism for the IBM SNA
  (Systems Network Architecture) and IBM NetBIOS (Network Basic Input
  Output Services) protocols.  This memo documents the Switch-to-Switch
  Protocol (SSP) that is used between Data Link Switches.  This
  protocol does not provide full routing, but instead provides
  switching at the SNA Data Link layer (i.e., layer 2 in the SNA
  architecture) and encapsulation in TCP/IP for transport over the
  Internet.  This RFC documents the frame formats and protocols for
  multiplexing data between Data Link Switches. The initial
  implementation of SSP uses TCP as the reliable transport between Data
  Link Switches.  However, other transport connections such as OSI TP4
  could be used in the future.

  A Data Link Switch (abbreviated also as DLSw in this document) can
  support  SNA (Physical Unit (PU) 2, PU 2.1 and PU 4) systems and
  optionally NetBIOS systems attached to IEEE 802.2 compliant Local
  Area Networks, as well as SNA (PU 2 (primary or secondary) and PU2.1)
  systems attached to IBM Synchronous Data Link Control (SDLC) links.
  For the latter case, the SDLC attached systems are provided with a
  LAN appearance within the Data Link Switch (each SDLC PU is presented
  to the SSP protocol as a unique MAC/SAP address pair).  For the
  Token-Ring LAN attached systems, the Data Link Switch appears as a
  source-routing bridge.  Token-Ring Remote systems that are accessed
  through the Data Link Switch appear as systems attached to an
  adjacent ring.  This ring is a virtual ring that is manifested within
  each Data Link Switch.

1.1  Backwards Compatibility with RFC 1434

  This document defines significant changes to RFC 1434 and does not
  state details on how to interoperate with RFC 1434 or "enhanced"
  implementations (e.g., those that added enter and exit busy flow
  control).  It is up to the implementer to refer to RFC 1434 and/or
  any other vendor's documentation in order to interoperate with a
  given vendor's implementation, if interoperability with pre-AIW DLSw
  RIG standards is desired.




Wells & Bartky                                                  [Page 2]

RFC 1795                  Data Link Switching                 April 1995


2.  Overview

  Data Link Switching was developed to provide support for SNA and
  NetBIOS in multi-protocol routers.  Since SNA and NetBIOS are
  basically connection oriented protocols, the Data Link Control
  procedure that they use on the LAN is IEEE 802.2 Logical Link Control
  (LLC) Type 2.  Data Link Switching also accommodates SNA protocols
  over WAN (Wide Area Network) links via the SDLC protocol.

  IEEE 802.2 LLC Type 2 was designed with the assumption that the
  network transit delay would be predictable (i.e., a local LAN).
  Therefore the LLC Type 2 elements of procedure use a fixed timer for
  detecting lost frames.  When remote bridging is used over wide area
  lines (especially at lower speeds), the network delay is larger and
  it can vary greatly based upon congestion.  When the delay exceeds
  the time-out value LLC Type 2 attempts to retransmit.  If the frame
  is not actually lost, only delayed, it is possible for the LLC Type 2
  procedures to become confused.  And as a result, the link may be
  eventually taken down if the delay exceeds the T1 timer times N2
  retry count.

  Given the use of LLC Type 2 services, Data Link Switching addresses
  the following bridging problems:

            DLC Time-outs
            DLC Acknowledgments over the WAN
            Flow and Congestion Control
            Broadcast Control of Search Packets
            Source-Route Bridging Hop Count Limits

  NetBIOS also makes extensive use of datagram services that use
  connectionless LLC Type 1 service.  In this case, Data Link Switching
  addresses the last two problems in the above list.

  The principal difference between Data Link Switching and bridging is
  that for connection-oriented data DLSw terminates the Data Link Control
  whereas bridging does not. The following figure illustrates this
  difference based upon two end systems operating with LLC Type 2
  services.












Wells & Bartky                                                  [Page 3]

RFC 1795                  Data Link Switching                 April 1995


  Bridging
  --------

                   Bridge           Bridge
  +------+         +----+           +----+         +------+
  | End  | +-----+ |    +-----/     |    | +-----+ | End  |
  |System+-+ LAN +-+    |    /------+    +-+ LAN +-+System|
  |      | +-----+ |    |  TCP/IP   |    | +-----+ |      |
  +------+         +----+           +----+         +------+
     Info----------------------------------------------->
         <-----------------------------------------------RR


  Data Link Switching
  -------------------

  +------+         +----+           +----+         +------+
  | End  | +-----+ |    +-----/     |    | +-----+ | End  |
  |System+-+ LAN +-+DLSw|    /------+DLSw+-+ LAN +-+System|
  |      | +-----+ |    |  TCP/IP   |    | +-----+ |      |
  +------+         +----+           +----+         +------+
   Info--------------->   -------------> Info
     <---------------RR                 ------------>
                                        <------------RR

  In traditional bridging, the Data Link Control is end-to-end.  Data
  Link Switching terminates the LLC Type 2 connection at the switch.
  This means that the LLC Type 2 connections do not cross the wide area
  network.  The DLSw multiplexes LLC connections onto a TCP connection
  to another DLSw.  Therefore, the LLC connections at each end are
  totally independent of each other.  It is the responsibility of the
  Data Link Switch to deliver frames that it has received from a LLC
  connection to the other end.  TCP is used between the Data Link
  Switches to guarantee delivery of frames.

  As a result of this design, LLC time-outs are limited to the local
  LAN (i.e., they do not traverse the wide area).  Also, the LLC Type 2
  acknowledgments (RR's) do not traverse the WAN, thereby reducing
  traffic across the wide area links.  For SDLC links, polling and poll
  response occurs locally, not over the WAN.  Broadcast of search
  frames is controlled by the Data Link Switches once the location of a
  target system is discovered.  Finally, the switches can now apply
  back pressure to the end systems to provide flow and congestion
  control.

  Only one copy of an Link Protocol Data Unit (LPDU) is sent between
  Data Link Switches in SSP messages (XIDFRAME and INFOFRAME).  Retries
  of the LPDU are absorbed by Data Link Switch that receives it.  The



Wells & Bartky                                                  [Page 4]

RFC 1795                  Data Link Switching                 April 1995


  Data Link Switch that transmits the LPDU received in an SSP message
  to a local DLC, will perform retries in a manner appropriate for the
  local DLC. This may involve running a reply timer and maintaining a
  poll retry count.  The length of the timer and the number of retries
  is an implementation choice based on user configuration parameters
  and the DLC type.

  Data Link Switching uses LAN addressing to set up connections between
  SNA systems.  SDLC attached devices are defined with MAC and SAP
  addresses to enable them to communicate with LAN attached devices.
  For NetBIOS systems, Data Link Switching uses the NetBIOS name to
  forward datagrams and to set up connections for NetBIOS sessions.
  For LLC type 2 connection establishment, SNA systems send TEST (or in
  some cases, XID) frames to the null (0x00) SAP.  NetBIOS systems have
  an address resolution procedure, based upon the Name Query and Name
  Recognized frames, that is used to establish an end-to-end circuit.

  Since Data Link Switching may be implemented in multi-protocol
  routers, there may be situations where both bridging and switching
  are enabled. SNA frames can be identified by their link SAP.  Typical
  SAP values for SNA are 0x04, 0x08, and 0x0C.  NetBIOS always uses a
  link SAP value of 0xF0.





























Wells & Bartky                                                  [Page 5]

RFC 1795                  Data Link Switching                 April 1995


3.  Transport Connection

  Data Link Switches can be in used in pairs or by themselves.

  A Single DLSw internally switches one data link to another without
  using TCP (DLC(1) to DLC(2) in the figure below).  This RFC does not
  go into details on how to implement this feature and it is not a
  requirement to support this RFC.

  A paired DLSw multiplexes data links over a reliable transport using
  a Switch-to-Switch Protocol (SSP).

  +-------------------------------------------+Switch-to-Switch
  |              DLC Interfaces               | Protocol (SSP)
  |+-----------+   DLC Request  +-----------+ |
  ||   Data    |<---------------|           | |Send SSP Frame
  ||   Link    | DLC Indication |           | |-------------->
  || Control 1 |--------------->|           | |
  |+-----------+                | Data Link | |
  |+-----------+   DLC Request  |  Switch   | |
  ||   Data    |<-------------- |           | |Rec. SSP Frame
  ||   Link    | DLC Indication |           | |<-------------
  || Control 2 | -------------->|           | |
  |+-----------+                +-----------+ |
  |            Multi-Protocol Router          |
  +-------------------------------------------+

  Before Data Link Switching can occur between two routers, they must
  establish two TCP connections between them.  Each Data Link Switch
  will maintain a list of DLSw capable routers and their status
  (active/inactive).  After the TCP connection is established, SSP
  messages are exchanged to establish the capabilities of the two Data
  Link Switches.  Once the exchange is complete,  the DLSw will employ
  SSP control messages to establish end-to-end circuits over the
  transport connection.  Within the transport connection, DLSw SSP
  messages are exchanged.  The message formats and types for these SSP
  messages are documented in the following sections.

  The default parameters associated with the TCP connections between
  Data Link Switches are as follows:

  Socket Family     AF_INET        (Internet protocols)
  Socket Type       SOCK_STREAM    (stream socket)
  Read Port Number  2065
  Write Port Number 2067






Wells & Bartky                                                  [Page 6]

RFC 1795                  Data Link Switching                 April 1995


  Two or more Data Link Switches may be attached to the same LAN,
  consisting of a number of token-ring segments interconnected by
  source-routing bridges.  In this case, a TCP connection is not
  defined between bridges attached to the same LAN.  This will allow
  using systems to select one of the possible Data Link Switches in a
  similar manner to the selection of a bridge path through a source-
  routed bridged network.  The virtual ring segment in each Data Link
  Switch attached to a common LAN must be configured with the same ring
  number.  This will prevent LAN frames sent by one Data Link Switch
  from being propagated through the other Data Link Switches.









































Wells & Bartky                                                  [Page 7]

RFC 1795                  Data Link Switching                 April 1995


3.1  SSP Frame Formats

  The following diagrams show the two message header formats exchanged
  between Data Link Switches, Control and Information.  The Control
  message header is used for all messages except Information Frames
  (INFOFRAME) and Independent Flow Control Messages (IFCM), which are
  sent in Information header format.  The INFOFRAME, KEEPALIVE and IFCM
  message headers are 16 bytes long, and the control message header is
  72 bytes long.  The fields in the first sixteen bytes of all message
  headers are the same.

   CONTROL MESSAGES (72 Bytes)
   (zero based offsets below shown in decimal (xx) )
  +-----------------------------+-----------------------------+
  | (00) Version Number         | (01) Header Length (= 72)   |
  +-----------------------------+-----------------------------+
  | (02) Message Length                                       |
  +-----------------------------+-----------------------------+
  | (04) Remote Data Link Correlator                          |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +-----------------------------+-----------------------------+
  | (08) Remote DLC Port ID                                   |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +-----------------------------+-----------------------------+
  | (12) Reserved Field                                       |
  +-----------------------------+-----------------------------+
  | (14) Message Type           | (15) Flow Control Byte      |
  +-----------------------------+-----------------------------+
  | (16) Protocol ID            | (17) Header Number          |
  +-----------------------------+-----------------------------+
  | (18) Reserved                                             |
  +-----------------------------+-----------------------------+
  | (20) Largest Frame Size     | (21) SSP Flags              |
  +-----------------------------+-----------------------------+
  | (22) Circuit Priority       | (23) Message Type (see note)|
  +-----------------------------+-----------------------------+
  | (24) Target MAC Address  (non-canonical format)           |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -|
  |                                                           |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +-----------------------------+-----------------------------+
  | (30) Origin MAC Address  (non-canonical format)           |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -|





Wells & Bartky                                                  [Page 8]

RFC 1795                  Data Link Switching                 April 1995


  |                                                           |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |            .                              .               |
  +-----------------------------+-----------------------------+
  | (36) Origin Link SAP        | (37) Target Link SAP        |
  +-----------------------------+-----------------------------+
  | (38) Frame Direction        | (39) Reserved               |
  +-----------------------------+-----------------------------+
  | (40) Reserved                                             |
  +-----------------------------+-----------------------------+
  | (42) DLC Header Length                                    |
  +-----------------------------+-----------------------------+
  | (44) Origin DLC Port ID                                   |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +-----------------------------+-----------------------------+
  | (48) Origin Data Link Correlator                          |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +-----------------------------+-----------------------------+
  | (52) Origin Transport ID                                  |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +-----------------------------+-----------------------------+
  | (56) Target DLC Port ID                                   |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +-----------------------------+-----------------------------+
  | (60) Target Data Link Correlator                          |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +-----------------------------+-----------------------------+
  | (64) Target Transport ID                                  |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +-----------------------------+-----------------------------+
  | (68) Reserved Field                                       |
  +-----------------------------+-----------------------------+
  | (70) Reserved Field                                       |
  +-----------------------------+-----------------------------+
           (Even Byte)                     (Odd Byte)










Wells & Bartky                                                  [Page 9]

RFC 1795                  Data Link Switching                 April 1995


   INFORMATION MESSAGE (16 Bytes)
  +-----------------------------+-----------------------------+
  | (00) Version Number         | (01) Header Length (= 16)   |
  +-----------------------------+-----------------------------+
  | (02) Message Length                                       |
  +-----------------------------+-----------------------------+
  | (04) Remote Data Link Correlator                          |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +-----------------------------+-----------------------------+
  | (08) Remote DLC Port ID                                   |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +-----------------------------+-----------------------------+
  | (12) Reserved Field                                       |
  +-----------------------------+-----------------------------+
  | (14) Message Type           | (15) Flow Control Byte      |
  +-----------------------------+-----------------------------+
           (Even Byte)                    (Odd Byte)

  The first sixteen bytes of control and information message headers
  contain identical fields.  A brief description of some of the fields
  in an SSP message are shown below (if not defined below, the fields
  and/or their values are described in subsequent sections).

  The Version Number field (offset 0) is set to 0x31 (ASCII '1'),
  indicating a decimal value of 49.  This is used to indicate DLSw
  version 1.

  The Header Length field (offset 1) is 0x48 for control messages,
  indicating a decimal value of 72 bytes, and 0x10 for information and
  Independent Flow Control messages, indicating a decimal value of 16
  bytes.

  The Message Length field (offset 2) defines the number of bytes
  within the data field following the header.

  The Flow Control Byte field (offset 15)  is described in section 8.

  The Header Number field (offset 17) is 0x01, indicating a value of
  one.

  The Circuit Priority field (offset 22) is described in section 4.

  The Frame Direction field (offset 38) is set to 0x01 for frames sent
  from the origin DLSw to the target DLSw, and is set to 0x02 for
  frames sent from the target DLSw to the origin DLSw.




Wells & Bartky                                                 [Page 10]

RFC 1795                  Data Link Switching                 April 1995


  Note:  The Remote Data Link Correlator and Remote DLC Port ID are set
  equal to the Target Data Link Correlator and Target DLC Port ID if
  the Frame Direction field is set to 0x01, and are set equal to the
  Origin Data Link Correlator and Origin DLC Port ID if the Direction
  Field is set to 0x02.

  The Protocol ID field is set to 0x42, indicating a decimal value of
  66.

  The DLC Header Length is set to zero for SNA and is set to 0x23 for
  NetBIOS datagrams, indicating a length of 35 bytes.  This includes
  the Access Control (AC) field, the Frame Control (FC) field,
  Destination MAC Address (DA), the Source MAC Address (SA), the
  Routing Information (RI) field (padded to 18 bytes), the Destination
  link SAP (DSAP), the Source link SAP (SSAP), and the LLC control
  field (UI).

  NOTE:  The values for the Message Type field are defined in section
  3.5. Note that this value is specified in two different fields
  (offset 14 and 23 decimal) of the control message header.  Only the
  first field is to be used when parsing a received SSP message.  The
  second field is to be ignored by new implementations on reception.
  The second field was left in for backwards compatibility with RFC
  1434 implementations and this field may be used in future versions if
  needed.

  The SSP Flags field contains additional information related to the
  SSP message.  The flags are defined as follows (bit 7 being the most
  significant bit and bit 0 the least significant bit of the octet):

  Bit(s)
  76543210    Name    Meaning
  ---------   -----   -------
  x.......    SSPex   1 = explorer message (CANUREACH and ICANREACH)

  Reserved fields are set to zero upon transmission and should be
  ignored upon receipt.

3.2  Address Parameters

  A data link is defined as a logical association between the two end
  stations using Data Link Switching.  It is identified by a Data Link
  ID (14 bytes) consisting of the pair of attachment addresses
  associated with each end system.  Each attachment address is
  represented by the concatenation of the MAC address (6 bytes) and the
  LLC address (1 byte).  Each attachment address is classified as
  either "Target" in the context of the Destination MAC/SAP addresses
  of an explorer frame sent in the first frame used to establish a



Wells & Bartky                                                 [Page 11]

RFC 1795                  Data Link Switching                 April 1995


  circuit, or "Origin" in the context of the Source MAC/SAP addresses.
  All MAC addresses are expressed in non-canonical (Token-Ring) format.

   DATA LINK ID  (14 Bytes @ Control message offset 24 decimal)
  +-----------------------------+-----------------------------+
  | Target MAC Address                                        |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +-----------------------------+-----------------------------+
  | Origin MAC Address                                        |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +-----------------------------+-----------------------------+
  | Origin Link SAP             | Target Link SAP             |
  +-----------------------------+-----------------------------+


  An end-to-end circuit is identified by a pair of Circuit ID's.  A
  Circuit ID is a 64 bit number that identifies the DLC circuit within
  a single DLSw.  It consists of a DLC Port ID (4 bytes), and a Data
  Link Correlator (4 bytes).  The Circuit ID must be unique in a single
  DLSw and is assigned locally.  The pair of Circuit ID's along with
  the Data Link IDs,  uniquely identify a single end-to-end circuit.
  Each DLSw must keep a table of these Circuit ID pairs, one for the
  local end of the circuit and the other for the remote end of the
  circuit.  In order to identify which Data Link Switch originated the
  establishment of a circuit, the terms, "Origin" DLSw and "Target"
  DLSw, will be employed in this document.

   CIRCUIT ID   (8 Bytes)
  +-----------------------------+-----------------------------+
  | DLC Port ID                                               |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +-----------------------------+-----------------------------+
  | Data Link Correlator                                      |
  +- - - - - - - - - - - - - - -+- - - - - - - - - - - - - - -+
  |                                                           |
  +-----------------------------+-----------------------------+

  The Origin Transport ID and the Target Transport ID fields in the
  message header are used to identify the individual TCP/IP port on a
  Data Link Switch.  The values have only local significance.  However,
  each Data Link Switch is required to reflect the values contained in



Wells & Bartky                                                 [Page 12]

RFC 1795                  Data Link Switching                 April 1995


  these two fields, along with the associated values for DLC Port ID
  and the Data Link Correlator, when returning a message to the other
  Data Link Switch.

  The following figure shows the use of the addressing parameters
  during the establishment of an end-to-end connection.  The CANUREACH,
  ICANREACH, and REACH_ACK message types all carry the Data Link ID,
  consisting of the MAC and Link SAP addresses associated with the two
  end stations.  The CANUREACH and ICANREACH messages are qualified by
  the SSPex flag into CANUREACH_ex, ICANREACH_ex (explorer messages)
  and CANUREACH_cs, ICANREACH_cs (circuit start).  The CANUREACH_ex is
  used to find a remote MAC and Link SAP address without establishing
  an SSP circuit.  Upon receipt of a CANUREACH_cs message, the target
  DLSw starts a data link for each port, thereby obtaining a Data Link
  Correlator.  If the target station can be reached, an ICANREACH_cs
  message is returned to the origin DLSw containing the Target Circuit
  ID parameter.  Upon receipt, the origin DLSw starts a data link and
  returns the Origin Circuit ID to the target DLSw within the REACH_ACK
  message.  (Note for a full list of message types, see section 3.5.)

  +------------+                                +------------+
  |Disconnected|                                |Disconnected|
  +------------+   CANUREACH_cs (Data Link ID)  +------------+
      ------------------------------------------------->
        ICANREACH_cs (Data Link ID, Target Circuit ID)
      <------------------------------------------------
    REACH_ACK (Data Link ID, Origin Cir ID, Target Cir ID)
      ------------------------------------------------->
  +------------+                                +------------+
  |Circuit Est.|                                |Circuit Est.|
  +------------+                                +------------+
    XIDFRAME (Data Link ID, Origin Cir ID, Target Cir ID)
      <------------------------------------------------>
     CONTACT (Data Link ID, Origin Cir ID, Target Cir ID)
      ------------------------------------------------->
    CONTACTED (Data Link ID, Origin Cir ID, Target Cir ID)
      <-------------------------------------------------
  +------------+                                +------------+
  | Connected  |                                | Connected  |
  +------------+                                +------------+
       INFOFRAME (Remote Circuit ID = Target Circuit ID)
      ------------------------------------------------->
       INFOFRAME (Remote Circuit ID = Origin Circuit ID)
      <-------------------------------------------------

  During the exchange of the XIDFRAME, CONTACT, and CONTACTED messages,
  the pair of Circuit ID parameters is included in the message format
  along with the DATA LINK ID parameter.  Once the connection has been



Wells & Bartky                                                 [Page 13]

RFC 1795                  Data Link Switching                 April 1995


  established, the INFOFRAME messages are exchanged with the shorter
  header.  This header contains only the Circuit ID associated with the
  remote DLSw.  The Remote Data Link Correlator and the Remote DLC Port
  ID are set equal to the Data Link Correlator and the DLC Port ID that
  are associated with the origin or target Data Link Switch, dependent
  upon the direction of the packet.

3.3  Correlators

  The local use, and contents of the Data Link Correlator, Port ID and
  Transport ID fields in SSP messages is an implementation choice.
  These fields have local significance only.  The values received from
  a partner DLSw must not be interpreted by the DLSw that receives them
  and should be echoed "as is" to a partner DLSw in subsequent
  messages.  All implementations must obey the following rules in this
  section (3.3) on the assignment and fixing of these correlator fields
  for each transport connection or circuit:

  The Transport ID fields are learned from the first SSP message
  exchanged with a DLSw partner (the Capabilities exchange).  This
  field should not be varied by a DLSw after the capabilities exchange
  and must be reflected to the partner DLSw in every SSP control
  message.

  The Target Data Link Correlator, Target Port ID and Target Transport
  ID must remain the same once the Target DLSw has sent the
  ICANREACH_cs for a given circuit.  The Origin DLSw must store the
  values specified in the ICANREACH_cs and use these on all subsequent
  SSP messages for this circuit.

  The Origin DLSw must allow these fields to vary until the
  ICANREACH_cs is received.  Each SSP message issued for a circuit must
  reflect the values specified by the Target DLSw in the last SSP
  message for this circuit received by the Origin DLSw.  Binary zero
  should be used if no such message has yet been received for a given
  circuit (apart from the Target Transport ID which will have been
  learnt as specified above).

  The Origin Data Link Correlator, Origin Port ID and Origin Transport
  ID must remain the same once the Origin DLSw has issued the REACH_ACK
  for a given circuit.  The Target DLSw must store the values specified
  in the REACH_ACK and use these on all subsequent SSP messages for
  this circuit.

  The Target DLSw must allow these fields to vary until the REACH_ACK
  is received.  Each SSP message issued for a circuit must reflect the
  values specified by the Origin DLSw in the last SSP message for this
  circuit received by the Target DLSw.  Binary zero should be used if



Wells & Bartky                                                 [Page 14]

RFC 1795                  Data Link Switching                 April 1995


  no such message has yet been received for a given circuit (apart from
  the Origin Transport ID which will have been learnt as specified
  above).

  For the purposes of correlator exchange, explorer messages form a
  separate circuit.  Both DLSw partners must reflect the last received
  correlator values as specified above.  However correlators learned on
  explorer messages need not be carried over to a subsequent circuit
  setup attempt.  In particular, the Origin DLSw may elect to use the
  same values for the Origin Data Link Correlator and Origin Port ID
  when it issues a CANUREACH_cs after receiving an ICANREACH_ex or
  NETBIOS_NR_ex. However the Target DLSw must not assume that the
  CANUREACH_cs will specify any of the Target Data Link Correlator or
  Target Port ID that were exchanged on the explorer messages.

  Received SSP messages that require a valid Remote Circuit ID but
  cannot be associated with an existing circuit should be rejected with
  a HALT_DL_NOACK message.  This is done to prevent a situation where
  one DLSw partner has a circuit defined while the other partner does
  not. The exception would be a HALT_DL_NOACK message with an invalid
  Remote Circuit ID.  The HALT_DL_NOACK message is typically used in
  error situations where a response is not appropriate.

  The SSP messages requiring a valid Remote Circuit ID are all messages
  except the following: CANUREACH_ex, CANUREACH_cs, ICANREACH_ex,
  ICANREACH_cs, NETBIOS_NQ_cs, NETBIOS_NR_cs, DATAFRAME, NETBIOS_ANQ,
  NETBIOS_ANR, KEEPALIVE and CAP_EXCHANGE.

3.4  Largest Frame Size Field

  The Largest Frame Size (LF Size) field in the SSP Control Header is
  used to carry the LF Size bits across the DLSw connection.  This
  should be used to ensure that the two end-stations always negotiate a
  frame size to be used on a circuit that does not require the Origin
  and Target DLSw partners to re-segment frames.

  This field is valid on CANUREACH_ex, CANUREACH_cs, ICANREACH_ex,
  ICANREACH_cs, NETBIOS_NQ_ex and NETBIOS_NR_ex messages only. The
  contents of this field should be ignored on all other frames.

  Every DLSw forwarding a SSP frame to its DLSw partner must ensure
  that the contents of this frame reflect the minimum capability of the
  route to its local end-station or any limit imposed by the DLSw
  itself.

  The bit-wise definition of this field is as follows (bit 7 is the
  most significant bit, bit 0 is the least significant bit):




Wells & Bartky                                                 [Page 15]

RFC 1795                  Data Link Switching                 April 1995


    7   6   5   4   3   2   1   0
  +-------------------------------+
  | c | r | b | b | b | e | e | e |
  +-------------------------------+

    c   .   .   .   .   .   .   .  LF Size Control flag
                                   (significant on messages
                                   from Origin to Target
                                   DLSw only)

                                   0=fail circuit if route
                                     obtained requires a
                                     smaller LF size
                                   1=don't fail the circuit
                                     but return the LF size
                                     obtained even if it is
                                     smaller

    .   r   .   .   .   .   .   .  Reserved
    .   .   b   .   .   .   .   .  Largest Frame Bit Base
    .   .   .   b   .   .   .   .  Largest Frame Bit Base
    .   .   .   .   b   .   .   .  Largest Frame Bit Base
    .   .   .   .   .   e   .   .  Largest Frame Bit Extended
    .   .   .   .   .   .   e   .  Largest Frame Bit Extended
    .   .   .   .   .   .   .   e  Largest Frame Bit Extended

            <----- LF Bits ----->

  Refer to IEEE 802.1D Standard, Annex C for encoding of Largest Frame
  base and extended bit values.

  The Origin DLSw "Size Control" flag informs a Target DLSw that
  chooses to reply to *_cs messages on the basis of cached information
  that it may safely return a smaller LF Size on the ICANREACH_cs frame
  if it has had to choose an alternative route on which to initialize
  the circuit.  If this bit is set to 1, the Origin DLSw takes
  responsibility for ensuring that the end-stations negotiate a
  suitable frame size for the circuit. If this bit is set to 0, the
  Target DLSw must not reply to the CANUREACH_cs if it cannot obtain a
  route to the Target end station that support an LF Size at least as
  large as that specified in the CANUREACH_cs frame.

3.5  Message Types

  The following table lists the protocol data units that are exchanged
  between Data Link Switches.  All values not listed are reserved for
  potential use in follow-on releases.




Wells & Bartky                                                 [Page 16]

RFC 1795                  Data Link Switching                 April 1995


  Command          Description                       Type   flags/notes
  -------          --------                         ------  -----------
  CANUREACH_ex     Can U Reach Station-explorer      0x03   SSPex
  CANUREACH_cs     Can U Reach Station-circuit start 0x03
  ICANREACH_ex     I Can Reach Station-explorer      0x04   SSPex
  ICANREACH_cs     I Can Reach Station-circuit start 0x04
  REACH_ACK        Reach Acknowledgment              0x05
  DGRMFRAME        Datagram Frame                    0x06   (note 1)
  XIDFRAME         XID Frame                         0x07
  CONTACT          Contact Remote Station            0x08
  CONTACTED        Remote Station Contacted          0x09
  RESTART_DL       Restart Data Link                 0x10
  DL_RESTARTED     Data Link Restarted               0x11
  ENTER_BUSY       Enter Busy                        0x0C   (note 2)
  EXIT_BUSY        Exit Busy                         0x0D   (note 2)
  INFOFRAME        Information (I) Frame             0x0A
  HALT_DL          Halt Data Link                    0x0E
  DL_HALTED        Data Link Halted                  0x0F
  NETBIOS_NQ_ex    NETBIOS Name Query-explorer       0x12   SSPex
  NETBIOS_NQ_cs    NETBIOS Name Query-circuit setup  0x12   (note 3)
  NETBIOS_NR_ex    NETBIOS Name Recognized-explorer  0x13   SSPex
  NETBIOS_NR_cs    NETBIOS Name Recog-circuit setup  0x13   (note 3)
  DATAFRAME        Data Frame                        0x14   (note 1)
  HALT_DL_NOACK    Halt Data Link with no Ack        0x19
  NETBIOS_ANQ      NETBIOS Add Name Query            0x1A
  NETBIOS_ANR      NETBIOS Add Name Response         0x1B
  KEEPALIVE        Transport Keepalive Message       0x1D   (note 4)
  CAP_EXCHANGE     Capabilities Exchange             0x20
  IFCM             Independent Flow Control Message  0x21
  TEST_CIRCUIT_REQ Test Circuit Request              0x7A
  TEST_CIRCUIT_RSP Test Circuit Response             0x7B

  Note 1: Both the DGRMFRAME and DATAFRAME messages are used to carry
  information received by the DLC entity within UI frames.  The
  DGRMFRAME message is addressed according to a pair of Circuit IDs,
  while the DATAFRAME message is addressed according to a Data Link ID,
  being composed of a pair of MAC addresses and a pair of link SAP
  addresses. The latter is employed prior to the establishment of an
  end-to-end circuit when Circuit IDs have yet to be established or
  during circuit restart when Data Links are reset.

  Note 2: These messages are not used for the DLSw Standard but may be
  used by older DLSw implementations.  They are listed here for
  informational purposes.  These messages were added after publication
  of RFC 1434 and were deleted in this standard (adaptive pacing is now
  used instead).





Wells & Bartky                                                 [Page 17]

RFC 1795                  Data Link Switching                 April 1995


  Note 3: These messages are not normally issued by a Standard DLSw,
  which uses the NB_*_ex messages as shown in section 5.4.  However if
  a Standard DLSw attempts to interoperate with older DLSw
  implementations, these messages correspond to the NETBIOS_NQ and
  NETBIOS_NR messages used in RFC1434 both to locate the resource and
  to setup a circuit.  This document does not attempt to provide a
  complete specification of the use of these messages.

  Note 4:  A KEEPALIVE message may be sent by a DLSw to a partner DLSw
  in order to verify the TCP connection (or other future SSP carrying
  protocol) is still functioning.  If received by a DLSw, this message
  is discarded and ignored.  Use of this message is optional.

  For the exchange of NetBIOS control messages, the entire DLC header
  is carried as part of the message unit.  This includes the MAC
  header, with the routing information field padded to 18 bytes, and
  the LLC header. The following message types are affected:
  NETBIOS_NQ, NETBIOS_NR, NETBIOS_ANQ, NETBIOS_ANR, and DATAFRAME when
  being used by NetBIOS systems.  The routing information in the DLC
  header is not used by the remote Data Link Switch upon receiving the
  above five messages.

  Any SSP message types not defined above if received by a DLSw are to
  be ignored (i.e., no error action is to be performed).  A Data Link
  Switch should quietly drop any SSP message with a Message Type that
  is not recognized or not supported.  Receipt of such a message should
  not cause the termination of the transport connection to the message
  sender.

4.  Circuit Priority

  At circuit start time, each circuit end point will provide priority
  information to its circuit partner.  The initiator of the circuit
  will choose which circuit priority will be effective for the life of
  the circuit.  If Priority is not implemented by the Data Link Switch,
  then "Unsupported" priority is used.

4.1  Frame format

  Circuit priority will be valid in the CANUREACH_cs, ICANREACH_cs, and
  REACH_ACK frames only. The relevant header field is shown below.  The
  Circuit Priority value is a byte value at offset 22 in an SSP Control
  Message.








Wells & Bartky                                                 [Page 18]

RFC 1795                  Data Link Switching                 April 1995


  The following describes the format of the Circuit Priority byte.

    7   6   5   4   3   2   1   0
  +-------------------+-----------+
  |   reserved        |    CP     |
  +-------------------+-----------+

  CP: Circuit Priority bits
          000 - Unsupported       (note 1)
          001 - Low Priority
          010 - Medium Priority
          011 - High Priority
          100 - Highest Priority
          101 to 111 are reserved for future use

  Note 1: Unsupported means that the Data Link Switch that originates
  the circuit does not implement priority.  Actions taken on
  Unsupported priority are vendor specific.

4.2  Circuit Startup

  The sender of a CANUREACH_cs is responsible for setting the CP bits
  to reflect the priority it would like to use for the circuit being
  requested.  The mechanism for choosing an appropriate value is
  implementation dependent.  The sender of an ICANREACH_cs frame will
  set the CP bits to reflect the priority it would like to use for the
  circuit being requested, with the mechanism for choosing the
  appropriate value being implementation dependent.  The receiver of
  the ICANREACH_cs will select from the priorities in the CANUREACH_cs
  and ICANREACH_cs frames, and will set the value in the CP field of
  the REACH_ACK frame that follows to the value to be used for this
  circuit.  This priority will be used for the life of the circuit.  A
  CANUREACH_cs or ICANREACH_cs with the circuit priority value set to
  Unsupported (CP=000) indicates that the sender does not support the
  circuit priority function.
















Wells & Bartky                                                 [Page 19]

RFC 1795                  Data Link Switching                 April 1995


  Flow:

     DLSw A               DLSw B

  CANUREACH_cs (CP=011) ----->           Circuit initiator requests
                                         high Priority.

       <--------- ICANREACH_cs (CP=010)  Circuit target requests
                                         medium priority.

  REACH_ACK (CP=010) -------->           Circuit initiator sets
                                         the priority for this
                                         circuit to medium. The
                                         circuit initiator could
                                         choose either high or
                                         medium in this example.

5.  DLSw State Machine

  The following state tables describe the states for a single circuit
  through the Data Link Switch.  State information is kept for each
  connection.  The initial state for a connection is DISCONNECTED.  The
  steady state is either CIRCUIT_ESTABLISHED or CONNECTED.  In the former
  state, an end-to-end circuit has been established allowing the support
  of Type 1 LLC between the end systems.  The latter state exists when an
  end-to-end connection has been established for the support of Type 2 LLC
  services between the end systems.

  For SNA, LLC type 2 connection establishment is via the use of IEEE
  802.2 Test or XID  frames.  SNA devices send these frames to the null
  SAP in order to determine the source route information in support of
  bridging.  Normally SNA devices use SAP 0x04, 0x08, or 0x0C  (most SNA
  LLC2 devices that have a single PU per MAC address use a default of
  0x04).  Typically the SAP would be used to determine if the Test frames
  should be sent to the DLSw code in the router.  If both bridging and
  DLSw are enabled, this allows the product to ensure that SNA frames are
  not both bridged and switched.  Note that although typically SNA uses a
  DSAP and SSAP of 0x04, it allows for other SAPs to be configured and
  supports unequal SAPs.  This allows multiple PUs to share connections
  between two given MAC addresses (each PU to PU session uses one LLC2
  connection).

  For NetBIOS, LLC type 2 connection establishment is via the Name Query
  and Name Recognized frames.  These frames are used for both address
  resolution and source route determination.  NetBIOS devices use SAP
  0xF0.





Wells & Bartky                                                 [Page 20]

RFC 1795                  Data Link Switching                 April 1995


5.1  Data Link Switch States

  The Switch-to-Switch Protocol is formally defined through the state
  machines described in this chapter.  The following table lists the
  thirteen possible states for the main circuit FSM.  A separate state
  machine instance is employed for each end-to-end circuit that is
  maintained by the Data Link Switch.

  State Name            Description
  ----------            -----------
  CIRCUIT_ESTABLISHED   The end-to-end circuit has been
                        established.  At this time LLC Type 1
                        services are available from end-to-end.

  CIRCUIT_PENDING       The target DLSw is awaiting a REACH_ACK
                        response to an ICANREACH_cs message.

  CIRCUIT_RESTART       The DLSw that originated the reset is
                        awaiting the restart of the data link
                        and the DL_RESTARTED response to a
                        RESTART_DL message.

  CIRCUIT_START         The origin DLSw is awaiting a
                        ICANREACH_cs in response to a
                        CANUREACH_cs message.

  CONNECTED             The end-to-end connection has
                        been established thereby allowing
                        LLC Type 2 services from end-to-end
                        in addition to LLC Type 1 services.

  CONNECT_PENDING       The origin DLSw is awaiting the
                        CONTACTED response to a CONTACT
                        message.

  CONTACT_PENDING       The target DLSw is awaiting the
                        DLC_CONTACTED confirmation to a
                        DLC_CONTACT signal (i.e., DLC
                        is waiting for a UA response to
                        an SABME command).

  DISCONNECTED          The initial state with no circuit
                        or connection established, the
                        DLSw is awaiting either a
                        CANUREACH_cs, or an ICANREACH_cs.

  DISCONNECT_PENDING    The DLSw that originated the
                        disconnect is awaiting the DL_HALTED



Wells & Bartky                                                 [Page 21]

RFC 1795                  Data Link Switching                 April 1995


                        response to a HALT_DL message.

  HALT_PENDING          The remote DLSw is awaiting the
                        DLC_DL_HALTED indication following
                        the DLC_HALT_DL request (i.e., DLC
                        is waiting for a UA response to a
                        DISC command), due to receiving a
                        HALT_DL message.

  HALT_PENDING_NOACK    The remote DLSw is awaiting the
                        DLC_DL_HALTED indication following
                        the DLC_HALT_DL request (i.e., DLC
                        is waiting for a UA response to a
                        DISC command), due to receiving a
                        HALT_DL_NOACK message.

  RESTART_PENDING       The remote DLSw is awaiting the
                        DLC_DL_HALTED indication following
                        the DLC_HALT_DL request (i.e., DLC
                        is waiting for a UA response to a
                        DISC command), and the restart of
                        the data link.

  RESOLVE_PENDING       The target DLSw is awaiting
                        the DLC_DL_STARTED indication
                        following the DLC_START_DL request
                        (i.e., DLC is waiting for a Test
                        response as a result of sending a
                        Test command).

  The DISCONNECTED state is the initial state for a new circuit.  One
  end station starts the connection via an XID or SABME command (i.e.,
  DLC_XID or DLC_CONTACTED).  Upon receipt, the Data Link Switches
  exchange a set of CANUREACH_cs, ICANREACH_cs and REACH_ACK messages.
  Upon completion of this three-legged exchange both Data Link Switches
  will be in the CIRCUIT_ESTABLISHED state.  Three pending states also
  exist during this exchange.  The CIRCUIT_START state is entered by
  the origin Data Link Switch after it has sent the CANUREACH_cs
  message.  The RESOLVE_PENDING state is entered by the target Data
  Link Switch awaiting a Test response to a Test Command.  And lastly,
  the CIRCUIT_PENDING state is entered by the target DLSw awaiting the
  REACH_ACK reply to an ICANREACH_cs message.

  The CIRCUIT_ESTABLISHED state allows for the exchange of LLC Type 1
  frames such as the XID exchanges between SNA stations that occurs
  prior to the establishment of a connection.  Also, datagram traffic
  (i.e., UI frames)  may be sent and received between the end stations.
  These exchanges use the XIDFRAME and DGRMFRAME messages sent between



Wells & Bartky                                                 [Page 22]

RFC 1795                  Data Link Switching                 April 1995


  the Data Link Switches.

  In the CIRCUIT_ESTABLISHED state, the receipt of a SABME command
  (i.e., DLC_CONTACTED) causes the origin DLSw to issue a CONTACT
  message, to send an RNR supervisory frame (i.e., DLC_ENTER_BUSY) to
  the origin station, and to enter the CONNECT_PENDING state awaiting a
  CONTACTED message.  The target DLSw, upon the receipt of a CONTACT
  message, will issue a SABME command (i.e., DLC_CONTACT) and enter the
  Contact Pending state.  Once the UA response is received (i.e.,
  DLC_CONTACTED), the target DLSw sends a CONTACTED message and enters
  the CONNECTED state. When received, the origin DLSw enters the
  CONNECTED state and sends an RR supervisory frame (i.e.,
  DLC_EXIT_BUSY).

  The CONNECTED state is the steady state for normal data flow once a
  connection has been established.  Information frames (i.e., INFOFRAME
  messages) are simply sent back and forth between the end points of
  the connection.  This is the path that should be optimized for
  performance.

  The connection is terminated upon the receipt of a DISC frame or
  under some other error condition detected by DLC (i.e., DLC_ERROR).
  Upon receipt of this indication, the DLSw will halt the local data
  link, send a HALT_DL message to the remote DLSw, and enter the
  DISCONNECT_PENDING State.  When the HALT_DL frame is received by the
  other DLSw, the local DLC is halted for this data link, a DL_HALTED
  message is returned, and the DISCONNECTED state is entered.  Receipt
  of this DL_HALTED message causes the other DLSw to also enter the
  DISCONNECTED state.

  The CIRCUIT_RESTART state is entered if one of the Data Link Switches
  receives a SABME command  (i.e., DLC_RESET) after data transfer while
  in the CONNECTED state.  This causes a DM command to be returned to
  the origin station and a RESTART_DL message to be sent to the remote
  Data Link Switch. This causes the remote data link to be halted and
  then restarted.  The remote DLSw will then send a DL_RESTARTED
  message back to the first DLSw.  The receipt of the DL_RESTARTED
  message causes the first DLSw to issue a new CONTACT message,
  assuming that the local DLC has been contacted (i.e., the origin
  station has resent the SABME command).  This is eventually responded
  to by a CONTACTED message. Following this exchange, both Data Link
  Switches will return to the CONNECTED state.  If the local DLC has
  not been contacted, the receipt of a DL_RESTARTED command causes the
  Data Link Switch to enter the CIRCUIT_ESTABLISHED state awaiting the
  receipt of a SABME command (i.e., DLC_CONTACTED signal).

  The HALT_PENDING, HALT_PENDING_NOACK and RESTART_PENDING states
  correspond to the cases when the Data Link Switch is awaiting



Wells & Bartky                                                 [Page 23]

RFC 1795                  Data Link Switching                 April 1995


  responses from the local station on the adjacent LAN (e.g., a UA
  response to a DISC command). Also in the RESTART_PENDING state, the
  Data Link Switch will attempt to restart the data link prior to
  sending a DL_RESTARTED message.  For some implementations, the start
  of a data link involves the exchange of a Test command/response on
  the adjacent LAN (i.e., DLC_START_DL).  For other implementations,
  this additional exchange may not be required.

5.2  State Transition Tables

  This section provides a detailed representation of the Data Link
  Switch, as documented by a single state machine.  Many of the
  transitions are dependent upon local signals between the Data Link
  Switch entity and one of the DLC entities.  These signals and their
  definitions are given in the following tables.

  DLC Events:

  Event Name      Description
  ----------      -----------
  DLC_CONTACTED   Contact Indication:  DLC has received an SABME
                  command or DLC has received a UA response as a
                  result of sending an SABME command.

  DLC_DGRM        Datagram Indication:  DLC has received a UI frame.

  DLC_ERROR       Error condition indicated by DLC:  Such a
                  condition occurs when a DISC command is received
                  or when DLC experiences an unrecoverable error.

  DLC_INFO        Information Indication:  DLC has received an
                  Information (I) frame.

  DLC_DL_HALTED   Data Link Halted Indication:  DLC has
                  received a UA response to a DISC command.

  DLC_DL_STARTED  Data Link Started Indication:  DLC has
                  received a Test response from the null SAP.

  DLC_RESET       Reset Indication:  DLC has received an SABME
                  command during the time a connection is
                  currently active and has responded with DM.

  DLC_RESOLVE_C   Resolve Command Indication:  DLC has received
                  a Test command addressed to the null SAP, or an
                  XID command addressed to the null SAP.





Wells & Bartky                                                 [Page 24]

RFC 1795                  Data Link Switching                 April 1995


  DLC_RESOLVED    Resolve request:  DLC has received a TEST response
                  frame (or equivalent for non-LAN DLCs) but has not
                  reserved the resources required for a circuit yet.

  DLC_XID         XID Indication:  DLC has received an XID command
                  or response to a non-null SAP.

  Other Events:

  Event Name      Description
  ----------      -----------
  XPORT_FAILURE   Failure of the transport connection used by the
                  circuit.

  CS_TIMER_EXP    The CIRCUIT_START timer (started when the circuit
                  went into CIRCUIT_START state) has expired.


  DLC Actions:

  Action Name     Description
  -----------     -----------
  DLC_CONTACT     Contact Station Request:  DLC will send a SABME
                  command or a UA response to an outstanding SABME
                  command.

  DLC_DGRM        Datagram Request:  DLC will send a UI frame.

  DLC_ENTER_BUSY  Enter Link Station Busy:  DLC will send an
                  RNR supervisory frame.

  DLC_EXIT_BUSY   Exit Link Station Busy:  DLC will send an RR
                  supervisory frame.

  DLC_HALT_DL     Halt Data Link Request:  DLC will send a DISC
                  command.

  DLC_INFO        Information Request:  DLC will send an I frame.

  DLC_RESOLVE     Resolve request:  DLC should issue a TEST (or
                  appropriate equivalent for non-LAN DLCs) but need
                  not reserve the resources required for a circuit yet.

  DLC_RESOLVE_R   Resolve Response Request:  DLC will send a
                  Test response or XID response from the null SAP.

  DLC_START_DL    Start Data Link Request:  DLC will send a Test
                  command to the null SAP.



Wells & Bartky                                                 [Page 25]

RFC 1795                  Data Link Switching                 April 1995


  DLC_XID         XID Request:  DLC will send an XID command or an
                  XID response.


  Other Actions:

  Action Name     Description
  ----------      -----------
  START_CS_TIMER  Start the CIRCUIT_START timer.

  DLC_RESOLVE_R and DLC_START_DL actions require the DLC to reserve the
  resources necessary for a link station as they are used only when a
  circuit is about to be started.  The DLC_RESOLVE action is used for
  topology explorer traffic and does not require such resources to be
  reserved, though a DLC implementation may choose not to distinguish
  this from the DLC_START_DL action.  See section 5.4 for details of
  the actions and events for explorer frames.

  The Data Link Switch is described by a state transition table as
  documented in the following sections.  Each of the states is
  described below in terms of the events, actions, and next state for
  each transition. If a particular event is not listed for a given
  state, no action and no state transition should occur for that event.
  Any significant comments concerning the transitions within a given
  state are given immediately following the table representing the
  state.

  A separate state machine instance is maintained by the Data Link
  Switch for each end-to-end circuit.  The number of circuits that may
  be supported by each Data Link Switch is a local implementation
  option.

  The CANUREACH_ex, ICANREACH_ex, NETBIOS_NQ_ex, and NETBIOS_NR_ex are
  SSP messages that are not associated with a particular circuit.  The
  processing of these messages is covered in section 5.4.
















Wells & Bartky                                                 [Page 26]

RFC 1795                  Data Link Switching                 April 1995


5.2.1  DISCONNECTED State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive CANUREACH_cs | DLC_START_DL        | RESOLVE_PENDING      |
  +----------------------+---------------------+----------------------+
  | Receive DATAFRAME    | DLC_DGRM            |                      |
  +----------------------+---------------------+----------------------+
  | DLC_XID              | If source route     | If CANUREACH_cs was  |
  |                      | bridged frame with  | sent:                |
  |                      | broadcast indicated:|   CIRCUIT_START      |
  |                      |   Send CANUREACH_ex |                      |
  |                      | else:               |                      |
  |                      |   Send CANUREACH_cs |                      |
  |                      |   START_CS_TIMER    |                      |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM             | If NETBIOS          |                      |
  |                      | NAME_QUERY:         |                      |
  |                      |  Send NETBIOS_NQ_ex |                      |
  |                      | else:               |                      |
  |                      |  Send DATAFRAME     |                      |
  +----------------------+---------------------+----------------------+
  | DLC_CONTACTED        | Send CANUREACH_cs   | CIRCUIT_START        |
  +----------------------+---------------------+----------------------+

  It is assumed that each Data Link Switch will build a set of topology
  tables giving the identity of each Data Link Switch that can reach a
  specific MAC address or a specific NetBIOS name.  This table can be
  built  using the explorer frames, as per the Explorer FSM in section
  5.4.  As a consequence, the amount of search traffic can be kept to a
  minimum.

  Upon receipt of a TEST command, broadcast XID or NetBIOS NAME_QUERY,
  the Data Link Switch checks the topology table for the target MAC/SAP
  or NetBIOS name.  If there is no matching entry in the table, the
  Data Link Switch uses the explorer FSMs in section 5.4 to locate the
  target MAC/SAP or NetBIOS name.

  When the first non-broadcast XID or SABME flows,  the Data Link
  Switch issues a CANUREACH_cs to attempt to start a circuit.  The
  CANUREACH_cs message is sent to only those Data Link Switches that
  are known to be able to reach the given MAC address.  The mechanism
  by which a topology table entry is determined to be out-of-date and
  is deleted from the table is implementation specific.

  The DISCONNECTED state is exited upon the sending of a CANUREACH_cs
  by the origin DLSw or the receipt of a CANUREACH_cs message by a



Wells & Bartky                                                 [Page 27]

RFC 1795                  Data Link Switching                 April 1995


  prospective target Data Link Switch.  In the latter case, the Data
  Link Switch will issue a Test command to the target station (i.e.,
  DLC_START_DL signal is presented to DLC).

5.2.2  RESOLVE_PENDING State

  +-------------------+-----------------------+-----------------------+
  |        Event      |      Action(s)        |      Next State       |
  +-------------------+-----------------------+-----------------------+
  | Receive DATAFRAME | DLC_DGRM              |                       |
  +-------------------+-----------------------+-----------------------+
  | DLC_DL_STARTED    | If LF value of        | If LF value of        |
  |                   | DLC_DL_STARTED        | DLC_DL_STARTED        |
  |                   | is greater than or    | is greater than or    |
  |                   | equal to LF Size of   | equal to LF Size of   |
  |                   | CANUREACH_cs or LF    | CANUREACH_cs or LF    |
  |                   | Size Control bit set: | Size Control bit set: |
  |                   |   Send ICANREACH_cs   |   CIRCUIT_PENDING     |
  |                   | else:                 | else:                 |
  |                   |   Send DLC_HALT_DL    |   HALT_PENDING_NOACK  |
  +-------------------+-----------------------+-----------------------+
  | DLC_ERROR         |                       | DISCONNECTED          |
  +-------------------+-----------------------+-----------------------+
  | DLC_DGRM          | Send DATAFRAME        |                       |
  +-------------------+-----------------------+-----------------------+

  The RESOLVE_PENDING state is entered upon receipt of a CANUREACH_cs
  message by the target DLSw.  A data link is started, causing a Test
  command to be sent by the DLC.

  Several CANUREACH_cs messages can be received in the RESOLVE_PENDING
  state.  The Data Link Switch may update its topology information
  based upon the origin MAC address information in each CANUREACH_cs
  message.

  Upon the receipt of a DLC_DL_STARTED signal in the RESOLVE_PENDING
  state, the Data Link Switch may update its topology table base upon
  the remote MAC address information.  The ICANREACH_cs message must be
  returned to the first partner DLSw from which a CANUREACH_cs was
  received for this circuit, or an implementation may optionally reply
  to all partners from which the CANUREACH_cs was received.

  The RESOLVE_PENDING state is exited once the data link has been
  started (i.e., a DLC_DL_STARTED signal is received as a result of a
  Test response received by the DLC).  The target Data Link Switch then
  enters the CIRCUIT_PENDING state.





Wells & Bartky                                                 [Page 28]

RFC 1795                  Data Link Switching                 April 1995


5.2.3  CIRCUIT_START State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive CANUREACH_cs | If origin MAC addr  | If DLC_START_DL      |
  | for circuit in       | in CANUREACH_cs is  | issued:              |
  | opposite direction   | greater than origin |   RESOLVE_PENDING    |
  |                      | MAC addr of circuit:|                      |
  |                      |   DLC_START_DL      |                      |
  |                      | else:               |                      |
  |                      |   no action taken   |                      |
  +----------------------+---------------------+----------------------+
  | Receive ICANREACH_cs | If LF Size Control  | If LF Size Control   |
  |                      | bit set and LF Size | bit set and LF Size  |
  |                      | is not negotiable:  | is not negotiable:   |
  |                      |   Send HALT_DL_NOACK|   DISCONNECTED       |
  |                      | else:               | else if Connected:   |
  |                      |   Send REACH_ACK,   |   CONNECT_PENDING    |
  |                      |   Send appropriate  | else:                |
  |                      |   SSP message based |   CIRCUIT_ESTABLISHED|
  |                      |   on the event      |                      |
  |                      |   that generated    |                      |
  |                      |   CANUREACH_cs      |                      |
  |                      |   (see Note)        |                      |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM             | Send DATAFRAME      |                      |
  +----------------------+---------------------+----------------------+
  | DLC_ERROR            |                     | DISCONNECTED         |
  +----------------------+---------------------+----------------------+
  | CS_TIMER_EXP         |                     | DISCONNECTED         |
  +----------------------+---------------------+----------------------+
  | XPORT_FAILURE        |                     | DISCONNECTED         |
  +----------------------+---------------------+----------------------+

  The CIRCUIT_START state is entered by the origin Data Link Switch
  when a DLC_XID or DLC_CONTACTED signal has been received from the
  DLC.

  The CIRCUIT_START state is exited upon receipt of an ICANREACH_cs
  message.  A REACH_ACK message is returned to the target Data Link
  Switch.  If the CIRCUIT_START state was entered due to a DLC_XID
  signal, an XIDFRAME message containing the XID is sent to the target
  Data Link Switch.  If the CIRCUIT_START state was entered due to a
  DLC_CONTACTED signal, a CONTACT message is sent to the target Data
  Link Switch.





Wells & Bartky                                                 [Page 29]

RFC 1795                  Data Link Switching                 April 1995


5.2.4  CIRCUIT_PENDING State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive CONTACT      | DLC_CONTACT         | CONTACT_PENDING      |
  +----------------------+---------------------+----------------------+
  | Receive HALT_DL      | DLC_HALT_DL         | HALT_PENDING         |
  +----------------------+---------------------+----------------------+
  | Receive HALT_DL_NOACK| DLC_HALT_DL         | HALT_PENDING_NOACK   |
  +----------------------+---------------------+----------------------+
  | Receive REACH_ACK    | If Connected:       | If Connected:        |
  |                      |  Send CONTACT       |  CONNECT_PENDING,    |
  |                      |                     | else:                |
  |                      |                     |  CIRCUIT_ESTABLISHED |
  +----------------------+---------------------+----------------------+
  | Receive XIDFRAME     | DLC_XID             |                      |
  +----------------------+---------------------+----------------------+
  | Receive DGRMFRAME    | DLC_DGRM            |                      |
  +----------------------+---------------------+----------------------+
  | Receive DATAFRAME    | DLC_DGRM            |                      |
  +----------------------+---------------------+----------------------+
  | DLC_CONTACTED        | If UA is sent in    |                      |
  |                      | response to SABME:  |                      |
  |                      |   DLC_ENTER_BUSY    |                      |
  |                      | else:               |                      |
  |                      |   no action taken   |                      |
  +----------------------+---------------------+----------------------+
  | DLC_ERROR            |                     | DISCONNECTED         |
  +----------------------+---------------------+----------------------+
  | DLC_XID              | Drop or hold until  |                      |
  |                      | REACH_ACK received  |                      |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM             | Send DATAFRAME      |                      |
  +----------------------+---------------------+----------------------+
  | XPORT_FAILURE        | DLC_HALT_DL         | HALT_PENDING_NOACK   |
  +----------------------+---------------------+----------------------+

  The CIRCUIT_PENDING state is entered by the target Data Link Switch
  following the sending of an ICANREACH_cs message.  In this state it
  is awaiting the reception of a REACH_ACK message from the origin Data
  Link Switch.

  If the target Data Link Switch happens to receive a SABME command
  from the target station while in the CIRCUIT_PENDING state (i.e., a
  DLC_CONTACTED signal received from the DLC), the reception of the
  REACH_ACK message causes the target Data Link Switch to enter the
  CONNECT_PENDING state and to send a CONTACT message to the origin



Wells & Bartky                                                 [Page 30]

RFC 1795                  Data Link Switching                 April 1995


  Data Link Switch.

  If no such SABME is received, the receipt of the REACH_ACK causes the
  Data Link Switch to enter CIRCUIT_ESTABLISHED state.

5.2.5  CONNECT_PENDING State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive CONTACTED    | If UA was sent in   | CONNECTED            |
  |                      | response to SABME:  |                      |
  |                      |   DLC_EXIT_BUSY     |                      |
  |                      | else:               |                      |
  |                      |   DLC_CONTACT       |                      |
  +----------------------+---------------------+----------------------+
  | Receive HALT_DL      | DLC_HALT_DL         | HALT_PENDING         |
  +----------------------+---------------------+----------------------+
  | Receive HALT_DL_NOACK| DLC_HALT_DL         | HALT_PENDING_NOACK   |
  +----------------------+---------------------+----------------------+
  | Receive DGRMFRAME    | DLC_DGRM            |                      |
  +----------------------+---------------------+----------------------+
  | Receive DATAFRAME    | DLC_DGRM            |                      |
  +----------------------+---------------------+----------------------+
  | Receive ICANREACH_cs | Send HALT_DL_NOACK  |                      |
  +----------------------+---------------------+----------------------+
  | DLC_RESET            | Send RESTART_DL     | CIRCUIT_RESTART      |
  +----------------------+---------------------+----------------------+
  | DLC_ERROR            | Send HALT_DL        | DISCONNECT_PENDING   |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM             | Send DGRMFRAME      |                      |
  +----------------------+---------------------+----------------------+
  | XPORT_FAILURE        | DLC_HALT_DL         | HALT_PENDING_NOACK   |
  +----------------------+---------------------+----------------------+

  The CONNECT_PENDING state is entered when a DLC_CONTACTED signal has
  been received from the DLC (i.e., a SABME command has been received).
  A CONTACT message it then  issued.  The state is exited upon the
  receipt of a CONTACTED message.  If a DLC_RESET signal is received,
  the local data link is restarted and a RESTART_DL message is sent to
  the remote DLSw.

  An ICANREACH_cs received after the transition to CONNECT_PENDING
  state indicates that more than one CANUREACH_cs was sent at circuit
  establishment time and the target station was found by more than one
  Data Link Switch partner.  A HALT_DL_NOACK is sent to halt the
  circuit started by the Data Link Switch partner that originated each
  such ICANREACH_cs.



Wells & Bartky                                                 [Page 31]

RFC 1795                  Data Link Switching                 April 1995


  Note:  Some implementations will also send a Test command in order to
  restart the data link to the station that sent the SABME command
  (i.e., a DLC_START_DL will be issued).

5.2.6  CIRCUIT_ESTABLISHED State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive CONTACT      | DLC_CONTACT         | CONTACT_PENDING      |
  +----------------------+---------------------+----------------------+
  | Receive HALT_DL      | DLC_HALT_DL         | HALT_PENDING         |
  +----------------------+---------------------+----------------------+
  | Receive HALT_DL_NOACK| DLC_HALT_DL         | HALT_PENDING_NOACK   |
  +----------------------+---------------------+----------------------+
  | Receive XIDFRAME     | DLC_XID             |                      |
  +----------------------+---------------------+----------------------+
  | Receive DGRMFRAME    | DLC_DGRM            |                      |
  +----------------------+---------------------+----------------------+
  | Receive DATAFRAME    | DLC_DGRM            |                      |
  +----------------------+---------------------+----------------------+
  | Receive ICANREACH_cs | Send HALT_DL_NOACK  |                      |
  +----------------------+---------------------+----------------------+
  | DLC_CONTACTED        | Send CONTACT        | CONNECT_PENDING      |
  |                      | If UA is sent in    |                      |
  |                      | response to SABME:  |                      |
  |                      |   DLC_ENTER_BUSY    |                      |
  |                      | else:               |                      |
  |                      |   no action taken   |                      |
  +----------------------+---------------------+----------------------+
  | DLC_ERROR            | Send HALT_DL        | DISCONNECT_PENDING   |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM             | Send DGRMFRAME      |                      |
  +----------------------+---------------------+----------------------+
  | DLC_XID              | Send XIDFRAME       |                      |
  +----------------------+---------------------+----------------------+
  | XPORT_FAILURE        | DLC_HALT_DL         | HALT_PENDING_NOACK   |
  +----------------------+---------------------+----------------------+

  The CIRCUIT_ESTABLISHED state is entered by the origin Data Link
  Switch from the CIRCUIT_START state, and by the target Data Link
  Switch from the CIRCUIT_PENDING state.  The state is exited when a
  connection is started (i.e., DLC receives a SABME command) or CONTACT
  is received. The next state is CONTACT_PENDING or CONNECT_PENDING.

  An ICANREACH_cs received after the transition to CIRCUIT_ESTABLISHED
  state indicates that more than one CANUREACH_cs was sent at circuit
  establishment time and the target station was found by more than one



Wells & Bartky                                                 [Page 32]

RFC 1795                  Data Link Switching                 April 1995


  Data Link Switch partner.  A HALT_DL_NOACK is sent to halt the
  circuit started by the Data Link Switch partner that originated each
  such ICANREACH_cs.

5.2.7  CONTACT_PENDING State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive HALT_DL      | DLC_HALT_DL         | HALT_PENDING         |
  +----------------------+---------------------+----------------------+
  | Receive HALT_DL_NOACK| DLC_HALT_DL         | HALT_PENDING_NOACK   |
  +----------------------+---------------------+----------------------+
  | Receive RESTART_DL   | DLC_HALT_DL         | RESTART_PENDING      |
  +----------------------+---------------------+----------------------+
  | Receive DGRMFRAME    | DLC_DGRM            |                      |
  +----------------------+---------------------+----------------------+
  | Receive DATAFRAME    | DLC_DGRM            |                      |
  +----------------------+---------------------+----------------------+
  | DLC_CONTACTED        | Send CONTACTED      | CONNECTED            |
  +----------------------+---------------------+----------------------+
  | DLC_ERROR            | Send HALT_DL        | DISCONNECT_PENDING   |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM             | Send DGRMFRAME      |                      |
  +----------------------+---------------------+----------------------+
  | XPORT_FAILURE        | DLC_HALT_DL         | HALT_PENDING_NOACK   |
  +----------------------+---------------------+----------------------+

  The CONTACT_PENDING state is entered upon the receipt of a CONTACT
  message, which causes the Data Link Switch to issue a DLC_CONTACT
  signal to the DLC (i.e., DLC sends a SABME command).  This state is
  then exited upon the receipt of a DLC_CONTACTED signal from the DLC
  (i.e., a UA response received).

  If a RESTART_DL message is received, indicating that the remote Data
  Link Switch has received a DLC_RESET signal, the local Data Link
  Switch sends a DISC command frame on the adjacent LAN (i.e.,
  DLC_HALT_DL signal) and enter the RESTART_PENDING state.

  An ICANREACH_cs received after the transition to CONTACT_PENDING
  state indicates that more than one CANUREACH_cs was sent at circuit
  establishment time and the target station was found by more than one
  Data Link Switch partner.  A HALT_DL_NOACK is sent to halt the data
  link started by the Data Link Switch partner that originated this
  ICANREACH_cs.






Wells & Bartky                                                 [Page 33]

RFC 1795                  Data Link Switching                 April 1995


5.2.8  CONNECTED State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive HALT_DL      | DLC_HALT_DL         | HALT_PENDING         |
  +----------------------+---------------------+----------------------+
  | Receive HALT_DL_NOACK| DLC_HALT_DL         | HALT_PENDING_NOACK   |
  +----------------------+---------------------+----------------------+
  | Receive RESTART_DL   | DLC_HALT_DL         | RESTART_PENDING      |
  +----------------------+---------------------+----------------------+
  | Receive DGRMFRAME    | DLC_DGRM            |                      |
  +----------------------+---------------------+----------------------+
  | Receive INFOFRAME    | DLC_INFO            |                      |
  +----------------------+---------------------+----------------------+
  | Receive DATAFRAME    | DLC_DGRM            |                      |
  +----------------------+---------------------+----------------------+
  | Receive XIDFRAME     | If non-activation   |                      |
  |                      | XID3:               |                      |
  |                      |   DLC_XID           |                      |
  +----------------------+---------------------+----------------------+
  | Receive ICANREACH_cs | Send HALT_DL_NOACK  |                      |
  +----------------------+---------------------+----------------------+
  | Receive ENTER_BUSY   | DLC_ENTER_BUSY      |                      |
  +----------------------+---------------------+----------------------+
  | Receive EXIT_BUSY    | DLC_EXIT_BUSY       |                      |
  +----------------------+---------------------+----------------------+
  | Rec TEST_CIRCUIT_REQ | Snd TEST_CIRCUIT_RSP|                      |
  +----------------------+---------------------+----------------------+
  | DLC_RESET            | Send RESTART_DL     | CIRCUIT_RESTART      |
  +----------------------+---------------------+----------------------+
  | DLC_ERROR            | Send HALT_DL        | DISCONNECT_PENDING   |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM             | Send DGRMFRAME      |                      |
  +----------------------+---------------------+----------------------+
  | DLC_INFO             | Send INFOFRAME      |                      |
  +----------------------+---------------------+----------------------+
  | DLC_XID              | If non-activation   |                      |
  |                      | XID3:               |                      |
  |                      |   Send XIDFRAME     |                      |
  +----------------------+---------------------+----------------------+
  | XPORT_FAILURE        | DLC_HALT_DL         | HALT_PENDING_NOACK   |
  +----------------------+---------------------+----------------------+

  The CONNECTED state is entered from the CONNECT_PENDING state upon
  the receipt of a CONTACTED message or from the CONTACT_PENDING state
  upon the receipt of a DLC_CONTACTED signal.




Wells & Bartky                                                 [Page 34]

RFC 1795                  Data Link Switching                 April 1995


  The CONNECTED state is exited usually under one of two conditions: a
  DLC_ERROR signal received from the DLC (e.g., a DISC command received
  by the local DLC), or a HALT_DL message received from the other Data
  Link Switch (e.g., a DISC command received by the remote DLC).

  A SABME command (i.e., a DLC_RESET signal) received by either Data
  Link Switch will also cause the two Data Link Switches to leave the
  CONNECTED state and attempt to restart the circuit.  Following the
  receipt of a SABME, the local Data Link Switch sends a RESTART_DL
  message to the other Data Link Switch and enters the CIRCUIT_RESTART
  state.  Upon the receipt of the RESTART_DL message, the remote Data
  Link Switch sends a DISC command (i.e., DLC_HALT_DL signal) and
  enters the RESTART_PENDING state.

  An ICANREACH_cs received after the transition to CONNECTED state
  indicates that more than one CANUREACH_cs was sent at circuit
  establishment time and the target station was found by more than one
  Data Link Switch partner.  A HALT_DL_NOACK is sent to halt the
  circuit started by the Data Link Switch partner that originated each
  such ICANREACH_cs.

  Note:  Some implementations will also send a Test command in order to
  restart the data link to the station that sent the SABME command
  (i.e., a DLC_START_DL will be issued).

5.2.9  CIRCUIT_RESTART State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive DL_RESTARTED | If Connected:       | If Connected:        |
  |                      |  Send CONTACT       |  CONNECT_PENDING,    |
  |                      |                     | else:                |
  |                      |                     |  CIRCUIT_ESTABLISHED |
  +----------------------+---------------------+----------------------+
  | Receive HALT_DL_NOACK| DLC_HALT_DL         | HALT_PENDING_NOACK   |
  +----------------------+---------------------+----------------------+
  | Receive DGRMFRAME    | DLC_DGRM            |                      |
  +----------------------+---------------------+----------------------+
  | DLC_ERROR            | Send HALT_DL        | DISCONNECT_PENDING   |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM             | Send DGRMFRAME      |                      |
  +----------------------+---------------------+----------------------+
  | XPORT_FAILURE        | DLC_HALT_DL         | HALT_PENDING_NOACK   |
  +----------------------+---------------------+----------------------+






Wells & Bartky                                                 [Page 35]

RFC 1795                  Data Link Switching                 April 1995


  The CIRCUIT_RESTART state is entered if a DLC_RESET signal is
  received from the local DLC.  This was caused by the receipt of a
  SABME command while a connection was currently active.  A DM response
  will be issued to the SABME command and the Data Link Switch will
  attempt to restart the end-to-end circuit.

  The CIRCUIT_RESTART state is exited through one of two transitions.
  The next state depends upon the time the local DLC has reached the
  contacted state (i.e., a DLC_CONTACTED signal is presented) relative
  to the receipt of the DL_RESTARTED message.  This signal is caused by
  the origin station resending the SABME command that initially caused
  the Data Link Switch to enter the CIRCUIT_RESTART state.  The two
  cases are as follows:

     1) DL_RESTARTED message received before the DLC_CONTACTED signal-
        In this case, the CIRCUIT_ESTABLISHED state is entered.

     2) DL_RESTARTED message received after the DLC_CONTACTED signal-
        In this case, the CONNECT_PENDING state is entered.

5.2.10  DISCONNECT_PENDING State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive DL_HALTED    |                     | DISCONNECTED         |
  +----------------------+---------------------+----------------------+
  | Receive HALT_DL      | Send DL_HALTED      |                      |
  +----------------------+---------------------+----------------------+
  | Receive HALT_DL_NOACK|                     | DISCONNECTED         |
  +----------------------+---------------------+----------------------+
  | Receive DATAFRAME    | DLC_DGRM            |                      |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM             | Send DATAFRAME      |                      |
  +----------------------+---------------------+----------------------+
  | XPORT_FAILURE        |                     | DISCONNECTED         |
  +----------------------+---------------------+----------------------+

  The DISCONNECT_PENDING state is entered when a DLC_ERROR signal is
  received from the local DLC.  Upon receipt of this signal, a HALT_DL
  message is sent.  Once an DL_HALTED message is received, the state is
  exited, and the Data Link Switch enters the DISCONNECTED state.









Wells & Bartky                                                 [Page 36]

RFC 1795                  Data Link Switching                 April 1995


5.2.11  RESTART_PENDING State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive HALT_DL_NOACK|                     | HALT_PENDING_NOACK   |
  +----------------------+---------------------+----------------------+
  | Receive DGRMFRAME    | DLC_DGRM            |                      |
  +----------------------+---------------------+----------------------+
  | DLC_DL_HALTED        | Send DL_RESTARTED   | CIRCUIT_ESTABLISHED  |
  +----------------------+---------------------+----------------------+
  | DLC_ERROR            | Send HALT_DL        | DISCONNECT_PENDING   |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM             | Send DGRMFRAME      |                      |
  +----------------------+---------------------+----------------------+
  | XPORT_FAILURE        | DLC_HALT_DL         | HALT_PENDING_NOACK   |
  +----------------------+---------------------+----------------------+

  The RESTART_PENDING state is entered upon the receipt of a RESTART_DL
  message from the remote DLSw while the local Data Link Switch is in
  either the CONTACT_PENDING state or the CONNECTED state, which causes
  the local DLSw to issue a DISC command to the DLC.  Upon the receipt
  of the UA response (DLC_DL_HALTED), the data link is restarted, a
  DL_RESTARTED message is returned to the remote DLSw, and the
  CIRCUIT_ESTABLISHED state is entered.

  Note:  Some implementations will send a Test command in order to
  restart the data link to the target station (i.e., a DLC_START_DL
  will be issued) prior to sending the DL_RESTARTED message.

5.2.12  HALT_PENDING State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive HALT_DL_NOACK|                     | HALT_PENDING_NOACK   |
  +----------------------+---------------------+----------------------+
  | Receive DATAFRAME    | DLC_DGRM            |                      |
  +----------------------+---------------------+----------------------+
  | DLC_DL_HALTED        | Send DL_HALTED      | DISCONNECTED         |
  +----------------------+---------------------+----------------------+
  | DLC_ERROR            | Send DL_HALTED      | DISCONNECTED         |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM             | Send DATAFRAME      |                      |
  +----------------------+---------------------+----------------------+
  | XPORT_FAILURE        |                     | HALT_PENDING_NOACK   |
  +----------------------+---------------------+----------------------+




Wells & Bartky                                                 [Page 37]

RFC 1795                  Data Link Switching                 April 1995


  The HALT_PENDING state is entered upon the receipt of a HALT_DL
  message. This causes the local DLC to issue a DISC command.  Upon the
  receipt of the UA response (DLC_DL_HALTED), a DL_HALTED message is
  returned to the remote DLSw and the DISCONNECTED state is entered.

5.2.13  HALT_PENDING_NOACK State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive DATAFRAME    | DLC_DGRM            |                      |
  +----------------------+---------------------+----------------------+
  | DLC_DL_HALTED        |                     | DISCONNECTED         |
  +----------------------+---------------------+----------------------+
  | DLC_ERROR            |                     | DISCONNECTED         |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM             | Send DATAFRAME      |                      |
  +----------------------+---------------------+----------------------+

  The HALT_PENDING_NOACK state is entered upon the receipt of a
  HALT_DL_NOACK message.  This causes the local DLC to issue a DISC
  command.  Upon the receipt of the UA response (DLC_DL_HALTED), the
  DISCONNECTED state is entered.

5.3  NetBIOS Datagrams

  The NetBIOS protocols use a number of UI frames for directory
  services and the transmission of datagrams.  Most of these frames are
  directed to a group MAC address (GA) with the routing information
  field indicating spanning tree explorer (STE) (a.k.a. Single Route
  Broadcast).  The NB_Add_Name_Response and NB_Name_Recognized frames
  are directed to a specific MAC address with the routing information
  field indicating an all routes explorer frame (ARE) (a.k.a. All
  Routes Broadcast)  The NB_Status_Response frame, is directed to a
  specific MAC address with the routing information field indicating a
  specifically routed frame (SRF). The handling of these frames is
  summarized in the following table.














Wells & Bartky                                                 [Page 38]

RFC 1795                  Data Link Switching                 April 1995


  +---------------------------+------------------+--------------------+
  |          Event            |     Action(s)    |      Comment       |
  +---------------------------+------------------+--------------------+
  | DLC_DGRM for NETBIOS      | Send NETBIOS_ANQ | Transmitted to all |
  |  group address:           |                  |   remote DLSw      |
  |   NB_Add_Name_Query       |                  |                    |
  +---------------------------+------------------+--------------------+
  | DLC_DGRM for a specific   | Send NETBIOS_ANR | Transmitted to     |
  |  address:                 |                  |   specific DLSw    |
  |   NB_Add_Name_Response    |                  |                    |
  +---------------------------+------------------+--------------------+
  | DLC_DGRM for a specific   | Send DATAFRAME   | Transmitted to all |
  |  address:                 |                  |   remote DLSw      |
  |   NB_Status_Response      |                  |                    |
  +---------------------------+------------------+--------------------+
  | DLC_DGRM for NETBIOS      | Send DATAFRAME   | Transmitted to all |
  |  group address:           |                  |   remote DLSw      |
  |   NB_Name_in_Conflict     |                  |                    |
  |   NB_Add_Group_Name_Query |                  |                    |
  |   NB_Datagram,            |                  |                    |
  |   NB_Datagram_Broadcast   |                  |                    |
  |   NB_Status_Query         |                  |                    |
  |   NB_Terminate_Trace      |                  |                    |
  +---------------------------+------------------+--------------------+

  The above actions do not apply in the following states:
  CIRCUIT_ESTABLISHED, CONTACT_PENDING, CONNECT_PENDING, CONNECTED, and
  CIRCUIT_PENDING.  The handling of the remaining two UI frames used by
  NetBIOS systems, NB_Name_Query and NB_Name_Recognized, are documented
  as part of the DLSw state machine in the previous section (i.e.,
  DISCONNECTED and RESOLVE_PENDING states).  Furthermore, the handling
  of NetBIOS datagrams (i.e., NB_Datagram) sent to a specific MAC
  address is also governed by the DLSw state machine.

  Note:  Some implementations also issue Test frames during the
  exchange of the NetBIOS, NB_Name_Query and NB_Name_Recognized.  This
  exchange of protocol data units occurs during the start of a data
  link and is used to determine the routing information.  Most other
  implementations of NetBIOS will use the
  NB_Name_Query/NB_Name_Recognized exchange to determine routes in
  conjunction with resolving the NetBIOS names. These differences are
  not reflected in the SSP protocols.









Wells & Bartky                                                 [Page 39]

RFC 1795                  Data Link Switching                 April 1995


  The handling of the NetBIOS specific SSP messages is given in the
  following table.

  +---------------+-------------------------+-------------------------+
  |     Event     |        Action(s)        |         Comment         |
  +---------------+-------------------------+-------------------------+
  | NETBIOS_ANQ   | DLC_DGRM:               | Routed STE              |
  |               |    NB_Add_Name_Query    | (NETBIOS Group Address) |
  +---------------+-------------------------+-------------------------+
  | NETBIOS_ANR   | DLC_DGRM:               | Routed ARE              |
  |               |    NB_Add_Name_Response | (Specific MAC Address)  |
  +---------------+-------------------------+-------------------------+
  | NETBIOS_NQ_ex | DLC_DGRM:               | Routed STE              |
  |               |    NB_Name_Query        | (NETBIOS Group Address) |
  +---------------+-------------------------+-------------------------+
  | NETBIOS_NQ_cs | DLC_DGRM:               | Routed STE              |
  |               |    NB_Name_Query        | (NETBIOS Group Address) |
  +---------------+-------------------------+-------------------------+
  | NETBIOS_NR_ex | DLC_DGRM:               | Routed ARE              |
  |               |    NB_Name_Recognized   | (Specific MAC Address)  |
  +---------------+-------------------------+-------------------------+
  | NETBIOS_NR_cs | DLC_DGRM:               | Routed ARE              |
  |               |    NB_Name_Recognized   | (Specific MAC Address)  |
  +---------------+-------------------------+-------------------------+
  | DATAFRAME     | DLC_DGRM                | If NB_Status_Response:  |
  |               |                         |  Routed ARE             |
  |               |                         |  (Specific MAC Address) |
  |               |                         | Else:                   |
  |               |                         |  Routed STE             |
  |               |                         |  (NETBIOS Group Address)|
  +---------------+-------------------------+-------------------------+

  The above actions apply to all DLSw states.  The handling of NetBIOS
  datagrams sent within DGRMFRAME messages is governed by the DLSw
  state machine.  The DGRMFRAME message type is employed instead of the
  DATAFRAME message type once the end-to-end circuit has been
  established. At that time, the message is addressed according to the
  pair of Circuit IDs in the message header instead of relying upon the
  MAC address information in the token ring header.

5.4  Explorer Traffic

  The CANUREACH_ex, ICANREACH_ex, NETBIOS_NQ_ex, and NETBIOS_NR_ex SSP
  messages explore the topology of the DLSw cloud and the networks
  attached to it.  These explorer frames are used to determine the DLSw
  partners through which a MAC or NetBIOS name can be accessed.  This
  information may optionally be cached to reduce explorer traffic in
  the DLSw cloud.



Wells & Bartky                                                 [Page 40]

RFC 1795                  Data Link Switching                 April 1995


  If a DLSw is aware from cached information that a given MAC address
  or NetBIOS name is accessible through a given partner DLSw, it should
  direct all circuit setup attempts to that partner.  If the circuit
  setup fails, or no such data is available in the MAC or name cache
  database, the DLSw may fallback to issuing the setup attempt to all
  DLSw partners on the assumption that the cached data is now out of
  date.  The mechanism for determining when to use such a fallback is
  implementation defined.

  DLSw implementations may also use a local MAC cache to enable
  responses to CANUREACH_ex requests to be issued without the need for
  TEST frame exchange (or equivalent) until the CANUREACH_cs is
  received.  Again, the fallback mechanism for determining when such
  local cache data is out-of-date is implementation defined.

  The use of either cache is an optional function in DLSw.  An
  implementation may choose to always issue explorer frames or to use
  either or both types of cache.

  The following sections describe the FSMs used for explorer frames.
  The DLC events and actions are a subset of those described in section
  5.2 for the main circuit FSM.

5.4.1  CANUREACH/ICANREACH Explorer FSM

  The FSM described below is used to handle explorer frames routed by
  MAC address.  There is one instance of this FSM for each Data Link ID
  (Target and Origin MAC/SAP pair) for which explorer traffic is
  flowing. The states in this FSM are as follows.

  State Name            Description
  ----------            -----------
  RESET                 The initial state.

  SENT_EX               Local DLSw has issued an explorer message

  RECEIVED_EX           Local DLSw has received an explorer message














Wells & Bartky                                                 [Page 41]

RFC 1795                  Data Link Switching                 April 1995


5.4.1.1  RESET State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive CANUREACH_ex | If replying from    | If DLC_RESOLVE sent, |
  |                      | cache, send         |   RECEIVED_EX        |
  |                      | ICANREACH_ex        |                      |
  |                      | else if allowed to  |                      |
  |                      | test availability,  |                      |
  |                      | issue DLC_RESOLVE.  |                      |
  |                      | Optionally update   |                      |
  |                      | cache.              |                      |
  +----------------------+---------------------+----------------------+
  | Receive ICANREACH_ex | Optionally update   | RESET                |
  |                      | cache               |                      |
  +----------------------+---------------------+----------------------+
  | DLC_RESOLVE_C        | Send CANUREACH_ex   | SENT_EX              |
  +----------------------+---------------------+----------------------+

  RESET is the initial state for the CANUREACH/ICANREACH explorer FSM.
  This state is exited when a DLC_RESOLVE_C request is received from
  the DLC or a CANUREACH_ex is received from a remote DLSw.

  A DLSw implementation may optionally reply from to CANUREACH_ex
  messages on the basis of cached topology information, in which case
  the DLC_RESOLVE exchange (i.e., TEST) is not required.  If cache is
  not used, or no match is found, and the DLC permits the use of TEST,
  DLC_RESOLVE is issued to locate the target MAC and the state changes
  to RECEIVED_EX. If no cache entry is available and TEST is not
  allowed by the DLC, a received CANUREACH_ex frame is ignored.

5.4.1.2  SENT_EX State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive ICANREACH_ex | DLC_RESOLVE_R       | RESET                |
  |                      | Optionally update   |                      |
  |                      | cache               |                      |
  +----------------------+---------------------+----------------------+
  | DLC_RESOLVE_C        |                     | SENT_EX              |
  +----------------------+---------------------+----------------------+

  SENT_EX is entered when the DLSw has issued a CANUREACH_ex message to
  locate a MAC address.  This state is exited when a remote DLSw
  returns a matching ICANREACH_ex, or after an implementation defined
  timeout. DLC_RESOLVE events received in this state correspond to TEST



Wells & Bartky                                                 [Page 42]

RFC 1795                  Data Link Switching                 April 1995


  retries by the origin DLC station and are absorbed.

  An implementation may choose whether to handle explorer frame
  crossover either by using entirely separate FSM instances and simply
  allowing both ends to issue TEST frames, or by detecting a reverse
  CANUREACH_ex frame here and issuing an ICANREACH_ex message and
  DLC_RESOLVE_R action.

5.4.1.3  RECEIVED_EX State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive CANUREACH_ex | Optionally update   | RECEIVED_EX          |
  |                      | cache               |                      |
  +----------------------+---------------------+----------------------+
  | Receive ICANREACH_ex |                     | RECEIVED_EX          |
  +----------------------+---------------------+----------------------+
  | DLC_RESOLVED         | Send ICANREACH_ex   | RESET                |
  |                      | Optionally update   |                      |
  |                      | cache               |                      |
  +----------------------+---------------------+----------------------+

  RECEIVED_EX is entered when the DLSw has received a CANUREACH_ex from
  a remote DLSw and has issued a DLC_RESOLVE to locate the MAC address.
  This state is exited when the DLC_RESOLVED response is received, or
  after an implementation defined timeout.

  If the target MAC is located, the DLSw must reply to the first
  received CANUREACH_ex that caused the move to this state.  If
  additional CANUREACH_ex messages are received in this state from
  other remote DLSw partners, the DLSw may optionally reply to these
  messages too but it is not required to do so.

  An implementation may choose whether to handle explorer frame
  crossover either by using entirely separate FSM instances and simply
  allowing both ends to issue TEST frames, or by detecting such a
  reverse DLC_RESOLVE_C event here and issuing an ICANREACH_ex message
  and DLC_RESOLVE_R action.












Wells & Bartky                                                 [Page 43]

RFC 1795                  Data Link Switching                 April 1995


5.4.2  NETBIOS_NQ/NR Explorer FSM

  The FSM described below is used to handle explorer frames routed by
  NetBIOS names  There is one instance of this FSM for each unique
  combination of Source Name, Destination Name, Data 2 field and
  Response Correlator.

  State Name            Description
  ----------            -----------
  RESET                 The initial state.

  SENT_EX               Local DLSw has issued an explorer
                        message

  RECEIVED_EX           Local DLSw has received an explorer
                        message

  SENT_REC_EX           An explorer frame has been both sent
                        and received for the same (potential)
                        NetBIOS circuit.

5.4.2.1  RESET State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive NETBIOS_NQ_ex| DLC_DGRM(NAME_QUERY)| RECEIVED_EX          |
  |                      | Optionally update   |                      |
  |                      | cache.              |                      |
  +----------------------+---------------------+----------------------+
  | Receive NETBIOS_NR_ex| Optionally update   | RESET                |
  |                      | cache               |                      |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM (NAME_QUERY)| Send NETBIOS_NQ_ex  | SENT_EX              |
  +----------------------+---------------------+----------------------+

  The RESET state is the initial state for the NETBIOS_NQ/NR explorer
  FSM. It is exited when the DLC receives either a NETBIOS_NQ_ex or a
  DLC_DGRM containing a NetBIOS NAME_QUERY frame.  If a NETBIOS_NQ_ex
  message is received, the NAME_QUERY is propagated to the DLC and this
  FSM moves to state RECEIVED_EX.  If a NetBIOS NAME_QUERY frame is
  received, the NETBIOS_NQ_ex is propagated either to the appropriate
  DLSw partners (see below), and this FSM moves to state SENT_EX.

  Unlike SNA traffic where the CANUREACH_ex/ICANREACH_ex exchange can
  be omitted if the MAC location is already cached,
  NETBIOS_NQ_ex/NETBIOS_NR_ex frames must always be issued during
  NetBIOS session setup in order that the NetBIOS session numbers are



Wells & Bartky                                                 [Page 44]

RFC 1795                  Data Link Switching                 April 1995


  exchanged correctly between the DLC end stations.  If the location of
  a NetBIOS name is known from cached data, the NETBIOS_NQ_ex need only
  be issued to the cached DLSw partners.  Otherwise the NETBIOS_NQ_ex
  should be issued to all partners that support NetBIOS.

5.4.2.2  SENT_EX State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive NETBIOS_NQ_ex| DLC_DGRM(NAME_QUERY)| SENT_REC_EX          |
  |                      | Optionally update   |                      |
  |                      | cache               |                      |
  +----------------------+---------------------+----------------------+
  | Receive NETBIOS_NR_ex| DLC_DGRM(NAME_RECOG)| RESET                |
  |                      | Optionally update   |                      |
  |                      | cache               |                      |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM (NAME_QUERY)| Send NETBIOS_NQ_ex  | SENT_EX              |
  | (different local     | Optionally update   |                      |
  |  session number than | cache               |                      |
  |  existing searches)  |                     |                      |
  +----------------------+---------------------+----------------------+

  SENT_EX is entered when the local DLSw issues a NETBIOS_NQ_ex to its
  remote DLSw partners.  This state is exited when a NETBIOS_NR_ex is
  received from a remote DLSw, or if a matching NETBIOS_NQ_ex is
  received from a remote DLSw (i.e., a NETBIOS_NQ_ex crossover case).
  If the local NetBIOS end station issues a NAME_QUERY with a different
  session number from any previous NAME_QUERY for this search, the
  NAME_QUERY is propagated to the DLSw partners to ensure that the
  exchange of NetBIOS session numbers is handled correctly.



















Wells & Bartky                                                 [Page 45]

RFC 1795                  Data Link Switching                 April 1995


5.4.2.3  RECEIVED_EX State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive NETBIOS_NQ_ex| DLC_DGRM(NAME_QUERY)| RECEIVED_EX          |
  |                      | Optionally update   |                      |
  |                      | cache               |                      |
  +----------------------+---------------------+----------------------+
  | Receive NETBIOS_NR_ex|                     | RECEIVED_EX          |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM (NAME_QUERY)| Send NETBIOS_NQ_ex  | SENT_REC_EX          |
  |                      | Optionally update   |                      |
  |                      | cache               |                      |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM (NAME_RECOG)| Send NETBIOS_NR_ex  | RESET                |
  |                      | Optionally update   |                      |
  |                      | cache               |                      |
  +----------------------+---------------------+----------------------+

  RECEIVED_EX is entered when the local DLSw receives a NETBIOS_NQ_ex
  message from a remote DLSw.  This state is exited when a
  NAME_RECOGNIZED NetBIOS frame is received from the DLC, completing
  the query, or when a matching NAME_QUERY is received from DLC (i.e.,
  NAME_QUERY crossover).

5.4.2.4  SENT_REC_EX State

  +----------------------+---------------------+----------------------+
  |        Event         |      Action(s)      |      Next State      |
  +----------------------+---------------------+----------------------+
  | Receive NETBIOS_NQ_ex| DLC_DGRM(NAME_QUERY)| SENT_REC_EX          |
  |                      | Optionally update   |                      |
  |                      | cache               |                      |
  +----------------------+---------------------+----------------------+
  | Receive NETBIOS_NR_ex| DLC_DGRM(NAME_RECOG)| RECEIVED_EX          |
  |                      | Optionally update   |                      |
  |                      | cache               |                      |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM (NAME_QUERY)| Send NETBIOS_NQ_ex  | SENT_REC_EX          |
  | (different local     | Optionally update   |                      |
  |  session number than | cache               |                      |
  |  existing searches)  |                     |                      |
  +----------------------+---------------------+----------------------+
  | DLC_DGRM (NAME_RECOG)| Send NETBIOS_NR_ex  | SENT_EX              |
  |                      | Optionally update   |                      |
  |                      | cache               |                      |
  +----------------------+---------------------+----------------------+



Wells & Bartky                                                 [Page 46]

RFC 1795                  Data Link Switching                 April 1995


  This state is required if an implementation wishes to manage NQ/NR
  crossover cases from a single FSM instance by detecting 'opposite'
  NAME_QUERY attempts between the same two NetBIOS names.  If separate
  FSM instances are used instead, this state is not required and the
  transitions to it from other states can be removed.

  SENT_RCV_EX is exited when the NAME_QUERY search in either direction
  is resolved.  If the local NetBIOS end station issues a NAME_QUERY
  with a different session number from any previous NAME_QUERY it has
  issued for this search, the NAME_QUERY is propagated to the DLSw
  partners to ensure that the exchange of NetBIOS session numbers is
  correctly handled.

5.4.2.5  NetBIOS Session Numbers

  NetBIOS NAME_QUERY and NAME_RECOGNIZED frames exchange NetBIOS session
  numbers between the end stations.  For correct NetBIOS operation over
  DLSw, it is important that all SSP NETBIOS_NQ_ex frames received by a
  DLSw cause NetBIOS NAME_QUERY frames to flow on the LAN with the new
  session number from the NETBIOS_NQ_ex.  These frames cannot be replied
  to from a cache of locally available NetBIOS names in the same way that
  MAC addresses and CANUREACH_ex messages can be handled.

  Also, NAME_QUERY messages are normally retried several times on the LAN.
  The generation and absorption of such frames is outside the scope of the
  FSM defined above.

6.  Protocol Flow Diagrams

  The Switch-to-Switch Protocol is used to setup and take down circuits
  between a pair of Data Link Switches.  Once a circuit is established,
  the end stations on the local networks can employ LLC Type 1
  (connectionless UI frames) protocols end-to-end.  In addition, the end
  systems can establish an end-to-end connection for support of LLC Type 2
  (connection oriented I frames) protocols (Type 2 I frames go end-to-end,
  supervisory frames are handled locally).

  The term, Data Link, is used in this document to refer to both a
  "logical data link" when supporting Type 1 LLC services, and a "data
  link connection" when supporting Type 2 LLC services.  In both cases,
  the Data Link is identified by the Data Link ID defined in section 3.2.

  NOTE:  THIS SECTION CONTAINS EXAMPLES ONLY.  IT CANNOT AND DOES NOT SHOW
  ALL POSSIBLE VARIATIONS AND OPTIONS ON PROTOCOL FLOWS FOR SNA/SDLC, SSP,
  AND LLC PROTOCOLS.






Wells & Bartky                                                 [Page 47]

RFC 1795                  Data Link Switching                 April 1995


6.1  Connect Protocols

  The two basic startup flows from a pure FSM perspective are shown below.
  The first flow is a startup involving XIDs and the second is one without
  XIDs.

Flow #1 - DLSw Startup With XIDs
======                            ___                           ======
|    |        ---------        __/   \__       ---------        |    |
|    |      __|  _|_  |__     /   IP    \    __|  _|_  |__      |    |
======        |   |   |      <  Network  >     |   |   |        ======
/______\       ---------       \__     __/      ---------       /______\
Origin       Origin DLSw         \___/        Target DLSw      Target
Station        partner                          partner        Station

             disconnected                    disconnected

             DLC_RESOLVE_C   CANUREACH_ex
             ----------->    ----------->
             DLC_RESOLVE_R     ICANREACH_ex
              <-----------     <-----------

             DLC_XID         CANUREACH_cs    DLC_START_DL
             ----------->    ----------->    ----------->
             circuit_start                   resolve_pending

                               ICANREACH_cs    DLC_DL_STARTED
                               <-----------    <-----------
         circuit_established                 circuit_pending
                             REACH_ACK
                             ----------->   circuit_established

                             XIDFRAME        DLC_XID
                             ----------->    ----------->

                    DLC_XID        XIDFRAME         DLC_XID
               <-----------    <-----------    <-----------
             DLC_XID         XIDFRAME        DLC_XID
             ----------->    ----------->    ----------->

                DLC_XIDs       XIDFRAMEs        DLC_XIDs
             <------------>  <------------>  <------------>

             DLC_CONTACTED   CONTACT         DLC_CONTACT
             ----------->    ----------->    ----------->
             connect_pending                 contact_pending





Wells & Bartky                                                 [Page 48]

RFC 1795                  Data Link Switching                 April 1995


                DLC_CONTACT       CONTACTED    DLC_CONTACTED
               <-----------    <-----------    <-----------
                connected                       connected

               DLC_INFOs        IFRAMEs        DLC_INFOs
             <------------>  <------------>  <------------>

  Mapping LAN events to the DLC events and actions on Flow #1 produces
  the following flows shown below:

======                            ___                           ======
|    |        ---------        __/   \__       ---------        |    |
|    |      __|  _|_  |__     /   IP    \    __|  _|_  |__      |    |
======        |   |   |      <  Network  >     |   |   |        ======
/______\       ---------       \__     __/      ---------       /______\
Origin       Origin DLSw         \___/        Target DLSw      Target
Station        partner                          partner        Station

             disconnected                    disconnected

TEST_cmd      DLC_RESOLVE_C    CANUREACH_ex               TEST_cmd
----------->  ----------->     ----------->               ---------->
  TEST_rsp   DLC_RESOLVE_R     ICANREACH_ex                 TEST_rsp
<---------    <-----------   <-----------             <-----------
null XID      DLC_XID          CANUREACH_cs    DLC_START_DL
----------->  ----------->     ----------->    ----------->
             circuit_start                   resolve_pending

                               ICANREACH_cs    DLC_DL_STARTED
                               <-----------    <-------------
          circuit_established                circuit_pending
                             REACH_ACK
                             ----------->  circuit_established

                             XIDFRAME         DLC_XID       null XID
                             ----------->     --------->    -------->
       XID        DLC_XID        XIDFRAME         DLC_XID          XID
 <--------   <-----------    <-----------    <-----------    <--------
   XIDs         DLC_XIDs      XIDFRAMEs        DLC_XIDs         XIDs
<---------->  <---------->  <------------>  <------------>  <--------->
SABME         DLC_CONTACTED   CONTACT         DLC_CONTACT     SABME
----------->  ----------->    ----------->    ----------->    -------->
             connect_pending                 contact_pending

         UA     DLC_CONTACT     CONTACTED    DLC_CONTACTED          UA
 <---------   <-----------   <-----------    <-----------    <--------
                 connected                        connected




Wells & Bartky                                                 [Page 49]

RFC 1795                  Data Link Switching                 April 1995


 IFRAMEs       DLC_INFOs        IFRAMEs        DLC_INFOs       IFRAMEs
<---------->  <----------->  <------------>  <------------>  <-------->

Those implementations that prefer to respond to the SABME immediately
could use the same events to do that:

SABME         DLC_CONTACTED   CONTACT         DLC_CONTACT     SABME
----------->  ----------->    ----------->    ----------->    -------->
         UA  connect_pending                 contact_pending
 <---------
RR
----------->
        RNR
 <---------

         RR    DLC_CONTACT       CONTACTED    DLC_CONTACTED          UA
 <---------   <-----------    <-----------    <-----------    <--------
                connected                        connected

  IFRAMEs      DLC_INFOs        IFRAMEs        DLC_INFOs      IFRAMEs
<---------->  <------------>  <------------>  <------------>  <-------->

Flow #2 - DLSw Startup Without XIDs (circuit setup)

======                            ___                           ======
|    |        ---------        __/   \__       ---------        |    |
|    |      __|  _|_  |__     /   IP    \    __|  _|_  |__      |    |
======        |   |   |      <  Network  >     |   |   |        ======
/______\       ---------       \__     __/      ---------       /______\
Origin       Origin DLSw         \___/        Target DLSw      Target
Station        partner                          partner        Station

             disconnected                    disconnected

             DLC_CONTACTED   CANUREACH_cs    DLC_START_DL
             ----------->    ----------->    ----------->
             circuit_start                   resolve_pending

                               ICANREACH_cs    DLC_DL_STARTED
                               <-----------    <-----------
         circuit_established                 circuit_pending
                             REACH_ACK
                             ----------->   circuit_established

                             CONTACT         DLC_CONTACT
                             ----------->    ----------->
             connect_pending                 contact_pending




Wells & Bartky                                                 [Page 50]

RFC 1795                  Data Link Switching                 April 1995


                DLC_CONTACT       CONTACTED    DLC_CONTACTED
               <-----------    <-----------    <-----------
                connected                       connected

               DLC_INFOs        IFRAMEs        DLC_INFOs
             <------------>  <------------>  <------------>

  Mapping LAN events to the DLC events and actions on Flow #2 (and
  adding a NETBIOS_NQ and NETBIOS_NR_ex) produces:

======                            ___                           ======
|    |        ---------        __/   \__       ---------        |    |
|    |      __|  _|_  |__     /   IP    \    __|  _|_  |__      |    |
======        |   |   |      <  Network  >     |   |   |        ======
/______\       ---------       \__     __/      ---------       /______\
Origin       Origin DLSw         \___/        Target DLSw      Target
Station        partner                          partner        Station

             disconnected                     disconnected

NAME_QUERY    DLC_DGRM        NETBIOS_NQ_ex   DLC_DGRM       NAME_QUERY
----------->  ----------->    ----------->    ----------->   --------->

  NAME_RECOG    DLC_DGRM      NETBIOS_NR_ex     DLC_DGRM    NAME_RECOG
<-----------  <------------   <-----------    <-----------  <---------

SABME         DLC_CONTACTED   CANUREACH_cs    DLC_START_DL
----------->  ----------->    ----------->    ----------->
              circuit_start                 resolve_pending

                               ICANREACH_cs    DLC_DL_STARTED
                               <-----------    <-----------
           circuit_established                circuit_pending
                             REACH_ACK
                             ----------->   circuit_established

                             CONTACT         DLC_CONTACT     SABME
                             ----------->    ----------->    --------->
            connect_pending                 contact_pending

         UA   DLC_CONTACT       CONTACTED    DLC_CONTACTED           UA
 <---------  <-----------    <-----------    <-----------    <---------
               connected                       connected

  IFRAMEs       DLC_INFOs       IFRAMEs        DLC_INFOs       IFRAMEs
<------------> <------------> <------------>  <------------>  <-------->





Wells & Bartky                                                 [Page 51]

RFC 1795                  Data Link Switching                 April 1995


  In keeping with a paradigm of 'DLSw is a big 802.2 LAN', all other
  DLC types (SDLC for now, QLLC, channel, or whatever in the future)
  would be handled by a 'DLC transformation layer' that would transform
  the specific protocol's events into the appropriate DLSw DLC events
  and DLSw DLC actions into the appropriate protocol actions.  The XIDs
  that flow in the SSP XIDFRAME should stay 802.2ish (i.e., ABM bit
  set) and leave it up to the DLC transformation layer to suit the XID
  to its particular DLC type.

  Here is an example of a leased SDLC PU 2.0 device as the origin
  station. It should use Flow #2 since it is not known if the other
  side is a LAN, a switched line or a leased line.

======                            ___                           ======
|    |        ---------        __/   \__       ---------        |    |
|    |      __|  _|_  |__     /   IP    \    __|  _|_  |__      |    |
======        |   |   |      <  Network  >     |   |   |        ======
/______\       ---------       \__     __/      ---------       /______\
Origin       Origin DLSw         \___/        Target DLSw      Target
Station        partner                          partner        Station

             disconnected                     disconnected

implementer's  DLC_RESOLVE_C   CANUREACH_ex
choice (power  ----------->    ----------->
up, configuration
change,        DLC_RESOLVE_R   ICANREACH_ex
never,          <-----------    <-----------
connect timer,etc.)

PU 2.0 is
configured
in DLSw to    DLC_XID(null)   CANUREACH_cs    DLC_START_DL
call in       ----------->    ----------->    ----------->
             circuit_start                   resolve_pending

                               ICANREACH_cs   DLC_DL_STARTED
                               <-----------   <-----------
          circuit_established                circuit_pending
                               REACH_ACK
                               ----------->   circuit_established

                             XIDFRAME        DLC_XID
                             ----------->    ----------->

                   DLC_XID        XIDFRAME         DLC_XID
respond with   <-----------    <-----------    <-----------
XID configured



Wells & Bartky                                                 [Page 52]

RFC 1795                  Data Link Switching                 April 1995


for station or
forward XID to
station and
send response  DLC_XID        XIDFRAME        DLC_XID
              ----------->   ----------->    ----------->

       SNRM    DLC_CONTACT       CONTACT      DLC_CONTACTED
 <---------   <-----------    <-----------    <------------
             contact_pending                    connect_pending

UA            DLC_CONTACTED    CONTACTED       DLC_CONTACT
---------->    ----------->    ----------->    ----------->
               connected                       connected

  IFRAMEs       DLC_INFOs        IFRAMEs        DLC_INFOs
<----------->  <------------>  <------------>  <------------>

  Here is an example of a switched SDLC PU 2.0 device as the origin
  station.

======                            ___                           ======
|    |        ---------        __/   \__       ---------        |    |
|    |      __|  _|_  |__     /   IP    \    __|  _|_  |__      |    |
======        |   |   |      <  Network  >     |   |   |        ======
/______\       ---------       \__     __/      ---------       /______\
Origin       Origin DLSw         \___/        Target DLSw      Target
Station        partner                          partner        Station

             disconnected                     disconnected

implementer's  DLC_RESOLVE_C   CANUREACH_ex
choice (power  ----------->    ----------->
up, configuration
change,        DLC_RESOLVE_R   ICANREACH_ex
never,          <-----------    <-----------
connect timer,etc.)

XID(null)     DLC_XID(null)   CANUREACH_cs    DLC_START_DL
----------->  ----------->    ----------->    ----------->
             circuit_start                   resolve_pending

                               ICANREACH_cs    DLC_DL_STARTED
                               <-----------    <-----------
           circuit_established                 circuit_pending
                               REACH_ACK
                               ----------->   circuit_established





Wells & Bartky                                                 [Page 53]

RFC 1795                  Data Link Switching                 April 1995


                               XIDFRAME      DLC_XID
                               ----------->  ----------->
        XID        DLC_XID         XIDFRAME         DLC_XID
 <---------   <-----------     <-----------    <-----------
XID           DLC_XID         XIDFRAME        DLC_XID
--------->    ----------->    ----------->    ----------->

       SNRM    DLC_CONTACT       CONTACT      DLC_CONTACTED
 <---------   <-----------    <-----------    <-----------
             contact_pending                 connect_pending

UA            DLC_CONTACTED   CONTACTED       DLC_CONTACT
--------->    ----------->    ----------->    ----------->
                connected                      connected

  IFRAMEs      DLC_INFOs        IFRAMEs        DLC_INFOs
<---------->  <------------>  <------------>  <------------>

  Here is an example of a leased SDLC PU 2.0 device as the target
  station.

======                            ___                           ======
|    |        ---------        __/   \__       ---------        |    |
|    |      __|  _|_  |__     /   IP    \    __|  _|_  |__      |    |
======        |   |   |      <  Network  >     |   |   |        ======
/______\       ---------       \__     __/      ---------       /______\
Origin       Origin DLSw         \___/        Target DLSw       Target
Station        partner                          partner         Station
                                                                (SDLC)
             disconnected                    disconnected

             DLC_RESOLVE_C   CANUREACH_ex
             ----------->    ----------->   reply if virtual MAC/SAP
                                            for SDLC station is
                                            configured, if SDLC
                                            station responds to
             DLC_RESOLVE_R    ICANREACH_ex  TEST/SNRM/DISC, etc.
              <-----------    <-----------
             DLC_XID         CANUREACH_cs    DLC_START_DL    SNRM
             ----------->    ----------->    ----------->    --------->
             circuit_start                   resolve_pending

                               ICANREACH_cs    DLC_DL_STARTED        UA
                               <-----------    <-----------    <-------
         circuit_established                 circuit_pending
                                                             RNR
                             REACH_ACK                       --------->
                             ----------->   circuit_established



Wells & Bartky                                                 [Page 54]

RFC 1795                  Data Link Switching                 April 1995


                             XIDFRAME        DLC_XID
                             ----------->    -----------> respond with
                                                          XID configured
                                                          for station
                                                          or forward
                                                          XID to
                                                          station and
                                                          send
                  DLC_XID        XIDFRAME         DLC_XID response
             <-----------    <-----------    <-----------
             DLC_CONTACTED   CONTACT         DLC_CONTACT     RR
             ----------->    ----------->    ----------->    --------->
            connect_pending                contact_pending

                DLC_CONTACT       CONTACTED    DLC_CONTACTED
               <-----------    <-----------    <-----------
               connected                        connected

               DLC_INFOs        IFRAMEs        DLC_INFOs       IFRAMEs
             <------------>  <------------>  <------------>  <------->

  Here is an example of a switched SDLC PU 2.0 device as the target
  station.

======                            ___                           ======
|    |        ---------        __/   \__       ---------        |    |
|    |      __|  _|_  |__     /   IP    \    __|  _|_  |__      |    |
======        |   |   |      <  Network  >     |   |   |        ======
/______\       ---------       \__     __/      ---------       /______\
Origin       Origin DLSw         \___/        Target DLSw       Target
Station        partner                          partner         Station
                                                                (SDLC)
             disconnected                    disconnected

             DLC_RESOLVE_C   CANUREACH_ex
             ----------->    ----------->    reply if virtual MAC/SAP
                                             for SDLC station is
                                             configured, if SDLC
                                             station responds to
             DLC_RESOLVE_R     ICANREACH_ex  TEST/XID/SNRM/DISC, etc.
              <-----------     <-----------
             DLC_XID         CANUREACH_cs    DLC_START_DL    XID
             ----------->    ----------->    ----------->    --------->
             circuit_start                   resolve_pending

                               ICANREACH_cs   DLC_DL_STARTED        XID
                               <-----------   <-----------    <--------
         circuit_established                 circuit_pending



Wells & Bartky                                                 [Page 55]

RFC 1795                  Data Link Switching                 April 1995


                             REACH_ACK
                             ----------->   circuit_established

                               XIDFRAME        DLC_XID
                               ----------->    -----------> respond
                                                            with XID
                                                            received
                    DLC_XID        XIDFRAME        DLC_XID  above
               <-----------    <-----------     <---------
            DLC_CONTACTED   CONTACT         DLC_CONTACT     SNRM
            ----------->    ----------->    ----------->    --------->
            connect_pending                  contact_pending

               DLC_CONTACT       CONTACTED    DLC_CONTACTED          UA
              <-----------    <-----------    <-----------    <--------
               connected                        connected

               DLC_INFOs        IFRAMEs        DLC_INFOs       IFRAMEs
             <------------>  <------------>  <------------>  <-------->

  Here is an example of an SDLC T2.1 device as the target station.
  (SDLC T2.1 origin station would look just like the LAN T2.1 origin
  station)

======                            ___                           ======
|    |        ---------        __/   \__       ---------        |    |
|    |      __|  _|_  |__     /   IP    \    __|  _|_  |__      |    |
======        |   |   |      <  Network  >     |   |   |        ======
/______\       ---------       \__     __/      ---------       /______\
Origin       Origin DLSw         \___/        Target DLSw      Target
Station        partner                          partner        Station

             disconnected                    disconnected

             DLC_RESOLVE_C   CANUREACH_ex
             ----------->    ----------->    implementer's choice
                                             (virtual MAC/SAP
                                              configured,
                                              check to see if station
                                              is powered up using
             DLC_RESOLVE_R     ICANREACH_ex   TEST/XID/DISC, etc.)
              <-----------     <-----------
             DLC_XID         CANUREACH_cs    DLC_START_DL    null XID
             ----------->    ----------->    ----------->    --------->
             circuit_start                   resolve_pending

                               ICANREACH_cs    DLC_DL_STARTED       XID
                               <-----------    <-----------    <-------



Wells & Bartky                                                 [Page 56]

RFC 1795                  Data Link Switching                 April 1995


         circuit_established                 circuit_pending
                             REACH_ACK
                             ----------->   circuit_established
                             XIDFRAME        DLC_XID
                             ----------->    ----------->  respond with
                                                           XID received
                    DLC_XID        XIDFRAME        DLC_XID above
               <-----------    <-----------    <----------
                DLC_XIDs       XIDFRAMEs        DLC_XIDs         XIDs
             <------------>  <------------>  <------------>  <-------->
             DLC_CONTACTED   CONTACT         DLC_CONTACT     SNRM
             ----------->    ----------->    ----------->    --------->
             connect_pending                 contact_pending

                DLC_CONTACT       CONTACTED    DLC_CONTACTED         UA
               <-----------    <-----------    <-----------    <-------
               connected                        connected

               DLC_INFOs        IFRAMEs        DLC_INFOs       IFRAMEs
             <------------>  <------------>  <------------>  <-------->































Wells & Bartky                                                 [Page 57]

RFC 1795                  Data Link Switching                 April 1995


6.2  Link Restart Protocols

  The following figure depicts the protocol flows that result from
  restarting the end-to-end connection.  This causes the Data Link
  Switches to terminate the existing connection and to enter the
  Circuit Established state awaiting the start of a new connection.

    Data Link   Data Link                     Data Link   Data Link
     Control     Switch                        Switch      Control
    ---------------------                     ---------------------
         +-----------+                             +-----------+
         | Connected |                             | Connected |
   SABME +-----------+                             +-----------+
  ----------->                 RESTART_DL
     DM           ------------------------------------->     DISC
  <-----------                                               -------->
                                                              UA
                        DL_RESTARTED (Case 1)              <--------
                  <-------------------------------------
         +-----------+                             +-----------+
         |Circuit Est|                             |Circuit Est|
         +-----------+                             +-----------+
                       ........... or ...........
   SABME
  ----------->           DL_RESTARTED (Case 2)
      UA          <-------------------------------------
  <-----------                                     +-----------+
                                                   |Circuit Est|
                               CONTACT             +-----------+
     RNR           ------------------------------------>
  <----------

             Figure 5.  DLSw Link Restart Message Protocols

  Upon receipt of a SABME command from the origin station, the origin
  DLSw will send a RESTART_DL message to the target DLSw.  A DM
  response is also returned to the origin station and the data link is
  restarted.

  Upon receipt of the RESTART_DL message, the target DLSw will issue a
  DISC command to the target station.  The target station is expected
  to return a UA response.  The target DLSw will then restart its data
  link and send an DL_RESTARTED message back to the origin DLSw.
  During this exchange of messages, both Data Link Switches change
  states from Connected state to Circuit Established state.

  If the origin station now resends the SABME command, the origin DLSw
  will send a CONTACT message to the target DLSw.  If the SABME command



Wells & Bartky                                                 [Page 58]

RFC 1795                  Data Link Switching                 April 1995


  is received prior to the receipt of the DL_RESTARTED message (case 2
  in the figure), the CONNECT message is delayed until the DL_RESTARTED
  message is received.  The resulting protocol flows at this point
  parallel those given above for the connect sequence.

6.3  Disconnect Protocols

  The following figure depicts the protocol flows that result from the
  end system terminating an existing connection.  Not only is the
  connection terminated, but the circuit between the Data Link Switches
  is taken down.

    Data Link  Data Link                      Data Link  Data Link
     Control    Switch                         Switch     Control
    --------------------                      --------------------
         +-----------+                             +-----------+
         | Connected |                             | Connected |
         +-----------+                             +-----------+
     DISC
  ---------->                  HALT_DL
      UA         ------------------------------------->      DISC
  <----------                                              --------->
                                                              UA
                              DL_HALTED                    <--------
                 <-------------------------------------
         +-----------+                             +-----------+
         |Disconnectd|                             |Disconnectd|
         +-----------+                             +-----------+

                         ......... or ..........

         +-----------+                             +-----------+
         | Connected |                             | Connected |
         +-----------+                             +-----------+
      DISC              TCP Connection Failure               DISC
  <--------     <------------------------------------>    --------->
       UA                                                     UA
   -------->                                               <--------
         +-----------+                             +-----------+
         |Disconnectd|                             |Disconnectd|
         +-----------+                             +-----------+

              Figure 6.  DLSw Disconnect Message Protocols

  Upon receipt of a DISC command from the origin station, the origin
  DLSw will reply with a UA response and issue a HALT_DL message to the
  target DLSw.  Upon receipt of the HALT_DL message, the target DLSw
  will send a DISC command to the target station.  The target station



Wells & Bartky                                                 [Page 59]

RFC 1795                  Data Link Switching                 April 1995


  will then respond with a UA response, causing the target DLSw to
  return a DL_HALTED message to the origin DLSw.  During this exchange
  of messages, both Data Link Switches change states from the Connected
  state to the Disconnected state.

  If the TCP connection between two Data Link Switches fails, all
  connections that are currently multiplexed on the failed TCP
  connection will be taken down.  This implies that both Data Link
  Switches will send DISC commands to all the local systems that are
  associated with the failed connections.  Upon sending the DISC
  command, the Data Link Switch will enter the DISCONNECTED state for
  each circuit.

7.0  Capabilities Exchange Formats/Protocol

  The Data Link Switching Capabilities Exchange is a special DLSw
  Switch-to-Switch control message that describes the capabilities of
  the sending data link switch. This control message is sent after the
  switch-to-switch connection is established and optionally during run
  time if certain operational parameters have changed and need to be
  communicated to the partner switch.

  The actual contents of the Capabilities Exchange is in the data field
  following the SSP message header.  The Capabilities Exchange itself
  is formatted as a single General Data Stream (GDS) Variable with
  multiple type "LT" structured subfields.

  The SSP Message Header has the following fields set for the
  Capabilities Exchange:

  Offset   Field                 Value
  ------   -----                 -----
  0x00     Version Number        0x31
  0x01     Header Length         0x48 (decimal 72)
  0x02     Message Length        same as LL in GDS Variable
  0x14     Message Type          0x20 (CAP_EXCHANGE)
  0x16     Protocol Id           0x42
  0x17     Header Number         0x01
  0x23     Message Type          0x20 (CAP_EXCHANGE)
  0x38     Direction             0x01 for CapEx request
                                 0x02 for CapEx response

  Other fields in the SSP header are not referenced and should be set
  to zero.







Wells & Bartky                                                 [Page 60]

RFC 1795                  Data Link Switching                 April 1995


  The DLSw Capabilities Exchange Request has the following overall
  format:

  +----+----+-----------------+
  | LL | ID | Control Vectors |
  +----+----+-----------------+

  0-1         Length, in binary, of the DLSw Capabilities
              Exchange
              Request GDS Variable.  The value of LL is
              the sum of the length of all fields in the
              GDS Variable (i.e., length of LL + length of ID
              + length of Control Vectors).

  2-3         GDS Id: 0x1520

  4-n         Control Vectors consisting of type LT structured
              subfields (i.e., the DLSw Capabilities Exchange
              Structured Subfields)

  Type LT structured subfields consist of a 1-byte length field (the
  "L"), a 1-byte type field (the "T") and n-bytes of data.  The length
  field includes itself as well as the structured subfield.  The
  structured subfield consists of the type field and data so the length
  is n + 2. This imposes a length restriction of 253 bytes on all data
  contained in a structured subfield.

























Wells & Bartky                                                 [Page 61]

RFC 1795                  Data Link Switching                 April 1995


7.1  Control Vector Id Range

  Control Vector identifiers (i.e., Type) in the range of 0x80 through
  0xCF are reserved for use by the Data Link Switching standard.

  Control Vector identifiers (i.e., Type) in the range of 0xD0 through
  0xFD are used for vendor-specific purposes.

  Currently defined vectors are:

  Vector Description                       Hex Value

  Vendor Id Control Vector                 0x81
  DLSw Version Control Vector              0x82
  Initial Pacing Window Control Vector     0x83
  Version String Control Vector            0x84
  Mac Address Exclusivity Control Vector   0x85
  Supported SAP List Control Vector        0x86
  TCP Connections Control Vector           0x87
  NetBIOS Name Exclusivity Control Vector  0x88
  MAC Address List Control Vector          0x89
  NetBIOS Name List Control Vector         0x8A
  Vendor Context Control Vector            0x8B
  Reserved for future use                  0x8C - 0xCF
  Vendor Specific                          0xD0 - 0xFD

7.2  Control Vector Order and Continuity

  Since their contents can greatly affect the parsing of the
  Capabilities Exchange GDS Variable, the required control vectors must
  occur first and appear in the following order:  Vendor Id, DLSw
  Version Number, Initial Pacing Window, Supported SAP List. The
  remainder of the Control Vectors can occur in any order.

  Control Vectors that can be repeated within the same message (e.g.,
  MAC Address List Control Vector and NetBIOS Name List Control Vector)
  are not necessarily adjacent.  It is advisable, but not required, to
  have the Exclusivity Control Vector occur prior to either of the
  above two vectors so that the use of the individual MAC addresses or
  NetBIOS names will be known prior to parsing them.

  Both the Vendor Context and Vendor Specific control vectors can be
  repeated.  If there are multiple instances of the Vendor Context
  control vector, the specified context remains in effect for all
  Vendor Specific control vectors until the next Vendor Context control
  vector is encountered in the Capabilities Exchange.





Wells & Bartky                                                 [Page 62]

RFC 1795                  Data Link Switching                 April 1995


7.3  Initial Capabilities Exchange

  Capabilities exchange is always the first SSP message sent on a new
  SSP connection between two DLSw switches.  This initial Capabilities
  Exchange is used to identify the DLSw version that each switch is
  running and other required information, plus details of any optional
  extensions that the switches are capable of supporting.

  If a DLSw receives an initial capabilities message that is
  incorrectly formatted or contains invalid or unsupported data that
  prevents correct interoperation with the partner DLSw, it should
  issue a Capabilities Exchange negative response.

  If a DLSw receives a negative response to its initial capabilities
  message, it should take down its TCP connections with the offended
  partner.

  Note:  Pre v1.0 DLSw implementations do not send or respond to
  capabilities messages and can be identified by the lack of
  capabilities exchange as the first message on a new SSP connnection.
  This document does not attempt to specify how to interoperate with
  back-level DLSw implementations.

7.4  Run-Time Capabilities Exchange

  Capabilities exchange always occurs when the SSP connection is
  started between two DLSw switches.  Capabilities Exchange can also
  occur at run-time, typically when a configuration change is made.

  Support for run-time Capabilities Exchange is optional.  If a node
  does not support receiving/using Run-Time Capabilities Exchange and
  receives one, it should discard it quietly (not send back a negative
  response).  If a node supports receipt of run-time capabilities, it
  should send a positive or negative response as appropriate.  The
  receiver of a negative response to a run-time capabilities message is
  not required to take down its TCP connections with the offended
  partner.

  Run-time Capabilities Exchange can consist of one or more of the
  following control vectors.  Note that the control vectors required at
  start-up are not present in a run-time Capabilities Exchange.










Wells & Bartky                                                 [Page 63]

RFC 1795                  Data Link Switching                 April 1995


       1. MAC Address Exclusivity CV,
       2. NetBIOS Name Exclusivity CV,
       3. MAC Address List CV,
       4. NetBIOS Name List CV,
       5. Supported SAP List CV,
       6. Vendor Context CV,
       7. Vendor Specific CVs

  A run-time capabilities exchange is a replacement operation.  As
  such, all pertinent MAC addresses and NetBIOS names must be specified
  in the run-time exchange. In addition, run-time changes in
  capabilities will not effect existing link station circuits.

7.5  Capabilities Exchange Filtering Responsibilities

  Recipients of the SAP, MAC, and NetBIOS lists are not required to
  actually use them to filter traffic, etc., either initially or at
  run-time.

7.6  DLSw Capabilities Exchange Structured Subfields

  The Capabilities Exchange Subfields are listed in the table below and
  are described in the following sections:

        Required                      Allowed @
   ID   @ Startup  Length  Repeatable* Runtime  Order  Content
  ====  =========  ======  ==========  =======  =====  ===============
  0x81     Y        0x05        N         N       1    Vendor ID

  0x82     Y        0x04        N         N       2    DLSw Version

  0x83     Y        0x04        N         N       3    Initial pacing
                                                       window

  0x84     N      >=0x02        N         N       5+   Version String

  0x85     N        0x03        N         Y       5+   MAC Address
                                                       Exclusivity

  0x86     Y        0x12        N         Y       4    Supported SAP
                                                       List

  0x87     N        0x03        N         N       5+   TCP Connections

  0x88     N        0x03        N         Y       5+   NetBIOS Name
                                                       Exclusivity





Wells & Bartky                                                 [Page 64]

RFC 1795                  Data Link Switching                 April 1995


  0x89     N        0x0E        Y         Y       5+   MAC Address
                                                       List

  0x8A     N      <=0x13        Y         Y       5+   NetBIOS Name
                                                       List

  0x8B     N        0x05        Y         Y       5+   Vendor Context

  0xD0     N       varies       Y         Y       5+   Vendor Specific

  *Note: "Repeatable" means a Control Vector is repeatable within a single
  message.

7.6.1  Vendor Id (0x81) Control Vector

  The Vendor Id control vector identifies the manufacturer's IEEE
  assigned Organizationally Unique Identifier (OUI) of the Data Link
  Switch sending the DLSw Capabilities Exchange.  The OUI is sent in
  non-canonical (Token-Ring) format.  This control vector is required
  and must be the first control vector.

  Offset  Length  Value  Contents
  ------  ------  -----  --------
     0       1    0x05   Length of the Vendor Id structured
                         subfield

     1       1    0x81   key = 0x81  that identifies this as the
                         Vendor Id structured subfield

    2-4      3           the 3-byte Organizationally Unique
                         Identifier (OUI) for the vendor
                         (non-canonical format)

7.6.2  DLSw Version (0x82) Control Vector

  The DLSw Version control vector identifies the particular version of
  the DLSw standard supported by the sending Data Link Switch.  This
  control vector is required and must follow the Vendor Id Control
  Vector.

  Offset  Length  Value  Contents
  ------  ------  -----  --------
     0       1    0x04   Length of the Version String structured
                         subfield

     1       1    0x82   key = 0x82  that identifies this as the
                         DLSw Version structured subfield




Wells & Bartky                                                 [Page 65]

RFC 1795                  Data Link Switching                 April 1995


     2       1           the hexadecimal value representing the
                         DLSw standard Version number of the
                         sending Data Link Switch.
                           0x01 (indicates version 1 - closed pages)

     3       1           the hexadecimal value representing the
                         DLSw standard Release number of the
                         sending Data Link Switch.
                           0x00 (indicates release 0)

7.6.3  Initial Pacing Window (0x83) Control Vector

  The Initial Pacing Window control vector specifies the initial value
  of the receive pacing window size for the sending Data Link Switch.
  This control vector is required and must follow the DLSw Version
  Control Vector.

  Offset  Length  Value  Contents
  ------  ------  -----  --------
     0       1    0x04   Length of the Initial Pacing Window
                         structured subfield

     1       1    0x83   key = 0x83  that identifies this
                         as the Initial Pacing Window
                         structured subfield

    2-3      2           the pacing window size, specified
                         in byte normal form..

  Note:  The pacing window size must be non-zero.

7.6.4  Version String (0x84) Control Vector

  The Version String control vector identifies the particular version
  number of the sending Data Link Switch.  The format of the actual
  version string is vendor-defined.  This control vector is optional.

  Offset  Length  Value  Contents
  ------  ------  -----  --------
     0       1    0xn    Length of the Version String
                         structured subfield

     1       1    0x84   key = 0x84  that identifies
                         this as the Version String
                         structured subfield






Wells & Bartky                                                 [Page 66]

RFC 1795                  Data Link Switching                 April 1995


    2-n     n-2          the ASCII string that identifies
                         the software version for the
                         sending DLSw.

7.6.5  MAC Address Exclusivity (0x85) Control Vector

  The MAC Address Exclusivity control vector identifies how the MAC
  Address List control vector data is to be interpreted.  Specifically,
  this control vector identifies whether the MAC addresses in the MAC
  Address List control vectors are the only ones accessible via the
  sending Data Link Switch.

  If a MAC Address List control vector is specified and the MAC Address
  Exclusivity control vector is missing, then the MAC addresses are not
  assumed to be the only ones accessible via this switch.

  A node may specify that it supports no local MAC addresses by
  including in its capabilities the MAC Address List Exclusivity CV
  (with byte 2 == 0x01), and not including any instances of the MAC
  Address List CV.

  Offset  Length  Value  Contents
  ------  ------  -----  --------
     0       1    0x03   Length of the Exclusivity structured
                         subfield

     1       1    0x85   key = 0x85 that identifies this as the
                         MAC address Exclusivity structured
                         subfield

     2       1           an indicator of the relationship of the
                         MAC addresses to the sending Data Link
                         Switch.
                           0x00     the MAC addresses specified in
                                    this Capabilities Exchange
                                    can be accessed via this
                                    switch but are not the
                                    exclusive set (i.e., other
                                    entities are accessible in
                                    addition to the ones specified)
                           0x01     the MAC addresses specified in
                                    this Capabilities Exchange
                                    are the only ones accessible
                                    via this switch.







Wells & Bartky                                                 [Page 67]

RFC 1795                  Data Link Switching                 April 1995


7.6.6  SAP List Support (0x86) Control Vector

  The SAP List Support control vector identifies support for Logical
  Link Control SAPs (DSAPs and SSAPs) by the sending Data Link Switch.
  This is used by the DLSw that sent the SAP List Support control
  vector to indicate which SAPs can be used to support SNA and
  optionally NetBIOS traffic.  This may be used by the DLSw that
  receives the SAP list to filter explorer traffic (TEST, XID, or
  NetBIOS UI frames) from the DLSw state machine.  For SNA, a DLSw
  should set bits for all SAP values (SSAP or DSAP) that may be used
  for SNA traffic.  For NetBIOS support, the bit for SAP 0xF0 should be
  set (if not supported then the same bit should be cleared).

  Each bit in the SAP control vector data field represents a SAP as
  defined below.  This vector is required and must follow the Initial
  Pacing Window Control Vector.

  Offset  Length  Value  Contents
  ------  ------  -----  --------
     0       1     0x12  Length of the Supported SAP List structured
                         subfield

     1       1     0x86  key = 0x86 that identifies this as the
                         Supported SAP List structured subfield

    2-17    16           the 16-byte bit vector describing all
                         even numbered SAPs enabled.

                         Each Bit within the 16 byte bit vector will
                         indicate whether an even numbered SAP is
                         enabled (b'1') or disabled (b'0').

                         Each Byte within the 16 byte bit vector
                         will be numbered from 0 - F. (Most
                         significant byte first).

                         Byte 0   1   2   3   ...   F
                              XX  XX  XX  XX  ...   XX

                         The bits in each byte indicate whether an
                         even numbered SAP is enabled (b'1') or
                         disabled (b'0'). (Most significant bit first)

                         Bits 7   6   5   4   ...   0
                         SAP  0   2   4   6   ...   E

                         By combining the byte label with the enabled
                         bits, all supported SAPs can be determined.



Wells & Bartky                                                 [Page 68]

RFC 1795                  Data Link Switching                 April 1995


                         In the following diagram, 'n' would equal 0
                         through F depending on which byte was being
                         interpreted.

                         Bit ordering is shown below with bit
                         7 being the most significant bit and bit
                         0 the least significant bit.

                         7654 3210
                         bbbb bbbb....
                         |||| ||||
                         |||| |||SAP 0xnE enabled or not
                         |||| |||
                         |||| ||SAP 0xnC enabled or not
                         |||| ||
                         |||| |SAP 0xnA enabled or not
                         |||| |
                         |||| SAP 0xn8 enabled or not
                         ||||
                         |||SAP 0xn6 enabled or not
                         |||
                         ||SAP 0xn4 enabled or not
                         ||
                         |SAP 0xn2 enabled or not
                         |
                         SAP 0xn0 enabled or not

























Wells & Bartky                                                 [Page 69]

RFC 1795                  Data Link Switching                 April 1995


  An example of using all User Definable SAPs of 0x04 to 0xEC for SNA
  Data Link Switching and SAP 0xF0 for NetBIOS Data Link Switching
  would be as follows:

  Offset  SAPs          Binary       Hex

  0       4,8,C         0010 1010    0x2A
  1       10,14,18,1C   1010 1010    0xAA
  2       20,24,28,2C   1010 1010    0xAA
  3       30,34,38,3C   1010 1010    0xAA
  4       40,44,48,4C   1010 1010    0xAA
  5       50,54,58,5C   1010 1010    0xAA
  6       60,64,68,6C   1010 1010    0xAA
  7       70,74,78,7C   1010 1010    0xAA
  8       80,84,88,8C   1010 1010    0xAA
  9       90,94,98,9C   1010 1010    0xAA
  A       A0,A4,A8,AC   1010 1010    0xAA
  B       B0,B4,B8,BC   1010 1010    0xAA
  C       C0,C4,C8,CC   1010 1010    0xAA
  D       D0,D4,D8,DC   1010 1010    0xAA
  E       E0,E4,E8,EC   1010 1010    0xAA
  F       F0            1000 0000    0x80

7.6.7  TCP Connections (0x87) Control Vector

  The TCP Connections control vector indicates the support of an
  alternate number of TCP Connections for the Data Link Switching
  traffic.  The base implementation of Data Link Switching supports two
  TCP Connections, one for each direction of data traffic.

  This control vector is optional.  If it is omitted in a DLSw
  Capabilities Exchange, then two TCP Connections are assumed.  It is
  further assumed that if a Data Link  Switch can support one TCP
  Connection, it can support two TCP Connections.

  If TCP Connections CV values agree and the number of connections is
  one, then the  DLSw with the higher IP address must tear down the TCP
  connections on its local port 2065.

  The format of the TCP Connections Control Vector is shown below:

  Offset  Length  Value  Contents
  ------  ------  -----  --------
     0       1    0x03   Length of the TCP Connections structured
                         subfield

     1       1    0x87   key = 0x87  that identifies this as the
                         TCP Connections structured subfield



Wells & Bartky                                                 [Page 70]

RFC 1795                  Data Link Switching                 April 1995


     2       1           an indicator of the support for an
                         alternate number of TCP Connections by
                         the sending Data Link Switch.
                           0x01      the number of TCP Connections
                                     may be brought down to one
                                     after Capabilities Exchange
                                     is completed.
                           0x02      the number of TCP Connections
                                     will remain at two for
                                     the duration of the DLSw
                                     connection.

7.6.8  NetBIOS Name Exclusivity (0x88) Control Vector

  The NetBIOS Name Exclusivity control vector identifies how the
  NetBIOS Name List control vector data is to be interpreted.
  Specifically, this control vector identifies whether the NetBIOS
  Names in the NetBIOS Name List control vectors are the only ones
  accessible via the sending Data Link Switch.

  If a NetBIOS Name List control vector is specified and the NetBIOS
  Name Exclusivity control vector is missing, then the NetBIOS Names
  are not assumed to be the only  ones accessible via this switch.

  A node may specify that it supports no local NetBIOS names by
  including in its  capabilities the NetBIOS Name List Exclusivity CV
  (with byte 2 == 0x01), and not including any instances of the NetBIOS
  Name List CV.

  Offset  Length  Value  Contents
  ------  ------  -----  --------
     0       1    0x03   Length of the Exclusivity structured
                         subfield

     1       1    0x88   key = 0x88 that identifies this as the
                         NetBIOS Name Exclusivity structured
                         subfield

     2       1           an indicator of the relationship of the
                         NetBIOS Names to the sending Data Link
                         Switch.
                           0x00     the NetBIOS Names specified in
                                    this Capabilities Exchange
                                    can be accessed via this
                                    switch but are not the
                                    exclusive set (i.e., other
                                    entities are accessible in
                                    addition to the ones specified)



Wells & Bartky                                                 [Page 71]

RFC 1795                  Data Link Switching                 April 1995


                           0x01     the NetBIOS Names specified in
                                    this Capabilities Exchange
                                    are the only ones accessible
                                    via this switch.

7.6.9  MAC Address List (0x89) Control Vector

  The MAC Address List control vector identifies one or more MAC
  addresses that are accessible through the sending Data Link Switch.
  This control vector specifies a single MAC address value and MAC
  address mask value to identify the MAC address or range of MAC
  addresses.  MAC addresses and masks are in non-canonical (Token-Ring)
  format in this control vector.

  This control vector is optional and can be repeated if necessary.

  Note 1: If a particular MAC address, <mac-addr>, satisfies the
  following algorithm, then <mac-addr> is assumed to be accessible via
  the sending Data Link Switch:

  <mac-addr> & <mac-addr-mask> == <mac-addr-value>

  where:  <mac-addr-value> is the MAC Address
                           Value specified in
                           this control vector

          <mac-addr-mask>  is the MAC Address
                           Mask specified in
                           this control vector

  Note 2:  If an individual MAC Address is desired, then <mac-addr-
  value> should be the individual MAC address and <mac-addr-mask>
  should be 0xFFFFFFFFFFFF.

  Offset  Length  Value  Contents
  ------  ------  -----  --------
     0       1    0x0E   Length of the MAC Address List
                         structured subfield

     1       1    0x89   key = 0x89  that identifies this as the
                         MAC Address List structured subfield

    2-7      6           the 6-byte MAC Address Value,
                         <mac-addr-value> in the above formula

    8-13     6           the 6-byte MAC Address Mask,
                         <mac-addr-mask> in the above formula




Wells & Bartky                                                 [Page 72]

RFC 1795                  Data Link Switching                 April 1995


7.6.10  NetBIOS Name List (0x8A) Control Vector

  The NetBIOS Name List control vector identifies one or more NetBIOS
  names that are accessible through the sending Data Link Switch.  This
  control vector specifies a single NetBIOS name in ASCII.  However,
  the NetBIOS name can consist of "don't care" and "wildcard"
  characters to match on a number of NetBIOS names.  If an individual
  character position in the NetBIOS name in this control vector
  contains a '?', then the corresponding character position in real
  NetBIOS name is a "don't care".  If a NetBIOS name in this control
  vector ends in '*', then the remainder of real NetBIOS names is a
  "don't care".  '*' is only considered a wildcard if it appears at the
  end of a name.

  All blanks or nulls at the end of NetBIOS names in this control
  vector are ignored.   NetBIOS names which have fewer than 16 bytes
  and which do not end with  '*' are not assumed to have a trailing
  '*'; the "wildcard" character must be explicit.

  NetBIOS group names can exist across several LANs/networks.  As such,
  NetBIOS  group names received in a NetBIOS Name List Control Vector
  can not be treated the same as NetBIOS individual names.  The
  Individual/Group Flag allows Data  Link Switches to distinguish
  between the two.

  This control vector is optional and can be repeated if necessary.

  Offset  Length  Value  Contents
  ------  ------  -----  --------
     0       1    0xn    Length of the NetBIOS Name List
                         structured subfield (maximum = 0x13)

     1       1    0x8A   key = 0x8A  that identifies this as the
                         NetBIOS Name List structured subfield

     2       1           Individual/Group Flag
                           0x00 - Individual NetBIOS Name
                           0x01 - Group NetBIOS Name

    3-n     n-3          the NetBIOS name with possible embedded
                         '?' and terminating '*'.

7.6.11  Vendor Context (0x8B) Control Vector

  The Vendor Context control vector identifies the manufacturer's IEEE
  assigned Organizationally Unique Identifier (OUI) of the Data Link
  Switch sending the DLSw Capabilities Exchange.  The OUI is sent in
  non-canonical (Token-Ring) format.



Wells & Bartky                                                 [Page 73]

RFC 1795                  Data Link Switching                 April 1995


  This control vector is optional and is used to provide the context
  for any Vendor Specific control vectors that follow in the
  Capabilities Exchange.  If there are multiple instances of the Vendor
  Context control vector, the specified context remains in effect for
  all Vendor Specific control vectors until the next Vendor Context
  control vector is encountered.

     Offset  Length  Value  Contents
     ------  ------  -----  --------
        0       1    0x05   Length of the Vendor Context structured
                            subfield

        1       1    0x8B   key = 0x8B  that identifies this as the
                            Vendor Context structured subfield

       2-4      3           the 3-byte Organizationally Unique
                            Identifier (OUI) for the vendor
                            (non-canonical format)

7.7  Capabilities Exchange Responses

  There are two kinds of DLSw Capabilities Exchange Responses: positive
  and negative.  A positive response is returned to the sending Data
  Link Switch if there were no errors encountered in the DLSw
  Capabilities Exchange Request.  A negative response is returned if
  there is at least one error encountered.

  A positive DLSw Capabilities Exchange Response has the following
  overall format:

  +----+----+
  | LL | ID |
  +----+----+

  0-1    Length, in binary, of the DLSw Capabilities
         Exchange Response GDS Variable.  The value of
         LL in this case is 0x0004.

  2-3    GDS Id: 0x1521

  A negative DLSw Capabilities Exchange Response has the following
  overall format:

  +----+----+--------+--------+
  | LL | ID | Offset | Reason |
  +----+----+--------+--------+





Wells & Bartky                                                 [Page 74]

RFC 1795                  Data Link Switching                 April 1995


  0-1    Length, in binary, of the DLSw Capabilities Exchange
         Response GDS Variable.  The value of LL is the sum of
         the length of all fields in the GDS Variable (i.e.,
         length of LL + length of ID + length of Offsets/Reasons).

  2-3    GDS Id: 0x1522

  4-5    Offset into the DLSw Capabilities Exchange Request of the
         error.  Offset should always point to the start of the
         GDS Variable or a specific control vector.

  6-7    Reason code that uniquely identifies the error.  Specific
         values for the reason code are:

           0x0001        invalid GDS length for a DLSw Capabilities
                         Exchange Request.  (The value of Offset
                         is ignored.)

           0x0002        invalid GDS id for a DLSw Capabilities
                         Exchange Request.  (The value of Offset
                         is ignored.)

           0x0003        Vendor Id control vector is missing.  (The
                         value of Offset is ignored.)

           0x0004        DLSw Version control vector is missing. (The
                         value of Offset is ignored.)

           0x0005        Initial Pacing Window control vector is
                         missing.  (The value of Offset is ignored.)

           0x0006        length of control vectors doesn't correlate
                         to the length of the GDS variable

           0x0007        invalid control vector id

           0x0008        length of control vector invalid

           0x0009        invalid control vector data value

           0x000A        duplicate control vector (for non-repeating
                         control vectors)

           0x000B        out-of-sequence control vector (for
                         repeating control vector)

           0x000C        DLSw Supported SAP List control vector is
                         missing.



Wells & Bartky                                                 [Page 75]

RFC 1795                  Data Link Switching                 April 1995


                         (The value of Offset is ignored.)

  Note:  Multiple Offset, Reason pairs can be returned with one pair
  for each error encountered.

8.  Pacing/Flow Control

  This section describes the required Pacing and Flow Control
  mechanisms used by a Data Link Switch.

  While it is beyond the scope of this document to specify a policy for
  how an implementation maps SSP flow control to the native data link
  flow control at the edges, the following paragraphs describe a
  general philosophical overview of how the mechanism is to be applied.

  There are two types of flows which are covered by the flow control
  mechanism: connection-oriented and connectionless.  In the first,
  connection-oriented flows, the implementer is to map the native flow
  control mechanism of the two data links at the boundaries to the SSP
  flow control mechanism thus presenting an end-to-end flow control
  mechanism which "pushes back" all the way to the originating station
  in either direction.

  However, in the case of connectionless traffic, this is not possible
  at the data link level because there is no native flow control
  mechanism for connectionless data links.  At first glance it is
  tempting to allow connectionless traffic to flow the DLSw cloud
  unthrottled.  However, the rationale for subjecting these flows to
  flow control within the DLSw cloud is to "push" the discarding of
  frames (should this become necessary) back to the ingress of the DLSw
  cloud.  This "early discarding" of excessive DATAGRAMs should allow
  the cloud to remain deterministic without wasting network bandwidth.

8.1  Basic Overview

  Each circuit consists of two data flows, one in each direction.  Each
  data flow has its own independent flow control mechanism.  For each
  data flow there is an entity that originates traffic, referred to as
  the sender, and a target entity which receives the traffic, referred
  to as the receiver.

  A sender may only send data when its receiver has granted explicit
  permission to send a discrete number of data units.  Data units are
  defined as either a DGRMFRAME or an INFOFRAME.

  The receiver grants permission to send data units by sending a Flow
  Control Indicator (FCIND- defined later).  The sender must
  acknowledge all FCINDs by sending a Flow Control Acknowledgment



Wells & Bartky                                                 [Page 76]

RFC 1795                  Data Link Switching                 April 1995


  (FCACK- defined later).

  A sending implementation must maintain these values:

  1. GrantedUnits - The number of units (frames) which the sender
     currently has permission to send.

  2. CurrentWindow - This is a discrete number of units, controlled by
     the receiver, which is basis for granting additional units.

  3. InitialWindowSize - Global for all circuits on a transport
     connection.  Learned in capabilities exchange when the transport
     connection is established.  It specifies an initial value for
     CurrentWindow when each circuit is established.

  A receiving implementation must maintain these values:

  1. CurrentWindow - This is a discrete number of units, controlled by
     the receiver, which is basis for granting additional units.

  2. InitialWindowSize - Global for all circuits on a transport
     connection.  Sent in capabilities exchange when the transport
     connection is established.  It specifies an initial value for
     CurrentWindow when each circuit is established.

  3. FCACKOwed - The sender owes an FCACK.  If true, no FCIND may be
     sent.

8.2  Frame Format

  The Flow control Byte is contained at offset 15 in both the
  Information and Control SSP messages.  From a flow control
  perspective, the flow control information in the two frames are
  handled identically.

  The following diagram describes the format of the Flow Control Byte
  (Bit 7 is the most significant and Bit 0 is the Least significant bit
  of the octet):

     bit   7   6   5   4   3   2   1   0
         +---+---+---+---+---+---+---+---+
         |FCI|FCA| reserved  |    FCO    |
         +---+---+---+---+---+---+---+---+

     FCI : Flow Control Indicator
     FCA : Flow Control Ack
     FCO : Flow Control Operator Bits




Wells & Bartky                                                 [Page 77]

RFC 1795                  Data Link Switching                 April 1995


           000 - Repeat Window Operator
           001 - Increment Window Operator
           010 - Decrement Window Operator
           011 - Reset Window Operator
           100 - Halve Window Operator
           101 - Reserved
           110 - Reserved
           111 - Reserved

  A frame with the FCI bit set is referred to as a Flow Control
  Indication (FCIND).  An FCIND is used to manage the flow in the
  opposite direction of the frame which bears it.

  A frame with the FCA bit set is referred to as a Flow Control
  Acknowledgment (FCACK).  An FCACK is used to manage the flow in the
  same direction of the frame which bears it.

  NOTE:  A frame may be both a FCIND and an FCACK.

  A frame bearing an FCIND or FCACK may also contain data for the flow
  in the direction it is traveling.  In such a frame, the FCIND or
  FCACK are said to be piggy-backed.  A non-piggy-backed FCIND is
  called an Independent Flow Control Indication (IFCIND) and a non-
  piggy-backed FCACK is called an Independent Flow Control
  Acknowledgment (IFCACK). IFCIND and IFCACK messages are sent in a
  Independent Flow Control SSP message (type 0x21).

  NOTE:  A frame may be both an IFCIND and an IFCACK.

  It is desirable to carry information in control messages so as to
  reduce the need to send a flow control only message.  The diagram
  below shows the messages that may carry valid flow control
  information:

======                            ___                           ======
|    |        ---------        __/   \__       ---------        |    |
|    |      __|  _|_  |__     /   IP    \    __|  _|_  |__      |    |
======        |   |   |      <  Network  >     |   |   |        ======
/______\       ---------       \__     __/      ---------       /______\
Origin       Origin DLSw         \___/        Target DLSw      Target
Station        partner                          partner        Station

  May have valid
   FCI/FCA/FCO    Data carrying

        N             N          CANUREACH_cs
                                 ----------->
        Y*            N            ICANREACH_cs



Wells & Bartky                                                 [Page 78]

RFC 1795                  Data Link Switching                 April 1995


                                   <-----------
        Y             N          REACH_ACK
                                 ----------->
        Y             Y            XIDFRAMEs
                                 <------------>
        Y             Y            DGRMFRAMEs
                                 <------------>
        Y             N          CONTACT
                                 ----------->
        Y             N               CONTACTED
                                   <-----------
        Y             Y             INFOFRAMEs
                                 <------------>
        Y             N          RESTART_DL
                                 ----------->
        Y             N               DL_RESTARTED
                                   <-----------
        Y             N          CONTACT
                                 ----------->
        Y             N               CONTACTED
                                   <-----------
        N             N          HALT_DL
                                 ----------->
        N             N               DL_HALTED
                                   <-----------

  *Note: ICANREACH_cs cannot carry FCA, as there could not be an
  outstanding FCI.

8.3  Granting Permission to Send Data

  A receiver grants a sender permission to send units of data by
  sending FCIND.  Each FCIND is further qualified by a flow control
  operator, which is encoded in the FCO bits of the FCIND header. With
  one exception (the Reset Window operator) all operators may be either
  piggy-backed or carried in a IFCIND.

  The five flow control operators are outlined below:

8.3.1  Repeat Window Operator

  This operator is processed as follows:

          (CurrentWindow unchanged)
          GrantedUnits += CurrentWindow






Wells & Bartky                                                 [Page 79]

RFC 1795                  Data Link Switching                 April 1995


8.3.2  Increment Window Operator

  This operator is processed as follows:

          CurrentWindow++
          GrantedUnits += CurrentWindow

8.3.3  Decrement Window Operator

  This operator is processed as follows:

          CurrentWindow--
          GrantedUnits += CurrentWindow

  NOTE:  This operator may only be sent if CurrentWindow is greater
  than one.

8.3.4  Reset Window Operator

  This operator is processed as follows:

          CurrentWindow = 0;
          GrantedUnits  = 0;

  NOTE:  This operator may only flow on an independent pacing
  indication (may NOT be piggy-backed).

  NOTE:  After sending this operator, the only legal subsequent
  operator is Increment Window.

8.3.5  Halve Window Operator

  This operator shall be processed as follows:

          IF CurrentWindow > 1 THEN
              CurrentWindow = CurrentWindow / 2
          ENDIF
          GrantedUnits += CurrentWindow

  Note:  The divide by two operation is an unsigned integer divide
  (round down) or bit shift right operation.

8.4  Acknowledging a Flow Control Operator

  Each sender must acknowledge each FCIND with an FCACK which is
  piggy-backed on the next frame in the opposite direction in all cases
  except the Reset Window Operator.




Wells & Bartky                                                 [Page 80]

RFC 1795                  Data Link Switching                 April 1995


  The receiver may have no more than one unacknowledged FCIND
  outstanding at any time with one exception:  A Reset Window Operator
  may be sent while another FCIND is pending acknowledgment.

  NOTE: The FCI and FCO bits of the FCACK are used independently by the
  flow in the opposite direction

8.4.1  Acknowledging a Reset Window Operator

  Since this operator revokes all previously granted units, the sender
  must acknowledge this FCIND using an IFCACK (Independent Flow Control
  Acknowledgment).  This is the only case where IFCACK is used.

  Should a sender receive a non-reset FCIND followed by a Reset Window
  FCIND before acknowledging the first, it only acknowledges the Reset
  Window.

  NOTE: The FCI and FCO bits on these frames are used independently by
  the flow in the opposite direction.

8.5  Capabilities Exchange Initial Window Size

  When two nodes establish a transport connection, they engage in a
  capabilities exchange (this is a requirement).  Refer to the
  Capabilities Exchange section 7 for further details.  The two nodes
  are required to exchange the following parameter:

  InitialWindowSize -  This indicates to the partner what
                       the sending flow entity initializes
                       its CurrentWindow value to for each
                       multiplexed circuit subsequently
                       established on that transport
                       connection.  This value must be
                       non-zero.

8.6  Circuit Startup

  Process as follows:

         CurrentWindow = InitialWindowSize
         GrantedUnits  = 0

  NOTE: The InitialWindow Size variable has a scope of one per DLSw
  transport connection, while CurrentWindow and Granted units are
  maintained on a per circuit basis.  At circuit startup, a sender may
  not send data units until the receiver grants explicit permission
  with an FCIND message.  This grant may be an independent FCIND
  message or the FCIND may be piggy-backed on any of the message types



Wells & Bartky                                                 [Page 81]

RFC 1795                  Data Link Switching                 April 1995


  listed in section 8.2.

8.7  Example Receiving Implementations

  The following two examples illustrate receiving implementations of
  varying degrees of complexity.  These are not meant to be complete
  implementations but rather serve to illustrate the protocol.

  NOTE: The examples are independent of the buffering model ( buffers
  may be deterministicly or statistically committed)

  NOTE: The examples assume a process model where each event processes
  to completion without being preempted by another event.

8.7.1  Fixed Pacing Example

  Consider the following variables, in addition to InitialWindowSize
  and CurrentWindow and FCACKOwed:

         GrantDelayed     - Boolean
         GrantedUnits     - Outstanding Units

  The following section describes how various events are processed in
  this example implementation:

8.7.1.1  Circuit Startup

         CurrentWindow    = InitialWindowSize
         FCACKOwed        = FALSE
         GrantDelayed     = FALSE
         GrantedUnits     = 0
         Repeat Window Operator

8.7.1.2  Check Buffers Available

  Can my implementation afford to grant CurrentWindow just now?

8.7.1.3  Buffers Become Available

         IF Check Buffers Available THEN
            Send FCIND( Repeat Window)
            GrantDelayed = FALSE
         ELSE
            Wait on buffers to become available (LIFO)
         ENDIF






Wells & Bartky                                                 [Page 82]

RFC 1795                  Data Link Switching                 April 1995


8.7.1.4  Repeat Window Operator

         IF Check Buffers Available THEN
             Send FCIND( Repeat Window)
         ELSE
            GrantDelayed = TRUE
            Wait on buffers to become available (FIFO)
         ENDIF

8.7.1.5  Send FCIND( operator)

         GrantedUnits += CurrentWindow
         FCACKOwed     = TRUE
         Encode and Transmit FCIND piggybacked or as IFCIND

8.7.1.6  A Frame Arrives from Sender

         GrantedUnits--;
         IF frame is FCACK THEN
            IF FCACKOwed THEN
               FCACKOwed = FALSE
            ELSE
               Protocol Violation
            ENDIF
         ENDIF
         IF NOT GrantDelayed THEN
            IF GrantedUnits <= CurrentWindow THEN
                IF FCACKOwed THEN
                  Protocol Violation
                ELSE
                  Repeat Window Operator
                ENDIF
            ENDIF
         ENDIF

8.7.2  Adaptive Pacing Example

  The following example illustrates a receiving implementation that
  adjusts the window size and granted units based on buffer
  availability and transport utilization.

  NOTE: This example ignores other factors which might compel the
  receiving implementation to adjust the window size (i.e., Outbound
  queue length, traffic priority, ...)

  Consider the following variables, in addition to InitialWindowSize,
  CurrentWindow and FCACKOwed:




Wells & Bartky                                                 [Page 83]

RFC 1795                  Data Link Switching                 April 1995


         GrantDelayed     - Boolean
         GrantedUnits     - Outstanding Units

8.7.2.1  Circuit Startup

         CurrentWindow    = InitialWindowSize
         FCACK            = FALSE
         GrantDelayed     = FALSE
         GrantedUnits     = 0
         Repeat Window Operator

8.7.2.2  Check Buffers Available ( X)

          Can my implementation afford to grant X units just now?

8.7.2.3  Buffers Become Available

         IF Check Buffers Available THEN
            CurrentWindow--;
            Send FCIND( Decrement Window)
            GrantDelayed = FALSE
         ELSE
            Wait on buffers to become available (LIFO)
         ENDIF

8.7.2.4  Repeat Window Operator

         IF Check Buffers Available (CurrentWindow) THEN
             Send FCIND( Repeat Window)
         ELSE
            GrantDelayed = TRUE
            Wait on buffers to become available (FIFO)
         ENDIF

8.7.2.5  Increment Window Operator

         IF Check Buffers Available ( CurrentWindow + 1) THEN
             CurrentWindow++
             Send FCIND( Increment Window)
         ELSE
             Repeat Window Operator
         ENDIF

8.7.2.6  Send FCIND( operator)

         FCACKOwed     = TRUE
         GrantedUnits += CurrentWindow
         Encode and Transmit FCIND piggybacked or as IFCIND



Wells & Bartky                                                 [Page 84]

RFC 1795                  Data Link Switching                 April 1995


8.7.2.7  An FCACK Arrives from Sender

         GrantedUnits--;
         IF NOT FCACKOwed THEN
            Protocol Violation
         ENDIF
         FCACKOwed = FALSE;
         IF NOT GrantDelayed THEN
            IF GrantedUnits < CurrentWindow THEN
                Increment Window Operator
            ELSE IF GrantedUnits == CurrentWindow THEN
                Repeat Window Operator
            END
         ENDIF

8.7.2.8  A Non-FCACK Frame Arrives from Sender

         GrantedUnits--;
         IF NOT GrantDelayed THEN
            IF FCACKOwed THEN
               IF GrantedUnits < CurrentWindow THEN
                  Protocol Violation
               END
            ELSE
               IF GrantedUnits <= CurrentWindow THEN
                  Repeat Window Operator
               ENDIF
            ENDIF
         ENDIF






















Wells & Bartky                                                 [Page 85]

RFC 1795                  Data Link Switching                 April 1995


8.8  Adaptive Pacing Example Flow Diagrams

8.8.1  Example Flows from the Above Implementation

  The following diagram illustrates the use of adaptive pacing (use of
  Halve Window, and Reset operation are shown in subsequent diagrams).

  -----SENDER-----                     ----RECEIVER----
  Granted   Window                     Window   Granted
    0         2   circuit established    2         0
    2         2   <-------- FCIND(Rpt)   2         2
    1         2   FCACK-------------->   2         1
    4         3   <-------- FCIND(Inc)   3         4
    3         3   FCACK-------------->   3         3
                         +- FCIND(Rpt)   3         6
    2         3   DATA---|----------->   3         5
    1         3   DATA---|----------->   3         4
    4         3   <------+
    3         3   FCACK-------------->   3         3
    6         3   <-------- FCIND(Rpt)   3         6
    5         3   FCACK-------------->   3         5
    4         3   DATA--------------->   3         4
    3         3   DATA--------------->   3         3
                         +- FCIND(Rpt)   3         6
    2         3   DATA---|----------->   3         5
    1         3   DATA---|----------->   3         4
    0         3   DATA---|----------->   3         3
    3         3   <------+
    2         3   FCACK-------------->   3         2
    6         4   <-------- FCIND(Inc)   4         6
    5         4   FCACK-------------->   4         5
    4         4   DATA--------------->   4         4
                                       Waiting on Buffer
                         +- FCIND(Dec)   3         7
    3         4   DATA---|----------->   3         6
    2         4   DATA---|----------->   3         5
    1         4   DATA---|----------->   3         4
    0         4   DATA---|----------->   3         3
    3         3   <------+
    2         3   FCACK-------------->   3         2
                                       Waiting on Buffer
                         +- FCIND(Dec)   2         4
    1         3   DATA---|----------->   2         3
    0         3   DATA---|----------->   2         2
    2         2   <------+
    1         2   FCACK-------------->   2         1
    4         3   <-------- FCIND(Inc)   3         4
    3         3   FCACK-------------->   3         3



Wells & Bartky                                                 [Page 86]

RFC 1795                  Data Link Switching                 April 1995


    6         3   <-------- FCIND(Rpt)   3         6
    5         3   FCACK-------------->   3         5
    4         3   DATA--------------->   3         4
    3         3   DATA--------------->   3         3
    6         3   <-------- FCIND(Rpt)   3         6

8.8.2  Example Halve Window Flow

  The following flow illustrates the use of the Halve Window Operator:

     -----SENDER-----                     ----RECEIVER----
     Granted   Window                     Window   Granted
       0         2   circuit established    2         0
       2         2   <-------- FCIND(Rpt)   2         2
       1         2   FCACK-------------->   2         1
       4         3   <-------- FCIND(Inc)   3         4
       3         3   FCACK-------------->   3         3
                                            Resource Shortage
       2         3   DATA--------------->   1         2
       1         3   DATA--------------->   1         1
       0         3   DATA--------------->   1         0
       1         1   <-------- FCIND(Hlv)   1         1
       0         1   FCACK-------------->   1         0

  NOTE: The Halve Window Operator could have been sent before the
  granted units fell to zero.  The implementer may make a choice based
  on the severity of the condition.

8.8.3  Example Reset Window Flows

  The following flow diagram illustrates the ResetWindow operation if
  the receiver has no FCIND outstanding.

  -----SENDER-----                     ----RECEIVER----
  Granted   Window                     Window   Granted
    0         2   circuit established    2         0
    2         2   <-------- FCIND(Rpt)   2         2
    1         2   FCACK-------------->   2         1
    4         3   <-------- FCIND(Inc)   3         4
    3         3   FCACK-------------->   3         3
                         +- FCIND(Rpt)   3         6
    2         3   DATA---|----------->   3         5
    1         3   DATA---|----------->   3         4
    4         3   <------+
    3         3   FCACK-------------->   3         3
    6         3   <-------- FCIND(Rpt)   3         6
    5         3   FCACK-------------->   3         5
                                         Resource shortage!



Wells & Bartky                                                 [Page 87]

RFC 1795                  Data Link Switching                 April 1995


    0         0   <-------- FCIND(Rst)   0         5 (note still
  committed)
    0         0   IFCACK------------->   0         0
                                         Condition eases
    1         1   <-------- FCIND(Inc)   1         1
    0         1   FCACK-------------->   1         0
    2         2   <-------- FCIND(Inc)   2         2
    1         2   FCACK-------------->   3         4

  The next two flows  illustrate the Reset Window operation if the
  receiver has an outstanding FCIND.

  -----SENDER-----                     ----RECEIVER----
  Granted   Window                     Window   Granted
    0         2   circuit established    2         0
    2         2   <-------- FCIND(Rpt)   2         2
    1         2   FCACK-------------->   2         1
    4         3   <-------- FCIND(Inc)   3         4
    3         3   FCACK-------------->   3         3
                         +- FCIND(Rpt)   3         6
    2         3   DATA---|----------->   3         5
                         |               Resource shortage!
                         |+-FCIND(Rst)   0         5
    1         3   DATA---||---------->   0         4
    4         3   <------+|
    3         3   FCACK---+---------->   0         3 (Not IFCACK!)
    2         3   DATA----|---------->   0         2
    0         0   <-------+
    0         0   IFCACK------------->   0         0
                                         Condition eases
    1         1   <-------- FCIND(Inc)   1         1
    0         1   FCACK-------------->   1         0
    2         2   <-------- FCIND(Inc)   2         2
    1         2   FCACK-------------->   3         4

  -----SENDER-----                     ----RECEIVER----
  Granted   Window                     Window   Granted
    0         2   circuit established    2         0
    2         2   <-------- FCIND(Rpt)   2         2
    1         2   FCACK-------------->   2         1
    4         3   <-------- FCIND(Inc)   3         4
    3         3   FCACK-------------->   3         3
                         +- FCIND(Rpt)   3         6
    2         3   DATA---|----------->   3         5
                         |               Resource shortage!
                         |+-FCIND(Rst)   0         5
    1         3   DATA---||---------->   0         4
    4         3   <------+|



Wells & Bartky                                                 [Page 88]

RFC 1795                  Data Link Switching                 April 1995


    0         0   <-------+
    0         0   IFCACK------------->   0         0
                                         Condition eases
    1         1   <-------- FCIND(Inc)   1         1
    0         1   FCACK-------------->   1         0
    2         2   <-------- FCIND(Inc)   2         2
    1         2   FCACK-------------->   3         4

8.9  Other Considerations

8.9.1  Protocol Violations

  The following events are considered protocol violations:

  1. Sender exceeds granted units or does not acknowledge FCIND on
     first frame after its receipt (the receiver can not discern the
     difference between the two).

  2. Receiver does not follow a Reset Window Operator with an Increment
     Window Operator.

  3. Receiver has two unacknowledged FCINDs ( other than Reset Window)
     outstanding.

  4. Receiver sends Decrement Window Operator with a window size of one.

  5. Receiver attempts to increment the window size beyond 0xFFFF.

  Actions taken in response to protocol violations are left to the
  implementation of the node which discovers the violation.  If an
  implementation chooses to take down the circuit on which the
  violation occurred, HALT_DL is the appropriate action.

Acknowledgments

  Original RFC 1434 Authors:

     Roy C. Dixon, IBM
     David M. Kushi, IBM

  Chair of APPN Implementers Workshop Data Link Switching Related
  Interest Group:

     Louise Herndon Wells, Internetworking Technology Institute







Wells & Bartky                                                 [Page 89]

RFC 1795                  Data Link Switching                 April 1995


  Working Group Chairs (and significant contributors to this document):

     Connect/Disconnect (State Machines): Steve Klein, IBM
     Capabilities Exchange: Wayne Clark, Cisco Systems
     Flow Control (Adaptive Pacing): Shannon Nix, Metaplex
     Priority/Class of Service: Gene Cox, IBM

  Other significant contributors:

     Peter Gayek, IBM
     Paul Brittain, Data Connection Limited

References

  1) ISO 8802-2/IEEE Std 802.2 International Standard, Information
     Processing Systems, Local Area Networks, Part 2: Logical Link
     Control, December 31, 1989.

  2) IBM LAN Technical Reference IEEE 802.2 and NETBIOS Application
     Program Interfaces SC30-3587-00, December 1993.

  3) ISO/IEC DIS 10038 DAM 2, MAC Bridging, Source Routing Supplement,
     December 1991.

  4) ISO 8802-2/IEEE Std 802.1D International Standard, Information
     Processing Systems, Local Area Networks, Part 2: MAC layer
     Bridging.
























Wells & Bartky                                                 [Page 90]

RFC 1795                  Data Link Switching                 April 1995


Security Considerations

  Security issues are not discussed in this memo.

Chair's Address

  Louise Wells
  Internetwork Technology Institute
  2021 Stratford Dr.
  Milpitas, CA  95035

  EMail: [email protected]

Editor's Address

  Alan K. Bartky
  Manager of Technology
  Sync Research Inc.
  7 Studebaker
  Irvine, CA 91728-2013

  Phone: 1-714-588-2070
  EMail: [email protected]


  Note: Any questions or comments relative to the contents of this RFC
  should be sent to the following Internet address:
  [email protected].

  This address will be used to coordinate the handling of responses.

  NOTE 1:  This is a widely subscribed mailing list and messages sent to
           this address will be sent to all members of the DLSw mailing
           list.  For specific questions relating to subscribing to the
           AIW and any of it's working groups send email to:
           [email protected]

           Information regarding all of the AIW working groups and the
           work they are producing can be obtained by copying, via
           anonymous ftp, the file aiwinfo.psbin or aiwinfo.txt from the
           Internet host networking.raleigh.ibm.com, located in
           directory aiw.

  NOTE 2: These mailing lists and addresses are subject to change.







Wells & Bartky                                                 [Page 91]