Network Working Group                                      Abhay Bhushan
Request for Comments: 171                                            MIT
NIC 6793                                                      Bob Braden
Categories: D.4, D.5, and D.7                                       UCLA
Updates: 114                                               Will Crowther
Obsolete: None                                             Alex McKenzie
                                                                    BBN
                                                           Eric Harslem
                                                           John Heafner
                                                                   Rand
                                                            John Melvin
                                                            Dick Watson
                                                                    SRI
                                                           Bob Sundberg
                                                                HARVARD
                                                              Jim White
                                                                   UCSB
                                                           23 June 1971

                      THE DATA TRANSFER PROTOCOL

I. INTRODUCTION

  A common protocol is desirable for data transfer in such diverse
  applications as remote job entry, file transfer, network mail system,
  graphics, remote program execution, and communication with block data
  terminals (such as printers, card, paper tape, and magnetic tape
  equipment, especially in context of terminal IMPs).  Although it
  would be possible to include some or even all of the above
  applications in an all-inclusive file transfer protocol, a separation
  between data transfer and application functions would provide
  flexibility in implementation, and reduce complexity.  Separating the
  data transfer function would also reduce proliferation of programs
  and protocols.

  We have therefore defined a low-level data transfer protocol (DTP) to
  be used for transfer of data in file transfer, remote job entry, and
  other applications protocols.  This paper concerns itself solely with
  the data transfer protocol.  A companion paper (RFC 172) describes
  file transfer protocol.

II. DISCUSSION

  The data transfer protocol (DTP) serves three basic functions.  It
  provides for convenient separation of NCP messages into "logical"
  blocks (transactions, units, records, groups, and files), it allows
  for the separation of data and control information, and it includes
  some error control mechanisms.



Bhushan, et al.                                                 [Page 1]

RFC 171                THE DATA TRANSFER PROTOCOL              June 1971


  Three modes of separating messages into transactions [1] are allowed
  by DTP.  The first is an indefinite bit stream which terminates only
  when the connection is closed (i.e., the bit stream represents a
  single transaction for duration of connection).  This mode would be
  useful in data transfer between hosts and terminal IMPs (TIPs).

  The second mode utilizes a "transparent" block convention, similar to
  the ASCII DLE (Data Link Escape).  In "transparent" mode,
  transactions (which may be arbitrarily long) end whenever the
  character sequence DLE ETX is encountered (DLE and ETX are 8-bit
  character codes).  To prevent the possibility of a DLE ETX sequence
  occurring within data stream, any occurrence of DLE is replaced by
  DLE DLE on transmission.  The extra DLE is stripped on reception.  A
  departure from the ASCII convention is that "transparent" block does
  not begin with DLE STX, but with a transaction type byte.  This mode
  will be useful in data transfer between terminal IMPs.

  The third mode utilizes a count mechanism.  Each transaction begins
  with a fixed-length descriptor field containing separate binary
  counts of information bits and filler bits.  If a transaction has no
  filler bits, its filler count is zero.  This mode will be useful in
  most host-to-host data transfer applications.

  DTP allows for the above modes to be intermixed over the same
  connection (i.e., mode is not associated with connection, but only
  with transaction).  The above transfer modes can represent transfer
  of either data or control information.  The protocol allows for
  separating data or control information at a lower level, by providing
  different "type" codes (see SPECIFICATIONS) for data and control
  transactions.  This provision may simplify some implementations.

  The implementation of a workable [2] subset of the above modes is
  specifically permitted by DTP.  To provide compatibility between
  hosts using different subsets of transfer modes, an initial
  "handshake" procedure is required by DTP.  The handshake involves
  exchanging information on modes available for transmit and receive.
  This will enable host programs to agree on transfer modes acceptable
  for a connection.

  The manner in which DTP is used would depend largely on the
  applications protocol.  It is the applications protocol which defines
  the workable subset of transfer modes.  For example, the file
  transfer protocol will not work just with the indefinite bit stream
  modes.  At least, for control information one of the other two modes
  is required.  Again, the use of information separator and abort
  functions provided in DTP (see SPECIFICATIONS) is defined by the
  applications protocol.  For example, in a remote job entry protocol,
  aborts may be used to stop the execution of a job while they may not



Bhushan, et al.                                                 [Page 2]

RFC 171                THE DATA TRANSFER PROTOCOL              June 1971


  cause any action in another applications protocol.

  It should also be noted that DTP does not define a data transfer
  service.  There is no standard server socket, or initial connection
  protocol defined for DTP.  What DTP defines is a mechanism for data
  transfer which can be used to provide services for block data
  transfers, file transfers, remote job entry, network mail and
  numerous other applications.

  There are to be no restrictions on the manner in which DTP is
  implemented at various sites.  For example, DTP may be imbedded in an
  applications program such as for file transfer, or it may be a
  separate service program or subroutine used by several applications
  programs.  Another implementation may employ macros or UUO's (user
  unimplemented operations on PDP-10's), to achieve the functions
  specified in DTP.  It is also possible that in implementation, the
  separation between the DTP and applications protocols be only at a
  conceptual level.

III. SPECIFICATIONS

  1.  Byte Size for Network Connection

      The standard byte size for network connections using DTP is 8-
      bit.  However, other byte sizes specified by higher-level
      applications protocols or applications programs are also allowed
      by DTP.  For the purpose of this document bytes are assumed to be
      8-bits, unless otherwise stated.

2.  Transactions

      At DTP level, all information transmitted over connection is a
      sequence of transactions.  DTP defines the rules for delimiting
      transactions. [3]

2A. Types

      The first byte of each transaction shall define a transaction
      type, as shown below.  (Note that code assignments do not
      conflict with assignments in TELNET protocol.)  The transaction
      types may be referred by the hexadecimal code assigned to them.
      The transactions types are discussed in more detail in section
      2B.








Bhushan, et al.                                                 [Page 3]

RFC 171                THE DATA TRANSFER PROTOCOL              June 1971


          Code                 Transaction Type
     Hex       Octal

     B0         260        Indefinite bit stream -- data.
     B1         261        Transparent (DLE) block--data.
     B2         262        Descriptor and counts--data.
     B3         263        Modes available (handshake).
     B4         264        Information separators (endcode).
     B5         265        Error codes.
     B6         266        Abort.
     B7         267        No operation (NoOp).
     B8         270        Indefinite bit stream--control.
     B9         271        Transparent (DLE) block--control.
     BA         272        Descriptor and counts--control.
     BB         273        (unassigned but reserved for data transfer)
     BC         274                  "         "         "
     BD         275                  "         "         "
     BE         276                  "         "         "
     BF         277                  "         "         "

  2B.  Syntax and Semantics

  2B.1  Type B0 and B8 (indefinite bitstream modes) transactions
        terminate only when the NCP connection is "closed".  There is
        no other escape convention defined in DTP at this level.  It
        should be noted, that closing connection in bitstream mode
        represents an implicit file separator (see section 2B.5).

  2B.2  Type B1 and B0 (transparent block modes) transactions terminate
        when the byte sequence DLE ETX is encountered.  The sender
        shall replace any occurrence of DLE in data stream by the
        sequence DLE DLE.  The receiver shall strip the extra DLE.  The
        transaction is assumed to by byte-oriented.  The code for DLE
        is Hex '90' or Octal '220' (this is different from the ASCII
        DLE which is Hex '10' or Octal '020).  ETX is Hex '03' or Octal
        '03' (the same as ASCII ETX) [4].

  2B.3  Type B2 and BA (descriptor and counts modes) transactions have
        three fields, a 9-byte (72-bits) descriptor field [5] and
        variable length (including zero) info and filler fields, as
        shown below.  The total length of a transaction is
        (72+info+filler) bits.









Bhushan, et al.                                                 [Page 4]

RFC 171                THE DATA TRANSFER PROTOCOL              June 1971


|<B2 or BA><Info count><NUL><Seq #><NUL><filler count>|<info><filler> |

|  3-bits    24-bits 8-bits 16-bits 8-bits  8-bits    |Variable length|

|<----- 72-bit descriptor field --------------------->|info and filler|

        Info count is a binary count of number of bits in info field,
        not including descriptor or filler bits.  Number of info bits
        is limited to (2**24 - 1), as there are 24 bits in info count
        field.

        Sequence # is a sequential count in round-robin manner of B2
        and BA type transaction.  The inclusion of sequence numbers
        would help in debugging and error control, as sequence numbers
        may be used to check for missing transactions, and aid in
        locating errors.  Hosts not wishing to implement this mechanism
        should have all 1's in the field.  The count shall start from
        zero and continue sequentially to all 1's, after which it is
        reset to all zeros.  The permitted sequence numbers are one
        greater than the previous, and all 1's.

        Filler count is a binary count of bits used as fillers (i.e.,
        not information) after the end of meaningful data.  Number of
        filler bits is limited to 255, as there are 8 bits in filler
        count field.

        The NUL bytes contain all 0's.

  2B.4  Type B3 (modes available) transactions have a fixed length of 3
        bytes, as shown below.  First byte defines transaction type as
        B3, second byte defines modes available for send, and third
        byte defines modes available for receive.

        +------------------+---------------------+---------------------+
        |    Type          |     I send          |     I receive       |
        |                  | | |  |  |  |  |  |  | | |  |  |  |  |  |  |
        |     B3           |0|0|BA|B2|B9|B1|B8|B0|0|0|BA|B2|B9|B1|B8|B0|
        +------------------+---------------------+---------------------+

        The modes are indicated by bit-coding, as shown above.  The
        particular bit or bits, if set to logical "1", indicate that
        mode to be available.  The 2 most significant bits should be
        set to logical "0".  The use of type B3 transactions is
        discussed in section 3B.

  2B.5  Type B4 (information separator) transactions have fixed length
        of 2 bytes, as shown below.  First byte defines transaction
        type as B4, and second byte defines the separator.



Bhushan, et al.                                                 [Page 5]

RFC 171                THE DATA TRANSFER PROTOCOL              June 1971


        +------------------+------------------+
        |    Type          |     End Code     |
        |                  |            | |R| |
        |                  |            |G|E| |
        |     B4           |           F|R|C|U|
        |                  |           I|O|O|N|
        |                  |           L|U|R|I|
        |                  |           E|P|D|T|
        +------------------+------------------+

        The following separator codes are assigned:

                   Code                    Meaning
           Hex             Octal

           01              001             Unit separator
           03              003             Record separator
           07              007             Group separator
           0F              017             File separator

        Files, groups, records, and units may be data blocks that a
        user defines to be so.  The only restriction is that of the
        hierarchical relationship  File>Groups>Records>Units  (where
        '>' means 'contains').  Thus a file separator marks not only
        the end of file, but also the end of group, record, and unit.
        These separators may provide a convenient "logical" separation
        of data at the data transfer level.  Their use is governed by
        the applications protocol.

  2B.6  Type B5 (error codes) transactions have a fixed length of 3
        bytes, as shown below.  First byte defines transaction type as
        B5, second byte indicates an error code, and third byte may
        indicate the sequence number on which error occurred.

        +------------------+-------------------+-----------------+
        |    Type          |     Error Code    |     Sequence #  |
        |                  |                   |                 |
        |     B5           |                   |                 |
        +------------------+-------------------+-----------------+












Bhushan, et al.                                                 [Page 6]

RFC 171                THE DATA TRANSFER PROTOCOL              June 1971


        The following error codes are assigned:

            Error Code            Meaning
        Hex           Octal

        00            000         Undefined error
        01            001         Out of sync. (type code other
                                  than B0 through BF).
        02            002         Broken sequence (the sequence #
                                  field contains the first expected
                                  but not received sequence number).
        03            003         Illegal DLE sequence (other than
                                  DLE DLE or DLE ETX).
        B0            260
     through       through        The transaction type (indicated by
        BF            277         by error code) is not implemented.

        The error code transaction is defined only for the purpose of
        error control.  DTP does not require the receiver of an error
        code to take any recovery action.  The receiver may discard the
        error code transaction.  In addition, DTP does not require that
        sequence numbers be remembered or transmitted.

  2B.7  Type B6 (abort) transactions have a fixed length of 2 bytes, as
        shown below.  First byte defines transaction type as B6, and
        second byte defines the abort function.

        +-------------------+--------------------+
        |    Type           |    Function        |
        |                   |            | | |R| |
        |                   |            | |G|E| |
        |                   |            |F|R|C|U|
        |                   |            |I|O|O|N|
        |                   |            |L|U|R|I|
        |                   |            |E|P|D|T|
        +-------------------+--------------------+















Bhushan, et al.                                                 [Page 7]

RFC 171                THE DATA TRANSFER PROTOCOL              June 1971


        The following abort codes are assigned:

             Abort Code                              Meaning
           Hex            Octal

           00             000              Abort preceding transaction
           01             001              Abort preceding unit
           02             002              Abort preceding record
           07             007              Abort preceding group
           0F             017              Abort preceding file

        DTP does not require the receiver of an abort to take specific
        action, therefore sender should not necessarily make any
        assumptions.  The manner in which abort is handled is to be
        specified by higher-level applications protocols.

  2B.8  Type B7 (NoOp) transactions are one byte long, and indicate no
        operation.  These may be useful as fillers when byte size used
        for network connections is other than 8-bits.

3.  Initial Connection, Handshake and Error Recovery

  3A.  DTP does not specify the mechanism used in establishing
       connections.  It is up to the applications protocol (e.g., file
       transfer protocol) to choose the mechanism which suits its
       requirements. [6]

  3B.  The first transaction after connection is made will be type B3
       (modes available).  In a full-duplex connection, both server and
       user will communicate type B3 transactions, indicating modes
       available for send and receive.  In a simplex connection only
       sender will communicate a type B3 transaction.  It is the
       sender's responsibility to choose a mode acceptable to the
       receiver.  If an acceptable mode is not available or if mode
       chosen is not acceptable, the connection may be closed. [7]

  3C. No error recovery mechanisms are specified by DTP.  The
       applications protocol may implement error recovery and further
       error control mechanisms.

END NOTES

[1]  The term transaction is used here to mean a block of data defined
     by the transfer mode.

[2]  What constitutes a workable subset is entirely governed by the
     high-level application protocol.




Bhushan, et al.                                                 [Page 8]

RFC 171                THE DATA TRANSFER PROTOCOL              June 1971


[3]  Transactions suppress the notion of host-IMP messages, and may have
     a logical interpretation similar to that of flags (and data)
     defined by Mealy in RFC 91.

[4]  This assignment is made to be consistent with the TELNET philosophy
     of maintaining the integrity of the 128 Network ASCII characters.

[5]  A 72-b9t descriptor field provides a convenient separation of
     information bits, as 72 is the least common multiple of 8 and 36,
     the commonly encountered byte sizes on ARPA network host
     computers.

[6]  It is, however, recommended that the standard initial connection
     protocol be adopted where feasible.

[7]  It is recommended that when more than one mode is available, the
     sender should choose 'descriptor and count' mode (Type B2 or BA).
     The 'bitstream' mode (type B0 or B8) should be chosen only when
     the other two modes cannot be used.

         [ This RFC was put into machine readable form for entry ]
           [ into the online RFC archives by Samuel Etler 08/99 ]





























Bhushan, et al.                                                 [Page 9]