Network Working Group                                 W. Simpson, Editor
Request for Comments: 1662                                    Daydreamer
STD: 51                                                        July 1994
Obsoletes: 1549
Category: Standards Track


                       PPP in HDLC-like Framing


Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.


Abstract

  The Point-to-Point Protocol (PPP) [1] provides a standard method for
  transporting multi-protocol datagrams over point-to-point links.

  This document describes the use of HDLC-like framing for PPP
  encapsulated packets.


Table of Contents


    1.     Introduction ..........................................    1
       1.1       Specification of Requirements ...................    2
       1.2       Terminology .....................................    2

    2.     Physical Layer Requirements ...........................    3

    3.     The Data Link Layer ...................................    4
       3.1       Frame Format ....................................    5
       3.2       Modification of the Basic Frame .................    7

    4.     Octet-stuffed framing .................................    8
       4.1       Flag Sequence ...................................    8
       4.2       Transparency ....................................    8
       4.3       Invalid Frames ..................................    9
       4.4       Time Fill .......................................    9
          4.4.1  Octet-synchronous ...............................    9
          4.4.2  Asynchronous ....................................    9
       4.5       Transmission Considerations .....................   10
          4.5.1  Octet-synchronous ...............................   10
          4.5.2  Asynchronous ....................................   10


Simpson                                                         [Page i]
RFC 1662                   HDLC-like Framing                   July 1994


    5.     Bit-stuffed framing ...................................   11
       5.1       Flag Sequence ...................................   11
       5.2       Transparency ....................................   11
       5.3       Invalid Frames ..................................   11
       5.4       Time Fill .......................................   11
       5.5       Transmission Considerations .....................   12

    6.     Asynchronous to Synchronous Conversion ................   13

    7.     Additional LCP Configuration Options ..................   14
       7.1       Async-Control-Character-Map (ACCM) ..............   14

    APPENDICES ...................................................   17
    A.     Recommended LCP Options ...............................   17
    B.     Automatic Recognition of PPP Frames ...................   17
    C.     Fast Frame Check Sequence (FCS) Implementation ........   18
       C.1       FCS table generator .............................   18
       C.2       16-bit FCS Computation Method ...................   19
       C.3       32-bit FCS Computation Method ...................   21

    SECURITY CONSIDERATIONS ......................................   24
    REFERENCES ...................................................   24
    ACKNOWLEDGEMENTS .............................................   25
    CHAIR'S ADDRESS ..............................................   25
    EDITOR'S ADDRESS .............................................   25




1.  Introduction

  This specification provides for framing over both bit-oriented and
  octet-oriented synchronous links, and asynchronous links with 8 bits
  of data and no parity.  These links MUST be full-duplex, but MAY be
  either dedicated or circuit-switched.

  An escape mechanism is specified to allow control data such as
  XON/XOFF to be transmitted transparently over the link, and to remove
  spurious control data which may be injected into the link by
  intervening hardware and software.

  Some protocols expect error free transmission, and either provide
  error detection only on a conditional basis, or do not provide it at
  all.  PPP uses the HDLC Frame Check Sequence for error detection.
  This is commonly available in hardware implementations, and a
  software implementation is provided.






Simpson                                                         [Page 1]
RFC 1662                   HDLC-like Framing                   July 1994


1.1.  Specification of Requirements

  In this document, several words are used to signify the requirements
  of the specification.  These words are often capitalized.

  MUST      This word, or the adjective "required", means that the
            definition is an absolute requirement of the specification.

  MUST NOT  This phrase means that the definition is an absolute
            prohibition of the specification.

  SHOULD    This word, or the adjective "recommended", means that there
            may exist valid reasons in particular circumstances to
            ignore this item, but the full implications must be
            understood and carefully weighed before choosing a
            different course.

  MAY       This word, or the adjective "optional", means that this
            item is one of an allowed set of alternatives.  An
            implementation which does not include this option MUST be
            prepared to interoperate with another implementation which
            does include the option.


1.2.  Terminology

  This document frequently uses the following terms:

  datagram  The unit of transmission in the network layer (such as IP).
            A datagram may be encapsulated in one or more packets
            passed to the data link layer.

  frame     The unit of transmission at the data link layer.  A frame
            may include a header and/or a trailer, along with some
            number of units of data.

  packet    The basic unit of encapsulation, which is passed across the
            interface between the network layer and the data link
            layer.  A packet is usually mapped to a frame; the
            exceptions are when data link layer fragmentation is being
            performed, or when multiple packets are incorporated into a
            single frame.

  peer      The other end of the point-to-point link.

  silently discard
            The implementation discards the packet without further
            processing.  The implementation SHOULD provide the
            capability of logging the error, including the contents of
            the silently discarded packet, and SHOULD record the event
            in a statistics counter.


Simpson                                                         [Page 2]
RFC 1662                   HDLC-like Framing                   July 1994


2.  Physical Layer Requirements

  PPP is capable of operating across most DTE/DCE interfaces (such as,
  EIA RS-232-E, EIA RS-422, and CCITT V.35).  The only absolute
  requirement imposed by PPP is the provision of a full-duplex circuit,
  either dedicated or circuit-switched, which can operate in either an
  asynchronous (start/stop), bit-synchronous, or octet-synchronous
  mode, transparent to PPP Data Link Layer frames.

  Interface Format

     PPP presents an octet interface to the physical layer.  There is
     no provision for sub-octets to be supplied or accepted.

  Transmission Rate

     PPP does not impose any restrictions regarding transmission rate,
     other than that of the particular DTE/DCE interface.

  Control Signals

     PPP does not require the use of control signals, such as Request
     To Send (RTS), Clear To Send (CTS), Data Carrier Detect (DCD), and
     Data Terminal Ready (DTR).

     When available, using such signals can allow greater functionality
     and performance.  In particular, such signals SHOULD be used to
     signal the Up and Down events in the LCP Option Negotiation
     Automaton [1].  When such signals are not available, the
     implementation MUST signal the Up event to LCP upon
     initialization, and SHOULD NOT signal the Down event.

     Because signalling is not required, the physical layer MAY be
     decoupled from the data link layer, hiding the transient details
     of the physical transport.  This has implications for mobility in
     cellular radio networks, and other rapidly switching links.

     When moving from cell to cell within the same zone, an
     implementation MAY choose to treat the entire zone as a single
     link, even though transmission is switched among several
     frequencies.  The link is considered to be with the central
     control unit for the zone, rather than the individual cell
     transceivers.  However, the link SHOULD re-establish its
     configuration whenever the link is switched to a different
     administration.

     Due to the bursty nature of data traffic, some implementations
     have choosen to disconnect the physical layer during periods of



Simpson                                                         [Page 3]
RFC 1662                   HDLC-like Framing                   July 1994


     inactivity, and reconnect when traffic resumes, without informing
     the data link layer.  Robust implementations should avoid using
     this trick over-zealously, since the price for decreased setup
     latency is decreased security.  Implementations SHOULD signal the
     Down event whenever "significant time" has elapsed since the link
     was disconnected.  The value for "significant time" is a matter of
     considerable debate, and is based on the tariffs, call setup
     times, and security concerns of the installation.



3.  The Data Link Layer

  PPP uses the principles described in ISO 3309-1979 HDLC frame
  structure, most recently the fourth edition 3309:1991 [2], which
  specifies modifications to allow HDLC use in asynchronous
  environments.

  The PPP control procedures use the Control field encodings described
  in ISO 4335-1979 HDLC elements of procedures, most recently the
  fourth edition 4335:1991 [4].

     This should not be construed to indicate that every feature of the
     above recommendations are included in PPP.  Each feature included
     is explicitly described in the following sections.

  To remain consistent with standard Internet practice, and avoid
  confusion for people used to reading RFCs, all binary numbers in the
  following descriptions are in Most Significant Bit to Least
  Significant Bit order, reading from left to right, unless otherwise
  indicated.  Note that this is contrary to standard ISO and CCITT
  practice which orders bits as transmitted (network bit order).  Keep
  this in mind when comparing this document with the international
  standards documents.

















Simpson                                                         [Page 4]
RFC 1662                   HDLC-like Framing                   July 1994


3.1.  Frame Format

  A summary of the PPP HDLC-like frame structure is shown below.  This
  figure does not include bits inserted for synchronization (such as
  start and stop bits for asynchronous links), nor any bits or octets
  inserted for transparency.  The fields are transmitted from left to
  right.

          +----------+----------+----------+
          |   Flag   | Address  | Control  |
          | 01111110 | 11111111 | 00000011 |
          +----------+----------+----------+
          +----------+-------------+---------+
          | Protocol | Information | Padding |
          | 8/16 bits|      *      |    *    |
          +----------+-------------+---------+
          +----------+----------+-----------------
          |   FCS    |   Flag   | Inter-frame Fill
          |16/32 bits| 01111110 | or next Address
          +----------+----------+-----------------

  The Protocol, Information and Padding fields are described in the
  Point-to-Point Protocol Encapsulation [1].

  Flag Sequence

     Each frame begins and ends with a Flag Sequence, which is the
     binary sequence 01111110 (hexadecimal 0x7e).  All implementations
     continuously check for this flag, which is used for frame
     synchronization.

     Only one Flag Sequence is required between two frames.  Two
     consecutive Flag Sequences constitute an empty frame, which is
     silently discarded, and not counted as a FCS error.

  Address Field

     The Address field is a single octet, which contains the binary
     sequence 11111111 (hexadecimal 0xff), the All-Stations address.
     Individual station addresses are not assigned.  The All-Stations
     address MUST always be recognized and received.

     The use of other address lengths and values may be defined at a
     later time, or by prior agreement.  Frames with unrecognized
     Addresses SHOULD be silently discarded.






Simpson                                                         [Page 5]
RFC 1662                   HDLC-like Framing                   July 1994


  Control Field

     The Control field is a single octet, which contains the binary
     sequence 00000011 (hexadecimal 0x03), the Unnumbered Information
     (UI) command with the Poll/Final (P/F) bit set to zero.

     The use of other Control field values may be defined at a later
     time, or by prior agreement.  Frames with unrecognized Control
     field values SHOULD be silently discarded.

  Frame Check Sequence (FCS) Field

     The Frame Check Sequence field defaults to 16 bits (two octets).
     The FCS is transmitted least significant octet first, which
     contains the coefficient of the highest term.

     A 32-bit (four octet) FCS is also defined.  Its use may be
     negotiated as described in "PPP LCP Extensions" [5].

     The use of other FCS lengths may be defined at a later time, or by
     prior agreement.

     The FCS field is calculated over all bits of the Address, Control,
     Protocol, Information and Padding fields, not including any start
     and stop bits (asynchronous) nor any bits (synchronous) or octets
     (asynchronous or synchronous) inserted for transparency.  This
     also does not include the Flag Sequences nor the FCS field itself.

        When octets are received which are flagged in the Async-
        Control-Character-Map, they are discarded before calculating
        the FCS.

     For more information on the specification of the FCS, see the
     Appendices.

  The end of the Information and Padding fields is found by locating
  the closing Flag Sequence and removing the Frame Check Sequence
  field.













Simpson                                                         [Page 6]
RFC 1662                   HDLC-like Framing                   July 1994


3.2.  Modification of the Basic Frame

  The Link Control Protocol can negotiate modifications to the standard
  HDLC-like frame structure.  However, modified frames will always be
  clearly distinguishable from standard frames.

  Address-and-Control-Field-Compression

     When using the standard HDLC-like framing, the Address and Control
     fields contain the hexadecimal values 0xff and 0x03 respectively.
     When other Address or Control field values are in use, Address-
     and-Control-Field-Compression MUST NOT be negotiated.

     On transmission, compressed Address and Control fields are simply
     omitted.

     On reception, the Address and Control fields are decompressed by
     examining the first two octets.  If they contain the values 0xff
     and 0x03, they are assumed to be the Address and Control fields.
     If not, it is assumed that the fields were compressed and were not
     transmitted.

        By definition, the first octet of a two octet Protocol field
        will never be 0xff (since it is not even).  The Protocol field
        value 0x00ff is not allowed (reserved) to avoid ambiguity when
        Protocol-Field-Compression is enabled and the first Information
        field octet is 0x03.
























Simpson                                                         [Page 7]
RFC 1662                   HDLC-like Framing                   July 1994


4.  Octet-stuffed framing

  This chapter summarizes the use of HDLC-like framing with 8-bit
  asynchronous and octet-synchronous links.



4.1.  Flag Sequence

  The Flag Sequence indicates the beginning or end of a frame.  The
  octet stream is examined on an octet-by-octet basis for the value
  01111110 (hexadecimal 0x7e).



4.2.  Transparency

  An octet stuffing procedure is used.  The Control Escape octet is
  defined as binary 01111101 (hexadecimal 0x7d), most significant bit
  first.

  As a minimum, sending implementations MUST escape the Flag Sequence
  and Control Escape octets.

  After FCS computation, the transmitter examines the entire frame
  between the two Flag Sequences.  Each Flag Sequence, Control Escape
  octet, and any octet which is flagged in the sending Async-Control-
  Character-Map (ACCM), is replaced by a two octet sequence consisting
  of the Control Escape octet followed by the original octet
  exclusive-or'd with hexadecimal 0x20.

     This is bit 5 complemented, where the bit positions are numbered
     76543210 (the 6th bit as used in ISO numbered 87654321 -- BEWARE
     when comparing documents).

  Receiving implementations MUST correctly process all Control Escape
  sequences.

  On reception, prior to FCS computation, each octet with value less
  than hexadecimal 0x20 is checked.  If it is flagged in the receiving
  ACCM, it is simply removed (it may have been inserted by intervening
  data communications equipment).  Each Control Escape octet is also
  removed, and the following octet is exclusive-or'd with hexadecimal
  0x20, unless it is the Flag Sequence (which aborts a frame).

  A few examples may make this more clear.  Escaped data is transmitted
  on the link as follows:




Simpson                                                         [Page 8]
RFC 1662                   HDLC-like Framing                   July 1994



     0x7e is encoded as 0x7d, 0x5e.    (Flag Sequence)
     0x7d is encoded as 0x7d, 0x5d.    (Control Escape)
     0x03 is encoded as 0x7d, 0x23.    (ETX)

  Some modems with software flow control may intercept outgoing DC1 and
  DC3 ignoring the 8th (parity) bit.  This data would be transmitted on
  the link as follows:

     0x11 is encoded as 0x7d, 0x31.    (XON)
     0x13 is encoded as 0x7d, 0x33.    (XOFF)
     0x91 is encoded as 0x7d, 0xb1.    (XON with parity set)
     0x93 is encoded as 0x7d, 0xb3.    (XOFF with parity set)




4.3.  Invalid Frames

  Frames which are too short (less than 4 octets when using the 16-bit
  FCS), or which end with a Control Escape octet followed immediately
  by a closing Flag Sequence, or in which octet-framing is violated (by
  transmitting a "0" stop bit where a "1" bit is expected), are
  silently discarded, and not counted as a FCS error.



4.4.  Time Fill

4.4.1.  Octet-synchronous

  There is no provision for inter-octet time fill.

  The Flag Sequence MUST be transmitted during inter-frame time fill.


4.4.2.  Asynchronous

  Inter-octet time fill MUST be accomplished by transmitting continuous
  "1" bits (mark-hold state).

  Inter-frame time fill can be viewed as extended inter-octet time
  fill.  Doing so can save one octet for every frame, decreasing delay
  and increasing bandwidth.  This is possible since a Flag Sequence may
  serve as both a frame end and a frame begin.  After having received
  any frame, an idle receiver will always be in a frame begin state.




Simpson                                                         [Page 9]
RFC 1662                   HDLC-like Framing                   July 1994


  Robust transmitters should avoid using this trick over-zealously,
  since the price for decreased delay is decreased reliability.  Noisy
  links may cause the receiver to receive garbage characters and
  interpret them as part of an incoming frame.  If the transmitter does
  not send a new opening Flag Sequence before sending the next frame,
  then that frame will be appended to the noise characters causing an
  invalid frame (with high reliability).

  It is suggested that implementations will achieve the best results by
  always sending an opening Flag Sequence if the new frame is not
  back-to-back with the last.  Transmitters SHOULD send an open Flag
  Sequence whenever "appreciable time" has elapsed after the prior
  closing Flag Sequence.  The maximum value for "appreciable time" is
  likely to be no greater than the typing rate of a slow typist, about
  1 second.



4.5.  Transmission Considerations

4.5.1.  Octet-synchronous

  The definition of various encodings and scrambling is the
  responsibility of the DTE/DCE equipment in use, and is outside the
  scope of this specification.


4.5.2.  Asynchronous

  All octets are transmitted least significant bit first, with one
  start bit, eight bits of data, and one stop bit.  There is no
  provision for seven bit asynchronous links.


















Simpson                                                        [Page 10]
RFC 1662                   HDLC-like Framing                   July 1994


5.  Bit-stuffed framing

  This chapter summarizes the use of HDLC-like framing with bit-
  synchronous links.



5.1.  Flag Sequence

  The Flag Sequence indicates the beginning or end of a frame, and is
  used for frame synchronization.  The bit stream is examined on a
  bit-by-bit basis for the binary sequence 01111110 (hexadecimal 0x7e).

  The "shared zero mode" Flag Sequence "011111101111110" SHOULD NOT be
  used.  When not avoidable, such an implementation MUST ensure that
  the first Flag Sequence detected (the end of the frame) is promptly
  communicated to the link layer.  Use of the shared zero mode hinders
  interoperability with bit-synchronous to asynchronous and bit-
  synchronous to octet-synchronous converters.



5.2.  Transparency

  After FCS computation, the transmitter examines the entire frame
  between the two Flag Sequences.  A "0" bit is inserted after all
  sequences of five contiguous "1" bits (including the last 5 bits of
  the FCS) to ensure that a Flag Sequence is not simulated.

  On reception, prior to FCS computation, any "0" bit that directly
  follows five contiguous "1" bits is discarded.



5.3.  Invalid Frames

  Frames which are too short (less than 4 octets when using the 16-bit
  FCS), or which end with a sequence of more than six "1" bits, are
  silently discarded, and not counted as a FCS error.



5.4.  Time Fill

  There is no provision for inter-octet time fill.

  The Flag Sequence SHOULD be transmitted during inter-frame time fill.
  However, certain types of circuit-switched links require the use of



Simpson                                                        [Page 11]
RFC 1662                   HDLC-like Framing                   July 1994


  mark idle (continuous ones), particularly those that calculate
  accounting based on periods of bit activity.  When mark idle is used
  on a bit-synchronous link, the implementation MUST ensure at least 15
  consecutive "1" bits between Flags during the idle period, and that
  the Flag Sequence is always generated at the beginning of a frame
  after an idle period.

     This differs from practice in ISO 3309, which allows 7 to 14 bit
     mark idle.



5.5.  Transmission Considerations

  All octets are transmitted least significant bit first.

  The definition of various encodings and scrambling is the
  responsibility of the DTE/DCE equipment in use, and is outside the
  scope of this specification.

  While PPP will operate without regard to the underlying
  representation of the bit stream, lack of standards for transmission
  will hinder interoperability as surely as lack of data link
  standards.  At speeds of 56 Kbps through 2.0 Mbps, NRZ is currently
  most widely available, and on that basis is recommended as a default.

  When configuration of the encoding is allowed, NRZI is recommended as
  an alternative, because of its relative immunity to signal inversion
  configuration errors, and instances when it MAY allow connection
  without an expensive DSU/CSU.  Unfortunately, NRZI encoding
  exacerbates the missing x1 factor of the 16-bit FCS, so that one
  error in 2**15 goes undetected (instead of one in 2**16), and triple
  errors are not detected.  Therefore, when NRZI is in use, it is
  recommended that the 32-bit FCS be negotiated, which includes the x1
  factor.

  At higher speeds of up to 45 Mbps, some implementors have chosen the
  ANSI High Speed Synchronous Interface [HSSI].  While this experience
  is currently limited, implementors are encouraged to cooperate in
  choosing transmission encoding.











Simpson                                                        [Page 12]
RFC 1662                   HDLC-like Framing                   July 1994


6.  Asynchronous to Synchronous Conversion

  There may be some use of asynchronous-to-synchronous converters (some
  built into modems and cellular interfaces), resulting in an
  asynchronous PPP implementation on one end of a link and a
  synchronous implementation on the other.  It is the responsibility of
  the converter to do all stuffing conversions during operation.

  To enable this functionality, synchronous PPP implementations MUST
  always respond to the Async-Control-Character-Map Configuration
  Option with the LCP Configure-Ack.  However, acceptance of the
  Configuration Option does not imply that the synchronous
  implementation will do any ACCM mapping.  Instead, all such octet
  mapping will be performed by the asynchronous-to-synchronous
  converter.




































Simpson                                                        [Page 13]
RFC 1662                   HDLC-like Framing                   July 1994


7.  Additional LCP Configuration Options

  The Configuration Option format and basic options are already defined
  for LCP [1].

  Up-to-date values of the LCP Option Type field are specified in the
  most recent "Assigned Numbers" RFC [10].  This document concerns the
  following values:

     2       Async-Control-Character-Map




7.1.  Async-Control-Character-Map (ACCM)

  Description

     This Configuration Option provides a method to negotiate the use
     of control character transparency on asynchronous links.

     Each end of the asynchronous link maintains two Async-Control-
     Character-Maps.  The receiving ACCM is 32 bits, but the sending
     ACCM may be up to 256 bits.  This results in four distinct ACCMs,
     two in each direction of the link.

     For asynchronous links, the default receiving ACCM is 0xffffffff.
     The default sending ACCM is 0xffffffff, plus the Control Escape
     and Flag Sequence characters themselves, plus whatever other
     outgoing characters are flagged (by prior configuration) as likely
     to be intercepted.

     For other types of links, the default value is 0, since there is
     no need for mapping.

        The default inclusion of all octets less than hexadecimal 0x20
        allows all ASCII control characters [6] excluding DEL (Delete)
        to be transparently communicated through all known data
        communications equipment.

     The transmitter MAY also send octets with values in the range 0x40
     through 0xff (except 0x5e) in Control Escape format.  Since these
     octet values are not negotiable, this does not solve the problem
     of receivers which cannot handle all non-control characters.
     Also, since the technique does not affect the 8th bit, this does
     not solve problems for communications links that can send only 7-
     bit characters.




Simpson                                                        [Page 14]
RFC 1662                   HDLC-like Framing                   July 1994


        Note that this specification differs in detail from later
        amendments, such as 3309:1991/Amendment 2 [3].  However, such
        "extended transparency" is applied only by "prior agreement".
        Use of the transparency methods in this specification
        constitute a prior agreement with respect to PPP.

        For compatibility with 3309:1991/Amendment 2, the transmitter
        MAY escape DEL and ACCM equivalents with the 8th (most
        significant) bit set.  No change is required in the receiving
        algorithm.

        Following ACCM negotiation, the transmitter SHOULD cease
        escaping DEL.

     However, it is rarely necessary to map all control characters, and
     often it is unnecessary to map any control characters.  The
     Configuration Option is used to inform the peer which control
     characters MUST remain mapped when the peer sends them.

     The peer MAY still send any other octets in mapped format, if it
     is necessary because of constraints known to the peer.  The peer
     SHOULD Configure-Nak with the logical union of the sets of mapped
     octets, so that when such octets are spuriously introduced they
     can be ignored on receipt.

  A summary of the Async-Control-Character-Map Configuration Option
  format is shown below.  The fields are transmitted from left to
  right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |               ACCM
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            ACCM (cont)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     2

  Length

     6






Simpson                                                        [Page 15]
RFC 1662                   HDLC-like Framing                   July 1994


  ACCM

     The ACCM field is four octets, and indicates the set of control
     characters to be mapped.  The map is sent most significant octet
     first.

     Each numbered bit corresponds to the octet of the same value.  If
     the bit is cleared to zero, then that octet need not be mapped.
     If the bit is set to one, then that octet MUST remain mapped.  For
     example, if bit 19 is set to zero, then the ASCII control
     character 19 (DC3, Control-S) MAY be sent in the clear.

        Note: The least significant bit of the least significant octet
        (the final octet transmitted) is numbered bit 0, and would map
        to the ASCII control character NUL.




































Simpson                                                        [Page 16]
RFC 1662                   HDLC-like Framing                   July 1994


A.  Recommended LCP Options

  The following Configurations Options are recommended:

  High Speed links

     Magic Number
     Link Quality Monitoring
     No Address and Control Field Compression
     No Protocol Field Compression


  Low Speed or Asynchronous links

     Async Control Character Map
     Magic Number
     Address and Control Field Compression
     Protocol Field Compression



B.  Automatic Recognition of PPP Frames

  It is sometimes desirable to detect PPP frames, for example during a
  login sequence.  The following octet sequences all begin valid PPP
  LCP frames:

     7e ff 03 c0 21
     7e ff 7d 23 c0 21
     7e 7d df 7d 23 c0 21

  Note that the first two forms are not a valid username for Unix.
  However, only the third form generates a correctly checksummed PPP
  frame, whenever 03 and ff are taken as the control characters ETX and
  DEL without regard to parity (they are correct for an even parity
  link) and discarded.

  Many implementations deal with this by putting the interface into
  packet mode when one of the above username patterns are detected
  during login, without examining the initial PPP checksum.  The
  initial incoming PPP frame is discarded, but a Configure-Request is
  sent immediately.









Simpson                                                        [Page 17]
RFC 1662                   HDLC-like Framing                   July 1994


C.  Fast Frame Check Sequence (FCS) Implementation

  The FCS was originally designed with hardware implementations in
  mind.  A serial bit stream is transmitted on the wire, the FCS is
  calculated over the serial data as it goes out, and the complement of
  the resulting FCS is appended to the serial stream, followed by the
  Flag Sequence.

  The receiver has no way of determining that it has finished
  calculating the received FCS until it detects the Flag Sequence.
  Therefore, the FCS was designed so that a particular pattern results
  when the FCS operation passes over the complemented FCS.  A good
  frame is indicated by this "good FCS" value.



C.1.  FCS table generator

  The following code creates the lookup table used to calculate the
  FCS-16.

  /*
   * Generate a FCS-16 table.
   *
   * Drew D. Perkins at Carnegie Mellon University.
   *
   * Code liberally borrowed from Mohsen Banan and D. Hugh Redelmeier.
   */

  /*
   * The FCS-16 generator polynomial: x**0 + x**5 + x**12 + x**16.
   */
  #define P       0x8408


  main()
  {
      register unsigned int b, v;
      register int i;

      printf("typedef unsigned short u16;\n");
      printf("static u16 fcstab[256] = {");
      for (b = 0; ; ) {
          if (b % 8 == 0)
              printf("\n");

          v = b;
          for (i = 8; i--; )



Simpson                                                        [Page 18]
RFC 1662                   HDLC-like Framing                   July 1994


              v = v & 1 ? (v >> 1) ^ P : v >> 1;

          printf("\t0x%04x", v & 0xFFFF);
          if (++b == 256)
              break;
          printf(",");
      }
      printf("\n};\n");
  }



C.2.  16-bit FCS Computation Method

  The following code provides a table lookup computation for
  calculating the Frame Check Sequence as data arrives at the
  interface.  This implementation is based on [7], [8], and [9].

  /*
   * u16 represents an unsigned 16-bit number.  Adjust the typedef for
   * your hardware.
   */
  typedef unsigned short u16;

  /*
   * FCS lookup table as calculated by the table generator.
   */
  static u16 fcstab[256] = {
     0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
     0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
     0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
     0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
     0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
     0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
     0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
     0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
     0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
     0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
     0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
     0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
     0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
     0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
     0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
     0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
     0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
     0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
     0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
     0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,



Simpson                                                        [Page 19]
RFC 1662                   HDLC-like Framing                   July 1994


     0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
     0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
     0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
     0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
     0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
     0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
     0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
     0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
     0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
     0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
     0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
     0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
  };

  #define PPPINITFCS16    0xffff  /* Initial FCS value */
  #define PPPGOODFCS16    0xf0b8  /* Good final FCS value */

  /*
   * Calculate a new fcs given the current fcs and the new data.
   */
  u16 pppfcs16(fcs, cp, len)
      register u16 fcs;
      register unsigned char *cp;
      register int len;
  {
      ASSERT(sizeof (u16) == 2);
      ASSERT(((u16) -1) > 0);
      while (len--)
          fcs = (fcs >> 8) ^ fcstab[(fcs ^ *cp++) & 0xff];

      return (fcs);
  }

  /*
   * How to use the fcs
   */
  tryfcs16(cp, len)
      register unsigned char *cp;
      register int len;
  {
      u16 trialfcs;

      /* add on output */
      trialfcs = pppfcs16( PPPINITFCS16, cp, len );
      trialfcs ^= 0xffff;                 /* complement */
      cp[len] = (trialfcs & 0x00ff);      /* least significant byte first */
      cp[len+1] = ((trialfcs >> 8) & 0x00ff);




Simpson                                                        [Page 20]
RFC 1662                   HDLC-like Framing                   July 1994


      /* check on input */
      trialfcs = pppfcs16( PPPINITFCS16, cp, len + 2 );
      if ( trialfcs == PPPGOODFCS16 )
          printf("Good FCS\n");
  }



C.3.  32-bit FCS Computation Method

  The following code provides a table lookup computation for
  calculating the 32-bit Frame Check Sequence as data arrives at the
  interface.

  /*
   * The FCS-32 generator polynomial: x**0 + x**1 + x**2 + x**4 + x**5
   *                      + x**7 + x**8 + x**10 + x**11 + x**12 + x**16
   *                      + x**22 + x**23 + x**26 + x**32.
   */

  /*
   * u32 represents an unsigned 32-bit number.  Adjust the typedef for
   * your hardware.
   */
  typedef unsigned long u32;

  static u32 fcstab_32[256] =
     {
     0x00000000, 0x77073096, 0xee0e612c, 0x990951ba,
     0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
     0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
     0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
     0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
     0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
     0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec,
     0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
     0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
     0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
     0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940,
     0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
     0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116,
     0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
     0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
     0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
     0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a,
     0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
     0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818,
     0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,



Simpson                                                        [Page 21]
RFC 1662                   HDLC-like Framing                   July 1994


     0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
     0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
     0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c,
     0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
     0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
     0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
     0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
     0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
     0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086,
     0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
     0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4,
     0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
     0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
     0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
     0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
     0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
     0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe,
     0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
     0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
     0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
     0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252,
     0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
     0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60,
     0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
     0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
     0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
     0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04,
     0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
     0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a,
     0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
     0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
     0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
     0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e,
     0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
     0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
     0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
     0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
     0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
     0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0,
     0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
     0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6,
     0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
     0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
     0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
     };

  #define PPPINITFCS32  0xffffffff   /* Initial FCS value */
  #define PPPGOODFCS32  0xdebb20e3   /* Good final FCS value */



Simpson                                                        [Page 22]
RFC 1662                   HDLC-like Framing                   July 1994


  /*
   * Calculate a new FCS given the current FCS and the new data.
   */
  u32 pppfcs32(fcs, cp, len)
      register u32 fcs;
      register unsigned char *cp;
      register int len;
      {
      ASSERT(sizeof (u32) == 4);
      ASSERT(((u32) -1) > 0);
      while (len--)
          fcs = (((fcs) >> 8) ^ fcstab_32[((fcs) ^ (*cp++)) & 0xff]);

      return (fcs);
      }

  /*
   * How to use the fcs
   */
  tryfcs32(cp, len)
      register unsigned char *cp;
      register int len;
  {
      u32 trialfcs;

      /* add on output */
      trialfcs = pppfcs32( PPPINITFCS32, cp, len );
      trialfcs ^= 0xffffffff;             /* complement */
      cp[len] = (trialfcs & 0x00ff);      /* least significant byte first */
      cp[len+1] = ((trialfcs >>= 8) & 0x00ff);
      cp[len+2] = ((trialfcs >>= 8) & 0x00ff);
      cp[len+3] = ((trialfcs >> 8) & 0x00ff);

      /* check on input */
      trialfcs = pppfcs32( PPPINITFCS32, cp, len + 4 );
      if ( trialfcs == PPPGOODFCS32 )
          printf("Good FCS\n");
  }













Simpson                                                        [Page 23]
RFC 1662                   HDLC-like Framing                   July 1994


Security Considerations

  As noted in the Physical Layer Requirements section, the link layer
  might not be informed when the connected state of the physical layer
  has changed.  This results in possible security lapses due to over-
  reliance on the integrity and security of switching systems and
  administrations.  An insertion attack might be undetected.  An
  attacker which is able to spoof the same calling identity might be
  able to avoid link authentication.



References

  [1]   Simpson, W., Editor, "The Point-to-Point Protocol (PPP)",
        STD 50, RFC 1661, Daydreamer, July 1994.

  [2]   ISO/IEC 3309:1991(E), "Information Technology -
        Telecommunications and information exchange between systems -
        High-level data link control (HDLC) procedures - Frame
        structure", International Organization For Standardization,
        Fourth edition 1991-06-01.

  [3]   ISO/IEC 3309:1991/Amd.2:1992(E), "Information Technology -
        Telecommunications and information exchange between systems -
        High-level data link control (HDLC) procedures - Frame
        structure - Amendment 2: Extended transparency options for
        start/stop transmission", International Organization For
        Standardization, 1992-01-15.

  [4]   ISO/IEC 4335:1991(E), "Information Technology -
        Telecommunications and information exchange between systems -
        High-level data link control (HDLC) procedures - Elements of
        procedures", International Organization For Standardization,
        Fourth edition 1991-09-15.

  [5]   Simpson, W., Editor, "PPP LCP Extensions", RFC 1570,
        Daydreamer, January 1994.

  [6]   ANSI X3.4-1977, "American National Standard Code for
        Information Interchange", American National Standards
        Institute, 1977.

  [7]   Perez, "Byte-wise CRC Calculations", IEEE Micro, June 1983.

  [8]   Morse, G., "Calculating CRC's by Bits and Bytes", Byte,
        September 1986.




Simpson                                                        [Page 24]
RFC 1662                   HDLC-like Framing                   July 1994


  [9]   LeVan, J., "A Fast CRC", Byte, November 1987.

  [10]  Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC
        1340, USC/Information Sciences Institute, July 1992.



Acknowledgements

  This document is the product of the Point-to-Point Protocol Working
  Group of the Internet Engineering Task Force (IETF).  Comments should
  be submitted to the [email protected] mailing list.

  This specification is based on previous RFCs, where many
  contributions have been acknowleged.

  The 32-bit FCS example code was provided by Karl Fox (Morning Star
  Technologies).

  Special thanks to Morning Star Technologies for providing computing
  resources and network access support for writing this specification.



Chair's Address

  The working group can be contacted via the current chair:

     Fred Baker
     Advanced Computer Communications
     315 Bollay Drive
     Santa Barbara, California  93117

     [email protected]


Editor's Address

  Questions about this memo can also be directed to:

     William Allen Simpson
     Daydreamer
     Computer Systems Consulting Services
     1384 Fontaine
     Madison Heights, Michigan  48071

     [email protected]
         [email protected]


Simpson                                                        [Page 25]