Network Working Group                                          R. Braden
Request for Comments: 1644                                           ISI
Category: Experimental                                         July 1994

               T/TCP -- TCP Extensions for Transactions
                       Functional Specification

Status of this Memo

  This memo describes an Experimental Protocol for the Internet
  community, and requests discussion and suggestions for improvements.
  It does not specify an Internet Standard.  Distribution is unlimited.

Abstract

  This memo specifies T/TCP, an experimental TCP extension for
  efficient transaction-oriented (request/response) service.  This
  backwards-compatible extension could fill the gap between the current
  connection-oriented TCP and the datagram-based UDP.

  This work was supported in part by the National Science Foundation
  under Grant Number NCR-8922231.

Table of Contents

1. INTRODUCTION ..................................................  2
2.  OVERVIEW .....................................................  3
   2.1  Bypassing the Three-Way Handshake ........................  4
   2.2  Transaction Sequences ....................................  6
   2.3  Protocol Correctness .....................................  8
   2.4  Truncating TIME-WAIT State ............................... 12
   2.5  Transition to Standard TCP Operation ..................... 14
3.  FUNCTIONAL SPECIFICATION ..................................... 17
   3.1  Data Structures .......................................... 17
   3.2  New TCP Options .......................................... 17
   3.3  Connection States ........................................ 19
   3.4  T/TCP Processing Rules ................................... 25
   3.5  User Interface ........................................... 28
4.  IMPLEMENTATION ISSUES ........................................ 30
   4.1  RFC-1323 Extensions ...................................... 30
   4.2  Minimal Packet Sequence .................................. 31
   4.3  RTT Measurement .......................................... 31
   4.4  Cache Implementation ..................................... 32
   4.5  CPU Performance .......................................... 32
   4.6  Pre-SYN Queue ............................................ 33
6.  ACKNOWLEDGMENTS .............................................. 34
7.  REFERENCES ................................................... 34
APPENDIX A.  ALGORITHM SUMMARY ................................... 35



Braden                                                          [Page 1]

RFC 1644                    Transaction/TCP                    July 1994


Security Considerations .......................................... 38
Author's Address ................................................. 38

1. INTRODUCTION

  TCP was designed to around the virtual circuit model, to support
  streaming of data.  Another common mode of communication is a
  client-server interaction, a request message followed by a response
  message.  The request/response paradigm is used by application-layer
  protocols that implement transaction processing or remote procedure
  calls, as well as by a number of network control and management
  protocols (e.g., DNS and SNMP).  Currently, many Internet user
  programs that need request/response communication use UDP, and when
  they require transport protocol functions such as reliable delivery
  they must effectively build their own private transport protocol at
  the application layer.

  Request/response, or "transaction-oriented", communication has the
  following features:

  (a)  The fundamental interaction is a request followed by a response.

  (b)  An explicit open or close phase may impose excessive overhead.

  (c)  At-most-once semantics is required; that is, a transaction must
       not be "replayed" as the result of a duplicate request packet.

  (d)  The minimum transaction latency for a client should be RTT +
       SPT, where RTT is the round-trip time and SPT is the server
       processing time.

  (e)  In favorable circumstances, a reliable request/response
       handshake should be achievable with exactly one packet in each
       direction.

  This memo concerns T/TCP, an backwards-compatible extension of TCP to
  provide efficient transaction-oriented service in addition to
  virtual-circuit service.  T/TCP provides all the features listed
  above, except for (e); the minimum exchange for T/TCP is three
  segments.

  In this memo, we use the term "transaction" for an elementary
  request/response packet sequence.  This is not intended to imply any
  of the semantics often associated with application-layer transaction
  processing, like 3-phase commits.  It is expected that T/TCP can be
  used as the transport layer underlying such an application-layer
  service, but the semantics of T/TCP is limited to transport-layer
  services such as reliable, ordered delivery and at-most-once



Braden                                                          [Page 2]

RFC 1644                    Transaction/TCP                    July 1994


  operation.

  An earlier memo [RFC-1379] presented the concepts involved in T/TCP.
  However, the real-world usefulness of these ideas depends upon
  practical issues like implementation complexity and performance.  To
  help explore these issues, this memo presents a functional
  specification for a particular embodiment of the ideas presented in
  RFC-1379.  However, the specific algorithms in this memo represent a
  later evolution than RFC-1379.  In particular, Appendix A in RFC-1379
  explained the difficulties in truncating TIME-WAIT state.  However,
  experience with an implementation of the RFC-1379 algorithms in a
  workstation later showed that accumulation of TCB's in TIME-WAIT
  state is an intolerable problem; this necessity led to a simple
  solution for truncating TIME-WAIT state, described in this memo.

  Section 2 introduces the T/TCP extensions, and section 3 contains the
  complete specification of T/TCP.  Section 4 discusses some
  implementation issues, and Appendix A contains an algorithmic
  summary.  This document assumes familiarity with the standard TCP
  specification [STD-007].

2.  OVERVIEW

  The TCP protocol is highly symmetric between the two ends of a
  connection.  This symmetry is not lost in T/TCP; for example, T/TCP
  supports TCP's symmetric simultaneous open from both sides (Section
  2.3 below).  However, transaction sequences use T/TCP in a highly
  unsymmetrical manner.  It is convenient to use the terms "client
  host" and "server host" for the host that initiates a connection and
  the host that responds, respectively.

  The goal of T/TCP is to allow each transaction, i.e., each
  request/response sequence, to be efficiently performed as a single
  incarnation of a TCP connection.  Standard TCP imposes two
  performance problems for transaction-oriented communication.  First,
  a TCP connection is opened with a "3-way handshake", which must
  complete successfully before data can be transferred.  The 3-way
  handshake adds an extra RTT (round trip time) to the latency of a
  transaction.

  The second performance problem is that closing a TCP connection
  leaves one or both ends in TIME-WAIT state for a time 2*MSL, where
  MSL is the maximum segment lifetime (defined to be 120 seconds).
  TIME-WAIT state severely limits the rate of successive transactions
  between the same (host,port) pair, since a new incarnation of the
  connection cannot be opened until the TIME-WAIT delay expires.  RFC-
  1379 explained why the alternative approach, using a different user
  port for each transaction between a pair of hosts, also limits the



Braden                                                          [Page 3]

RFC 1644                    Transaction/TCP                    July 1994


  transaction rate: (1) the 16-bit port space limits the rate to
  2**16/240 transactions per second, and (2) more practically, an
  excessive amount of kernel space would be occupied by TCP state
  blocks in TIME-WAIT state [RFC-1379].

  T/TCP solves these two performance problems for transactions, by (1)
  bypassing the 3-way handshake (3WHS) and (2) shortening the delay in
  TIME-WAIT state.

  2.1  Bypassing the Three-Way Handshake

     T/TCP introduces a 32-bit incarnation number, called a "connection
     count" (CC), that is carried in a TCP option in each segment.  A
     distinct CC value is assigned to each direction of an open
     connection.  A T/TCP implementation assigns monotonically
     increasing CC values to successive connections that it opens
     actively or passively.

     T/TCP uses the monotonic property of CC values in initial <SYN>
     segments to bypass the 3WHS, using a mechanism that we call TCP
     Accelerated Open (TAO).  Under the TAO mechanism, a host caches a
     small amount of state per remote host.  Specifically, a T/TCP host
     that is acting as a server keeps a cache containing the last valid
     CC value that it has received from each different client host.  If
     an initial <SYN> segment (i.e., a segment containing a SYN bit but
     no ACK bit) from a particular client host carries a CC value
     larger than the corresponding cached value, the monotonic property
     of CC's ensures that the <SYN> segment must be new and can
     therefore be accepted immediately.  Otherwise, the server host
     does not know whether the <SYN> segment is an old duplicate or was
     simply delivered out of order; it therefore executes a normal 3WHS
     to validate the <SYN>.  Thus, the TAO mechanism provides an
     optimization, with the normal TCP mechanism as a fallback.

     The CC value carried in non-<SYN> segments is used to protect
     against old duplicate segments from earlier incarnations of the
     same connection (we call such segments 'antique duplicates' for
     short).  In the case of short connections (e.g., transactions),
     these CC values allow TIME-WAIT state delay to be safely discuss
     in Section 2.3.

     T/TCP defines three new TCP options, each of which carries one
     32-bit CC value.  These options are named CC, CC.NEW, and CC.ECHO.
     The CC option is normally used; CC.NEW and CC.ECHO have special
     functions, as follows.






Braden                                                          [Page 4]

RFC 1644                    Transaction/TCP                    July 1994


     (a)  CC.NEW

          Correctness of the TAO mechanism requires that clients
          generate monotonically increasing CC values for successive
          connection initiations.  These values can be generated using
          a simple global counter.  There are certain circumstances
          (discussed below in Section 2.2) when the client knows that
          monotonicity may be violated; in this case, it sends a CC.NEW
          rather than a CC option in the initial <SYN> segment.
          Receiving a CC.NEW causes the server to invalidate its cache
          entry and do a 3WHS.

     (b)  CC.ECHO

          When a server host sends a <SYN,ACK> segment, it echoes the
          connection count from the initial <SYN> in a CC.ECHO option,
          which is used by the client host to validate the <SYN,ACK>
          segment.

     Figure 1 illustrates the TAO mechanism bypassing a 3WHS.  The
     cached CC values, denoted by cache.CC[host], are shown on each
     side.  The server host compares the new CC value x in segment #1
     against x0, its cached value for client host A; this comparison is
     called the "TAO test".  Since x > x0, the <SYN> must be new and
     can be accepted immediately; the data in the segment can therefore
     be delivered to the user process B, and the cached value is
     updated.  If the TAO test failed (x <= x0), the server host would
     do a normal three-way handshake to validate the <SYN> segment, but
     the cache would not be updated.






















Braden                                                          [Page 5]

RFC 1644                    Transaction/TCP                    July 1994



         TCP A  (Client)                              TCP B (Server)
         _______________                              ______________

                                                         cache.CC[A]
                                                           V

                                                         [ x0 ]

       #1        -->  <SYN, data1, CC=x> -->  (TAO test OK (x > x0) =>
                                                    data1->user_B and
                                                    cache.CC[A]= x; )

                                                          [ x ]
       #2       <-- <SYN, ACK(data1), data2, CC=y, CC.ECHO=x> <--
           (data2->user_A;)


             Figure 1. TAO: Three-Way Handshake is Bypassed


     The CC value x is echoed in a CC.ECHO option in the <SYN,ACK>
     segment (#2); the client side uses this option to validate the
     segment.  Since segment #2 is valid, its data2 is delivered to the
     client user process.  Segment #2 also carries B's CC value; this
     is used by A to validate non-SYN segments from B, as explained in
     Section 2.4.

     Implementing the T/TCP extensions expands the connection control
     block (TCB) to include the two CC values for the connection; call
     these variables TCB.CCsend and TCB.CCrecv (or CCsend, CCrecv for
     short).  For example, the sequence shown in Figure 1 sets
     TCB.CCsend = x and TCB.CCrecv = y at host A, and vice versa at
     host B.  Any segment that is received with a CC option containing
     a value SEG.CC different from TCB.CCsend will be rejected as an
     antique duplicate.

  2.2  Transaction Sequences

     T/TCP applies the TAO mechanism described in the previous section
     to perform a transaction sequence.  Figure 2 shows a minimal
     transaction, when the request and response data can each fit into
     a single segment.  This requires three segments and completes in
     one round-trip time (RTT).  If the TAO test had failed on segment
     #1, B would have queued data1 and the FIN for later processing,
     and then it would have returned a <SYN,ACK> segment to A, to
     perform a normal 3WHS.




Braden                                                          [Page 6]

RFC 1644                    Transaction/TCP                    July 1994



      TCP A  (Client)                                    TCP B (Server)
      _______________                                    ______________

      CLOSED                                                     LISTEN

  #1  SYN-SENT*        --> <SYN,data1,FIN,CC=x> -->         CLOSE-WAIT*
                                                          (TAO test OK)
                                                        (data1->user_B)

                                                          <-- LAST-ACK*
  #2  TIME-WAIT   <-- <SYN,ACK(FIN),data2,FIN,CC=y,CC.ECHO=x>
    (data2->user_A)


  #3  TIME-WAIT          --> <ACK(FIN),CC=x> -->                 CLOSED

      (timeout)
        CLOSED

            Figure 2: Minimal T/TCP Transaction Sequence


     T/TCP extensions require additional connection states, e.g., the
     SYN-SENT*, CLOSE-WAIT*, and LAST-ACK* states shown in Figure 2.
     Section 3.3 describes these new connection states.

     To obtain the minimal 3-segment sequence shown in Figure 2, the
     server host must delay acknowledging segment #1 so the response
     may be piggy-backed on segment #2.  If the application takes
     longer than this delay to compute the response, the normal TCP
     retransmission mechanism in TCP B will send an acknowledgment to
     forestall a retransmission from TCP A.  Figure 3 shows an example
     of a slow server application.  Although the sequence in Figure 3
     does contain a 3-way handshake, the TAO mechanism has allowed the
     request data to be accepted immediately, so that the client still
     sees the minimum latency.














Braden                                                          [Page 7]

RFC 1644                    Transaction/TCP                    July 1994



      TCP A  (Client)                                    TCP B (Server)
      _______________                                    ______________

      CLOSED                                                     LISTEN

  #1  SYN-SENT*       --> <SYN,data1,FIN,CC=x> -->          CLOSE-WAIT*
                                                       (TAO test OK =>
                                                         data1->user_B)

                                                              (timeout)
  #2  FIN-WAIT-1  <-- <SYN,ACK(FIN),CC=y,CC.ECHO=x> <--     CLOSE-WAIT*


  #3  FIN-WAIT-1      --> <ACK(SYN),FIN,CC=x> -->            CLOSE-WAIT


  #4  TIME-WAIT   <-- <ACK(FIN),data2,FIN,CC=y> <--            LAST-ACK
      (data2->user_A)

  #5  TIME_WAIT       --> <ACK(FIN),CC=x> -->                    CLOSED

        (timeout)
       CLOSED

                 Figure 3: Acknowledgment Timeout in Server


  2.3  Protocol Correctness

     This section fills in more details of the TAO mechanism and
     provides an informal sketch of why the T/TCP protocol works.

     CC values are 32-bit integers.  The TAO test requires the same
     kind of modular arithmetic that is used to compare two TCP
     sequence numbers.  We assume that the boundary between y < z and z
     < y for two CC values y and z occurs when they differ by 2**31,
     i.e., by half the total CC space.

     The essential requirement for correctness of T/TCP is this:

          CC values must advance at a rate slower than 2**31      [R1]
          counts per 2*MSL

     where MSL denotes the maximum segment lifetime in the Internet.
     The requirement [R1] is easily met with a 32-bit CC.  For example,
     it will allow 10**6 transactions per second with the very liberal
     MSL of 1000 seconds [RFC-1379].  This is well in excess of the



Braden                                                          [Page 8]

RFC 1644                    Transaction/TCP                    July 1994


     transaction rates achievable with current operating systems and
     network latency.

     Assume for the present that successive connections from client A
     to server B contain only monotonically increasing CC values.  That
     is, if x(i) and x(i+1) are CC values carried in two successive
     initial <SYN> segments from the same host, then x(i+1) > x(i).
     Assuming the requirement [R1], the CC space cannot wrap within the
     range of segments that can be outstanding at one time.  Therefore,
     those successive <SYN> segments from a given host that have not
     exceeded their MSL must contain an ordered set of CC values:

            x(1) < x(2) < x(3) ... < x(n),

     where the modular comparisons have been replaced by simple
     arithmetic comparisons. Here x(n) is the most recent acceptable
     <SYN>, which is cached by the server.  If the server host receives
     a <SYN> segment containing a CC option with value y where y >
     x(n), that <SYN> must be newer; an antique duplicate SYN with CC
     value greater than x(n) must have exceeded its MSL and vanished.
     Hence, monotonic CC values and the TAO test prevent erroneous
     replay of antique <SYN>s.

     There are two possible reasons for a client to generate non-
     monotonic CC values: (a) the client may have crashed and
     restarted, causing the generated CC values to jump backwards; or
     (b) the generated CC values may have wrapped around the finite
     space.  Wraparound may occur because CC generation is global to
     all connections.  Suppose that host A sends a transaction to B,
     then sends more than 2**31 transactions to other hosts, and
     finally sends another transaction to B.  From B's viewpoint, CC
     will have jumped backward relative to its cached value.

     In either of these two cases, the server may see the CC value jump
     backwards only after an interval of at least MSL since the last
     <SYN> segment from the same client host.  In case (a), client host
     restart, this is because T/TCP retains TCP's explicit "Quiet Time"
     of an MSL interval [STD-007].  In case (b). wrap around, [R1]
     ensures that a time of at least MSL must have passed before the CC
     space wraps around.  Hence, there is no possibility that a TAO
     test will succeed erroneously due to either cause of non-
     monotonicity; i.e., there is no chance of replays due to TAO.

     However, although CC values jumping backwards will not cause an
     error, it may cause a performance degradation due to unnecessary
     3WHS's.  This results from the generated CC values jumping
     backwards through approximately half their range, so that all
     succeeding TAO tests fail until the generated CC values catch up



Braden                                                          [Page 9]

RFC 1644                    Transaction/TCP                    July 1994


     to the cached value.  To avoid this degradation, a client host
     sends a CC.NEW option instead of a CC option in the case of either
     system restart or CC wraparound.  Receiving CC.NEW forces a 3WHS,
     but when this 3WHS completes successfully the server cache is
     updated to the new CC value.  To detect CC wraparound, the client
     must cache the last CC value it sent to each server.  It therefore
     maintains cache.CCsent[B] for each server B.  If this cached value
     is undefined or if it is larger than the next CC value generated
     at the client, then the client sends a CC.NEW instead of a CC
     option in the next SYN segment.

     This is illustrated in Figure 4, which shows the scenario for the
     first transaction from A to B after the client host A has crashed
     and recovered.  A similar sequence occurs if x is not greater than
     cache.CCsent[B], i.e., if there is a wraparound of the generated
     CC values.  Because segment #1 contains a CC.NEW option, the
     server host invalidates the cache entry and does a 3WHS; however,
     it still sets B's TCB.CCrecv for this connection to x.  TCP B uses
     this CCrecv value to validate the <ACK> segment (#3) that
     completes the 3WHS.  Receipt of this segment updates cache.CC[A],
     since the cache entry was previously undefined.  (If a 3WHS always
     updated the cache, then out-of-order SYN segments could cause the
     cached value to jump backwards, possibly allowing replays).
     Finally, the CC.ECHO option in the <SYN,ACK> segment #2 defines
     A's cache.CCsent entry.

     This algorithm delays updating cache.CCsent[] until the <SYN> has
     been ACK'd.  This allows the undefined cache.CCsent value to used
     as a a "first-time switch" to reliable resynchronization of the
     cached value at the server after a crash or wraparound.

     When we use the term "cache", we imply that the value can be
     discarded at any time without introducing erroneous behavior
     although it may degrade performance.

     (a)  If a server host receives an initial <SYN> from client A but
          has no cached value cache.CC[A], the server simply forces a
          3WHS to validate the <SYN> segment.

     (b)  If a client host has no cached value cache.CCsent[B] when it
          needs to send an initial <SYN> segment, the client simply
          sends a CC.NEW option in the segment.  This forces a 3WHS at
          the server.








Braden                                                         [Page 10]

RFC 1644                    Transaction/TCP                    July 1994


         TCP A  (Client)                                TCP B (Server)
         _______________                                ______________

         cache.CCsent[B]                                   cache.CC[A]
             V                                                  V

       (Crash and restart)
           [ ?? ]                                            [ x0 ]

       #1         --> <SYN, data1,CC.NEW=x> -->      (invalidate cache;
                                                           queue data1;
                                                       3-way handshake)

           [ ?? ]                                            [ ?? ]
       #2          <-- <SYN, ACK(data1),CC=y,CC.ECHO=x> <--
         (cache.CCsent[B]= x;)

           [ x ]                                             [ ?? ]

       #3                  --> <ACK(SYN),CC=x> -->       data1->user_B;
                                                        cache.CC[A]= x;

           [ x ]                                              [ x ]

                     Figure 4.  Client Host Restarting


     So far, we have considered only correctness of the TAO mechanism
     for bypassing the 3WHS.  We must also protect a connection against
     antique duplicate non-SYN segments.  In standard TCP, such
     protection is one of the functions of the TIME-WAIT state delay.
     (The other function is the TCP full-duplex close semantics, which
     we need to preserve; that is discussed below in Section 2.5).  In
     order to achieve a high rate of transaction processing, it must be
     possible to truncate this TIME-WAIT state delay without exposure
     to antique duplicate segments [RFC-1379].

     For short connections (e.g., transactions), the CC values assigned
     to each direction of the connection can be used to protect against
     antique duplicate non-SYN segments.  Here we define "short" as a
     duration less than MSL.  Suppose that there is a connection that
     uses the CC values TCB.CCsend = x and TCB.CCrecv = y.  By the
     requirement [R1], neither x nor y can be reused for a new
     connection from the same remote host for a time at least 2*MSL.
     If the connection has been in existence for a time less than MSL,
     then its CC values will not be reused for a period that exceeds
     MSL, and therefore all antique duplicates with that CC value must
     vanish before it is reused.  Thus, for "short" connections we can



Braden                                                         [Page 11]

RFC 1644                    Transaction/TCP                    July 1994


     guard against antique non-SYN segments by simply checking the CC
     value in the segment againsts TCB.CCrecv.  Note that this check
     does not use the monotonic property of the CC values, only that
     they not cycle in less than 2*MSL.  Again, the quiet time at
     system restart protects against errors due to crash with loss of
     state.

     If the connection duration exceeds MSL, safety from old duplicates
     still requires a TIME-WAIT delay of 2*MSL.  Thus, truncation of
     TIME-WAIT state is only possible for short connections.  (This
     problem has also been noticed by Shankar and Lee [ShankarLee93]).
     This difference in behavior for long and for short connections
     does create a slightly complex service model for applications
     using T/TCP.  An application has two different strategies for
     multiple connections.  For "short" connections, it should use a
     fixed port pair and use the T/TCP mechanism to get rapid and
     efficient transaction processing.  For connections whose durations
     are of the order of MSL or longer, it should use a different user
     port for each successive connection, as is the current practice
     with unmodified TCP.  The latter strategy will cause excessive
     overhead (due to TCB's in TIME-WAIT state) if it is applied to
     high-frequency short connections.  If an application makes the
     wrong choice, its attempt to open a new connection may fail with a
     "busy" error.  If connection durations may range between long and
     short, an application may have to be able to switch strategies
     when one fails.

  2.4  Truncating TIME-WAIT State

     Truncation of TIME-WAIT state is necessary to achieve high
     transaction rates.  As Figure 2 illustrates, a standard
     transaction leaves the client end of the connection in TIME-WAIT
     state.  This section explains the protocol implications of
     truncating TIME-WAIT state, when it is allowed (i.e., when the
     connection has been in existence for less than MSL).  In this
     case, the client host should be able to interrupt TIME-WAIT state
     to initiate a new incarnation of the same connection (i.e., using
     the same host and ports).  This will send an initial <SYN>
     segment.

     It is possible for the new <SYN> to arrive at the server before
     the retransmission state from the previous incarnation is gone, as
     shown in Figure 5.  Here the final <ACK> (segment #3) from the
     previous incarnation is lost, leaving retransmission state at B.
     However, the client received segment #2 and thinks the transaction
     completed successfully, so it can initiate a new transaction by
     sending <SYN> segment #4.  When this <SYN> arrives at the server
     host, it must implicitly acknowledge segment #2, signalling



Braden                                                         [Page 12]

RFC 1644                    Transaction/TCP                    July 1994


     success to the server application, deleting the old TCB, and
     creating a new TCB, as shown in Figure 5.  Still assuming that the
     new <SYN> is known to be valid, the server host marks the new
     connection half-synchronized and delivers data3 to the server
     application.  (The details of how this is accomplished are
     presented in Section 3.3.)

     The earlier discussion of the TAO mechanism assumed that the
     previous incarnation was closed before a new <SYN> arrived at the
     server.  However, TAO cannot be used to validate the <SYN> if
     there is still state from the previous incarnation, as shown in
     Figure 5; in this case, it would be exceedingly awkward to perform
     a 3WHS if the TAO test should fail.  Fortunately, a modified
     version of the TAO test can still be performed, using the state in
     the earlier TCB rather than the cached state.

     (A)  If the <SYN> segment contains a CC or CC.NEW option, the
          value SEG.CC from this option is compared with TCB.CCrecv,
          the CC value in the still-existing state block of the
          previous incarnation.  If SEG.CC > TCB.CCrecv, the new <SYN>
          segment must be valid.

     (B)  Otherwise, the <SYN> is an old duplicate and is simply
          discarded.

     Truncating TIME-WAIT state may be looked upon as composing an
     extended state machine that joins the state machines of the two
     incarnations, old and new.  It may be described by introducing new
     intermediate states (which we call I-states), with transitions
     that join the two diagrams and share some state from each.  I-
     states are detailed in Section 3.3.

     Notice also segment #2' in Figure 5.  TCP's mechanism to recover
     from half-open connections (see Figure 10 of [STD-007]) cause TCP
     A to send a RST when 2' arrives, which would incorrectly make B
     think that the previous transaction did not complete successfully.
     The half-open recovery mechanism must be defeated in this case, by
     A ignoring segment #2'.













Braden                                                         [Page 13]

RFC 1644                    Transaction/TCP                    July 1994



     TCP A  (Client)                                     TCP B (Server)
     _______________                                     ______________

     CLOSED                                                      LISTEN

 #1                --> <...,FIN,CC=x> -->                     LAST-ACK*

 #2         <-- <...ACK(FIN),data2,FIN,CC=y,CC.ECHO=x>  <---  LAST-ACK*
     TIME-WAIT
   (data2->user_A)


 #3  TIME-WAIT          --> <ACK(FIN),CC=x> --> X (DROP)

     (New Active Open)                           (New Passive Open)

 #4  SYN-SENT*    -->  <SYN, data3,CC=z> ...

                                                              LISTEN-LA
 #2' (discard) <-- <...ACK(FIN),data2,FIN,CC=y> <--- (retransmit)

 #4  SYN-SENT*        ... <SYN,data3,CC=z> -->            ESTABLISHED*
                                                   SYN OK (see text) =>
                                                           {Ack seg #2;
                                                        Delete old TCB;
                                                        Create new TCB;
                                                       data3 -> user_B;
                                                       cache.CC[A]= z;}

       Figure 5: Truncating TIME-WAIT State: SYN as Implicit ACK


  2.5  Transition to Standard TCP Operation

     T/TCP includes all normal TCP semantics, and it will continue to
     operate exactly like TCP when the particular assumptions for
     transactions do not hold.  There is no limit on the size of an
     individual transaction, and behavior of T/TCP should merge
     seamlessly from pure transaction operation as shown in Figure 2,
     to pure streaming mode for sending large files.  All the sequences
     shown in [STD-007] are still valid, and the inherent symmetry of
     TCP is preserved.

     Figure 6 shows a possible sequence when the request and response
     messages each require two segments.  Segment #2 is a non-SYN
     segment that contains a TCP option.  To avoid compatibility
     problems with existing TCP implementations, the client side should



Braden                                                         [Page 14]

RFC 1644                    Transaction/TCP                    July 1994


     send segment #2 only if cache.CCsent[B] is defined, i.e., only if
     host A knows that host B plays the new game.



         TCP A  (Client)                                 TCP B (Server)
         _______________                                 ______________

         CLOSED                                                  LISTEN


      #1  SYN-SENT*       --> <SYN,data1,CC=x>  -->        ESTABLISHED*
                                                      (TAO test OK =>
                                                       data1-> user)

      #2  SYN-SENT*       --> <data2,FIN,CC=x>  -->         CLOSE-WAIT*
                                                      (data2-> user)

                                                            CLOSE-WAIT*
      #3  FIN-WAIT-2  <-- <SYN,ACK(FIN),data3,CC=y,CC.ECHO=x> <--
           (data3->user)

      #4  TIME_WAIT   <-- <ACK(FIN),data4,FIN,CC=y> <--       LAST-ACK*
           (data4->user)

      #5  TIME-WAIT       --> <ACK(FIN),CC=x> -->                CLOSED


           Figure 6. Multi-Packet Request/Response Sequence

     Figure 7 shows a more complex example, one possible sequence with
     TAO combined with simultaneous open and close.  This may be
     compared with Figure 8 of [STD-007].


















Braden                                                         [Page 15]

RFC 1644                    Transaction/TCP                    July 1994



         TCP A                                                    TCP B
         _______________                                 ______________

         CLOSED                                                  CLOSED

     #1  SYN-SENT*         --> <SYN,data1,FIN,CC=x> ...

     #2  CLOSING*     <-- <SYN,data2,FIN,CC=y> <--            SYN-SENT*
         (TAO test OK =>
          data2->user_A

     #3  CLOSING*      --> <FIN,ACK(FIN),CC=x,CC.ECHO=y> ...

     #1'                       ... <SYN,data1,FIN,CC=x> -->    CLOSING*
                                                      (TAO test OK =>
                                                       data1->user_B)

     #4  TIME-WAIT   <-- <FIN,ACK(FIN),CC=y,CC.ECHO=x> <--     CLOSING*

     #5  TIME-WAIT    --> <ACK(FIN),CC=x> ...

     #3'              ... <FIN,ACK(FIN),CC=x,CC.ECHO=y> -->   TIME-WAIT

     #6  TIME-WAIT            <-- <ACK(FIN),CC=y> <---        TIME-WAIT

     #5' TIME-WAIT               ... <ACK(FIN),CC=x> -->      TIME-WAIT

         (timeout)                                            (timeout)
           CLOSED                                                CLOSED

                 Figure 7: Simultaneous Open and Close



















Braden                                                         [Page 16]

RFC 1644                    Transaction/TCP                    July 1994


3.  FUNCTIONAL SPECIFICATION

  3.1  Data Structures

     A connection count is an unsigned 32-bit integer, with the value
     zero excluded.  Zero is used to denote an undefined value.

     A host maintains a global connection count variable CCgen, and
     each connection control block (TCB) contains two new connection
     count variables, TCB.CCsend and TCB.CCrecv.  Whenever a TCB is
     created for the active or passive end of a new connection, CCgen
     is incremented by 1 and placed in TCB.CCsend of the TCB; however,
     if the previous CCgen value was 0xffffffff (-1), then the next
     value should be 1.  TCB.CCrecv is initialized to zero (undefined).

     T/TCP adds a per-host cache to TCP.  An entry in this cache for
     foreign host fh includes two CC values, cache.CC[fh] and
     cache.CCsent[fh].  It may include other values, as discussed in
     Sections 4.3 and 4.4.  According to [STD-007], a TCP is not
     permitted to send a segment larger than the default size 536,
     unless it has received a larger value in an MSS (Maximum Segment
     Size) option.  This could constrain the client to use the default
     MSS of 536 bytes for every request.  To avoid this constraint, a
     T/TCP may cache the MSS option values received from remote hosts,
     and we allow a TCP to use a cached MSS option value for the
     initial SYN segment.

     When the client sends an initial <SYN> segment containing data, it
     does not have a send window for the server host.  This is not a
     great difficulty; we simply define a default initial window; our
     current suggestion is 4K.  Such a non-zero default should be be
     conditioned upon the existence of a cached connection count for
     the foreign host, so that data may be included on an initial SYN
     segment only if cache.CC[foreign host] is non-zero.

     In TCP, the window is dynamically adjusted to provide congestion
     control/avoidance [Jacobson88].  It is possible that a particular
     path might not be able to absorb an initial burst of 4096 bytes
     without congestive losses.  If this turns out to be a problem, it
     should be possible to cache the congestion threshold for the path
     and use this value to determine the maximum size of the initial
     packet burst created by a request.

  3.2  New TCP Options

     Three new TCP options are defined: CC, CC.NEW, and CC.ECHO.  Each
     carries a connection count SEG.CC.  The complete rules for sending
     and processing these options are given in Section 3.4 below.



Braden                                                         [Page 17]

RFC 1644                    Transaction/TCP                    July 1994


     CC Option

        Kind: 11

        Length: 6

           +--------+--------+--------+--------+--------+--------+
           |00001011|00000110|    Connection Count:  SEG.CC      |
           +--------+--------+--------+--------+--------+--------+
            Kind=11  Length=6

        This option may be sent in an initial SYN segment, and it may
        be sent in other segments if a CC or CC.NEW option has been
        received for this incarnation of the connection.  Its SEG.CC
        value is the TCB.CCsend value from the sender's TCB.

     CC.NEW Option

        Kind: 12

        Length: 6

           +--------+--------+--------+--------+--------+--------+
           |00001100|00000110|    Connection Count:  SEG.CC      |
           +--------+--------+--------+--------+--------+--------+
            Kind=12  Length=6

        This option may be sent instead of a CC option in an initial
        <SYN> segment (i.e., SYN but not ACK bit), to indicate that the
        SEG.CC value may not be larger than the previous value.  Its
        SEG.CC value is the TCB.CCsend value from the sender's TCB.

     CC.ECHO Option

        Kind: 13

        Length: 6

           +--------+--------+--------+--------+--------+--------+
           |00001101|00000110|    Connection Count:  SEG.CC      |
           +--------+--------+--------+--------+--------+--------+
            Kind=13  Length=6

        This option must be sent (in addition to a CC option) in a
        segment containing both a SYN and an ACK bit, if the initial
        SYN segment contained a CC or CC.NEW option.  Its SEG.CC value
        is the SEG.CC value from the initial SYN.




Braden                                                         [Page 18]

RFC 1644                    Transaction/TCP                    July 1994


        A CC.ECHO option should be sent only in a <SYN,ACK> segment and
        should be ignored if it is received in any other segment.

  3.3  Connection States

     T/TCP requires new connection states and state transitions.
     Figure 8 shows the resulting finite state machine; see [RFC-1379]
     for a detailed development.  If all state names ending in stars
     are removed from Figure 8, the state diagram reduces to the
     standard TCP state machine (see Figure 6 of [STD-007]), with two
     exceptions:

     *    STD-007 shows a direct transition from SYN-RECEIVED to FIN-
          WAIT-1 state when the user issues a CLOSE call.  This
          transition is suspect; a more accurate description of the
          state machine would seem to require the intermediate SYN-
          RECEIVED* state shown in Figure 8.

     *    In STD-007, a user CLOSE call in SYN-SENT state causes a
          direct transition to CLOSED state.  The extended diagram of
          Figure 8 forces the connection to open before it closes,
          since calling CLOSE to terminate the request in SYN-SENT
          state is normal behavior for a transaction client.  In the
          case that no data has been sent in SYN-SENT state, it is
          reasonable for a user CLOSE call to immediately enter CLOSED
          state and delete the TCB.

     Each of the new states in Figure 8 bears a starred name, created
     by suffixing a star onto a standard TCP state.  Each "starred"
     state bears a simple relationship to the corresponding "unstarred"
     state.

     o    SYN-SENT* and SYN-RECEIVED* differ from the SYN-SENT and
          SYN-RECEIVED state, respectively, in recording the fact that
          a FIN needs to be sent.

     o    The other starred states indicate that the connection is
          half-synchronized (hence, a SYN bit needs to be sent).













Braden                                                         [Page 19]

RFC 1644                    Transaction/TCP                    July 1994


     ________      g        ________
    |        |<------------|        |
    | CLOSED |------------>| LISTEN |
    |________|  h    ------|________|
         |          /        |     |
         |         /        i|    j|
         |        /          |     |
        a|     a'/           |    _V______               ________
         |      /     j      |   |ESTAB-  |       e'    | CLOSE- |
         |     /  -----------|-->| LISHED*|------------>|   WAIT*|
         |    /  /           |   |________|             |________|
         |   /  /            |    |     |                |     |
         |  /  /             |    |    c|              d'|    c|
     ____V_V_ /       _______V    |   __V_____           |   __V_____
    | SYN-   |   b'  |  SYN-  |c  |  |ESTAB-  |  e       |  | CLOSE- |
    |   SENT |------>|RECEIVED|---|->|  LISHED|----------|->|   WAIT |
    |________|       |________|   |  |________|          |  |________|
       |               |          |     |                |        |
       |               |          |     |              __V_____   |
       |               |          |     |             | LAST-  |  |
     d'|             d'|        d'|    d|             |  ACK*  |  |
       |               |          |     |             |________|  |
       |               |          |     |                    |    |
       |               |    ______V_    |        ________    |c'  |d
       |          k    |   |  FIN-  |   |  e''' |        |   |    |
       |        -------|-->| WAIT-1*|---|------>|CLOSING*|   |    |
       |       /       |   |________|   |       |________|   |    |
       |      /        |          |     |            |       |    |
       |     /         |        c'|     |          c'|       |    |
    ___V___ /      ____V___       V_____V_       ____V___    V____V__
   | SYN-   | b'' |  SYN-  |  c  |  FIN-  | e'' |        |  | LAST-  |
   |  SENT* |---->|RECEIVD*|---->| WAIT-1 |---->|CLOSING |  |   ACK  |
   |________|     |________|     |________|     |________|  |________|
                                       |               |           |
                                      f|              f|         f'|
                                    ___V____       ____V___     ___V____
                                   |  FIN-  | e   |TIME-   | T |        |
                                   | WAIT-2 |---->|   WAIT |-->| CLOSED |
                                   |________|     |________|   |________|


                Figure 8A: Basic T/TCP State Diagram









Braden                                                         [Page 20]

RFC 1644                    Transaction/TCP                    July 1994


   ________________________________________________________________
  |                                                                |
  |        Label          Event / Action                           |
  |        _____          ________________________                 |
  |                                                                |
  |          a            Active OPEN / create TCB, snd SYN        |
  |          a'           Active OPEN / snd SYN                    |
  |          b            rcv SYN [no TAO]/ snd ACK(SYN)           |
  |          b'           rcv SYN [no TAO]/ snd SYN,ACK(SYN)       |
  |          b''          rcv SYN [no TAO]/ snd SYN,FIN,ACK(SYN)   |
  |          c            rcv ACK(SYN) /                           |
  |          c'           rcv ACK(SYN) / snd FIN                   |
  |          d            CLOSE / snd FIN                          |
  |          d'           CLOSE / snd SYN,FIN                      |
  |          e            rcv FIN / snd ACK(FIN)                   |
  |          e'           rcv FIN / snd SYN,ACK(FIN)               |
  |          e''          rcv FIN / snd FIN,ACK(FIN)               |
  |          e'''         rcv FIN / snd SYN,FIN,ACK(FIN)           |
  |          f            rcv ACK(FIN) /                           |
  |          f'           rcv ACK(FIN) / delete TCB                |
  |          g            CLOSE / delete TCB                       |
  |          h            passive OPEN / create TCB                |
  |          i (= b')     rcv SYN [no TAO]/ snd SYN,ACK(SYN)       |
  |          j            rcv SYN [TAO OK] / snd SYN,ACK(SYN)      |
  |          k            rcv SYN [TAO OK] / snd SYN,FIN,ACK(SYN)  |
  |          T            timeout=2MSL / delete TCB                |
  |                                                                |
  |                                                                |
  |          Figure 8B.  Definition of State Transitions           |
  |________________________________________________________________|

     This simple correspondence leads to an alternative state model,
     which makes it easy to incorporate the new states in an existing
     implementation.  Each state in the extended FSM is defined by the
     triplet:

         (old_state, SENDSYN, SENDFIN)

     where 'old_state' is a standard TCP state and SENDFIN and SENDSYN
     are Boolean flags see Figure 9.  The SENDFIN flag is turned on (on
     the client side) by a SEND(...  EOF=YES) call, to indicate that a
     FIN should be sent in a state which would not otherwise send a
     FIN.  The SENDSYN flag is turned on when the TAO test succeeds to
     indicate that the connection is only half synchronized; as a
     result, a SYN will be sent in a state which would not otherwise
     send a SYN.





Braden                                                         [Page 21]

RFC 1644                    Transaction/TCP                    July 1994


      ________________________________________________________________
     |                                                                |
     |   New state:         Old_state:    SENDSYN:      SENDFIN:      |
     |  __________         __________      ______        ______       |
     |                                                                |
     |  SYN-SENT*     =>   SYN-SENT        FALSE          TRUE        |
     |                                                                |
     |  SYN-RECEIVED* =>   SYN-RECEIVED    FALSE          TRUE        |
     |                                                                |
     |  ESTABLISHED*  =>   ESTABLISHED      TRUE         FALSE        |
     |                                                                |
     |  CLOSE-WAIT*   =>   CLOSE-WAIT       TRUE         FALSE        |
     |                                                                |
     |  LAST-ACK*     =>   LAST-ACK         TRUE         FALSE        |
     |                                                                |
     |  FIN-WAIT-1*   =>   FIN-WAIT-1       TRUE         FALSE        |
     |                                                                |
     |  CLOSING*      =>   CLOSING          TRUE         FALSE        |
     |                                                                |
     |                                                                |
     |           Figure 9: Alternative State Definitions              |
     |________________________________________________________________|


     Here is a more complete description of these boolean variables.

     *    SENDFIN

          SENDFIN is turned on by the SEND(...EOF=YES) call, and turned
          off when FIN-WAIT-1 state is entered.  It may only be on in
          SYN-SENT* and SYN-RECEIVED* states.

          SENDFIN has two effects.  First, it causes a FIN to be sent
          on the last segment of data from the user.  Second, it causes
          the SYN-SENT[*] and SYN-RECEIVED[*] states to transition
          directly to FIN-WAIT-1, skipping ESTABLISHED state.

     *    SENDSYN

          The SENDSYN flag is turned on when an initial SYN segment is
          received and passes the TAO test.  SENDSYN is turned off when
          the SYN is acknowledged (specifically, when there is no RST
          or SYN bit and SEG.UNA < SND.ACK).

          SENDSYN has three effects.  First, it causes the SYN bit to
          be set in segments sent with the initial sequence number
          (ISN).  Second, it causes a transition directly from LISTEN
          state to ESTABLISHED*, if there is no FIN bit, or otherwise



Braden                                                         [Page 22]

RFC 1644                    Transaction/TCP                    July 1994


          to CLOSE-WAIT*.  Finally, it allows data to be received and
          processed (passed to the application) even if the segment
          does not contain an ACK bit.

     According to the state model of the basic TCP specification [STD-
     007], the server side must explicitly issued a passive OPEN call,
     creating a TCB in LISTEN state, before an initial SYN may be
     accepted.  To accommodate truncation of TIME-WAIT state within
     this model, it is necessary to add the five "I-states" shown in
     Figure 10.  The I-states are:  LISTEN-LA, LISTEN-LA*, LISTEN-CL,
     LISTEN-CL*, and LISTEN-TW.  These are 'bridge states' between two
     successive the state diagrams of two successive incarnations.
     Here D is the duration of the previous connection, i.e., the
     elapsed time since the connection opened.  The transitions labeled
     with lower-case letters are taken from Figure 8.

     Fortunately, many TCP implementations have a different user
     interface model, in which the use can issue a generic passive open
     ("listen") call; thereafter, when a matching initial SYN arrives,
     a new TCB in LISTEN state is automatically generated.  With this
     user model, the I-states of Figure 10 are unnecessary.

     For example, suppose an initial SYN segment arrives for a
     connection that is in LAST-ACK state.  If this segment carries a
     CC option and if SEG.CC is greater than TCB.CCrecv in the existing
     TCB, the "q" transition shown in Figure 10 can be made directly
     from the LAST-ACK state.  That is, the previous TCB is processed
     as if an ACK(FIN) had arrived, causing the user to be notified of
     a successful CLOSE and the TCB to be deleted.  Then processing of
     the new SYN segment is repeated, using a new TCB that is generated
     automatically.  The same principle can be used to avoid
     implementing any of the I-states.



















Braden                                                         [Page 23]

RFC 1644                    Transaction/TCP                    July 1994


______________________________
| P: Passive OPEN /            |
|                              |
| Q: Rcv SYN, special TAO test |                     d'|     d|
|     (see text) / Delete TCB, |    ________        ___V____  |
|     create TCB, snd SYN      |   |LISTEN- |  P   | LAST-  | |
|                              |   |   LA*  |<-----|  ACK*  | |
| Q': (same as Q) if D < MSL   |   |________|      |________| |
|                              |    |     |            |      |
| R: Rcv ACK(FIN) / Delete TCB,|   Q|   c'|          c'|      |
|     create TCB               |    |     |            |      |
|                              |    |  ___V____        V______V
| S': Active OPEN if D < MSL / |    | |LISTEN- |  P   | LAST-  |
|     Delete TCB, create TCB,  |    | |  LA    |<-----|   ACK  |
|     snd SYN.                 |    | |________|      |________|
|______________________________|    |  |     |            |
                                   | Q|    R|           f|
        ________        ________   |  |     |            |
  e''' |        |  P   |LISTEN- |  |  |     V            V
  ---->|CLOSING*|----->|   CL*  |  |  |   LISTEN       CLOSED
       |________|      |________|  |  |
            |            |   Q|    |  |
          c'|          c'|    V    V  V
            |            |   ESTABLISHED*
        ____V___         V_______
   e'' |        |  P    |LISTEN- |
  ---->|CLOSING |------>|   CL   |
       |________|       |________|
            |           R|     Q|
           f|            V      V
            |         LISTEN   ESTABLISHED*
        ____V___                _________
    e  |TIME-   |  P           | LISTEN- |
  ---->|   WAIT |------------->|    TW   |
       |________|              |_________|
       /     |                  |    |  |
    S'/     T|                 T|  Q'|  |S'
     |  _____V_      h     _____V__  |  V
     | |        |-------->|        | |  SYN-SENT
     | | CLOSED |<--------| LISTEN | |
     | |________|   ------|________| |
     |   |        /        |   j|    |
     |  a|     a'/        i|    V    V
     |   |      /          |   ESTABLISHED*
     V   V     V           V
       SYN-SENT           ...

            Figure 10: I-States for TIME-WAIT Truncation



Braden                                                         [Page 24]

RFC 1644                    Transaction/TCP                    July 1994


  3.4  T/TCP Processing Rules

     This section summarizes the rules for sending and processing the
     T/TCP options.

     INITIALIZATION

        I1:  All cache entries cache.CC[*] and cache.CCsent[*] are
             undefined (zero) when a host system initializes, and CCgen
             is set to a non-zero value.

        I2:  A new TCB is initialized with TCB.CCrecv = 0 and
             TCB.CCsend = current CCgen value; CCgen is then
             incremented.  If the result is zero, CCgen is incremented
             again.


     SENDING SEGMENTS

        S1:  Sending initial <SYN> Segment

             An initial <SYN> segment is sent with either a CC option
             or a CC.NEW option.  If cache.CCsent[fh] is undefined or
             if TCB.CCsend < cache.CCsent[fh], then the option
             CC.NEW(TCB.CCsend) is sent and cache.CCsent[fh] is set to
             zero.  Otherwise, the option CC(TCB.CCsend) is sent and
             cache.CCsent[fh] is set to CCsend.

        S2:  Sending <SYN,ACK> Segment

             If the sender's TCB.CCrecv is non-zero, then a <SYN,ACK>
             segment is sent with both a CC(TCB.CCsend) option and a
             CC.ECHO (TCB.CCrecv) option.

        S3:  Sending Non-SYN Segment

             A non-SYN segment is sent with a CC(TCB.CCsend) option if
             the TCB.CCrecv value is non-zero, or if the state is SYN-
             SENT or SYN-SENT* and cache.CCsent[fh] is non-zero (this
             last is required to send CC options in the segments
             following the first of a multi-segment request message;
             see segment #2 in Figure 6).

     RECEIVING INITIAL <SYN> SEGMENT

        Suppose that a server host receives a segment containing a SYN
        bit but no ACK bit in LISTEN, SYN-SENT, or SYN-SENT* state.




Braden                                                         [Page 25]

RFC 1644                    Transaction/TCP                    July 1994


        R1.1:If the <SYN> segment contains a CC or CC.NEW option,
             SEG.CC is stored into TCB.CCrecv of the new TCB.

        R1.2:If the segment contains a CC option and if the local cache
             entry cache.CC[fh] is defined and if
             SEG.CC > cache.CC[fh], then the TAO test is passed and the
             connection is half-synchronized in the incoming direction.
             The server host replaces the cache.CC[fh] value by SEG.CC,
             passes any data in the segment to the user, and processes
             a FIN bit if present.

             Acknowledgment of the SYN is delayed to allow piggybacking
             on a response segment.

        R1.3:If SEG.CC <= cache.CC[fh] (the TAO test has failed), or if
             cache.CC[fh] is undefined, or if there is no CC option
             (but possibly a CC.NEW option), the server host proceeds
             with normal TCP processing.  If the connection was in
             LISTEN state, then the host executes a 3-way handshake
             using the standard TCP rules.  In the SYN-SENT or SYN-
             SENT* state (i.e., the simultaneous open case), the TCP
             sends ACK(SYN) and enters SYN-RECEIVED state.

        R1.4:If there is no CC option (but possibly a CC.NEW option),
             then the server host sets cache.CC[fh] undefined (zero).
             Receiving an ACK for a SYN (following application of rule
             R1.3) will update cache.CC[fh], by rule R3.

        Suppose that an initial <SYN> segment containing a CC or CC.NEW
        option arrives in an I-state (i.e., a state with a name of the
        form 'LISTEN-xx', where xx is one of TW, LA, L8, CL, or CL*):

        R1.5:If the state is LISTEN-TW, then the duration of the
             current connection is compared with MSL.  If duration >
             MSL then send a RST:

               <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

             drop the packet, and return.

        R1.6:Perform a special TAO test: compare SEG.CC with
             TCB.CCrecv.

             If SEG.CC is greater, then processing is performed as if
             an ACK(FIN) had arrived:  signal the application that the
             previous close completed successfully and delete the
             previous TCB.  Then create a new TCB in LISTEN state and
             reprocess the SYN segment against the new TCB.



Braden                                                         [Page 26]

RFC 1644                    Transaction/TCP                    July 1994


             Otherwise, silently discard the segment.

     RECEIVING <SYN,ACK> SEGMENT

        Suppose that a client host receives a <SYN,ACK> segment for a
        connection in SYN-SENT or SYN-SENT* state.

        R2.1:If SEG.ACK is not acceptable (see [STD-007]) and
             cache.CCsent[fh] is non-zero, then simply drop the segment
             without sending a RST.  (The new SYN that the client is
             (re-)transmitting will eventually acknowledge any
             outstanding data and FIN at the server.)

        R2.2:If the segment contains a CC.ECHO option whose SEG.CC is
             different from TCB.CCsend, then the segment is
             unacceptable and is dropped.

        R2.3:If cache.CCsent[fh] is zero, then it is set to TCB.CCsend.

        R2.4:If the segment contains a CC option, its SEG.CC is stored
             into TCB.CCrecv of the TCB.

     RECEIVING <ACK> SEGMENT IN SYN-RECEIVED STATE

        R3.1:If a segment contains a CC option whose SEG.CC differs
             from TCB.CCrecv, then the segment is unacceptable and is
             dropped.

        R3.2:Otherwise, a 3-way handshake has completed successfully at
             the server side.  If the segment contains a CC option and
             if cache.CC[fh] is zero, then cache.CC[fh] is replaced by
             TCB.CCrecv.

     RECEIVING OTHER SEGMENT

        R4:  Any other segment received with a CC option is
             unacceptable if SEG.CC differs from TCB.CCrecv.  However,
             a RST segment is exempted from this test.

     OPEN REQUEST

        To allow truncation of TIME-WAIT state, the following changes
        are made in the state diagram for OPEN requests (see Figure
        10):

        O1.1:A new passive open request is allowed in any of the
             states: LAST-ACK, LAST-ACK*, CLOSING, CLOSING*, or TIME-
             WAIT.  This causes a transition to the corresponding I-



Braden                                                         [Page 27]

RFC 1644                    Transaction/TCP                    July 1994


             state (see Figure 10), which retains the previous state,
             including the retransmission queue and timer.

        O1.2 A new active open request is allowed in TIME-WAIT or
             LISTEN-TW state, if the elapsed time since the current
             connection opened is less than MSL.  The result is to
             delete the old TCB and create a new one, send a new SYN
             segment, and enter SYN-SENT or SYN-SENT* state (depending
             upon whether or not the SYN segment contains a FIN bit).

     Finally, T/TCP has a provision to improve performance for the case
     of a client that "sprays" transactions rapidly using many
     different server hosts and/or ports.  If TCB.CCrecv in the TCB is
     non-zero (and still assuming that the connection duration is less
     than MSL), then the TIME-WAIT delay may be set to min(K*RTO,
     2*MSL).  Here RTO is the measured retransmission timeout time and
     the constant K is currently specified to be 8.

  3.5  User Interface

     STD-007 defines a prototype user interface ("transport service")
     that implements the virtual circuit service model [STD-007,
     Section 3.8].  One addition to this interface in required for
     transaction processing: a new Boolean flag "end-of-file" (EOF),
     added to the SEND call.  A generic SEND call becomes:

       Send

         Format:  SEND (local connection name, buffer address,
              byte count, PUSH flag, URGENT flag, EOF flag [,timeout])

     The following text would be added to the description of SEND in
     [STD-007]:

         If the EOF (End-Of-File) flag is set, any remaining queued
         data is pushed and the connection is closed.  Just as with the
         CLOSE call, all data being sent is delivered reliably before
         the close takes effect, and data may continue to be received
         on the connection after completion of the SEND call.

     Figure 8A shows a skeleton sequence of user calls by which a
     client could initiate a transaction.  The SEND call initiates a
     transaction request to the foreign socket (host and port)
     specified in the passive OPEN call.  The predicate "recv_EOF"
     tests whether or not a FIN has been received on the connection;
     this might be implemented using the STATUS command of [STD-007],
     or it might be implemented by some operating-system-dependent
     mechanism.  When recv_EOF returns TRUE, the connection has been



Braden                                                         [Page 28]

RFC 1644                    Transaction/TCP                    July 1994


     completely closed and the client end of the connection is in
     TIME-WAIT state.

    __________________________________________________________________
   |                                                                  |
   |                                                                  |
   | OPEN(local_port, foreign_socket, PASSIVE) -> conn_name;          |
   |                                                                  |
   | SEND(conn_name, request_buffer, length,                          |
   |                                    PUSH=YES, URG=NO, EOF=YES);   |
   |                                                                  |
   | while (not recv_EOF(conn_name)) {                                |
   |                                                                  |
   |    RECEIVE(conn_name, reply_buffer, length) -> count;            |
   |                                                                  |
   |    <Process reply_buffer.>                                       |
   | }                                                                |
   |                                                                  |
   |                                                                  |
   |             Figure 8A: Client Side User Interface                |
   |__________________________________________________________________|

     If a client is going to send a rapid series of such requests to
     the same foreign_socket, it should use the same local_port for
     all.  This will allow truncation of TIME-WAIT state.  Otherwise,
     it could leave local_port wild, allowing TCP to choose successive
     local ports for each call, realizing that each transaction may
     leave behind a significant control block overhead in the kernel.

     Figure 8B shows a basic sequence of server calls.  The server
     application waits for a request to arrive and then reads and
     processes it until a FIN arrives (recv_EOF returns TRUE).  At this
     time, the connection is half-closed.  The SEND call used to return
     the reply completes the close in the other direction.  It should
     be noted that the use of SEND(... EOF=YES) in Figure 4B instead of
     a SEND, CLOSE sequence is only an optimization; it allows
     piggybacking the FIN in order to minimize the number of segments.
     It should have little effect on transaction latency.













Braden                                                         [Page 29]

RFC 1644                    Transaction/TCP                    July 1994


    __________________________________________________________________
   |                                                                  |
   |                                                                  |
   | OPEN(local_port, ANY_SOCKET, PASSIVE) -> conn_name;              |
   |                                                                  |
   | <Wait for connection to open.>                                   |
   |                                                                  |
   | STATUS(conn_name) -> foreign_socket                              |
   |                                                                  |
   | while (not recv_EOF(conn_name)) {                                |
   |                                                                  |
   |    RECEIVE(conn_name, request_buffer, length) -> count;          |
   |                                                                  |
   |     <Process request_buffer.>                                    |
   | }                                                                |
   |                                                                  |
   | <Compute reply and store into reply_buffer.>                     |
   |                                                                  |
   | SEND(conn_name, reply_buffer, length,                            |
   |                                  PUSH=YES, URG=NO, EOF=YES);     |
   |                                                                  |
   |                                                                  |
   |             Figure 8B: Server Side User Interface                |
   |__________________________________________________________________|


4.  IMPLEMENTATION ISSUES

  4.1  RFC-1323 Extensions

     A recently-proposed set of TCP enhancements [RFC-1323] defines a
     Timestamps option, which carries two 32-bit timestamp values.
     This option is used to accurately measure round-trip time (RTT).
     The same option is also used in a procedure known as "PAWS"
     (Protect Against Wrapped Sequence) to prevent erroneous data
     delivery due to a combination of old duplicate segments and
     sequence number reuse at very high bandwidths.  The approach to
     transactions specified in this memo is independent of the RFC-1323
     enhancements, but implementation of RFC-1323 is desirable for all
     TCP's.

     The RFC-1323 extensions share several common implementation issues
     with the T/TCP extensions.  Both require that TCP headers carry
     options.  Accommodating options in TCP headers requires changes in
     the way that the maximum segment size is determined, to prevent
     inadvertent IP fragmentation.  Both require some additional state
     variable in the TCB, which may or may not cause implementation
     difficulties.



Braden                                                         [Page 30]

RFC 1644                    Transaction/TCP                    July 1994


  4.2  Minimal Packet Sequence

     Most TCP implementations will require some small modifications to
     allow the minimal packet sequence for a transaction shown in
     Figure 2.

     Many TCP implementations contain a mechanism to delay
     acknowledgments of some subset of the data segments, to cut down
     on the number of acknowledgment segments and to allow piggybacking
     on the reverse data flow (typically character echoes).  To obtain
     minimal packet exchanges for transactions, it is necessary to
     delay the acknowledgment of some control bits, in an analogous
     manner.  In particular, the <SYN,ACK> segment that is to be sent
     in ESTABLISHED* or CLOSE-WAIT* state should be delayed.  Note that
     the amount of delay is determined by the minimum RTO at the
     transmitter; it is a parameter of the communication protocol,
     independent of the application.  We propose to use the same delay
     parameter (and if possible, the same mechanism) that is used for
     delaying data acknowledgments.

     To get the FIN piggy-backed on the reply data (segment #3 in
     Figure 2), thos implementations that have an implied PUSH=YES on
     all SEND calls will need to augment the user interface so that
     PUSH=NO can be set for transactions.

  4.3  RTT Measurement

     Transactions introduce new issues into the problem of measuring
     round trip times [Jacobson88].

     (a)  With the minimal 3-segment exchange, there can be exactly one
          RTT measurement in each direction for each transaction.
          Since dynamic estimation of RTT cannot take place within a
          single transaction, it must take place across successive
          transactions.  Therefore, cacheing the measured RTT and RTT
          variance values is essential for transaction processing; in
          normal virtual circuit communication, such cacheing is only
          desirable.

     (b)  At the completion of a transaction, the values for RTT and
          RTT variance that are retained in the cache must be some
          average of previous values with the values measured during
          the transaction that is completing.  This raises the question
          of the time constant for this average; quite different
          dynamic considerations hold for transactions than for file
          transfers, for example.

     (c)  An RTT measurement by the client will yield the value:



Braden                                                         [Page 31]

RFC 1644                    Transaction/TCP                    July 1994


                 T = RTT + min(SPT, ATO),

          where SPT (server processing time) was defined in the
          introduction, and ATO is the timeout period for sending a
          delayed ACK.  Thus, the measured RTT includes SPT, which may
          be arbitrarily variable; however, the resulting variability
          of the measured T cannot exceed ATO. (In a popular TCP
          implementation, for example, ATO = 200ms, so that the
          variance of SPT makes a relatively small contribution to the
          variance of RTT.)

     (d)  Transactions sample the RTT at random times, which are
          determined by the client and the server applications rather
          than by the network dynamics.  When there are long pauses
          between transactions, cached path properties will be poor
          predictors of current values in the network.

     Thus, the dynamics of RTT measurement for transactions differ from
     those for virtual circuits.  RTT measurements should work
     correctly for very short connections but reduce to the current TCP
     algorithms for long-lasting connections.  Further study is this
     issue is needed.

  4.4  Cache Implementation

     This extension requires a per-host cache of connection counts.
     This cache may also contain values of the smoothed RTT, RTT
     variance, congestion avoidance threshold, and MSS values.
     Depending upon the implementation details, it may be simplest to
     build a new cache for these values; another possibility is to use
     the routing cache that should already be included in the host
     [RFC-1122].

     Implementation of the cache may be simplified because it is
     consulted only when a connection is established; thereafter, the
     CC values relevant to the connection are kept in the TCB.  This
     means that a cache entry may be safely reused during the lifetime
     of a connection, avoiding the need for locking.

  4.5  CPU Performance

     TCP implementations are customarily optimized for streaming of
     data at high speeds, not for opening or closing connections.
     Jacobson's Header Prediction algorithm [Jacobson90] handles the
     simple common cases of in-sequence data and ACK segments when
     streaming data.  To provide good performance for transactions, an
     implementation might be able to do an analogous "header
     prediction" specifically for the minimal request and the response



Braden                                                         [Page 32]

RFC 1644                    Transaction/TCP                    July 1994


     segments.

     The overhead of UDP provides a lower bound on the overhead of
     TCP-based transaction processing.  It will probably not be
     possible to reach this bound for TCP transactions, since opening a
     TCP connection involves creating a significant amount of state
     that is not required by UDP.

     McKenney and Dove [McKenney92] have pointed out that transaction
     processing applications of TCP can stress the performance of the
     demultiplexing algorithm, i.e., the algorithm used to look up the
     TCB when a segment arrives.  They advocate the use of hash-table
     techniques rather than a linear search.  The effect of
     demultiplexing on performance may become especially acute for a
     transaction client using the extended TCP described here, due to
     TCB's left in TIME-WAIT state.  A high rate of transactions from a
     given client will leave a large number of TCB's in TIME-WAIT
     state, until their timeout expires.  If the TCP implementation
     uses a linear search for demultiplexing, all of these control
     blocks must be traversed in order to discover that the new
     association does not exist.  In this circumstance, performance of
     a hash table lookup should not degrade severely due to
     transactions.

  4.6  Pre-SYN Queue

     Suppose that segment #1 in Figure 4 is lost in the network; when
     segment #2 arrives in LISTEN state, it will be ignored by the TCP
     rules (see [STD-007] p.66, "fourth other text and control"), and
     must be retransmitted.  It would be possible for the server side
     to queue any ACK-less data segments received in LISTEN state and
     to "replay" the segments in this queue when a SYN segment does
     arrive.  A data segment received with an ACK bit, which is the
     normal case for existing TCP's, would still a generate RST
     segment.

     Note that queueing segments in LISTEN state is different from
     queueing out-of-order segments after the connection is
     synchronized.  In LISTEN state, the sequence number corresponding
     to the left window edge is not yet known, so that the segment
     cannot be trimmed to fit within the window before it is queued.
     In fact, no processing should be done on a queued segment while
     the connection is still in LISTEN state.  Therefore, a new "pre-
     SYN queue" would be needed.  A timeout would be required, to flush
     the Pre-SYN Queue in case a SYN segment was not received.

     Although implementation of a pre-SYN queue is not difficult in BSD
     TCP, its limited contribution to throughput probably does not



Braden                                                         [Page 33]

RFC 1644                    Transaction/TCP                    July 1994


     justify the effort.

6.  ACKNOWLEDGMENTS

  I am very grateful to Dave Clark for pointing out bugs in RFC-1379
  and for helping me to clarify the model.  I also wish to thank Greg
  Minshall, whose probing questions led to further elucidation of the
  issues in T/TCP.

7.  REFERENCES

   [Jacobson88] Jacobson, V., "Congestion Avoidance and Control", ACM
     SIGCOMM '88, Stanford, CA, August 1988.

   [Jacobson90] Jacobson, V., "4BSD Header Prediction", Comp Comm
     Review, v. 20, no. 2, April 1990.

   [McKenney92]  McKenney, P., and K. Dove, "Efficient Demultiplexing
     of Incoming TCP Packets", ACM SIGCOMM '92, Baltimore, MD, October
     1992.

   [RFC-1122]  Braden, R., Ed., "Requirements for Internet Hosts --
     Communications Layers", STD-3, RFC-1122, USC/Information Sciences
     Institute, October 1989.

   [RFC-1323]  Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
     for High Performance, RFC-1323, LBL, USC/Information Sciences
     Institute, Cray Research, February 1991.

   [RFC-1379]  Braden, R., "Transaction TCP -- Concepts", RFC-1379,
     USC/Information Sciences Institute, September 1992.

   [ShankarLee93]  Shankar, A. and D. Lee, "Modulo-N Incarnation
     Numbers for Cache-Based Transport Protocols", Report CS-TR-3046/
     UIMACS-TR-93-24, University of Maryland, March 1993.

   [STD-007]  Postel, J., "Transmission Control Protocol - DARPA
     Internet Program Protocol Specification", STD-007, RFC-793,
     USC/Information Sciences Institute, September 1981.












Braden                                                         [Page 34]

RFC 1644                    Transaction/TCP                    July 1994


APPENDIX A.  ALGORITHM SUMMARY

  This appendix summarizes the additional processing rules introduced
  by T/TCP.  We define the following symbols:

  Options

      CC(SEG.CC):         TCP Connection Count (CC) Option
      CC.NEW(SEG.CC):     TCP CC.NEW option
      CC.ECHO(SEG.CC):    TCP CC.ECHO option

          Here SEG.CC is option value in segment.

  Per-Connection State Variables in TCB

      CCsend:             CC value to be sent in segments
      CCrecv:             CC value to be received in segments
      Elapsed:            Duration of connection

  Global Variables:

      CCgen:              CC generator variable
      cache.CC[fh]:       Cache entry: Last CC value received.
      cache.CCsent[fh]:   Cache entry: Last CC value sent.


  PSEUDO-CODE SUMMARY:

  Passive OPEN => {
      Create new TCB;
  }

  Active OPEN => {
      <Create new TCB>
      CCrecv = 0;
      CCsend = CCgen;
      If (CCgen == 0xffffffff) then Set CCgen = 1;
                               else Set CCgen = CCgen + 1.
      <Send initial {SYN} segment (see below)>
  }


  Send initial {SYN} segment => {

      If (cache.CCsent[fh] == 0 OR CCsend < cache.CCsent[fh] ) then {

            Include CC.NEW(CCsend) option in segment;
            Set cache.CCsent[fh] = 0;



Braden                                                         [Page 35]

RFC 1644                    Transaction/TCP                    July 1994


      }
      else {

            Include CC(CCsend) option in segment;
            Set cache.CCsent[fh] = CCsend;
      }
   }


  Send {SYN,ACK} segment => {

      If (CCrecv != 0) then
            Include CC(CCsend), CC.ECHO(CCrecv) options in segment.
  }


  Receive {SYN} segment in LISTEN, SYN-SENT, or SYN-SENT* state => {

      If state == LISTEN then {
            CCrecv = 0;
            CCsend = CCgen;
            If (CCgen == 0xffffffff) then Set CCgen = 1;
                                     else Set CCgen = CCgen + 1.
      }

      If (Segment contains CC option  OR
            Segment contains CC.NEW option) then
                  Set CCrecv = SEG.CC.

      if (Segment contains CC option  AND
            cache.CC[fh] != 0  AND
                  SEG.CC > cache.CC[fh] ) then {  /* TAO Test OK */

            Set cache.CC[fh] = CCrecv;
            <Mark connection half-synchronized>
            <Process data and/or FIN and return>
      }


      If (Segment does not contain CC option)  then
            Set cache.CC[fh] = 0;

      <Do normal TCP processing and return>.
  }

  Receive {SYN} segment in LISTEN-TW, LISTEN-LA, LISTEN-LA*, LISTEN-CL,
      or LISTEN-CL* state => {




Braden                                                         [Page 36]

RFC 1644                    Transaction/TCP                    July 1994


      If ( (Segment contains CC option AND CCrecv != 0 )  then  {

            If (state = LISTEN-TW AND Elapsed > MSL ) then
                  <Send RST, drop segment, and return>.

            if (SEG.CC > CCrecv )  then {
                  <Implicitly ACK FIN and data in retransmission queue>;
                  <Close and delete TCB>;
                  <Reprocess segment>.
                          /* Expect to match new TCB
                           * in LISTEN state.
                           */
             }
      }
      else
            <Drop segment>.
  }


  Receive {SYN,ACK} segment => {

      if (Segment contains CC.ECHO option  AND
                  SEG.CC != CCsend) then
            <Send a reset and discard segment>.

      if (Segment contains CC option) then {
            Set CCrecv = SEG.CC.

            if (cache.CC[fh] is undefined) then
                  Set cache.CC[fh] = CCrecv.
      }
  }


  Send non-SYN segment => {

      if (CCrecv != 0  OR
            (cache.CCsent[fh] != 0  AND
             state is SYN-SENT or SYN-SENT*)) then
                 Include CC(CCsend) option in segment.
  }


  Receive non-SYN segment in SYN-RECEIVED state => {

      if (Segment contains CC option  AND  RST bit is off) {
              if (SEG.CC != CCrecv)  then
                    <Segment is unacceptable; drop it and send an



Braden                                                         [Page 37]

RFC 1644                    Transaction/TCP                    July 1994


                      ACK segment, as in normal TCP processing>.

              if (cache.CC[fh] is undefined)  then
                    Set cache.CC[fh] = CCrecv.
      }
  }


  Receive non-SYN segment in (state >= ESTABLISHED) => {

      if (Segment contains CC option  AND  RST bit is off) {
              if (SEG.CC != CCrecv)  then
                    <Segment is unacceptable; drop it and send an
                      ACK segment, as in normal TCP processing>.
      }
  }


Security Considerations

  Security issues are not discussed in this memo.

Author's Address

  Bob Braden
  University of Southern California
  Information Sciences Institute
  4676 Admiralty Way
  Marina del Rey, CA 90292

  Phone: (310) 822-1511
  EMail: [email protected]



















Braden                                                         [Page 38]