Network Working Group                                             J. Moy
Request for Comments: 1583                                 Proteon, Inc.
Obsoletes: 1247                                               March 1994
Category: Standards Track


                            OSPF Version 2



Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is
   unlimited.

Abstract

   This memo documents version 2 of the OSPF protocol.  OSPF is a
   link-state routing protocol.  It is designed to be run internal to a
   single Autonomous System.  Each OSPF router maintains an identical
   database describing the Autonomous System's topology.  From this
   database, a routing table is calculated by constructing a shortest-
   path tree.

   OSPF recalculates routes quickly in the face of topological changes,
   utilizing a minimum of routing protocol traffic.  OSPF provides
   support for equal-cost multipath.  Separate routes can be calculated
   for each IP Type of Service.  An area routing capability is
   provided, enabling an additional level of routing protection and a
   reduction in routing protocol traffic.  In addition, all OSPF
   routing protocol exchanges are authenticated.

   OSPF Version 2 was originally documented in RFC 1247. The
   differences between RFC 1247 and this memo are explained in Appendix
   E. The differences consist of bug fixes and clarifications, and are
   backward-compatible in nature. Implementations of RFC 1247 and of
   this memo will interoperate.

   Please send comments to [email protected].








Moy                                                             [Page 1]

RFC 1583                     OSPF Version 2                   March 1994


Table of Contents

   1       Introduction ........................................... 5
   1.1     Protocol Overview ...................................... 5
   1.2     Definitions of commonly used terms ..................... 6
   1.3     Brief history of link-state routing technology ......... 9
   1.4     Organization of this document .......................... 9
   2       The Topological Database .............................. 10
   2.1     The shortest-path tree ................................ 13
   2.2     Use of external routing information ................... 16
   2.3     Equal-cost multipath .................................. 20
   2.4     TOS-based routing ..................................... 20
   3       Splitting the AS into Areas ........................... 21
   3.1     The backbone of the Autonomous System ................. 22
   3.2     Inter-area routing .................................... 22
   3.3     Classification of routers ............................. 23
   3.4     A sample area configuration ........................... 24
   3.5     IP subnetting support ................................. 30
   3.6     Supporting stub areas ................................. 31
   3.7     Partitions of areas ................................... 32
   4       Functional Summary .................................... 34
   4.1     Inter-area routing .................................... 35
   4.2     AS external routes .................................... 35
   4.3     Routing protocol packets .............................. 35
   4.4     Basic implementation requirements ..................... 38
   4.5     Optional OSPF capabilities ............................ 39
   5       Protocol data structures .............................. 41
   6       The Area Data Structure ............................... 42
   7       Bringing Up Adjacencies ............................... 45
   7.1     The Hello Protocol .................................... 45
   7.2     The Synchronization of Databases ...................... 46
   7.3     The Designated Router ................................. 47
   7.4     The Backup Designated Router .......................... 48
   7.5     The graph of adjacencies .............................. 49
   8       Protocol Packet Processing ............................ 50
   8.1     Sending protocol packets .............................. 51
   8.2     Receiving protocol packets ............................ 53
   9       The Interface Data Structure .......................... 55
   9.1     Interface states ...................................... 58
   9.2     Events causing interface state changes ................ 61
   9.3     The Interface state machine ........................... 62
   9.4     Electing the Designated Router ........................ 65
   9.5     Sending Hello packets ................................. 67
   9.5.1   Sending Hello packets on non-broadcast networks ....... 68
   10      The Neighbor Data Structure ........................... 69
   10.1    Neighbor states ....................................... 72
   10.2    Events causing neighbor state changes ................. 75
   10.3    The Neighbor state machine ............................ 77



Moy                                                             [Page 2]

RFC 1583                     OSPF Version 2                   March 1994


   10.4    Whether to become adjacent ............................ 83
   10.5    Receiving Hello Packets ............................... 83
   10.6    Receiving Database Description Packets ................ 86
   10.7    Receiving Link State Request Packets .................. 89
   10.8    Sending Database Description Packets .................. 89
   10.9    Sending Link State Request Packets .................... 90
   10.10   An Example ............................................ 91
   11      The Routing Table Structure ........................... 93
   11.1    Routing table lookup .................................. 96
   11.2    Sample routing table, without areas ................... 97
   11.3    Sample routing table, with areas ...................... 98
   12      Link State Advertisements ............................ 100
   12.1    The Link State Advertisement Header .................. 101
   12.1.1  LS age ............................................... 102
   12.1.2  Options .............................................. 102
   12.1.3  LS type .............................................. 103
   12.1.4  Link State ID ........................................ 103
   12.1.5  Advertising Router ................................... 105
   12.1.6  LS sequence number ................................... 105
   12.1.7  LS checksum .......................................... 106
   12.2    The link state database .............................. 107
   12.3    Representation of TOS ................................ 108
   12.4    Originating link state advertisements ................ 109
   12.4.1  Router links ......................................... 112
   12.4.2  Network links ........................................ 118
   12.4.3  Summary links ........................................ 120
   12.4.4  Originating summary links into stub areas ............ 123
   12.4.5  AS external links .................................... 124
   13      The Flooding Procedure ............................... 126
   13.1    Determining which link state is newer ................ 130
   13.2    Installing link state advertisements in the database . 130
   13.3    Next step in the flooding procedure .................. 131
   13.4    Receiving self-originated link state ................. 134
   13.5    Sending Link State Acknowledgment packets ............ 135
   13.6    Retransmitting link state advertisements ............. 136
   13.7    Receiving link state acknowledgments ................. 138
   14      Aging The Link State Database ........................ 139
   14.1    Premature aging of advertisements .................... 139
   15      Virtual Links ........................................ 140
   16      Calculation Of The Routing Table ..................... 142
   16.1    Calculating the shortest-path tree for an area ....... 143
   16.1.1  The next hop calculation ............................. 149
   16.2    Calculating the inter-area routes .................... 150
   16.3    Examining transit areas' summary links ............... 152
   16.4    Calculating AS external routes ....................... 154
   16.5    Incremental updates -- summary link advertisements ... 156
   16.6    Incremental updates -- AS external link advertisements 157
   16.7    Events generated as a result of routing table changes  157



Moy                                                             [Page 3]

RFC 1583                     OSPF Version 2                   March 1994


   16.8    Equal-cost multipath ................................. 158
   16.9    Building the non-zero-TOS portion of the routing table 158
           Footnotes ............................................ 161
           References ........................................... 164
   A       OSPF data formats .................................... 166
   A.1     Encapsulation of OSPF packets ........................ 166
   A.2     The Options field .................................... 168
   A.3     OSPF Packet Formats .................................. 170
   A.3.1   The OSPF packet header ............................... 171
   A.3.2   The Hello packet ..................................... 173
   A.3.3   The Database Description packet ...................... 175
   A.3.4   The Link State Request packet ........................ 177
   A.3.5   The Link State Update packet ......................... 179
   A.3.6   The Link State Acknowledgment packet ................. 181
   A.4     Link state advertisement formats ..................... 183
   A.4.1   The Link State Advertisement header .................. 184
   A.4.2   Router links advertisements .......................... 186
   A.4.3   Network links advertisements ......................... 190
   A.4.4   Summary link advertisements .......................... 192
   A.4.5   AS external link advertisements ...................... 194
   B       Architectural Constants .............................. 196
   C       Configurable Constants ............................... 198
   C.1     Global parameters .................................... 198
   C.2     Area parameters ...................................... 198
   C.3     Router interface parameters .......................... 200
   C.4     Virtual link parameters .............................. 202
   C.5     Non-broadcast, multi-access network parameters ....... 203
   C.6     Host route parameters ................................ 203
   D       Authentication ....................................... 205
   D.1     AuType 0 -- No authentication ........................ 205
   D.2     AuType 1 -- Simple password .......................... 205
   E       Differences from RFC 1247 ............................ 207
   E.1     A fix for a problem with OSPF Virtual links .......... 207
   E.2     Supporting supernetting and subnet 0 ................. 208
   E.3     Obsoleting LSInfinity in router links advertisements . 209
   E.4     TOS encoding updated ................................. 209
   E.5     Summarizing routes into transit areas ................ 210
   E.6     Summarizing routes into stub areas ................... 210
   E.7     Flushing anomalous network links advertisements ...... 210
   E.8     Required Statistics appendix deleted ................. 211
   E.9     Other changes ........................................ 211
   F.      An algorithm for assigning Link State IDs ............ 213
           Security Considerations .............................. 216
           Author's Address ..................................... 216







Moy                                                             [Page 4]

RFC 1583                     OSPF Version 2                   March 1994


1.  Introduction

   This document is a specification of the Open Shortest Path First
   (OSPF) TCP/IP internet routing protocol.  OSPF is classified as an
   Interior Gateway Protocol (IGP).  This means that it distributes
   routing information between routers belonging to a single Autonomous
   System.  The OSPF protocol is based on link-state or SPF technology.
   This is a departure from the Bellman-Ford base used by traditional
   TCP/IP internet routing protocols.

   The OSPF protocol was developed by the OSPF working group of the
   Internet Engineering Task Force.  It has been designed expressly for
   the TCP/IP internet environment, including explicit support for IP
   subnetting, TOS-based routing and the tagging of externally-derived
   routing information.  OSPF also provides for the authentication of
   routing updates, and utilizes IP multicast when sending/receiving
   the updates.  In addition, much work has been done to produce a
   protocol that responds quickly to topology changes, yet involves
   small amounts of routing protocol traffic.

   The author would like to thank Fred Baker, Jeffrey Burgan, Rob
   Coltun, Dino Farinacci, Vince Fuller, Phanindra Jujjavarapu, Milo
   Medin, Kannan Varadhan and the rest of the OSPF working group for
   the ideas and support they have given to this project.

   1.1.  Protocol overview

       OSPF routes IP packets based solely on the destination IP
       address and IP Type of Service found in the IP packet header.
       IP packets are routed "as is" -- they are not encapsulated in
       any further protocol headers as they transit the Autonomous
       System.  OSPF is a dynamic routing protocol.  It quickly detects
       topological changes in the AS (such as router interface
       failures) and calculates new loop-free routes after a period of
       convergence.  This period of convergence is short and involves a
       minimum of routing traffic.

       In a link-state routing protocol, each router maintains a
       database describing the Autonomous System's topology.  Each
       participating router has an identical database.  Each individual
       piece of this database is a particular router's local state
       (e.g., the router's usable interfaces and reachable neighbors).
       The router distributes its local state throughout the Autonomous
       System by flooding.

       All routers run the exact same algorithm, in parallel.  From the
       topological database, each router constructs a tree of shortest
       paths with itself as root.  This shortest-path tree gives the



Moy                                                             [Page 5]

RFC 1583                     OSPF Version 2                   March 1994


       route to each destination in the Autonomous System.  Externally
       derived routing information appears on the tree as leaves.

       OSPF calculates separate routes for each Type of Service (TOS).
       When several equal-cost routes to a destination exist, traffic
       is distributed equally among them.  The cost of a route is
       described by a single dimensionless metric.

       OSPF allows sets of networks to be grouped together.  Such a
       grouping is called an area.  The topology of an area is hidden
       from the rest of the Autonomous System.  This information hiding
       enables a significant reduction in routing traffic.  Also,
       routing within the area is determined only by the area's own
       topology, lending the area protection from bad routing data.  An
       area is a generalization of an IP subnetted network.

       OSPF enables the flexible configuration of IP subnets.  Each
       route distributed by OSPF has a destination and mask.  Two
       different subnets of the same IP network number may have
       different sizes (i.e., different masks).  This is commonly
       referred to as variable length subnetting.  A packet is routed
       to the best (i.e., longest or most specific) match.  Host routes
       are considered to be subnets whose masks are "all ones"
       (0xffffffff).

       All OSPF protocol exchanges are authenticated.  This means that
       only trusted routers can participate in the Autonomous System's
       routing.  A variety of authentication schemes can be used; a
       single authentication scheme is configured for each area.  This
       enables some areas to use much stricter authentication than
       others.

       Externally derived routing data (e.g., routes learned from the
       Exterior Gateway Protocol (EGP)) is passed transparently
       throughout the Autonomous System.  This externally derived data
       is kept separate from the OSPF protocol's link state data.  Each
       external route can also be tagged by the advertising router,
       enabling the passing of additional information between routers
       on the boundaries of the Autonomous System.


   1.2.  Definitions of commonly used terms

       This section provides definitions for terms that have a specific
       meaning to the OSPF protocol and that are used throughout the
       text.  The reader unfamiliar with the Internet Protocol Suite is
       referred to [RS-85-153] for an introduction to IP.




Moy                                                             [Page 6]

RFC 1583                     OSPF Version 2                   March 1994


       Router
           A level three Internet Protocol packet switch.  Formerly
           called a gateway in much of the IP literature.

       Autonomous System
           A group of routers exchanging routing information via a
           common routing protocol.  Abbreviated as AS.

       Interior Gateway Protocol
           The routing protocol spoken by the routers belonging to an
           Autonomous system.  Abbreviated as IGP.  Each Autonomous
           System has a single IGP.  Separate Autonomous Systems may be
           running different IGPs.

       Router ID
           A 32-bit number assigned to each router running the OSPF
           protocol.  This number uniquely identifies the router within
           an Autonomous System.

       Network
           In this memo, an IP network/subnet/supernet.  It is possible
           for one physical network to be assigned multiple IP
           network/subnet numbers.  We consider these to be separate
           networks.  Point-to-point physical networks are an exception
           - they are considered a single network no matter how many
           (if any at all) IP network/subnet numbers are assigned to
           them.

       Network mask
           A 32-bit number indicating the range of IP addresses
           residing on a single IP network/subnet/supernet.  This
           specification displays network masks as hexadecimal numbers.
           For example, the network mask for a class C IP network is
           displayed as 0xffffff00.  Such a mask is often displayed
           elsewhere in the literature as 255.255.255.0.

       Multi-access networks
           Those physical networks that support the attachment of
           multiple (more than two) routers.  Each pair of routers on
           such a network is assumed to be able to communicate directly
           (e.g., multi-drop networks are excluded).

       Interface
           The connection between a router and one of its attached
           networks.  An interface has state information associated
           with it, which is obtained from the underlying lower level
           protocols and the routing protocol itself.  An interface to
           a network has associated with it a single IP address and



Moy                                                             [Page 7]

RFC 1583                     OSPF Version 2                   March 1994


           mask (unless the network is an unnumbered point-to-point
           network).  An interface is sometimes also referred to as a
           link.

       Neighboring routers
           Two routers that have interfaces to a common network.  On
           multi-access networks, neighbors are dynamically discovered
           by OSPF's Hello Protocol.

       Adjacency
           A relationship formed between selected neighboring routers
           for the purpose of exchanging routing information.  Not
           every pair of neighboring routers become adjacent.

       Link state advertisement
           Describes the local state of a router or network.  This
           includes the state of the router's interfaces and
           adjacencies.  Each link state advertisement is flooded
           throughout the routing domain.  The collected link state
           advertisements of all routers and networks forms the
           protocol's topological database.

       Hello Protocol
           The part of the OSPF protocol used to establish and maintain
           neighbor relationships.  On multi-access networks the Hello
           Protocol can also dynamically discover neighboring routers.

       Designated Router
           Each multi-access network that has at least two attached
           routers has a Designated Router.  The Designated Router
           generates a link state advertisement for the multi-access
           network and has other special responsibilities in the
           running of the protocol.  The Designated Router is elected
           by the Hello Protocol.

           The Designated Router concept enables a reduction in the
           number of adjacencies required on a multi-access network.
           This in turn reduces the amount of routing protocol traffic
           and the size of the topological database.

       Lower-level protocols
           The underlying network access protocols that provide
           services to the Internet Protocol and in turn the OSPF
           protocol.  Examples of these are the X.25 packet and frame
           levels for X.25 PDNs, and the ethernet data link layer for
           ethernets.





Moy                                                             [Page 8]

RFC 1583                     OSPF Version 2                   March 1994


   1.3.  Brief history of link-state routing technology

       OSPF is a link state routing protocol.  Such protocols are also
       referred to in the literature as SPF-based or distributed-
       database protocols.  This section gives a brief description of
       the developments in link-state technology that have influenced
       the OSPF protocol.

       The first link-state routing protocol was developed for use in
       the ARPANET packet switching network.  This protocol is
       described in [McQuillan].  It has formed the starting point for
       all other link-state protocols.  The homogeneous Arpanet
       environment, i.e., single-vendor packet switches connected by
       synchronous serial lines, simplified the design and
       implementation of the original protocol.

       Modifications to this protocol were proposed in [Perlman].
       These modifications dealt with increasing the fault tolerance of
       the routing protocol through, among other things, adding a
       checksum to the link state advertisements (thereby detecting
       database corruption).  The paper also included means for
       reducing the routing traffic overhead in a link-state protocol.
       This was accomplished by introducing mechanisms which enabled
       the interval between link state advertisement originations to be
       increased by an order of magnitude.

       A link-state algorithm has also been proposed for use as an ISO
       IS-IS routing protocol.  This protocol is described in [DEC].
       The protocol includes methods for data and routing traffic
       reduction when operating over broadcast networks.  This is
       accomplished by election of a Designated Router for each
       broadcast network, which then originates a link state
       advertisement for the network.

       The OSPF subcommittee of the IETF has extended this work in
       developing the OSPF protocol.  The Designated Router concept has
       been greatly enhanced to further reduce the amount of routing
       traffic required.  Multicast capabilities are utilized for
       additional routing bandwidth reduction.  An area routing scheme
       has been developed enabling information
       hiding/protection/reduction.  Finally, the algorithm has been
       modified for efficient operation in TCP/IP internets.


   1.4.  Organization of this document

       The first three sections of this specification give a general
       overview of the protocol's capabilities and functions.  Sections



Moy                                                             [Page 9]

RFC 1583                     OSPF Version 2                   March 1994


       4-16 explain the protocol's mechanisms in detail.  Packet
       formats, protocol constants and configuration items are
       specified in the appendices.

       Labels such as HelloInterval encountered in the text refer to
       protocol constants.  They may or may not be configurable.  The
       architectural constants are explained in Appendix B.  The
       configurable constants are explained in Appendix C.

       The detailed specification of the protocol is presented in terms
       of data structures.  This is done in order to make the
       explanation more precise.  Implementations of the protocol are
       required to support the functionality described, but need not
       use the precise data structures that appear in this memo.


2.  The Topological Database

   The Autonomous System's topological database describes a directed
   graph.  The vertices of the graph consist of routers and networks.
   A graph edge connects two routers when they are attached via a
   physical point-to-point network.  An edge connecting a router to a
   network indicates that the router has an interface on the network.

   The vertices of the graph can be further typed according to
   function.  Only some of these types carry transit data traffic; that
   is, traffic that is neither locally originated nor locally destined.
   Vertices that can carry transit traffic are indicated on the graph
   by having both incoming and outgoing edges.



                    Vertex type   Vertex name    Transit?
                    _____________________________________
                    1             Router         yes
                    2             Network        yes
                    3             Stub network   no


                         Table 1: OSPF vertex types.


   OSPF supports the following types of physical networks:


   Point-to-point networks
       A network that joins a single pair of routers.  A 56Kb serial
       line is an example of a point-to-point network.



Moy                                                            [Page 10]

RFC 1583                     OSPF Version 2                   March 1994


   Broadcast networks
       Networks supporting many (more than two) attached routers,
       together with the capability to address a single physical
       message to all of the attached routers (broadcast).  Neighboring
       routers are discovered dynamically on these nets using OSPF's
       Hello Protocol.  The Hello Protocol itself takes advantage of
       the broadcast capability.  The protocol makes further use of
       multicast capabilities, if they exist.  An ethernet is an
       example of a broadcast network.

   Non-broadcast networks
       Networks supporting many (more than two) routers, but having no
       broadcast capability.  Neighboring routers are also discovered
       on these nets using OSPF's Hello Protocol.  However, due to the
       lack of broadcast capability, some configuration information is
       necessary for the correct operation of the Hello Protocol.  On
       these networks, OSPF protocol packets that are normally
       multicast need to be sent to each neighboring router, in turn.
       An X.25 Public Data Network (PDN) is an example of a non-
       broadcast network.


   The neighborhood of each network node in the graph depends on
   whether the network has multi-access capabilities (either broadcast
   or non-broadcast) and, if so, the number of routers having an
   interface to the network.  The three cases are depicted in Figure 1.
   Rectangles indicate routers.  Circles and oblongs indicate multi-
   access networks.  Router names are prefixed with the letters RT and
   network names with the letter N.  Router interface names are
   prefixed by the letter I.  Lines between routers indicate point-to-
   point networks.  The left side of the figure shows a network with
   its connected routers, with the resulting graph shown on the right.

   Two routers joined by a point-to-point network are represented in
   the directed graph as being directly connected by a pair of edges,
   one in each direction.  Interfaces to physical point-to-point
   networks need not be assigned IP addresses.  Such a point-to-point
   network is called unnumbered.  The graphical representation of
   point-to-point networks is designed so that unnumbered networks can
   be supported naturally.  When interface addresses exist, they are
   modelled as stub routes.  Note that each router would then have a
   stub connection to the other router's interface address (see Figure
   1).

   When multiple routers are attached to a multi-access network, the
   directed graph shows all routers bidirectionally connected to the
   network vertex (again, see Figure 1).  If only a single router is
   attached to a multi-access network, the network will appear in the



Moy                                                            [Page 11]

RFC 1583                     OSPF Version 2                   March 1994





                                                 **FROM**

                                          *      |RT1|RT2|
               +---+Ia    +---+           *   ------------
               |RT1|------|RT2|           T   RT1|   | X |
               +---+    Ib+---+           O   RT2| X |   |
                                          *    Ia|   | X |
                                          *    Ib| X |   |

                    Physical point-to-point networks

                                                 **FROM**
               +---+      +---+
               |RT3|      |RT4|              |RT3|RT4|RT5|RT6|N2 |
               +---+      +---+        *  ------------------------
                 |    N2    |          *  RT3|   |   |   |   | X |
           +----------------------+    T  RT4|   |   |   |   | X |
                 |          |          O  RT5|   |   |   |   | X |
               +---+      +---+        *  RT6|   |   |   |   | X |
               |RT5|      |RT6|        *   N2| X | X | X | X |   |
               +---+      +---+

                         Multi-access networks

                                                 **FROM**
                     +---+                *
                     |RT7|                *      |RT7| N3|
                     +---+                T   ------------
                       |                  O   RT7|   |   |
           +----------------------+       *    N3| X |   |
                      N3                  *

                      Stub multi-access networks



                   Figure 1: Network map components

            Networks and routers are represented by vertices.
            An edge connects Vertex A to Vertex B iff the
            intersection of Column A and Row B is marked with
                                 an X.






Moy                                                            [Page 12]

RFC 1583                     OSPF Version 2                   March 1994


   directed graph as a stub connection.

   Each network (stub or transit) in the graph has an IP address and
   associated network mask.  The mask indicates the number of nodes on
   the network.  Hosts attached directly to routers (referred to as
   host routes) appear on the graph as stub networks.  The network mask
   for a host route is always 0xffffffff, which indicates the presence
   of a single node.

   Figure 2 shows a sample map of an Autonomous System.  The rectangle
   labelled H1 indicates a host, which has a SLIP connection to Router
   RT12.  Router RT12 is therefore advertising a host route.  Lines
   between routers indicate physical point-to-point networks.  The only
   point-to-point network that has been assigned interface addresses is
   the one joining Routers RT6 and RT10.  Routers RT5 and RT7 have EGP
   connections to other Autonomous Systems.  A set of EGP-learned
   routes have been displayed for both of these routers.

   A cost is associated with the output side of each router interface.
   This cost is configurable by the system administrator.  The lower
   the cost, the more likely the interface is to be used to forward
   data traffic.  Costs are also associated with the externally derived
   routing data (e.g., the EGP-learned routes).

   The directed graph resulting from the map in Figure 2 is depicted in
   Figure 3.  Arcs are labelled with the cost of the corresponding
   router output interface.  Arcs having no labelled cost have a cost
   of 0.  Note that arcs leading from networks to routers always have
   cost 0; they are significant nonetheless.  Note also that the
   externally derived routing data appears on the graph as stubs.

   The topological database (or what has been referred to above as the
   directed graph) is pieced together from link state advertisements
   generated by the routers.  The neighborhood of each transit vertex
   is represented in a single, separate link state advertisement.
   Figure 4 shows graphically the link state representation of the two
   kinds of transit vertices: routers and multi-access networks.
   Router RT12 has an interface to two broadcast networks and a SLIP
   line to a host.  Network N6 is a broadcast network with three
   attached routers.  The cost of all links from Network N6 to its
   attached routers is 0.  Note that the link state advertisement for
   Network N6 is actually generated by one of the attached routers: the
   router that has been elected Designated Router for the network.

   2.1.  The shortest-path tree

       When no OSPF areas are configured, each router in the Autonomous
       System has an identical topological database, leading to an



Moy                                                            [Page 13]

RFC 1583                     OSPF Version 2                   March 1994



                +
                | 3+---+                     N12      N14
              N1|--|RT1|\ 1                    \ N13 /
                |  +---+ \                     8\ |8/8
                +         \ ____                 \|/
                           /    \   1+---+8    8+---+6
                          *  N3  *---|RT4|------|RT5|--------+
                           \____/    +---+      +---+        |
                 +         /   |                  |7         |
                 | 3+---+ /    |                  |          |
               N2|--|RT2|/1    |1                 |6         |
                 |  +---+    +---+8            6+---+        |
                 +           |RT3|--------------|RT6|        |
                             +---+              +---+        |
                               |2               Ia|7         |
                               |                  |          |
                          +---------+             |          |
                              N4                  |          |
                                                  |          |
                                                  |          |
                      N11                         |          |
                  +---------+                     |          |
                       |                          |          |    N12
                       |3                         |          |6 2/
                     +---+                        |        +---+/
                     |RT9|                        |        |RT7|---N15
                     +---+                        |        +---+ 9
                       |1                   +     |          |1
                      _|__                  |   Ib|5       __|_
                     /    \      1+----+2   |  3+----+1   /    \
                    *  N9  *------|RT11|----|---|RT10|---*  N6  *
                     \____/       +----+    |   +----+    \____/
                       |                    |                |
                       |1                   +                |1
            +--+   10+----+                N8              +---+
            |H1|-----|RT12|                                |RT8|
            +--+SLIP +----+                                +---+
                       |2                                    |4
                       |                                     |
                  +---------+                            +--------+
                      N10                                    N7

                   Figure 2: A sample Autonomous System







Moy                                                            [Page 14]

RFC 1583                     OSPF Version 2                   March 1994


                               **FROM**

                |RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|
                |1 |2 |3 |4 |5 |6 |7 |8 |9 |10|11|12|N3|N6|N8|N9|
             ----- ---------------------------------------------
             RT1|  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |  |
             RT2|  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |  |
             RT3|  |  |  |  |  |6 |  |  |  |  |  |  |0 |  |  |  |
             RT4|  |  |  |  |8 |  |  |  |  |  |  |  |0 |  |  |  |
             RT5|  |  |  |8 |  |6 |6 |  |  |  |  |  |  |  |  |  |
             RT6|  |  |8 |  |7 |  |  |  |  |5 |  |  |  |  |  |  |
             RT7|  |  |  |  |6 |  |  |  |  |  |  |  |  |0 |  |  |
         *   RT8|  |  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |
         *   RT9|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |
         T  RT10|  |  |  |  |  |7 |  |  |  |  |  |  |  |0 |0 |  |
         O  RT11|  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |0 |
         *  RT12|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |
         *    N1|3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
              N2|  |3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
              N3|1 |1 |1 |1 |  |  |  |  |  |  |  |  |  |  |  |  |
              N4|  |  |2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
              N6|  |  |  |  |  |  |1 |1 |  |1 |  |  |  |  |  |  |
              N7|  |  |  |  |  |  |  |4 |  |  |  |  |  |  |  |  |
              N8|  |  |  |  |  |  |  |  |  |3 |2 |  |  |  |  |  |
              N9|  |  |  |  |  |  |  |  |1 |  |1 |1 |  |  |  |  |
             N10|  |  |  |  |  |  |  |  |  |  |  |2 |  |  |  |  |
             N11|  |  |  |  |  |  |  |  |3 |  |  |  |  |  |  |  |
             N12|  |  |  |  |8 |  |2 |  |  |  |  |  |  |  |  |  |
             N13|  |  |  |  |8 |  |  |  |  |  |  |  |  |  |  |  |
             N14|  |  |  |  |8 |  |  |  |  |  |  |  |  |  |  |  |
             N15|  |  |  |  |  |  |9 |  |  |  |  |  |  |  |  |  |
              H1|  |  |  |  |  |  |  |  |  |  |  |10|  |  |  |  |


                    Figure 3: The resulting directed graph

                Networks and routers are represented by vertices.
                An edge of cost X connects Vertex A to Vertex B iff
                the intersection of Column A and Row B is marked
                                    with an X.











Moy                                                            [Page 15]

RFC 1583                     OSPF Version 2                   March 1994


                    **FROM**                       **FROM**

                 |RT12|N9|N10|H1|             |RT9|RT11|RT12|N9|
          *  --------------------          *  ----------------------
          *  RT12|    |  |   |  |          *   RT9|   |    |    |0 |
          T    N9|1   |  |   |  |          T  RT11|   |    |    |0 |
          O   N10|2   |  |   |  |          O  RT12|   |    |    |0 |
          *    H1|10  |  |   |  |          *    N9|   |    |    |  |
          *                                *
               RT12's router links            N9's network links
                  advertisement                  advertisement

                 Figure 4: Individual link state components

             Networks and routers are represented by vertices.
             An edge of cost X connects Vertex A to Vertex B iff
             the intersection of Column A and Row B is marked
                                 with an X.

       identical graphical representation.  A router generates its
       routing table from this graph by calculating a tree of shortest
       paths with the router itself as root.  Obviously, the shortest-
       path tree depends on the router doing the calculation.  The
       shortest-path tree for Router RT6 in our example is depicted in
       Figure 5.

       The tree gives the entire route to any destination network or
       host.  However, only the next hop to the destination is used in
       the forwarding process.  Note also that the best route to any
       router has also been calculated.  For the processing of external
       data, we note the next hop and distance to any router
       advertising external routes.  The resulting routing table for
       Router RT6 is pictured in Table 2.  Note that there is a
       separate route for each end of a numbered serial line (in this
       case, the serial line between Routers RT6 and RT10).


       Routes to networks belonging to other AS'es (such as N12) appear
       as dashed lines on the shortest path tree in Figure 5.  Use of
       this externally derived routing information is considered in the
       next section.


   2.2.  Use of external routing information

       After the tree is created the external routing information is
       examined.  This external routing information may originate from
       another routing protocol such as EGP, or be statically



Moy                                                            [Page 16]

RFC 1583                     OSPF Version 2                   March 1994



                               RT6(origin)
                   RT5 o------------o-----------o Ib
                      /|\    6      |\     7
                    8/8|8\          | \
                    /  |  \         |  \
                   o   |   o        |   \7
                  N12  o  N14       |    \
                      N13        2  |     \
                           N4 o-----o RT3  \
                                   /        \    5
                                 1/     RT10 o-------o Ia
                                 /           |\
                      RT4 o-----o N3        3| \1
                               /|            |  \ N6     RT7
                              / |         N8 o   o---------o
                             /  |            |   |        /|
                        RT2 o   o RT1        |   |      2/ |9
                           /    |            |   |RT8   /  |
                          /3    |3      RT11 o   o     o   o
                         /      |            |   |    N12 N15
                     N2 o       o N1        1|   |4
                                             |   |
                                          N9 o   o N7
                                            /|
                                           / |
                       N11      RT9       /  |RT12
                        o--------o-------o   o--------o H1
                            3                |   10
                                             |2
                                             |
                                             o N10


                    Figure 5: The SPF tree for Router RT6

             Edges that are not marked with a cost have a cost of
             of zero (these are network-to-router links). Routes
             to networks N12-N15 are external information that is
                        considered in Section 2.2











Moy                                                            [Page 17]

RFC 1583                     OSPF Version 2                   March 1994


                  Destination   Next  Hop   Distance
                  __________________________________
                  N1            RT3         10
                  N2            RT3         10
                  N3            RT3         7
                  N4            RT3         8
                  Ib            *           7
                  Ia            RT10        12
                  N6            RT10        8
                  N7            RT10        12
                  N8            RT10        10
                  N9            RT10        11
                  N10           RT10        13
                  N11           RT10        14
                  H1            RT10        21
                  __________________________________
                  RT5           RT5         6
                  RT7           RT10        8


   Table 2: The portion of Router RT6's routing table listing local
                            destinations.

       configured (static routes).  Default routes can also be included
       as part of the Autonomous System's external routing information.

       External routing information is flooded unaltered throughout the
       AS.  In our example, all the routers in the Autonomous System
       know that Router RT7 has two external routes, with metrics 2 and
       9.

       OSPF supports two types of external metrics.  Type 1 external
       metrics are equivalent to the link state metric.  Type 2
       external metrics are greater than the cost of any path internal
       to the AS.  Use of Type 2 external metrics assumes that routing
       between AS'es is the major cost of routing a packet, and
       eliminates the need for conversion of external costs to internal
       link state metrics.

       As an example of Type 1 external metric processing, suppose that
       the Routers RT7 and RT5 in Figure 2 are advertising Type 1
       external metrics.  For each external route, the distance from
       Router RT6 is calculated as the sum of the external route's cost
       and the distance from Router RT6 to the advertising router.  For
       every external destination, the router advertising the shortest
       route is discovered, and the next hop to the advertising router
       becomes the next hop to the destination.




Moy                                                            [Page 18]

RFC 1583                     OSPF Version 2                   March 1994


       Both Router RT5 and RT7 are advertising an external route to
       destination Network N12.  Router RT7 is preferred since it is
       advertising N12 at a distance of 10 (8+2) to Router RT6, which
       is better than Router RT5's 14 (6+8).  Table 3 shows the entries
       that are added to the routing table when external routes are
       examined:



                        Destination   Next  Hop   Distance
                        __________________________________
                        N12           RT10        10
                        N13           RT5         14
                        N14           RT5         14
                        N15           RT10        17


                Table 3: The portion of Router RT6's routing table
                          listing external destinations.


       Processing of Type 2 external metrics is simpler.  The AS
       boundary router advertising the smallest external metric is
       chosen, regardless of the internal distance to the AS boundary
       router.  Suppose in our example both Router RT5 and Router RT7
       were advertising Type 2 external routes.  Then all traffic
       destined for Network N12 would be forwarded to Router RT7, since
       2 < 8.  When several equal-cost Type 2 routes exist, the
       internal distance to the advertising routers is used to break
       the tie.

       Both Type 1 and Type 2 external metrics can be present in the AS
       at the same time.  In that event, Type 1 external metrics always
       take precedence.

       This section has assumed that packets destined for external
       destinations are always routed through the advertising AS
       boundary router.  This is not always desirable.  For example,
       suppose in Figure 2 there is an additional router attached to
       Network N6, called Router RTX.  Suppose further that RTX does
       not participate in OSPF routing, but does exchange EGP
       information with the AS boundary router RT7.  Then, Router RT7
       would end up advertising OSPF external routes for all
       destinations that should be routed to RTX.  An extra hop will
       sometimes be introduced if packets for these destinations need
       always be routed first to Router RT7 (the advertising router).

       To deal with this situation, the OSPF protocol allows an AS



Moy                                                            [Page 19]

RFC 1583                     OSPF Version 2                   March 1994


       boundary router to specify a "forwarding address" in its
       external advertisements.  In the above example, Router RT7 would
       specify RTX's IP address as the "forwarding address" for all
       those destinations whose packets should be routed directly to
       RTX.

       The "forwarding address" has one other application.  It enables
       routers in the Autonomous System's interior to function as
       "route servers".  For example, in Figure 2 the router RT6 could
       become a route server, gaining external routing information
       through a combination of static configuration and external
       routing protocols.  RT6 would then start advertising itself as
       an AS boundary router, and would originate a collection of OSPF
       external advertisements.  In each external advertisement, Router
       RT6 would specify the correct Autonomous System exit point to
       use for the destination through appropriate setting of the
       advertisement's "forwarding address" field.


   2.3.  Equal-cost multipath

       The above discussion has been simplified by considering only a
       single route to any destination.  In reality, if multiple
       equal-cost routes to a destination exist, they are all
       discovered and used.  This requires no conceptual changes to the
       algorithm, and its discussion is postponed until we consider the
       tree-building process in more detail.

       With equal cost multipath, a router potentially has several
       available next hops towards any given destination.


   2.4.  TOS-based routing

       OSPF can calculate a separate set of routes for each IP Type of
       Service. This means that, for any destination, there can
       potentially be multiple routing table entries, one for each IP
       TOS. The IP TOS values are represented in OSPF exactly as they
       appear in the IP packet header.

       Up to this point, all examples shown have assumed that routes do
       not vary on TOS.  In order to differentiate routes based on TOS,
       separate interface costs can be configured for each TOS.  For
       example, in Figure 2 there could be multiple costs (one for each
       TOS) listed for each interface.  A cost for TOS 0 must always be
       specified.

       When interface costs vary based on TOS, a separate shortest path



Moy                                                            [Page 20]

RFC 1583                     OSPF Version 2                   March 1994


       tree is calculated for each TOS (see Section 2.1).  In addition,
       external costs can vary based on TOS.  For example, in Figure 2
       Router RT7 could advertise a separate type 1 external metric for
       each TOS.  Then, when calculating the TOS X distance to Network
       N15 the cost of the shortest TOS X path to RT7 would be added to
       the TOS X cost advertised by RT7 for Network N15 (see Section
       2.2).

       All OSPF implementations must be capable of calculating routes
       based on TOS.  However, OSPF routers can be configured to route
       all packets on the TOS 0 path (see Appendix C), eliminating the
       need to calculate non-zero TOS paths.  This can be used to
       conserve routing table space and processing resources in the
       router.  These TOS-0-only routers can be mixed with routers that
       do route based on TOS.  TOS-0-only routers will be avoided as
       much as possible when forwarding traffic requesting a non-zero
       TOS.

       It may be the case that no path exists for some non-zero TOS,
       even if the router is calculating non-zero TOS paths.  In that
       case, packets requesting that non-zero TOS are routed along the
       TOS 0 path (see Section 11.1).


3.  Splitting the AS into Areas

   OSPF allows collections of contiguous networks and hosts to be
   grouped together.  Such a group, together with the routers having
   interfaces to any one of the included networks, is called an area.
   Each area runs a separate copy of the basic link-state routing
   algorithm.  This means that each area has its own topological
   database and corresponding graph, as explained in the previous
   section.

   The topology of an area is invisible from the outside of the area.
   Conversely, routers internal to a given area know nothing of the
   detailed topology external to the area.  This isolation of knowledge
   enables the protocol to effect a marked reduction in routing traffic
   as compared to treating the entire Autonomous System as a single
   link-state domain.

   With the introduction of areas, it is no longer true that all
   routers in the AS have an identical topological database.  A router
   actually has a separate topological database for each area it is
   connected to.  (Routers connected to multiple areas are called area
   border routers).  Two routers belonging to the same area have, for
   that area, identical area topological databases.




Moy                                                            [Page 21]

RFC 1583                     OSPF Version 2                   March 1994


   Routing in the Autonomous System takes place on two levels,
   depending on whether the source and destination of a packet reside
   in the same area (intra-area routing is used) or different areas
   (inter-area routing is used).  In intra-area routing, the packet is
   routed solely on information obtained within the area; no routing
   information obtained from outside the area can be used.  This
   protects intra-area routing from the injection of bad routing
   information.  We discuss inter-area routing in Section 3.2.


   3.1.  The backbone of the Autonomous System

       The backbone consists of those networks not contained in any
       area, their attached routers, and those routers that belong to
       multiple areas.  The backbone must be contiguous.

       It is possible to define areas in such a way that the backbone
       is no longer contiguous.  In this case the system administrator
       must restore backbone connectivity by configuring virtual links.

       Virtual links can be configured between any two backbone routers
       that have an interface to a common non-backbone area.  Virtual
       links belong to the backbone.  The protocol treats two routers
       joined by a virtual link as if they were connected by an
       unnumbered point-to-point network.  On the graph of the
       backbone, two such routers are joined by arcs whose costs are
       the intra-area distances between the two routers.  The routing
       protocol traffic that flows along the virtual link uses intra-
       area routing only.

       The backbone is responsible for distributing routing information
       between areas.  The backbone itself has all of the properties of
       an area.  The topology of the backbone is invisible to each of
       the areas, while the backbone itself knows nothing of the
       topology of the areas.


   3.2.  Inter-area routing

       When routing a packet between two areas the backbone is used.
       The path that the packet will travel can be broken up into three
       contiguous pieces: an intra-area path from the source to an area
       border router, a backbone path between the source and
       destination areas, and then another intra-area path to the
       destination.  The algorithm finds the set of such paths that
       have the smallest cost.

       Looking at this another way, inter-area routing can be pictured



Moy                                                            [Page 22]

RFC 1583                     OSPF Version 2                   March 1994


       as forcing a star configuration on the Autonomous System, with
       the backbone as hub and each of the areas as spokes.

       The topology of the backbone dictates the backbone paths used
       between areas.  The topology of the backbone can be enhanced by
       adding virtual links.  This gives the system administrator some
       control over the routes taken by inter-area traffic.

       The correct area border router to use as the packet exits the
       source area is chosen in exactly the same way routers
       advertising external routes are chosen.  Each area border router
       in an area summarizes for the area its cost to all networks
       external to the area.  After the SPF tree is calculated for the
       area, routes to all other networks are calculated by examining
       the summaries of the area border routers.


   3.3.  Classification of routers

       Before the introduction of areas, the only OSPF routers having a
       specialized function were those advertising external routing
       information, such as Router RT5 in Figure 2.  When the AS is
       split into OSPF areas, the routers are further divided according
       to function into the following four overlapping categories:


       Internal routers
           A router with all directly connected networks belonging to
           the same area.  Routers with only backbone interfaces also
           belong to this category.  These routers run a single copy of
           the basic routing algorithm.

       Area border routers
           A router that attaches to multiple areas.  Area border
           routers run multiple copies of the basic algorithm, one copy
           for each attached area and an additional copy for the
           backbone.  Area border routers condense the topological
           information of their attached areas for distribution to the
           backbone.  The backbone in turn distributes the information
           to the other areas.

       Backbone routers
           A router that has an interface to the backbone.  This
           includes all routers that interface to more than one area
           (i.e., area border routers).  However, backbone routers do
           not have to be area border routers.  Routers with all
           interfaces connected to the backbone are considered to be
           internal routers.



Moy                                                            [Page 23]

RFC 1583                     OSPF Version 2                   March 1994


       AS boundary routers
           A router that exchanges routing information with routers
           belonging to other Autonomous Systems.  Such a router has AS
           external routes that are advertised throughout the
           Autonomous System.  The path to each AS boundary router is
           known by every router in the AS.  This classification is
           completely independent of the previous classifications: AS
           boundary routers may be internal or area border routers, and
           may or may not participate in the backbone.


   3.4.  A sample area configuration

       Figure 6 shows a sample area configuration.  The first area
       consists of networks N1-N4, along with their attached routers
       RT1-RT4.  The second area consists of networks N6-N8, along with
       their attached routers RT7, RT8, RT10 and RT11.  The third area
       consists of networks N9-N11 and Host H1, along with their
       attached routers RT9, RT11 and RT12.  The third area has been
       configured so that networks N9-N11 and Host H1 will all be
       grouped into a single route, when advertised external to the
       area (see Section 3.5 for more details).

       In Figure 6, Routers RT1, RT2, RT5, RT6, RT8, RT9 and RT12 are
       internal routers.  Routers RT3, RT4, RT7, RT10 and RT11 are area
       border routers.  Finally, as before, Routers RT5 and RT7 are AS
       boundary routers.

       Figure 7 shows the resulting topological database for the Area
       1.  The figure completely describes that area's intra-area
       routing.  It also shows the complete view of the internet for
       the two internal routers RT1 and RT2.  It is the job of the area
       border routers, RT3 and RT4, to advertise into Area 1 the
       distances to all destinations external to the area.  These are
       indicated in Figure 7 by the dashed stub routes.  Also, RT3 and
       RT4 must advertise into Area 1 the location of the AS boundary
       routers RT5 and RT7.  Finally, external advertisements from RT5
       and RT7 are flooded throughout the entire AS, and in particular
       throughout Area 1.  These advertisements are included in Area
       1's database, and yield routes to Networks N12-N15.

       Routers RT3 and RT4 must also summarize Area 1's topology for
       distribution to the backbone.  Their backbone advertisements are
       shown in Table 4.  These summaries show which networks are
       contained in Area 1 (i.e., Networks N1-N4), and the distance to
       these networks from the routers RT3 and RT4 respectively.





Moy                                                            [Page 24]

RFC 1583                     OSPF Version 2                   March 1994



            ...........................
            .   +                     .
            .   | 3+---+              .      N12      N14
            . N1|--|RT1|\ 1           .        \ N13 /
            .   |  +---+ \            .        8\ |8/8
            .   +         \ ____      .          \|/
            .              /    \   1+---+8    8+---+6
            .             *  N3  *---|RT4|------|RT5|--------+
            .              \____/    +---+      +---+        |
            .    +         /      \   .           |7         |
            .    | 3+---+ /        \  .           |          |
            .  N2|--|RT2|/1        1\ .           |6         |
            .    |  +---+            +---+8    6+---+        |
            .    +                   |RT3|------|RT6|        |
            .                        +---+      +---+        |
            .                      2/ .         Ia|7         |
            .                      /  .           |          |
            .             +---------+ .           |          |
            .Area 1           N4      .           |          |
            ...........................           |          |
         ..........................               |          |
         .            N11         .               |          |
         .        +---------+     .               |          |
         .             |          .               |          |    N12
         .             |3         .             Ib|5         |6 2/
         .           +---+        .             +----+     +---+/
         .           |RT9|        .    .........|RT10|.....|RT7|---N15.
         .           +---+        .    .        +----+     +---+ 9    .
         .             |1         .    .    +  /3    1\      |1       .
         .            _|__        .    .    | /        \   __|_       .
         .           /    \      1+----+2   |/          \ /    \      .
         .          *  N9  *------|RT11|----|            *  N6  *     .
         .           \____/       +----+    |             \____/      .
         .             |          .    .    |                |        .
         .             |1         .    .    +                |1       .
         .  +--+   10+----+       .    .   N8              +---+      .
         .  |H1|-----|RT12|       .    .                   |RT8|      .
         .  +--+SLIP +----+       .    .                   +---+      .
         .             |2         .    .                     |4       .
         .             |          .    .                     |        .
         .        +---------+     .    .                 +--------+   .
         .            N10         .    .                     N7       .
         .                        .    .Area 2                        .
         .Area 3                  .    ................................
         ..........................

                   Figure 6: A sample OSPF area configuration



Moy                                                            [Page 25]

RFC 1583                     OSPF Version 2                   March 1994


                    Network   RT3 adv.   RT4 adv.
                    _____________________________
                    N1        4          4
                    N2        4          4
                    N3        1          1
                    N4        2          3


             Table 4: Networks advertised to the backbone
                       by Routers RT3 and RT4.

       The topological database for the backbone is shown in Figure 8.
       The set of routers pictured are the backbone routers.  Router
       RT11 is a backbone router because it belongs to two areas.  In
       order to make the backbone connected, a virtual link has been
       configured between Routers R10 and R11.

       Again, Routers RT3, RT4, RT7, RT10 and RT11 are area border
       routers.  As Routers RT3 and RT4 did above, they have condensed
       the routing information of their attached areas for distribution
       via the backbone; these are the dashed stubs that appear in
       Figure 8.  Remember that the third area has been configured to
       condense Networks N9-N11 and Host H1 into a single route.  This
       yields a single dashed line for networks N9-N11 and Host H1 in
       Figure 8.  Routers RT5 and RT7 are AS boundary routers; their
       externally derived information also appears on the graph in
       Figure 8 as stubs.

       The backbone enables the exchange of summary information between
       area border routers.  Every area border router hears the area
       summaries from all other area border routers.  It then forms a
       picture of the distance to all networks outside of its area by
       examining the collected advertisements, and adding in the
       backbone distance to each advertising router.

       Again using Routers RT3 and RT4 as an example, the procedure
       goes as follows: They first calculate the SPF tree for the
       backbone.  This gives the distances to all other area border
       routers.  Also noted are the distances to networks (Ia and Ib)
       and AS boundary routers (RT5 and RT7) that belong to the
       backbone.  This calculation is shown in Table 5.


       Next, by looking at the area summaries from these area border
       routers, RT3 and RT4 can determine the distance to all networks
       outside their area.  These distances are then advertised
       internally to the area by RT3 and RT4.  The advertisements that
       Router RT3 and RT4 will make into Area 1 are shown in Table 6.



Moy                                                            [Page 26]

RFC 1583                     OSPF Version 2                   March 1994



                              **FROM**

                         |RT|RT|RT|RT|RT|RT|
                         |1 |2 |3 |4 |5 |7 |N3|
                      ----- -------------------
                      RT1|  |  |  |  |  |  |0 |
                      RT2|  |  |  |  |  |  |0 |
                      RT3|  |  |  |  |  |  |0 |
                  *   RT4|  |  |  |  |  |  |0 |
                  *   RT5|  |  |14|8 |  |  |  |
                  T   RT7|  |  |20|14|  |  |  |
                  O    N1|3 |  |  |  |  |  |  |
                  *    N2|  |3 |  |  |  |  |  |
                  *    N3|1 |1 |1 |1 |  |  |  |
                       N4|  |  |2 |  |  |  |  |
                    Ia,Ib|  |  |15|22|  |  |  |
                       N6|  |  |16|15|  |  |  |
                       N7|  |  |20|19|  |  |  |
                       N8|  |  |18|18|  |  |  |
                N9-N11,H1|  |  |19|16|  |  |  |
                      N12|  |  |  |  |8 |2 |  |
                      N13|  |  |  |  |8 |  |  |
                      N14|  |  |  |  |8 |  |  |
                      N15|  |  |  |  |  |9 |  |

                     Figure 7: Area 1's Database.

             Networks and routers are represented by vertices.
             An edge of cost X connects Vertex A to Vertex B iff
             the intersection of Column A and Row B is marked
                              with an X.



















Moy                                                            [Page 27]

RFC 1583                     OSPF Version 2                   March 1994


                                 **FROM**

                           |RT|RT|RT|RT|RT|RT|RT
                           |3 |4 |5 |6 |7 |10|11|
                        ------------------------
                        RT3|  |  |  |6 |  |  |  |
                        RT4|  |  |8 |  |  |  |  |
                        RT5|  |8 |  |6 |6 |  |  |
                        RT6|8 |  |7 |  |  |5 |  |
                        RT7|  |  |6 |  |  |  |  |
                    *  RT10|  |  |  |7 |  |  |2 |
                    *  RT11|  |  |  |  |  |3 |  |
                    T    N1|4 |4 |  |  |  |  |  |
                    O    N2|4 |4 |  |  |  |  |  |
                    *    N3|1 |1 |  |  |  |  |  |
                    *    N4|2 |3 |  |  |  |  |  |
                         Ia|  |  |  |  |  |5 |  |
                         Ib|  |  |  |7 |  |  |  |
                         N6|  |  |  |  |1 |1 |3 |
                         N7|  |  |  |  |5 |5 |7 |
                         N8|  |  |  |  |4 |3 |2 |
                  N9-N11,H1|  |  |  |  |  |  |1 |
                        N12|  |  |8 |  |2 |  |  |
                        N13|  |  |8 |  |  |  |  |
                        N14|  |  |8 |  |  |  |  |
                        N15|  |  |  |  |9 |  |  |


                    Figure 8: The backbone's database.

             Networks and routers are represented by vertices.
             An edge of cost X connects Vertex A to Vertex B iff
             the intersection of Column A and Row B is marked
                                with an X.

















Moy                                                            [Page 28]

RFC 1583                     OSPF Version 2                   March 1994


                Area  border   dist  from   dist  from
                router         RT3          RT4
                ______________________________________
                to  RT3        *            21
                to  RT4        22           *
                to  RT7        20           14
                to  RT10       15           22
                to  RT11       18           25
                ______________________________________
                to  Ia         20           27
                to  Ib         15           22
                ______________________________________
                to  RT5        14           8
                to  RT7        20           14


                Table 5: Backbone distances calculated
                       by Routers RT3 and RT4.

       Note that Table 6 assumes that an area range has been configured
       for the backbone which groups Ia and Ib into a single
       advertisement.


       The information imported into Area 1 by Routers RT3 and RT4
       enables an internal router, such as RT1, to choose an area
       border router intelligently.  Router RT1 would use RT4 for
       traffic to Network N6, RT3 for traffic to Network N10, and would
       load share between the two for traffic to Network N8.



                  Destination   RT3 adv.   RT4 adv.
                  _________________________________
                  Ia,Ib         15         22
                  N6            16         15
                  N7            20         19
                  N8            18         18
                  N9-N11,H1     19         26
                  _________________________________
                  RT5           14         8
                  RT7           20         14


             Table 6: Destinations advertised into Area 1
                       by Routers RT3 and RT4.





Moy                                                            [Page 29]

RFC 1583                     OSPF Version 2                   March 1994


       Router RT1 can also determine in this manner the shortest path
       to the AS boundary routers RT5 and RT7.  Then, by looking at RT5
       and RT7's external advertisements, Router RT1 can decide between
       RT5 or RT7 when sending to a destination in another Autonomous
       System (one of the networks N12-N15).

       Note that a failure of the line between Routers RT6 and RT10
       will cause the backbone to become disconnected.  Configuring a
       virtual link between Routers RT7 and RT10 will give the backbone
       more connectivity and more resistance to such failures. Also, a
       virtual link between RT7 and RT10 would allow a much shorter
       path between the third area (containing N9) and the router RT7,
       which is advertising a good route to external network N12.


   3.5.  IP subnetting support

       OSPF attaches an IP address mask to each advertised route.  The
       mask indicates the range of addresses being described by the
       particular route.  For example, a summary advertisement for the
       destination 128.185.0.0 with a mask of 0xffff0000 actually is
       describing a single route to the collection of destinations
       128.185.0.0 - 128.185.255.255.  Similarly, host routes are
       always advertised with a mask of 0xffffffff, indicating the
       presence of only a single destination.

       Including the mask with each advertised destination enables the
       implementation of what is commonly referred to as variable-
       length subnetting.  This means that a single IP class A, B, or C
       network number can be broken up into many subnets of various
       sizes.  For example, the network 128.185.0.0 could be broken up
       into 62 variable-sized subnets: 15 subnets of size 4K, 15
       subnets of size 256, and 32 subnets of size 8.  Table 7 shows
       some of the resulting network addresses together with their
       masks:



                 Network address   IP address mask   Subnet size
                 _______________________________________________
                 128.185.16.0      0xfffff000        4K
                 128.185.1.0       0xffffff00        256
                 128.185.0.8       0xfffffff8        8


                        Table 7: Some sample subnet sizes.





Moy                                                            [Page 30]

RFC 1583                     OSPF Version 2                   March 1994


       There are many possible ways of dividing up a class A, B, and C
       network into variable sized subnets.  The precise procedure for
       doing so is beyond the scope of this specification.  This
       specification however establishes the following guideline: When
       an IP packet is forwarded, it is always forwarded to the network
       that is the best match for the packet's destination.  Here best
       match is synonymous with the longest or most specific match.
       For example, the default route with destination of 0.0.0.0 and
       mask 0x00000000 is always a match for every IP destination.  Yet
       it is always less specific than any other match.  Subnet masks
       must be assigned so that the best match for any IP destination
       is unambiguous.

       The OSPF area concept is modelled after an IP subnetted network.
       OSPF areas have been loosely defined to be a collection of
       networks.  In actuality, an OSPF area is specified to be a list
       of address ranges (see Section C.2 for more details).  Each
       address range is defined as an [address,mask] pair.  Many
       separate networks may then be contained in a single address
       range, just as a subnetted network is composed of many separate
       subnets.  Area border routers then summarize the area contents
       (for distribution to the backbone) by advertising a single route
       for each address range.  The cost of the route is the minimum
       cost to any of the networks falling in the specified range.

       For example, an IP subnetted network can be configured as a
       single OSPF area.  In that case, the area would be defined as a
       single address range: a class A, B, or C network number along
       with its natural IP mask.  Inside the area, any number of
       variable sized subnets could be defined.  External to the area,
       a single route for the entire subnetted network would be
       distributed, hiding even the fact that the network is subnetted
       at all.  The cost of this route is the minimum of the set of
       costs to the component subnets.


   3.6.  Supporting stub areas

       In some Autonomous Systems, the majority of the topological
       database may consist of AS external advertisements.  An OSPF AS
       external advertisement is usually flooded throughout the entire
       AS.  However, OSPF allows certain areas to be configured as
       "stub areas".  AS external advertisements are not flooded
       into/throughout stub areas; routing to AS external destinations
       in these areas is based on a (per-area) default only.  This
       reduces the topological database size, and therefore the memory
       requirements, for a stub area's internal routers.




Moy                                                            [Page 31]

RFC 1583                     OSPF Version 2                   March 1994


       In order to take advantage of the OSPF stub area support,
       default routing must be used in the stub area.  This is
       accomplished as follows.  One or more of the stub area's area
       border routers must advertise a default route into the stub area
       via summary link advertisements.  These summary defaults are
       flooded throughout the stub area, but no further.  (For this
       reason these defaults pertain only to the particular stub area).
       These summary default routes will match any destination that is
       not explicitly reachable by an intra-area or inter-area path
       (i.e., AS external destinations).

       An area can be configured as stub when there is a single exit
       point from the area, or when the choice of exit point need not
       be made on a per-external-destination basis.  For example, Area
       3 in Figure 6 could be configured as a stub area, because all
       external traffic must travel though its single area border
       router RT11.  If Area 3 were configured as a stub, Router RT11
       would advertise a default route for distribution inside Area 3
       (in a summary link advertisement), instead of flooding the AS
       external advertisements for Networks N12-N15 into/throughout the
       area.

       The OSPF protocol ensures that all routers belonging to an area
       agree on whether the area has been configured as a stub.  This
       guarantees that no confusion will arise in the flooding of AS
       external advertisements.

       There are a couple of restrictions on the use of stub areas.
       Virtual links cannot be configured through stub areas.  In
       addition, AS boundary routers cannot be placed internal to stub
       areas.


   3.7.  Partitions of areas

       OSPF does not actively attempt to repair area partitions.  When
       an area becomes partitioned, each component simply becomes a
       separate area.  The backbone then performs routing between the
       new areas.  Some destinations reachable via intra-area routing
       before the partition will now require inter-area routing.

       In the previous section, an area was described as a list of
       address ranges.  Any particular address range must still be
       completely contained in a single component of the area
       partition.  This has to do with the way the area contents are
       summarized to the backbone.  Also, the backbone itself must not
       partition.  If it does, parts of the Autonomous System will
       become unreachable.  Backbone partitions can be repaired by



Moy                                                            [Page 32]

RFC 1583                     OSPF Version 2                   March 1994


       configuring virtual links (see Section 15).

       Another way to think about area partitions is to look at the
       Autonomous System graph that was introduced in Section 2.  Area
       IDs can be viewed as colors for the graph's edges.[1] Each edge
       of the graph connects to a network, or is itself a point-to-
       point network.  In either case, the edge is colored with the
       network's Area ID.

       A group of edges, all having the same color, and interconnected
       by vertices, represents an area.  If the topology of the
       Autonomous System is intact, the graph will have several regions
       of color, each color being a distinct Area ID.

       When the AS topology changes, one of the areas may become
       partitioned.  The graph of the AS will then have multiple
       regions of the same color (Area ID).  The routing in the
       Autonomous System will continue to function as long as these
       regions of same color are connected by the single backbone
       region.































Moy                                                            [Page 33]

RFC 1583                     OSPF Version 2                   March 1994


4.  Functional Summary

   A separate copy of OSPF's basic routing algorithm runs in each area.
   Routers having interfaces to multiple areas run multiple copies of
   the algorithm.  A brief summary of the routing algorithm follows.

   When a router starts, it first initializes the routing protocol data
   structures.  The router then waits for indications from the lower-
   level protocols that its interfaces are functional.

   A router then uses the OSPF's Hello Protocol to acquire neighbors.
   The router sends Hello packets to its neighbors, and in turn
   receives their Hello packets.  On broadcast and point-to-point
   networks, the router dynamically detects its neighboring routers by
   sending its Hello packets to the multicast address AllSPFRouters.
   On non-broadcast networks, some configuration information is
   necessary in order to discover neighbors.  On all multi-access
   networks (broadcast or non-broadcast), the Hello Protocol also
   elects a Designated router for the network.

   The router will attempt to form adjacencies with some of its newly
   acquired neighbors.  Topological databases are synchronized between
   pairs of adjacent routers.  On multi-access networks, the Designated
   Router determines which routers should become adjacent.

   Adjacencies control the distribution of routing protocol packets.
   Routing protocol packets are sent and received only on adjacencies.
   In particular, distribution of topological database updates proceeds
   along adjacencies.

   A router periodically advertises its state, which is also called
   link state.  Link state is also advertised when a router's state
   changes.  A router's adjacencies are reflected in the contents of
   its link state advertisements.  This relationship between
   adjacencies and link state allows the protocol to detect dead
   routers in a timely fashion.

   Link state advertisements are flooded throughout the area.  The
   flooding algorithm is reliable, ensuring that all routers in an area
   have exactly the same topological database.  This database consists
   of the collection of link state advertisements received from each
   router belonging to the area.  From this database each router
   calculates a shortest-path tree, with itself as root.  This
   shortest-path tree in turn yields a routing table for the protocol.







Moy                                                            [Page 34]

RFC 1583                     OSPF Version 2                   March 1994


   4.1.  Inter-area routing

       The previous section described the operation of the protocol
       within a single area.  For intra-area routing, no other routing
       information is pertinent.  In order to be able to route to
       destinations outside of the area, the area border routers inject
       additional routing information into the area.  This additional
       information is a distillation of the rest of the Autonomous
       System's topology.

       This distillation is accomplished as follows: Each area border
       router is by definition connected to the backbone.  Each area
       border router summarizes the topology of its attached areas for
       transmission on the backbone, and hence to all other area border
       routers.  An area border router then has complete topological
       information concerning the backbone, and the area summaries from
       each of the other area border routers.  From this information,
       the router calculates paths to all destinations not contained in
       its attached areas.  The router then advertises these paths into
       its attached areas.  This enables the area's internal routers to
       pick the best exit router when forwarding traffic to
       destinations in other areas.


   4.2.  AS external routes

       Routers that have information regarding other Autonomous Systems
       can flood this information throughout the AS.  This external
       routing information is distributed verbatim to every
       participating router.  There is one exception: external routing
       information is not flooded into "stub" areas (see Section 3.6).

       To utilize external routing information, the path to all routers
       advertising external information must be known throughout the AS
       (excepting the stub areas).  For that reason, the locations of
       these AS boundary routers are summarized by the (non-stub) area
       border routers.


   4.3.  Routing protocol packets

       The OSPF protocol runs directly over IP, using IP protocol 89.
       OSPF does not provide any explicit fragmentation/reassembly
       support.  When fragmentation is necessary, IP
       fragmentation/reassembly is used.  OSPF protocol packets have
       been designed so that large protocol packets can generally be
       split into several smaller protocol packets.  This practice is
       recommended; IP fragmentation should be avoided whenever



Moy                                                            [Page 35]

RFC 1583                     OSPF Version 2                   March 1994


       possible.

       Routing protocol packets should always be sent with the IP TOS
       field set to 0.  If at all possible, routing protocol packets
       should be given preference over regular IP data traffic, both
       when being sent and received.  As an aid to accomplishing this,
       OSPF protocol packets should have their IP precedence field set
       to the value Internetwork Control (see [RFC 791]).

       All OSPF protocol packets share a common protocol header that is
       described in Appendix A.  The OSPF packet types are listed below
       in Table 8.  Their formats are also described in Appendix A.



            Type   Packet  name           Protocol  function
            __________________________________________________________
            1      Hello                  Discover/maintain  neighbors
            2      Database Description   Summarize database contents
            3      Link State Request     Database download
            4      Link State Update      Database update
            5      Link State Ack         Flooding acknowledgment


                           Table 8: OSPF packet types.


       OSPF's Hello protocol uses Hello packets to discover and
       maintain neighbor relationships.  The Database Description and
       Link State Request packets are used in the forming of
       adjacencies.  OSPF's reliable update mechanism is implemented by
       the Link State Update and Link State Acknowledgment packets.

       Each Link State Update packet carries a set of new link state
       advertisements one hop further away from their point of
       origination.  A single Link State Update packet may contain the
       link state advertisements of several routers.  Each
       advertisement is tagged with the ID of the originating router
       and a checksum of its link state contents.  The five different
       types of OSPF link state advertisements are listed below in
       Table 9.

       As mentioned above, OSPF routing packets (with the exception of
       Hellos) are sent only over adjacencies.  Note that this means
       that all OSPF protocol packets travel a single IP hop, except
       those that are sent over virtual adjacencies.  The IP source
       address of an OSPF protocol packet is one end of a router
       adjacency, and the IP destination address is either the other



Moy                                                            [Page 36]

RFC 1583                     OSPF Version 2                   March 1994




      LS     Advertisement      Advertisement description
      type   name
      _________________________________________________________
      1      Router links       Originated by all routers.
             advertisements     This advertisement describes
                                the collected states of the
                                router's interfaces to an
                                area. Flooded throughout a
                                single area only.
      _________________________________________________________
      2      Network links      Originated for multi-access
             advertisements     networks by the Designated
                                Router. This advertisement
                                contains the list of routers
                                connected to the network.
                                Flooded throughout a single
                                area only.
      _________________________________________________________
      3,4    Summary link       Originated by area border
             advertisements     routers, and flooded through-
                                out the advertisement's
                                associated area. Each summary
                                link advertisement describes
                                a route to a destination out-
                                side the area, yet still inside
                                the AS (i.e., an inter-area
                                route). Type 3 advertisements
                                describe routes to networks.
                                Type 4 advertisements describe
                                routes to AS boundary routers.
      _________________________________________________________
      5      AS external link   Originated by AS boundary
             advertisements     routers, and flooded through-
                                out the AS. Each AS external
                                link advertisement describes
                                a route to a destination in
                                another Autonomous System.
                                Default routes for the AS can
                                also be described by AS
                                external link advertisements.


               Table 9: OSPF link state advertisements.






Moy                                                            [Page 37]

RFC 1583                     OSPF Version 2                   March 1994


       end of the adjacency or an IP multicast address.


   4.4.  Basic implementation requirements

       An implementation of OSPF requires the following pieces of
       system support:


       Timers
           Two different kind of timers are required.  The first kind,
           called single shot timers, fire once and cause a protocol
           event to be processed.  The second kind, called interval
           timers, fire at continuous intervals.  These are used for
           the sending of packets at regular intervals.  A good example
           of this is the regular broadcast of Hello packets (on
           broadcast networks).  The granularity of both kinds of
           timers is one second.

           Interval timers should be implemented to avoid drift.  In
           some router implementations, packet processing can affect
           timer execution.  When multiple routers are attached to a
           single network, all doing broadcasts, this can lead to the
           synchronization of routing packets (which should be
           avoided).  If timers cannot be implemented to avoid drift,
           small random amounts should be added to/subtracted from the
           timer interval at each firing.

       IP multicast
           Certain OSPF packets take the form of IP multicast
           datagrams.  Support for receiving and sending IP multicast
           datagrams, along with the appropriate lower-level protocol
           support, is required.  The IP multicast datagrams used by
           OSPF never travel more than one hop. For this reason, the
           ability to forward IP multicast datagrams is not required.
           For information on IP multicast, see [RFC 1112].

       Variable-length subnet support
           The router's IP protocol support must include the ability to
           divide a single IP class A, B, or C network number into many
           subnets of various sizes.  This is commonly called
           variable-length subnetting; see Section 3.5 for details.

       IP supernetting support
           The router's IP protocol support must include the ability to
           aggregate contiguous collections of IP class A, B, and C
           networks into larger quantities called supernets.
           Supernetting has been proposed as one way to improve the



Moy                                                            [Page 38]

RFC 1583                     OSPF Version 2                   March 1994


           scaling of IP routing in the worldwide Internet. For more
           information on IP supernetting, see [RFC 1519].

       Lower-level protocol support
           The lower level protocols referred to here are the network
           access protocols, such as the Ethernet data link layer.
           Indications must be passed from these protocols to OSPF as
           the network interface goes up and down.  For example, on an
           ethernet it would be valuable to know when the ethernet
           transceiver cable becomes unplugged.

       Non-broadcast lower-level protocol support
           Remember that non-broadcast networks are multi-access
           networks such as a X.25 PDN.  On these networks, the Hello
           Protocol can be aided by providing an indication to OSPF
           when an attempt is made to send a packet to a dead or non-
           existent router.  For example, on an X.25 PDN a dead
           neighboring router may be indicated by the reception of a
           X.25 clear with an appropriate cause and diagnostic, and
           this information would be passed to OSPF.

       List manipulation primitives
           Much of the OSPF functionality is described in terms of its
           operation on lists of link state advertisements.  For
           example, the collection of advertisements that will be
           retransmitted to an adjacent router until acknowledged are
           described as a list.  Any particular advertisement may be on
           many such lists.  An OSPF implementation needs to be able to
           manipulate these lists, adding and deleting constituent
           advertisements as necessary.

       Tasking support
           Certain procedures described in this specification invoke
           other procedures.  At times, these other procedures should
           be executed in-line, that is, before the current procedure
           is finished.  This is indicated in the text by instructions
           to execute a procedure.  At other times, the other
           procedures are to be executed only when the current
           procedure has finished.  This is indicated by instructions
           to schedule a task.


   4.5.  Optional OSPF capabilities

       The OSPF protocol defines several optional capabilities.  A
       router indicates the optional capabilities that it supports in
       its OSPF Hello packets, Database Description packets and in its
       link state advertisements.  This enables routers supporting a



Moy                                                            [Page 39]

RFC 1583                     OSPF Version 2                   March 1994


       mix of optional capabilities to coexist in a single Autonomous
       System.

       Some capabilities must be supported by all routers attached to a
       specific area.  In this case, a router will not accept a
       neighbor's Hello Packet unless there is a match in reported
       capabilities (i.e., a capability mismatch prevents a neighbor
       relationship from forming).  An example of this is the
       ExternalRoutingCapability (see below).

       Other capabilities can be negotiated during the Database
       Exchange process.  This is accomplished by specifying the
       optional capabilities in Database Description packets.  A
       capability mismatch with a neighbor in this case will result in
       only a subset of link state advertisements being exchanged
       between the two neighbors.

       The routing table build process can also be affected by the
       presence/absence of optional capabilities.  For example, since
       the optional capabilities are reported in link state
       advertisements, routers incapable of certain functions can be
       avoided when building the shortest path tree.  An example of
       this is the TOS routing capability (see below).

       The current OSPF optional capabilities are listed below.  See
       Section A.2 for more information.


       ExternalRoutingCapability
           Entire OSPF areas can be configured as "stubs" (see Section
           3.6).  AS external advertisements will not be flooded into
           stub areas.  This capability is represented by the E-bit in
           the OSPF options field (see Section A.2).  In order to
           ensure consistent configuration of stub areas, all routers
           interfacing to such an area must have the E-bit clear in
           their Hello packets (see Sections 9.5 and 10.5).

       TOS capability
           All OSPF implementations must be able to calculate separate
           routes based on IP Type of Service.  However, to save
           routing table space and processing resources, an OSPF router
           can be configured to ignore TOS when forwarding packets.  In
           this case, the router calculates routes for TOS 0 only.
           This capability is represented by the T-bit in the OSPF
           options field (see Section A.2).  TOS-capable routers will
           attempt to avoid non-TOS-capable routers when calculating
           non-zero TOS paths.




Moy                                                            [Page 40]

RFC 1583                     OSPF Version 2                   March 1994


5.  Protocol Data Structures

   The OSPF protocol is described in this specification in terms of its
   operation on various protocol data structures.  The following list
   comprises the top-level OSPF data structures.  Any initialization
   that needs to be done is noted.  OSPF areas, interfaces and
   neighbors also have associated data structures that are described
   later in this specification.


   Router ID
       A 32-bit number that uniquely identifies this router in the AS.
       One possible implementation strategy would be to use the
       smallest IP interface address belonging to the router. If a
       router's OSPF Router ID is changed, the router's OSPF software
       should be restarted before the new Router ID takes effect.
       Before restarting in order to change its Router ID, the router
       should flush its self-originated link state advertisements from
       the routing domain (see Section 14.1), or they will persist for
       up to MaxAge minutes.

   Area structures
       Each one of the areas to which the router is connected has its
       own data structure.  This data structure describes the working
       of the basic algorithm.  Remember that each area runs a separate
       copy of the basic algorithm.

   Backbone (area) structure
       The basic algorithm operates on the backbone as if it were an
       area.  For this reason the backbone is represented as an area
       structure.

   Virtual links configured
       The virtual links configured with this router as one endpoint.
       In order to have configured virtual links, the router itself
       must be an area border router.  Virtual links are identified by
       the Router ID of the other endpoint -- which is another area
       border router.  These two endpoint routers must be attached to a
       common area, called the virtual link's Transit area.  Virtual
       links are part of the backbone, and behave as if they were
       unnumbered point-to-point networks between the two routers.  A
       virtual link uses the intra-area routing of its Transit area to
       forward packets.  Virtual links are brought up and down through
       the building of the shortest-path trees for the Transit area.

   List of external routes
       These are routes to destinations external to the Autonomous
       System, that have been gained either through direct experience



Moy                                                            [Page 41]

RFC 1583                     OSPF Version 2                   March 1994


       with another routing protocol (such as EGP), or through
       configuration information, or through a combination of the two
       (e.g., dynamic external information to be advertised by OSPF
       with configured metric). Any router having these external routes
       is called an AS boundary router.  These routes are advertised by
       the router into the OSPF routing domain via AS external link
       advertisements.

   List of AS external link advertisements
       Part of the topological database.  These have originated from
       the AS boundary routers.  They comprise routes to destinations
       external to the Autonomous System.  Note that, if the router is
       itself an AS boundary router, some of these AS external link
       advertisements have been self-originated.

   The routing table
       Derived from the topological database.  Each destination that
       the router can forward to is represented by a cost and a set of
       paths.  A path is described by its type and next hop.  For more
       information, see Section 11.

   TOS capability
       This item indicates whether the router will calculate separate
       routes based on TOS.  This is a configurable parameter.  For
       more information, see Sections 4.5 and 16.9.


   Figure 9 shows the collection of data structures present in a
   typical router.  The router pictured is RT10, from the map in Figure
   6.  Note that Router RT10 has a virtual link configured to Router
   RT11, with Area 2 as the link's Transit area.  This is indicated by
   the dashed line in Figure 9.  When the virtual link becomes active,
   through the building of the shortest path tree for Area 2, it
   becomes an interface to the backbone (see the two backbone
   interfaces depicted in Figure 9).

6.  The Area Data Structure

   The area data structure contains all the information used to run the
   basic routing algorithm. Each area maintains its own topological
   database. A network belongs to a single area, and a router interface
   connects to a single area. Each router adjacency also belongs to a
   single area.

   The OSPF backbone has all the properties of an area.  For that
   reason it is also represented by an area data structure.  Note that
   some items in the structure apply differently to the backbone than
   to non-backbone areas.



Moy                                                            [Page 42]

RFC 1583                     OSPF Version 2                   March 1994





                             +----+
                             |RT10|------+
                             +----+       \+-------------+
                            /      \       |Routing Table|
                           /        \      +-------------+
                          /          \
             +------+    /            \    +--------+
             |Area 2|---+              +---|Backbone|
             +------+***********+          +--------+
            /        \           *        /          \
           /          \           *      /            \
      +---------+  +---------+    +------------+       +------------+
      |Interface|  |Interface|    |Virtual Link|       |Interface Ib|
      |  to N6  |  |  to N8  |    |   to RT11  |       +------------+
      +---------+  +---------+    +------------+             |
          /  \           |               |                   |
         /    \          |               |                   |
  +--------+ +--------+  |        +-------------+      +------------+
  |Neighbor| |Neighbor|  |        |Neighbor RT11|      |Neighbor RT6|
  |  RT8   | |  RT7   |  |        +-------------+      +------------+
  +--------+ +--------+  |
                         |
                    +-------------+
                    |Neighbor RT11|
                    +-------------+


               Figure 9: Router RT10's Data structures

   The area topological (or link state) database consists of the
   collection of router links, network links and summary link
   advertisements that have originated from the area's routers.  This
   information is flooded throughout a single area only.  The list of
   AS external link advertisements (see Section 5) is also considered
   to be part of each area's topological database.


   Area ID
       A 32-bit number identifying the area.  0.0.0.0 is reserved for
       the Area ID of the backbone.  If assigning subnetted networks as
       separate areas, the IP network number could be used as the Area
       ID.

   List of component address ranges
       The address ranges that define the area.  Each address range is



Moy                                                            [Page 43]

RFC 1583                     OSPF Version 2                   March 1994


       specified by an [address,mask] pair and a status indication of
       either Advertise or DoNotAdvertise (see Section 12.4.3). Each
       network is then assigned to an area depending on the address
       range that it falls into (specified address ranges are not
       allowed to overlap).  As an example, if an IP subnetted network
       is to be its own separate OSPF area, the area is defined to
       consist of a single address range - an IP network number with
       its natural (class A, B or C) mask.

   Associated router interfaces
       This router's interfaces connecting to the area.  A router
       interface belongs to one and only one area (or the backbone).
       For the backbone structure this list includes all the virtual
       links.  A virtual link is identified by the Router ID of its
       other endpoint; its cost is the cost of the shortest intra-area
       path through the Transit area that exists between the two
       routers.

   List of router links advertisements
       A router links advertisement is generated by each router in the
       area.  It describes the state of the router's interfaces to the
       area.

   List of network links advertisements
       One network links advertisement is generated for each transit
       multi-access network in the area.  A network links advertisement
       describes the set of routers currently connected to the network.

   List of summary link advertisements
       Summary link advertisements originate from the area's area
       border routers.  They describe routes to destinations internal
       to the Autonomous System, yet external to the area.

   Shortest-path tree
       The shortest-path tree for the area, with this router itself as
       root.  Derived from the collected router links and network links
       advertisements by the Dijkstra algorithm (see Section 16.1).

   AuType
       The type of authentication used for this area.  Authentication
       types are defined in Appendix D.  All OSPF packet exchanges are
       authenticated.  Different authentication schemes may be used in
       different areas.

   TransitCapability
       Set to TRUE if and only if there are one or more active virtual
       links using the area as a Transit area. Equivalently, this
       parameter indicates whether the area can carry data traffic that



Moy                                                            [Page 44]

RFC 1583                     OSPF Version 2                   March 1994


       neither originates nor terminates in the area itself. This
       parameter is calculated when the area's shortest-path tree is
       built (see Section 16.1, and is used as an input to a subsequent
       step of the routing table build process (see Section 16.3).

   ExternalRoutingCapability
       Whether AS external advertisements will be flooded
       into/throughout the area.  This is a configurable parameter.  If
       AS external advertisements are excluded from the area, the area
       is called a "stub".  Internal to stub areas, routing to AS
       external destinations will be based solely on a default summary
       route.  The backbone cannot be configured as a stub area.  Also,
       virtual links cannot be configured through stub areas.  For more
       information, see Section 3.6.

   StubDefaultCost
       If the area has been configured as a stub area, and the router
       itself is an area border router, then the StubDefaultCost
       indicates the cost of the default summary link that the router
       should advertise into the area.  There can be a separate cost
       configured for each IP TOS.  See Section 12.4.3 for more
       information.


   Unless otherwise specified, the remaining sections of this document
   refer to the operation of the protocol in a single area.


7.  Bringing Up Adjacencies

   OSPF creates adjacencies between neighboring routers for the purpose
   of exchanging routing information.  Not every two neighboring
   routers will become adjacent.  This section covers the generalities
   involved in creating adjacencies.  For further details consult
   Section 10.


   7.1.  The Hello Protocol

       The Hello Protocol is responsible for establishing and
       maintaining neighbor relationships.  It also ensures that
       communication between neighbors is bidirectional.  Hello packets
       are sent periodically out all router interfaces.  Bidirectional
       communication is indicated when the router sees itself listed in
       the neighbor's Hello Packet.

       On multi-access networks, the Hello Protocol elects a Designated
       Router for the network.  Among other things, the Designated



Moy                                                            [Page 45]

RFC 1583                     OSPF Version 2                   March 1994


       Router controls what adjacencies will be formed over the network
       (see below).

       The Hello Protocol works differently on broadcast networks, as
       compared to non-broadcast networks.  On broadcast networks, each
       router advertises itself by periodically multicasting Hello
       Packets.  This allows neighbors to be discovered dynamically.
       These Hello Packets contain the router's view of the Designated
       Router's identity, and the list of routers whose Hello Packets
       have been seen recently.

       On non-broadcast networks some configuration information is
       necessary for the operation of the Hello Protocol.  Each router
       that may potentially become Designated Router has a list of all
       other routers attached to the network.  A router, having
       Designated Router potential, sends Hello Packets to all other
       potential Designated Routers when its interface to the non-
       broadcast network first becomes operational.  This is an attempt
       to find the Designated Router for the network.  If the router
       itself is elected Designated Router, it begins sending Hello
       Packets to all other routers attached to the network.

       After a neighbor has been discovered, bidirectional
       communication ensured, and (if on a multi-access network) a
       Designated Router elected, a decision is made regarding whether
       or not an adjacency should be formed with the neighbor (see
       Section 10.4).  An attempt is always made to establish
       adjacencies over point-to-point networks and virtual links.  The
       first step in bringing up an adjacency is to synchronize the
       neighbors' topological databases.  This is covered in the next
       section.


   7.2.  The Synchronization of Databases

       In a link-state routing algorithm, it is very important for all
       routers' topological databases to stay synchronized.  OSPF
       simplifies this by requiring only adjacent routers to remain
       synchronized.  The synchronization process begins as soon as the
       routers attempt to bring up the adjacency.  Each router
       describes its database by sending a sequence of Database
       Description packets to its neighbor.  Each Database Description
       Packet describes a set of link state advertisements belonging to
       the router's database.  When the neighbor sees a link state
       advertisement that is more recent than its own database copy, it
       makes a note that this newer advertisement should be requested.

       This sending and receiving of Database Description packets is



Moy                                                            [Page 46]

RFC 1583                     OSPF Version 2                   March 1994


       called the "Database Exchange Process".  During this process,
       the two routers form a master/slave relationship.  Each Database
       Description Packet has a sequence number.  Database Description
       Packets sent by the master (polls) are acknowledged by the slave
       through echoing of the sequence number.  Both polls and their
       responses contain summaries of link state data.  The master is
       the only one allowed to retransmit Database Description Packets.
       It does so only at fixed intervals, the length of which is the
       configured constant RxmtInterval.

       Each Database Description contains an indication that there are
       more packets to follow --- the M-bit.  The Database Exchange
       Process is over when a router has received and sent Database
       Description Packets with the M-bit off.

       During and after the Database Exchange Process, each router has
       a list of those link state advertisements for which the neighbor
       has more up-to-date instances.  These advertisements are
       requested in Link State Request Packets.  Link State Request
       packets that are not satisfied are retransmitted at fixed
       intervals of time RxmtInterval.  When the Database Description
       Process has completed and all Link State Requests have been
       satisfied, the databases are deemed synchronized and the routers
       are marked fully adjacent.  At this time the adjacency is fully
       functional and is advertised in the two routers' link state
       advertisements.

       The adjacency is used by the flooding procedure as soon as the
       Database Exchange Process begins.  This simplifies database
       synchronization, and guarantees that it finishes in a
       predictable period of time.


   7.3.  The Designated Router

       Every multi-access network has a Designated Router.  The
       Designated Router performs two main functions for the routing
       protocol:

       o   The Designated Router originates a network links
           advertisement on behalf of the network.  This advertisement
           lists the set of routers (including the Designated Router
           itself) currently attached to the network.  The Link State
           ID for this advertisement (see Section 12.1.4) is the IP
           interface address of the Designated Router.  The IP network
           number can then be obtained by using the subnet/network
           mask.




Moy                                                            [Page 47]

RFC 1583                     OSPF Version 2                   March 1994


       o   The Designated Router becomes adjacent to all other routers
           on the network.  Since the link state databases are
           synchronized across adjacencies (through adjacency bring-up
           and then the flooding procedure), the Designated Router
           plays a central part in the synchronization process.


       The Designated Router is elected by the Hello Protocol.  A
       router's Hello Packet contains its Router Priority, which is
       configurable on a per-interface basis.  In general, when a
       router's interface to a network first becomes functional, it
       checks to see whether there is currently a Designated Router for
       the network.  If there is, it accepts that Designated Router,
       regardless of its Router Priority.  (This makes it harder to
       predict the identity of the Designated Router, but ensures that
       the Designated Router changes less often.  See below.)
       Otherwise, the router itself becomes Designated Router if it has
       the highest Router Priority on the network.  A more detailed
       (and more accurate) description of Designated Router election is
       presented in Section 9.4.

       The Designated Router is the endpoint of many adjacencies.  In
       order to optimize the flooding procedure on broadcast networks,
       the Designated Router multicasts its Link State Update Packets
       to the address AllSPFRouters, rather than sending separate
       packets over each adjacency.

       Section 2 of this document discusses the directed graph
       representation of an area.  Router nodes are labelled with their
       Router ID.  Multi-access network nodes are actually labelled
       with the IP address of their Designated Router.  It follows that
       when the Designated Router changes, it appears as if the network
       node on the graph is replaced by an entirely new node.  This
       will cause the network and all its attached routers to originate
       new link state advertisements.  Until the topological databases
       again converge, some temporary loss of connectivity may result.
       This may result in ICMP unreachable messages being sent in
       response to data traffic.  For that reason, the Designated
       Router should change only infrequently.  Router Priorities
       should be configured so that the most dependable router on a
       network eventually becomes Designated Router.


   7.4.  The Backup Designated Router

       In order to make the transition to a new Designated Router
       smoother, there is a Backup Designated Router for each multi-
       access network.  The Backup Designated Router is also adjacent



Moy                                                            [Page 48]

RFC 1583                     OSPF Version 2                   March 1994


       to all routers on the network, and becomes Designated Router
       when the previous Designated Router fails.  If there were no
       Backup Designated Router, when a new Designated Router became
       necessary, new adjacencies would have to be formed between the
       new Designated Router and all other routers attached to the
       network.  Part of the adjacency forming process is the
       synchronizing of topological databases, which can potentially
       take quite a long time.  During this time, the network would not
       be available for transit data traffic.  The Backup Designated
       obviates the need to form these adjacencies, since they already
       exist.  This means the period of disruption in transit traffic
       lasts only as long as it takes to flood the new link state
       advertisements (which announce the new Designated Router).

       The Backup Designated Router does not generate a network links
       advertisement for the network.  (If it did, the transition to a
       new Designated Router would be even faster.  However, this is a
       tradeoff between database size and speed of convergence when the
       Designated Router disappears.)

       The Backup Designated Router is also elected by the Hello
       Protocol.  Each Hello Packet has a field that specifies the
       Backup Designated Router for the network.

       In some steps of the flooding procedure, the Backup Designated
       Router plays a passive role, letting the Designated Router do
       more of the work.  This cuts down on the amount of local routing
       traffic.  See Section 13.3 for more information.


   7.5.  The graph of adjacencies

       An adjacency is bound to the network that the two routers have
       in common.  If two routers have multiple networks in common,
       they may have multiple adjacencies between them.

       One can picture the collection of adjacencies on a network as
       forming an undirected graph.  The vertices consist of routers,
       with an edge joining two routers if they are adjacent.  The
       graph of adjacencies describes the flow of routing protocol
       packets, and in particular Link State Update Packets, through
       the Autonomous System.

       Two graphs are possible, depending on whether the common network
       is multi-access.  On physical point-to-point networks (and
       virtual links), the two routers joined by the network will be
       adjacent after their databases have been synchronized.  On
       multi-access networks, both the Designated Router and the Backup



Moy                                                            [Page 49]

RFC 1583                     OSPF Version 2                   March 1994


       Designated Router are adjacent to all other routers attached to
       the network, and these account for all adjacencies.

       These graphs are shown in Figure 10.  It is assumed that Router
       RT7 has become the Designated Router, and Router RT3 the Backup
       Designated Router, for the Network N2.  The Backup Designated
       Router performs a lesser function during the flooding procedure
       than the Designated Router (see Section 13.3).  This is the
       reason for the dashed lines connecting the Backup Designated
       Router RT3.


8.  Protocol Packet Processing

   This section discusses the general processing of OSPF routing
   protocol packets.  It is very important that the router topological
   databases remain synchronized.  For this reason, routing protocol
   packets should get preferential treatment over ordinary data
   packets, both in sending and receiving.

   Routing protocol packets are sent along adjacencies only (with the



         +---+            +---+
         |RT1|------------|RT2|            o---------------o
         +---+    N1      +---+           RT1             RT2



                                                RT7
                                                 o---------+
           +---+   +---+   +---+                /|\        |
           |RT7|   |RT3|   |RT4|               / | \       |
           +---+   +---+   +---+              /  |  \      |
             |       |       |               /   |   \     |
        +-----------------------+        RT5o RT6o    oRT4 |
                 |       |     N2            *   *   *     |
               +---+   +---+                  *  *  *      |
               |RT5|   |RT6|                   * * *       |
               +---+   +---+                    ***        |
                                                 o---------+
                                                RT3


                 Figure 10: The graph of adjacencies





Moy                                                            [Page 50]

RFC 1583                     OSPF Version 2                   March 1994


   exception of Hello packets, which are used to discover the
   adjacencies).  This means that all routing protocol packets travel a
   single IP hop, except those sent over virtual links.

   All routing protocol packets begin with a standard header.  The
   sections below give the details on how to fill in and verify this
   standard header.  Then, for each packet type, the section is listed
   that gives more details on that particular packet type's processing.

   8.1.  Sending protocol packets

       When a router sends a routing protocol packet, it fills in the
       fields of the standard OSPF packet header as follows.  For more
       details on the header format consult Section A.3.1:


       Version #
           Set to 2, the version number of the protocol as documented
           in this specification.

       Packet type
           The type of OSPF packet, such as Link state Update or Hello
           Packet.

       Packet length
           The length of the entire OSPF packet in bytes, including the
           standard OSPF packet header.

       Router ID
           The identity of the router itself (who is originating the
           packet).

       Area ID
           The OSPF area that the packet is being sent into.

       Checksum
           The standard IP 16-bit one's complement checksum of the
           entire OSPF packet, excluding the 64-bit authentication
           field.  This checksum should be calculated before handing
           the packet to the appropriate authentication procedure.

       AuType and Authentication
           Each OSPF packet exchange is authenticated.  Authentication
           types are assigned by the protocol and documented in
           Appendix D.  A different authentication scheme can be used
           for each OSPF area.  The 64-bit authentication field is set
           by the appropriate authentication procedure (determined by
           AuType).  This procedure should be the last called when



Moy                                                            [Page 51]

RFC 1583                     OSPF Version 2                   March 1994


           forming the packet to be sent.  The setting of the
           authentication field is determined by the packet contents
           and the authentication key (which is configurable on a per-
           interface basis).


       The IP destination address for the packet is selected as
       follows.  On physical point-to-point networks, the IP
       destination is always set to the address AllSPFRouters.  On all
       other network types (including virtual links), the majority of
       OSPF packets are sent as unicasts, i.e., sent directly to the
       other end of the adjacency.  In this case, the IP destination is
       just the Neighbor IP address associated with the other end of
       the adjacency (see Section 10).  The only packets not sent as
       unicasts are on broadcast networks; on these networks Hello
       packets are sent to the multicast destination AllSPFRouters, the
       Designated Router and its Backup send both Link State Update
       Packets and Link State Acknowledgment Packets to the multicast
       address AllSPFRouters, while all other routers send both their
       Link State Update and Link State Acknowledgment Packets to the
       multicast address AllDRouters.

       Retransmissions of Link State Update packets are ALWAYS sent as
       unicasts.

       The IP source address should be set to the IP address of the
       sending interface.  Interfaces to unnumbered point-to-point
       networks have no associated IP address.  On these interfaces,
       the IP source should be set to any of the other IP addresses
       belonging to the router.  For this reason, there must be at
       least one IP address assigned to the router.[2] Note that, for
       most purposes, virtual links act precisely the same as
       unnumbered point-to-point networks.  However, each virtual link
       does have an IP interface address (discovered during the routing
       table build process) which is used as the IP source when sending
       packets over the virtual link.

       For more information on the format of specific OSPF packet
       types, consult the sections listed in Table 10.












Moy                                                            [Page 52]

RFC 1583                     OSPF Version 2                   March 1994



            Type   Packet name            detailed section (transmit)
            _________________________________________________________
            1      Hello                  Section  9.5
            2      Database description   Section 10.8
            3      Link state request     Section 10.9
            4      Link state update      Section 13.3
            5      Link state ack         Section 13.5


           Table 10: Sections describing OSPF protocol packet transmission.



   8.2.  Receiving protocol packets

       Whenever a protocol packet is received by the router it is
       marked with the interface it was received on.  For routers that
       have virtual links configured, it may not be immediately obvious
       which interface to associate the packet with.  For example,
       consider the Router RT11 depicted in Figure 6.  If RT11 receives
       an OSPF protocol packet on its interface to Network N8, it may
       want to associate the packet with the interface to Area 2, or
       with the virtual link to Router RT10 (which is part of the
       backbone).  In the following, we assume that the packet is
       initially associated with the non-virtual  link.[3]

       In order for the packet to be accepted at the IP level, it must
       pass a number of tests, even before the packet is passed to OSPF
       for processing:


       o   The IP checksum must be correct.

       o   The packet's IP destination address must be the IP address
           of the receiving interface, or one of the IP multicast
           addresses AllSPFRouters or AllDRouters.

       o   The IP protocol specified must be OSPF (89).

       o   Locally originated packets should not be passed on to OSPF.
           That is, the source IP address should be examined to make
           sure this is not a multicast packet that the router itself
           generated.


       Next, the OSPF packet header is verified.  The fields specified
       in the header must match those configured for the receiving



Moy                                                            [Page 53]

RFC 1583                     OSPF Version 2                   March 1994


       interface.  If they do not, the packet should be discarded:


       o   The version number field must specify protocol version 2.

       o   The 16-bit one's complement checksum of the OSPF packet's
           contents must be verified.  Remember that the 64-bit
           authentication field must be excluded from the checksum
           calculation.

       o   The Area ID found in the OSPF header must be verified.  If
           both of the following cases fail, the packet should be
           discarded.  The Area ID specified in the header must either:

           (1) Match the Area ID of the receiving interface.  In this
               case, the packet has been sent over a single hop.
               Therefore, the packet's IP source address must be on the
               same network as the receiving interface.  This can be
               determined by comparing the packet's IP source address
               to the interface's IP address, after masking both
               addresses with the interface mask.  This comparison
               should not be performed on point-to-point networks. On
               point-to-point networks, the interface addresses of each
               end of the link are assigned independently, if they are
               assigned at all.

           (2) Indicate the backbone.  In this case, the packet has
               been sent over a virtual link.  The receiving router
               must be an area border router, and the Router ID
               specified in the packet (the source router) must be the
               other end of a configured virtual link.  The receiving
               interface must also attach to the virtual link's
               configured Transit area.  If all of these checks
               succeed, the packet is accepted and is from now on
               associated with the virtual link (and the backbone
               area).

       o   Packets whose IP destination is AllDRouters should only be
           accepted if the state of the receiving interface is DR or
           Backup (see Section 9.1).

       o   The AuType specified in the packet must match the AuType
           specified for the associated area.


       Next, the packet must be authenticated.  This depends on the
       AuType specified (see Appendix D).  The authentication procedure
       may use an Authentication key, which can be configured on a



Moy                                                            [Page 54]

RFC 1583                     OSPF Version 2                   March 1994


       per-interface basis.  If the authentication fails, the packet
       should be discarded.

       If the packet type is Hello, it should then be further processed
       by the Hello Protocol (see Section 10.5).  All other packet
       types are sent/received only on adjacencies.  This means that
       the packet must have been sent by one of the router's active
       neighbors.  If the receiving interface is a multi-access network
       (either broadcast or non-broadcast) the sender is identified by
       the IP source address found in the packet's IP header.  If the
       receiving interface is a point-to-point link or a virtual link,
       the sender is identified by the Router ID (source router) found
       in the packet's OSPF header.  The data structure associated with
       the receiving interface contains the list of active neighbors.
       Packets not matching any active neighbor are discarded.

       At this point all received protocol packets are associated with
       an active neighbor.  For the further input processing of
       specific packet types, consult the sections listed in Table 11.



             Type   Packet name            detailed section (receive)
             ________________________________________________________
             1      Hello                  Section 10.5
             2      Database description   Section 10.6
             3      Link state request     Section 10.7
             4      Link state update      Section 13
             5      Link state ack         Section 13.7


           Table 11: Sections describing OSPF protocol packet reception.



9.  The Interface Data Structure

   An OSPF interface is the connection between a router and a network.
   There is a single OSPF interface structure for each attached
   network; each interface structure has at most one IP interface
   address (see below).  The support for multiple addresses on a single
   network is a matter for future consideration.

   An OSPF interface can be considered to belong to the area that
   contains the attached network.  All routing protocol packets
   originated by the router over this interface are labelled with the
   interface's Area ID.  One or more router adjacencies may develop
   over an interface.  A router's link state advertisements reflect the



Moy                                                            [Page 55]

RFC 1583                     OSPF Version 2                   March 1994


   state of its interfaces and their associated adjacencies.

   The following data items are associated with an interface.  Note
   that a number of these items are actually configuration for the
   attached network; those items must be the same for all routers
   connected to the network.


   Type
       The kind of network to which the interface attaches.  Its value
       is either broadcast, non-broadcast yet still multi-access,
       point-to-point or virtual link.

   State
       The functional level of an interface.  State determines whether
       or not full adjacencies are allowed to form over the interface.
       State is also reflected in the router's link state
       advertisements.

   IP interface address
       The IP address associated with the interface.  This appears as
       the IP source address in all routing protocol packets originated
       over this interface.  Interfaces to unnumbered point-to-point
       networks do not have an associated IP address.

   IP interface mask
       Also referred to as the subnet mask, this indicates the portion
       of the IP interface address that identifies the attached
       network.  Masking the IP interface address with the IP interface
       mask yields the IP network number of the attached network.  On
       point-to-point networks and virtual links, the IP interface mask
       is not defined. On these networks, the link itself is not
       assigned an IP network number, and so the addresses of each side
       of the link are assigned independently, if they are assigned at
       all.

   Area ID
       The Area ID of the area to which the attached network belongs.
       All routing protocol packets originating from the interface are
       labelled with this Area ID.

   HelloInterval
       The length of time, in seconds, between the Hello packets that
       the router sends on the interface.  Advertised in Hello packets
       sent out this interface.

   RouterDeadInterval
       The number of seconds before the router's neighbors will declare



Moy                                                            [Page 56]

RFC 1583                     OSPF Version 2                   March 1994


       it down, when they stop hearing the router's Hello Packets.
       Advertised in Hello packets sent out this interface.

   InfTransDelay
       The estimated number of seconds it takes to transmit a Link
       State Update Packet over this interface.  Link state
       advertisements contained in the Link State Update packet will
       have their age incremented by this amount before transmission.
       This value should take into account transmission and propagation
       delays; it must be greater than zero.

   Router Priority
       An 8-bit unsigned integer.  When two routers attached to a
       network both attempt to become Designated Router, the one with
       the highest Router Priority takes precedence.  A router whose
       Router Priority is set to 0 is ineligible to become Designated
       Router on the attached network.  Advertised in Hello packets
       sent out this interface.

   Hello Timer
       An interval timer that causes the interface to send a Hello
       packet.  This timer fires every HelloInterval seconds.  Note
       that on non-broadcast networks a separate Hello packet is sent
       to each qualified neighbor.

   Wait Timer
       A single shot timer that causes the interface to exit the
       Waiting state, and as a consequence select a Designated Router
       on the network.  The length of the timer is RouterDeadInterval
       seconds.

   List of neighboring routers
       The other routers attached to this network.  On multi-access
       networks, this list is formed by the Hello Protocol.
       Adjacencies will be formed to some of these neighbors.  The set
       of adjacent neighbors can be determined by an examination of all
       of the neighbors' states.

   Designated Router
       The Designated Router selected for the attached network.  The
       Designated Router is selected on all multi-access networks by
       the Hello Protocol.  Two pieces of identification are kept for
       the Designated Router: its Router ID and its IP interface
       address on the network.  The Designated Router advertises link
       state for the network; this network link state advertisement is
       labelled with the Designated Router's IP address.  The
       Designated Router is initialized to 0.0.0.0, which indicates the
       lack of a Designated Router.



Moy                                                            [Page 57]

RFC 1583                     OSPF Version 2                   March 1994


   Backup Designated Router
       The Backup Designated Router is also selected on all multi-
       access networks by the Hello Protocol.  All routers on the
       attached network become adjacent to both the Designated Router
       and the Backup Designated Router.  The Backup Designated Router
       becomes Designated Router when the current Designated Router
       fails.  The Backup Designated Router is initialized to 0.0.0.0,
       indicating the lack of a Backup Designated Router.

   Interface output cost(s)
       The cost of sending a data packet on the interface, expressed in
       the link state metric.  This is advertised as the link cost for
       this interface in the router links advertisement.  There may be
       a separate cost for each IP Type of Service.  The cost of an
       interface must be greater than zero.

   RxmtInterval
       The number of seconds between link state advertisement
       retransmissions, for adjacencies belonging to this interface.
       Also used when retransmitting Database Description and Link
       State Request Packets.

   Authentication key
       This configured data allows the authentication procedure to
       generate and/or verify the Authentication field in the OSPF
       header.  The Authentication key can be configured on a per-
       interface basis.  For example, if the AuType indicates simple
       password, the Authentication key would be a 64-bit password.
       This key would be inserted directly into the OSPF header when
       originating routing protocol packets, and there could be a
       separate password for each network.


   9.1.  Interface states

       The various states that router interfaces may attain is
       documented in this section.  The states are listed in order of
       progressing functionality.  For example, the inoperative state
       is listed first, followed by a list of intermediate states
       before the final, fully functional state is achieved.  The
       specification makes use of this ordering by sometimes making
       references such as "those interfaces in state greater than X".
       Figure 11 shows the graph of interface state changes.  The arcs
       of the graph are labelled with the event causing the state
       change.  These events are documented in Section 9.2.  The
       interface state machine is described in more detail in Section
       9.3.




Moy                                                            [Page 58]

RFC 1583                     OSPF Version 2                   March 1994



                                 +----+   UnloopInd   +--------+
                                 |Down|<--------------|Loopback|
                                 +----+               +--------+
                                    |
                                    |InterfaceUp
                         +-------+  |               +--------------+
                         |Waiting|<-+-------------->|Point-to-point|
                         +-------+                  +--------------+
                             |
                    WaitTimer|BackupSeen
                             |
                             |
                             |   NeighborChange
         +------+           +-+<---------------- +-------+
         |Backup|<----------|?|----------------->|DROther|
         +------+---------->+-+<-----+           +-------+
                   Neighbor  |       |
                   Change    |       |Neighbor
                             |       |Change
                             |     +--+
                             +---->|DR|
                                   +--+

                     Figure 11: Interface State changes

                In addition to the state transitions pictured,
                Event InterfaceDown always forces Down State, and
                Event LoopInd always forces Loopback State


       Down
           This is the initial interface state.  In this state, the
           lower-level protocols have indicated that the interface is
           unusable.  No protocol traffic at all will be sent or
           received on such a interface.  In this state, interface
           parameters should be set to their initial values.  All
           interface timers should be disabled, and there should be no
           adjacencies associated with the interface.

       Loopback
           In this state, the router's interface to the network is
           looped back.  The interface may be looped back in hardware
           or software.  The interface will be unavailable for regular
           data traffic.  However, it may still be desirable to gain
           information on the quality of this interface, either through
           sending ICMP pings to the interface or through something
           like a bit error test.  For this reason, IP packets may



Moy                                                            [Page 59]

RFC 1583                     OSPF Version 2                   March 1994


           still be addressed to an interface in Loopback state.  To
           facilitate this, such interfaces are advertised in router
           links advertisements as single host routes, whose
           destination is the IP interface address.[4]

       Waiting
           In this state, the router is trying to determine the
           identity of the (Backup) Designated Router for the network.
           To do this, the router monitors the Hello Packets it
           receives.  The router is not allowed to elect a Backup
           Designated Router nor a Designated Router until it
           transitions out of Waiting state.  This prevents unnecessary
           changes of (Backup) Designated Router.

       Point-to-point
           In this state, the interface is operational, and connects
           either to a physical point-to-point network or to a virtual
           link.  Upon entering this state, the router attempts to form
           an adjacency with the neighboring router.  Hello Packets are
           sent to the neighbor every HelloInterval seconds.

       DR Other
           The interface is to a multi-access network on which another
           router has been selected to be the Designated Router.  In
           this state, the router itself has not been selected Backup
           Designated Router either.  The router forms adjacencies to
           both the Designated Router and the Backup Designated Router
           (if they exist).

       Backup
           In this state, the router itself is the Backup Designated
           Router on the attached network.  It will be promoted to
           Designated Router when the present Designated Router fails.
           The router establishes adjacencies to all other routers
           attached to the network.  The Backup Designated Router
           performs slightly different functions during the Flooding
           Procedure, as compared to the Designated Router (see Section
           13.3).  See Section 7.4 for more details on the functions
           performed by the Backup Designated Router.

       DR  In this state, this router itself is the Designated Router
           on the attached network.  Adjacencies are established to all
           other routers attached to the network.  The router must also
           originate a network links advertisement for the network
           node.  The advertisement will contain links to all routers
           (including the Designated Router itself) attached to the
           network.  See Section 7.3 for more details on the functions
           performed by the Designated Router.



Moy                                                            [Page 60]

RFC 1583                     OSPF Version 2                   March 1994


   9.2.  Events causing interface state changes

       State changes can be effected by a number of events.  These
       events are pictured as the labelled arcs in Figure 11.  The
       label definitions are listed below.  For a detailed explanation
       of the effect of these events on OSPF protocol operation,
       consult Section 9.3.


       InterfaceUp
           Lower-level protocols have indicated that the network
           interface is operational.  This enables the interface to
           transition out of Down state.  On virtual links, the
           interface operational indication is actually a result of the
           shortest path calculation (see Section 16.7).

       WaitTimer
           The Wait Timer has fired, indicating the end of the waiting
           period that is required before electing a (Backup)
           Designated Router.

       BackupSeen
           The router has detected the existence or non-existence of a
           Backup Designated Router for the network.  This is done in
           one of two ways.  First, an Hello Packet may be received
           from a neighbor claiming to be itself the Backup Designated
           Router.  Alternatively, an Hello Packet may be received from
           a neighbor claiming to be itself the Designated Router, and
           indicating that there is no Backup Designated Router.  In
           either case there must be bidirectional communication with
           the neighbor, i.e., the router must also appear in the
           neighbor's Hello Packet.  This event signals an end to the
           Waiting state.

       NeighborChange
           There has been a change in the set of bidirectional
           neighbors associated with the interface.  The (Backup)
           Designated Router needs to be recalculated.  The following
           neighbor changes lead to the NeighborChange event.  For an
           explanation of neighbor states, see Section 10.1.

           o   Bidirectional communication has been established to a
               neighbor.  In other words, the state of the neighbor has
               transitioned to 2-Way or higher.

           o   There is no longer bidirectional communication with a
               neighbor.  In other words, the state of the neighbor has
               transitioned to Init or lower.



Moy                                                            [Page 61]

RFC 1583                     OSPF Version 2                   March 1994


           o   One of the bidirectional neighbors is newly declaring
               itself as either Designated Router or Backup Designated
               Router.  This is detected through examination of that
               neighbor's Hello Packets.

           o   One of the bidirectional neighbors is no longer
               declaring itself as Designated Router, or is no longer
               declaring itself as Backup Designated Router.  This is
               again detected through examination of that neighbor's
               Hello Packets.

           o   The advertised Router Priority for a bidirectional
               neighbor has changed.  This is again detected through
               examination of that neighbor's Hello Packets.

       LoopInd
           An indication has been received that the interface is now
           looped back to itself.  This indication can be received
           either from network management or from the lower level
           protocols.

       UnloopInd
           An indication has been received that the interface is no
           longer looped back.  As with the LoopInd event, this
           indication can be received either from network management or
           from the lower level protocols.

       InterfaceDown
           Lower-level protocols indicate that this interface is no
           longer functional.  No matter what the current interface
           state is, the new interface state will be Down.


   9.3.  The Interface state machine

       A detailed description of the interface state changes follows.
       Each state change is invoked by an event (Section 9.2).  This
       event may produce different effects, depending on the current
       state of the interface.  For this reason, the state machine
       below is organized by current interface state and received
       event.  Each entry in the state machine describes the resulting
       new interface state and the required set of additional actions.

       When an interface's state changes, it may be necessary to
       originate a new router links advertisement.  See Section 12.4
       for more details.

       Some of the required actions below involve generating events for



Moy                                                            [Page 62]

RFC 1583                     OSPF Version 2                   March 1994


       the neighbor state machine.  For example, when an interface
       becomes inoperative, all neighbor connections associated with
       the interface must be destroyed.  For more information on the
       neighbor state machine, see Section 10.3.


        State(s):  Down

           Event:  InterfaceUp

       New state:  Depends upon action routine

          Action:  Start the interval Hello Timer, enabling the
                   periodic sending of Hello packets out the interface.
                   If the attached network is a physical point-to-point
                   network or virtual link, the interface state
                   transitions to Point-to-Point.  Else, if the router
                   is not eligible to become Designated Router the
                   interface state transitions to DR Other.

                   Otherwise, the attached network is multi-access and
                   the router is eligible to become Designated Router.
                   In this case, in an attempt to discover the attached
                   network's Designated Router the interface state is
                   set to Waiting and the single shot Wait Timer is
                   started.  If in addition the attached network is
                   non-broadcast, examine the configured list of
                   neighbors for this interface and generate the
                   neighbor event Start for each neighbor that is also
                   eligible to become Designated Router.


        State(s):  Waiting

           Event:  BackupSeen

       New state:  Depends upon action routine.

          Action:  Calculate the attached network's Backup Designated
                   Router and Designated Router, as shown in Section
                   9.4.  As a result of this calculation, the new state
                   of the interface will be either DR Other, Backup or
                   DR.


        State(s):  Waiting





Moy                                                            [Page 63]

RFC 1583                     OSPF Version 2                   March 1994


           Event:  WaitTimer

       New state:  Depends upon action routine.

          Action:  Calculate the attached network's Backup Designated
                   Router and Designated Router, as shown in Section
                   9.4.  As a result of this calculation, the new state
                   of the interface will be either DR Other, Backup or
                   DR.


        State(s):  DR Other, Backup or DR

           Event:  NeighborChange

       New state:  Depends upon action routine.

          Action:  Recalculate the attached network's Backup Designated
                   Router and Designated Router, as shown in Section
                   9.4.  As a result of this calculation, the new state
                   of the interface will be either DR Other, Backup or
                   DR.


        State(s):  Any State

           Event:  InterfaceDown

       New state:  Down

          Action:  All interface variables are reset, and interface
                   timers disabled.  Also, all neighbor connections
                   associated with the interface are destroyed.  This
                   is done by generating the event KillNbr on all
                   associated neighbors (see Section 10.2).


        State(s):  Any State

           Event:  LoopInd

       New state:  Loopback

          Action:  Since this interface is no longer connected to the
                   attached network the actions associated with the
                   above InterfaceDown event are executed.





Moy                                                            [Page 64]

RFC 1583                     OSPF Version 2                   March 1994


        State(s):  Loopback

           Event:  UnloopInd

       New state:  Down

          Action:  No actions are necessary.  For example, the
                   interface variables have already been reset upon
                   entering the Loopback state.  Note that reception of
                   an InterfaceUp event is necessary before the
                   interface again becomes fully functional.


   9.4.  Electing the Designated Router

       This section describes the algorithm used for calculating a
       network's Designated Router and Backup Designated Router.  This
       algorithm is invoked by the Interface state machine.  The
       initial time a router runs the election algorithm for a network,
       the network's Designated Router and Backup Designated Router are
       initialized to 0.0.0.0.  This indicates the lack of both a
       Designated Router and a Backup Designated Router.

       The Designated Router election algorithm proceeds as follows:
       Call the router doing the calculation Router X.  The list of
       neighbors attached to the network and having established
       bidirectional communication with Router X is examined.  This
       list is precisely the collection of Router X's neighbors (on
       this network) whose state is greater than or equal to 2-Way (see
       Section 10.1).  Router X itself is also considered to be on the
       list.  Discard all routers from the list that are ineligible to
       become Designated Router.  (Routers having Router Priority of 0
       are ineligible to become Designated Router.)  The following
       steps are then executed, considering only those routers that
       remain on the list:


       (1) Note the current values for the network's Designated Router
           and Backup Designated Router.  This is used later for
           comparison purposes.

       (2) Calculate the new Backup Designated Router for the network
           as follows.  Only those routers on the list that have not
           declared themselves to be Designated Router are eligible to
           become Backup Designated Router.  If one or more of these
           routers have declared themselves Backup Designated Router
           (i.e., they are currently listing themselves as Backup
           Designated Router, but not as Designated Router, in their



Moy                                                            [Page 65]

RFC 1583                     OSPF Version 2                   March 1994


           Hello Packets) the one having highest Router Priority is
           declared to be Backup Designated Router.  In case of a tie,
           the one having the highest Router ID is chosen.  If no
           routers have declared themselves Backup Designated Router,
           choose the router having highest Router Priority, (again
           excluding those routers who have declared themselves
           Designated Router), and again use the Router ID to break
           ties.

       (3) Calculate the new Designated Router for the network as
           follows.  If one or more of the routers have declared
           themselves Designated Router (i.e., they are currently
           listing themselves as Designated Router in their Hello
           Packets) the one having highest Router Priority is declared
           to be Designated Router.  In case of a tie, the one having
           the highest Router ID is chosen.  If no routers have
           declared themselves Designated Router, assign the Designated
           Router to be the same as the newly elected Backup Designated
           Router.

       (4) If Router X is now newly the Designated Router or newly the
           Backup Designated Router, or is now no longer the Designated
           Router or no longer the Backup Designated Router, repeat
           steps 2 and 3, and then proceed to step 5.  For example, if
           Router X is now the Designated Router, when step 2 is
           repeated X will no longer be eligible for Backup Designated
           Router election.  Among other things, this will ensure that
           no router will declare itself both Backup Designated Router
           and Designated Router.[5]

       (5) As a result of these calculations, the router itself may now
           be Designated Router or Backup Designated Router.  See
           Sections 7.3 and 7.4 for the additional duties this would
           entail.  The router's interface state should be set
           accordingly.  If the router itself is now Designated Router,
           the new interface state is DR.  If the router itself is now
           Backup Designated Router, the new interface state is Backup.
           Otherwise, the new interface state is DR Other.

       (6) If the attached network is non-broadcast, and the router
           itself has just become either Designated Router or Backup
           Designated Router, it must start sending Hello Packets to
           those neighbors that are not eligible to become Designated
           Router (see Section 9.5.1).  This is done by invoking the
           neighbor event Start for each neighbor having a Router
           Priority of 0.





Moy                                                            [Page 66]

RFC 1583                     OSPF Version 2                   March 1994


       (7) If the above calculations have caused the identity of either
           the Designated Router or Backup Designated Router to change,
           the set of adjacencies associated with this interface will
           need to be modified.  Some adjacencies may need to be
           formed, and others may need to be broken.  To accomplish
           this, invoke the event AdjOK?  on all neighbors whose state
           is at least 2-Way.  This will cause their eligibility for
           adjacency to be reexamined (see Sections 10.3 and 10.4).


       The reason behind the election algorithm's complexity is the
       desire for an orderly transition from Backup Designated Router
       to Designated Router, when the current Designated Router fails.
       This orderly transition is ensured through the introduction of
       hysteresis: no new Backup Designated Router can be chosen until
       the old Backup accepts its new Designated Router
       responsibilities.

       The above procedure may elect the same router to be both
       Designated Router and Backup Designated Router, although that
       router will never be the calculating router (Router X) itself.
       The elected Designated Router may not be the router having the
       highest Router Priority, nor will the Backup Designated Router
       necessarily have the second highest Router Priority.  If Router
       X is not itself eligible to become Designated Router, it is
       possible that neither a Backup Designated Router nor a
       Designated Router will be selected in the above procedure.  Note
       also that if Router X is the only attached router that is
       eligible to become Designated Router, it will select itself as
       Designated Router and there will be no Backup Designated Router
       for the network.


   9.5.  Sending Hello packets

       Hello packets are sent out each functioning router interface.
       They are used to discover and maintain neighbor
       relationships.[6] On multi-access networks, Hello Packets are
       also used to elect the Designated Router and Backup Designated
       Router, and in that way determine what adjacencies should be
       formed.

       The format of an Hello packet is detailed in Section A.3.2.  The
       Hello Packet contains the router's Router Priority (used in
       choosing the Designated Router), and the interval between Hello
       Packets sent out the interface (HelloInterval).  The Hello
       Packet also indicates how often a neighbor must be heard from to
       remain active (RouterDeadInterval).  Both HelloInterval and



Moy                                                            [Page 67]

RFC 1583                     OSPF Version 2                   March 1994


       RouterDeadInterval must be the same for all routers attached to
       a common network.  The Hello packet also contains the IP address
       mask of the attached network (Network Mask).  On unnumbered
       point-to-point networks and on virtual links this field should
       be set to 0.0.0.0.

       The Hello packet's Options field describes the router's optional
       OSPF capabilities.  There are currently two optional
       capabilities defined (see Sections 4.5 and A.2).  The T-bit of
       the Options field should be set if the router is capable of
       calculating separate routes for each IP TOS.  The E-bit should
       be set if and only if the attached area is capable of processing
       AS external advertisements (i.e., it is not a stub area).  If
       the E-bit is set incorrectly the neighboring routers will refuse
       to accept the Hello Packet (see Section 10.5).  The rest of the
       Hello Packet's Options field should be set to zero.

       In order to ensure two-way communication between adjacent
       routers, the Hello packet contains the list of all routers from
       which Hello Packets have been seen recently.  The Hello packet
       also contains the router's current choice for Designated Router
       and Backup Designated Router.  A value of 0.0.0.0 in these
       fields means that one has not yet been selected.

       On broadcast networks and physical point-to-point networks,
       Hello packets are sent every HelloInterval seconds to the IP
       multicast address AllSPFRouters.  On virtual links, Hello
       packets are sent as unicasts (addressed directly to the other
       end of the virtual link) every HelloInterval seconds.  On non-
       broadcast networks, the sending of Hello packets is more
       complicated.  This will be covered in the next section.


       9.5.1.  Sending Hello packets on non-broadcast networks

           Static configuration information is necessary in order for
           the Hello Protocol to function on non-broadcast networks
           (see Section C.5).  Every attached router which is eligible
           to become Designated Router has a configured list of all of
           its neighbors on the network.  Each listed neighbor is
           labelled with its Designated Router eligibility.

           The interface state must be at least Waiting for any Hello
           Packets to be sent.  Hello Packets are then sent directly
           (as unicasts) to some subset of a router's neighbors.
           Sometimes an Hello Packet is sent periodically on a timer;
           at other times it is sent as a response to a received Hello
           Packet.  A router's hello-sending behavior varies depending



Moy                                                            [Page 68]

RFC 1583                     OSPF Version 2                   March 1994


           on whether the router itself is eligible to become
           Designated Router.

           If the router is eligible to become Designated Router, it
           must periodically send Hello Packets to all neighbors that
           are also eligible.  In addition, if the router is itself the
           Designated Router or Backup Designated Router, it must also
           send periodic Hello Packets to all other neighbors.  This
           means that any two eligible routers are always exchanging
           Hello Packets, which is necessary for the correct operation
           of the Designated Router election algorithm.  To minimize
           the number of Hello Packets sent, the number of eligible
           routers on a non-broadcast network should be kept small.

           If the router is not eligible to become Designated Router,
           it must periodically send Hello Packets to both the
           Designated Router and the Backup Designated Router (if they
           exist).  It must also send an Hello Packet in reply to an
           Hello Packet received from any eligible neighbor (other than
           the current Designated Router and Backup Designated Router).
           This is needed to establish an initial bidirectional
           relationship with any potential Designated Router.

           When sending Hello packets periodically to any neighbor, the
           interval between Hello Packets is determined by the
           neighbor's state.  If the neighbor is in state Down, Hello
           Packets are sent every PollInterval seconds.  Otherwise,
           Hello Packets are sent every HelloInterval seconds.


10.  The Neighbor Data Structure

   An OSPF router converses with its neighboring routers.  Each
   separate conversation is described by a "neighbor data structure".
   Each conversation is bound to a particular OSPF router interface,
   and is identified either by the neighboring router's OSPF Router ID
   or by its Neighbor IP address (see below).  Thus if the OSPF router
   and another router have multiple attached networks in common,
   multiple conversations ensue, each described by a unique neighbor
   data structure.  Each separate conversation is loosely referred to
   in the text as being a separate "neighbor".

   The neighbor data structure contains all information pertinent to
   the forming or formed adjacency between the two neighbors.
   (However, remember that not all neighbors become adjacent.)  An
   adjacency can be viewed as a highly developed conversation between
   two routers.




Moy                                                            [Page 69]

RFC 1583                     OSPF Version 2                   March 1994


   State
       The functional level of the neighbor conversation.  This is
       described in more detail in Section 10.1.

   Inactivity Timer
       A single shot timer whose firing indicates that no Hello Packet
       has been seen from this neighbor recently.  The length of the
       timer is RouterDeadInterval seconds.

   Master/Slave
       When the two neighbors are exchanging databases, they form a
       master/slave relationship.  The master sends the first Database
       Description Packet, and is the only part that is allowed to
       retransmit.  The slave can only respond to the master's Database
       Description Packets.  The master/slave relationship is
       negotiated in state ExStart.

   DD Sequence Number
       A 32-bit number identifying individual Database Description
       packets.  When the neighbor state ExStart is entered, the DD
       sequence number should be set to a value not previously seen by
       the neighboring router.  One possible scheme is to use the
       machine's time of day counter.  The DD sequence number is then
       incremented by the master with each new Database Description
       packet sent.  The slave's DD sequence number indicates the last
       packet received from the master.  Only one packet is allowed
       outstanding at a time.

   Neighbor ID
       The OSPF Router ID of the neighboring router.  The Neighbor ID
       is learned when Hello packets are received from the neighbor, or
       is configured if this is a virtual adjacency (see Section C.4).

   Neighbor Priority
       The Router Priority of the neighboring router.  Contained in the
       neighbor's Hello packets, this item is used when selecting the
       Designated Router for the attached network.

   Neighbor IP address
       The IP address of the neighboring router's interface to the
       attached network.  Used as the Destination IP address when
       protocol packets are sent as unicasts along this adjacency.
       Also used in router links advertisements as the Link ID for the
       attached network if the neighboring router is selected to be
       Designated Router (see Section 12.4.1).  The Neighbor IP address
       is learned when Hello packets are received from the neighbor.
       For virtual links, the Neighbor IP address is learned during the
       routing table build process (see Section 15).



Moy                                                            [Page 70]

RFC 1583                     OSPF Version 2                   March 1994


   Neighbor Options
       The optional OSPF capabilities supported by the neighbor.
       Learned during the Database Exchange process (see Section 10.6).
       The neighbor's optional OSPF capabilities are also listed in its
       Hello packets.  This enables received Hello Packets to be
       rejected (i.e., neighbor relationships will not even start to
       form) if there is a mismatch in certain crucial OSPF
       capabilities (see Section 10.5).  The optional OSPF capabilities
       are documented in Section 4.5.

   Neighbor's Designated Router
       The neighbor's idea of the Designated Router.  If this is the
       neighbor itself, this is important in the local calculation of
       the Designated Router.  Defined only on multi-access networks.

   Neighbor's Backup Designated Router
       The neighbor's idea of the Backup Designated Router.  If this is
       the neighbor itself, this is important in the local calculation
       of the Backup Designated Router.  Defined only on multi-access
       networks.


   The next set of variables are lists of link state advertisements.
   These lists describe subsets of the area topological database.
   There can be five distinct types of link state advertisements in an
   area topological database: router links, network links, and Type 3
   and 4 summary links (all stored in the area data structure), and AS
   external links (stored in the global data structure).


   Link state retransmission list
       The list of link state advertisements that have been flooded but
       not acknowledged on this adjacency.  These will be retransmitted
       at intervals until they are acknowledged, or until the adjacency
       is destroyed.

   Database summary list
       The complete list of link state advertisements that make up the
       area topological database, at the moment the neighbor goes into
       Database Exchange state.  This list is sent to the neighbor in
       Database Description packets.

   Link state request list
       The list of link state advertisements that need to be received
       from this neighbor in order to synchronize the two neighbors'
       topological databases.  This list is created as Database
       Description packets are received, and is then sent to the
       neighbor in Link State Request packets.  The list is depleted as



Moy                                                            [Page 71]

RFC 1583                     OSPF Version 2                   March 1994


       appropriate Link State Update packets are received.


   10.1.  Neighbor states

       The state of a neighbor (really, the state of a conversation
       being held with a neighboring router) is documented in the
       following sections.  The states are listed in order of
       progressing functionality.  For example, the inoperative state
       is listed first, followed by a list of intermediate states
       before the final, fully functional state is achieved.  The
       specification makes use of this ordering by sometimes making
       references such as "those neighbors/adjacencies in state greater
       than X".  Figures 12 and 13 show the graph of neighbor state
       changes.  The arcs of the graphs are labelled with the event
       causing the state change.  The neighbor events are documented in
       Section 10.2.

       The graph in Figure 12 shows the state changes effected by the
       Hello Protocol.  The Hello Protocol is responsible for neighbor

                                  +----+
                                  |Down|
                                  +----+
                                    |                               | Start
                                    |        +-------+
                            Hello   |   +---->|Attempt|
                           Received |         +-------+
                                    |             |
                            +----+<-+             |HelloReceived
                            |Init|<---------------+
                            +----+<--------+
                               |           |
                               |2-Way      |1-Way
                               |Received   |Received
                               |           |
             +-------+         |        +-----+
             |ExStart|<--------+------->|2-Way|
             +-------+                  +-----+

             Figure 12: Neighbor state changes (Hello Protocol)

                 In addition to the state transitions pictured,
                 Event KillNbr always forces Down State,
                 Event InactivityTimer always forces Down State,
                 Event LLDown always forces Down State





Moy                                                            [Page 72]

RFC 1583                     OSPF Version 2                   March 1994


       acquisition and maintenance, and for ensuring two way
       communication between neighbors.

       The graph in Figure 13 shows the forming of an adjacency.  Not
       every two neighboring routers become adjacent (see Section
       10.4).  The adjacency starts to form when the neighbor is in
       state ExStart.  After the two routers discover their
       master/slave status, the state transitions to Exchange.  At this
       point the neighbor starts to be used in the flooding procedure,
       and the two neighboring routers begin synchronizing their
       databases.  When this synchronization is finished, the neighbor
       is in state Full and we say that the two routers are fully
       adjacent.  At this point the adjacency is listed in link state
       advertisements.

       For a more detailed description of neighbor state changes,
       together with the additional actions involved in each change,
       see Section 10.3.

                                 +-------+
                                 |ExStart|
                                 +-------+
                                   |
                    NegotiationDone|
                                   +->+--------+
                                      |Exchange|
                                   +--+--------+
                                   |
                           Exchange|
                             Done  |
                   +----+          |      +-------+
                   |Full|<---------+----->|Loading|
                   +----+<-+              +-------+
                           |  LoadingDone     |
                           +------------------+

           Figure 13: Neighbor state changes (Database Exchange)

               In addition to the state transitions pictured,
               Event SeqNumberMismatch forces ExStart state,
               Event BadLSReq forces ExStart state,
               Event 1-Way forces Init state,
               Event KillNbr always forces Down State,
               Event InactivityTimer always forces Down State,
               Event LLDown always forces Down State,
               Event AdjOK? leads to adjacency forming/breaking





Moy                                                            [Page 73]

RFC 1583                     OSPF Version 2                   March 1994


       Down
           This is the initial state of a neighbor conversation.  It
           indicates that there has been no recent information received
           from the neighbor.  On non-broadcast networks, Hello packets
           may still be sent to "Down" neighbors, although at a reduced
           frequency (see Section 9.5.1).

       Attempt
           This state is only valid for neighbors attached to non-
           broadcast networks.  It indicates that no recent information
           has been received from the neighbor, but that a more
           concerted effort should be made to contact the neighbor.
           This is done by sending the neighbor Hello packets at
           intervals of HelloInterval (see Section 9.5.1).

       Init
           In this state, an Hello packet has recently been seen from
           the neighbor.  However, bidirectional communication has not
           yet been established with the neighbor (i.e., the router
           itself did not appear in the neighbor's Hello packet).  All
           neighbors in this state (or higher) are listed in the Hello
           packets sent from the associated interface.

       2-Way
           In this state, communication between the two routers is
           bidirectional.  This has been assured by the operation of
           the Hello Protocol.  This is the most advanced state short
           of beginning adjacency establishment.  The (Backup)
           Designated Router is selected from the set of neighbors in
           state 2-Way or greater.

       ExStart
           This is the first step in creating an adjacency between the
           two neighboring routers.  The goal of this step is to decide
           which router is the master, and to decide upon the initial
           DD sequence number.  Neighbor conversations in this state or
           greater are called adjacencies.

       Exchange
           In this state the router is describing its entire link state
           database by sending Database Description packets to the
           neighbor.  Each Database Description Packet has a DD
           sequence number, and is explicitly acknowledged.  Only one
           Database Description Packet is allowed outstanding at any
           one time.  In this state, Link State Request Packets may
           also be sent asking for the neighbor's more recent
           advertisements.  All adjacencies in Exchange state or
           greater are used by the flooding procedure.  In fact, these



Moy                                                            [Page 74]

RFC 1583                     OSPF Version 2                   March 1994


           adjacencies are fully capable of transmitting and receiving
           all types of OSPF routing protocol packets.

       Loading
           In this state, Link State Request packets are sent to the
           neighbor asking for the more recent advertisements that have
           been discovered (but not yet received) in the Exchange
           state.

       Full
           In this state, the neighboring routers are fully adjacent.
           These adjacencies will now appear in router links and
           network links advertisements.


   10.2.  Events causing neighbor state changes

       State changes can be effected by a number of events.  These
       events are shown in the labels of the arcs in Figures 12 and 13.
       The label definitions are as follows:


       HelloReceived
           A Hello packet has been received from a neighbor.

       Start
           This is an indication that Hello Packets should now be sent
           to the neighbor at intervals of HelloInterval seconds.  This
           event is generated only for neighbors associated with non-
           broadcast networks.

       2-WayReceived
           Bidirectional communication has been realized between the
           two neighboring routers.  This is indicated by this router
           seeing itself in the other's Hello packet.

       NegotiationDone
           The Master/Slave relationship has been negotiated, and DD
           sequence numbers have been exchanged.  This signals the
           start of the sending/receiving of Database Description
           packets.  For more information on the generation of this
           event, consult Section 10.8.

       ExchangeDone
           Both routers have successfully transmitted a full sequence
           of Database Description packets.  Each router now knows what
           parts of its link state database are out of date.  For more
           information on the generation of this event, consult Section



Moy                                                            [Page 75]

RFC 1583                     OSPF Version 2                   March 1994


           10.8.

       BadLSReq
           A Link State Request has been received for a link state
           advertisement not contained in the database.  This indicates
           an error in the Database Exchange process.

       Loading Done
           Link State Updates have been received for all out-of-date
           portions of the database.  This is indicated by the Link
           state request list becoming empty after the Database
           Exchange process has completed.

       AdjOK?
           A decision must be made (again) as to whether an adjacency
           should be established/maintained with the neighbor.  This
           event will start some adjacencies forming, and destroy
           others.


       The following events cause well developed neighbors to revert to
       lesser states.  Unlike the above events, these events may occur
       when the neighbor conversation is in any of a number of states.


       SeqNumberMismatch
           A Database Description packet has been received that either
           a) has an unexpected DD sequence number, b) unexpectedly has
           the Init bit set or c) has an Options field differing from
           the last Options field received in a Database Description
           packet.  Any of these conditions indicate that some error
           has occurred during adjacency establishment.

       1-Way
           An Hello packet has been received from the neighbor, in
           which this router is not mentioned.  This indicates that
           communication with the neighbor is not bidirectional.

       KillNbr
           This  is  an  indication that  all  communication  with  the
           neighbor  is now  impossible,  forcing  the  neighbor  to
           revert  to  Down  state.

       InactivityTimer
           The inactivity Timer has fired.  This means that no Hello
           packets have been seen recently from the neighbor.  The
           neighbor reverts to Down state.




Moy                                                            [Page 76]

RFC 1583                     OSPF Version 2                   March 1994


       LLDown
           This is an indication from the lower level protocols that
           the neighbor is now unreachable.  For example, on an X.25
           network this could be indicated by an X.25 clear indication
           with appropriate cause and diagnostic fields.  This event
           forces the neighbor into Down state.


   10.3.  The Neighbor state machine

       A detailed description of the neighbor state changes follows.
       Each state change is invoked by an event (Section 10.2).  This
       event may produce different effects, depending on the current
       state of the neighbor.  For this reason, the state machine below
       is organized by current neighbor state and received event.  Each
       entry in the state machine describes the resulting new neighbor
       state and the required set of additional actions.

       When a neighbor's state changes, it may be necessary to rerun
       the Designated Router election algorithm.  This is determined by
       whether the interface NeighborChange event is generated (see
       Section 9.2).  Also, if the Interface is in DR state (the router
       is itself Designated Router), changes in neighbor state may
       cause a new network links advertisement to be originated (see
       Section 12.4).

       When the neighbor state machine needs to invoke the interface
       state machine, it should be done as a scheduled task (see
       Section 4.4).  This simplifies things, by ensuring that neither
       state machine will be executed recursively.


        State(s):  Down

           Event:  Start

       New state:  Attempt

          Action:  Send an Hello Packet to the neighbor (this neighbor
                   is always associated with a non-broadcast network)
                   and start the Inactivity Timer for the neighbor.
                   The timer's later firing would indicate that
                   communication with the neighbor was not attained.


        State(s):  Attempt





Moy                                                            [Page 77]

RFC 1583                     OSPF Version 2                   March 1994


           Event:  HelloReceived

       New state:  Init

          Action:  Restart the Inactivity Timer for the neighbor, since
                   the neighbor has now been heard from.


        State(s):  Down

           Event:  HelloReceived

       New state:  Init

          Action:  Start the Inactivity Timer for the neighbor.  The
                   timer's later firing would indicate that the
                   neighbor is dead.


        State(s):  Init or greater

           Event:  HelloReceived

       New state:  No state change.

          Action:  Restart the Inactivity Timer for the neighbor, since
                   the neighbor has again been heard from.


        State(s):  Init

           Event:  2-WayReceived

       New state:  Depends upon action routine.

          Action:  Determine whether an adjacency should be established
                   with the neighbor (see Section 10.4).  If not, the
                   new neighbor state is 2-Way.

                   Otherwise (an adjacency should be established) the
                   neighbor state transitions to ExStart.  Upon
                   entering this state, the router increments the DD
                   sequence number for this neighbor.  If this is the
                   first time that an adjacency has been attempted, the
                   DD sequence number should be assigned some unique
                   value (like the time of day clock).  It then
                   declares itself master (sets the master/slave bit to
                   master), and starts sending Database Description



Moy                                                            [Page 78]

RFC 1583                     OSPF Version 2                   March 1994


                   Packets, with the initialize (I), more (M) and
                   master (MS) bits set.  This Database Description
                   Packet should be otherwise empty.  This Database
                   Description Packet should be retransmitted at
                   intervals of RxmtInterval until the next state is
                   entered (see Section 10.8).


        State(s):  ExStart

           Event:  NegotiationDone

       New state:  Exchange

          Action:  The router must list the contents of its entire area
                   link state database in the neighbor Database summary
                   list.  The area link state database consists of the
                   router links, network links and summary links
                   contained in the area structure, along with the AS
                   external links contained in the global structure.
                   AS external link advertisements are omitted from a
                   virtual neighbor's Database summary list.  AS
                   external advertisements are omitted from the
                   Database summary list if the area has been
                   configured as a stub (see Section 3.6).
                   Advertisements whose age is equal to MaxAge are
                   instead added to the neighbor's Link state
                   retransmission list.  A summary of the Database
                   summary list will be sent to the neighbor in
                   Database Description packets.  Each Database
                   Description Packet has a DD sequence number, and is
                   explicitly acknowledged.  Only one Database
                   Description Packet is allowed outstanding at any one
                   time.  For more detail on the sending and receiving
                   of Database Description packets, see Sections 10.8
                   and 10.6.


        State(s):  Exchange

           Event:  ExchangeDone

       New state:  Depends upon action routine.

          Action:  If the neighbor Link state request list is empty,
                   the new neighbor state is Full.  No other action is
                   required.  This is an adjacency's final state.




Moy                                                            [Page 79]

RFC 1583                     OSPF Version 2                   March 1994


                   Otherwise, the new neighbor state is Loading.  Start
                   (or continue) sending Link State Request packets to
                   the neighbor (see Section 10.9).  These are requests
                   for the neighbor's more recent advertisements (which
                   were discovered but not yet received in the Exchange
                   state).  These advertisements are listed in the Link
                   state request list associated with the neighbor.


        State(s):  Loading

           Event:  Loading Done

       New state:  Full

          Action:  No action required.  This is an adjacency's final
                   state.


        State(s):  2-Way

           Event:  AdjOK?

       New state:  Depends upon action routine.

          Action:  Determine whether an adjacency should be formed with
                   the neighboring router (see Section 10.4).  If not,
                   the neighbor state remains at 2-Way.  Otherwise,
                   transition the neighbor state to ExStart and perform
                   the actions associated with the above state machine
                   entry for state Init and event 2-WayReceived.


        State(s):  ExStart or greater

           Event:  AdjOK?

       New state:  Depends upon action routine.

          Action:  Determine whether the neighboring router should
                   still be adjacent.  If yes, there is no state change
                   and no further action is necessary.

                   Otherwise, the (possibly partially formed) adjacency
                   must be destroyed.  The neighbor state transitions
                   to 2-Way.  The Link state retransmission list,
                   Database summary list and Link state request list
                   are cleared of link state advertisements.



Moy                                                            [Page 80]

RFC 1583                     OSPF Version 2                   March 1994


        State(s):  Exchange or greater

           Event:  SeqNumberMismatch

       New state:  ExStart

          Action:  The (possibly partially formed) adjacency is torn
                   down, and then an attempt is made at
                   reestablishment.  The neighbor state first
                   transitions to ExStart.  The Link state
                   retransmission list, Database summary list and Link
                   state request list are cleared of link state
                   advertisements.  Then the router increments the DD
                   sequence number for this neighbor, declares itself
                   master (sets the master/slave bit to master), and
                   starts sending Database Description Packets, with
                   the initialize (I), more (M) and master (MS) bits
                   set.  This Database Description Packet should be
                   otherwise empty (see Section 10.8).


        State(s):  Exchange or greater

           Event:  BadLSReq

       New state:  ExStart

          Action:  The action for event BadLSReq is exactly the same as
                   for the neighbor event SeqNumberMismatch.  The
                   (possibly partially formed) adjacency is torn down,
                   and then an attempt is made at reestablishment.  For
                   more information, see the neighbor state machine
                   entry that is invoked when event SeqNumberMismatch
                   is generated in state Exchange or greater.


        State(s):  Any state

           Event:  KillNbr

       New state:  Down

          Action:  The Link state retransmission list, Database summary
                   list and Link state request list are cleared of link
                   state advertisements.  Also, the Inactivity Timer is
                   disabled.





Moy                                                            [Page 81]

RFC 1583                     OSPF Version 2                   March 1994


        State(s):  Any state

           Event:  LLDown

       New state:  Down

          Action:  The Link state retransmission list, Database summary
                   list and Link state request list are cleared of link
                   state advertisements.  Also, the Inactivity Timer is
                   disabled.


        State(s):  Any state

           Event:  InactivityTimer

       New state:  Down

          Action:  The Link state retransmission list, Database summary
                   list and Link state request list are cleared of link
                   state advertisements.


        State(s):  2-Way or greater

           Event:  1-WayReceived

       New state:  Init

          Action:  The Link state retransmission list, Database summary
                   list and Link state request list are cleared of link
                   state advertisements.


        State(s):  2-Way or greater

           Event:  2-WayReceived

       New state:  No state change.

          Action:  No action required.


        State(s):  Init

           Event:  1-WayReceived





Moy                                                            [Page 82]

RFC 1583                     OSPF Version 2                   March 1994


       New state:  No state change.

          Action:  No action required.


   10.4.  Whether to become adjacent

       Adjacencies are established with some subset of the router's
       neighbors.  Routers connected by point-to-point networks and
       virtual links always become adjacent.  On multi-access networks,
       all routers become adjacent to both the Designated Router and
       the Backup Designated Router.

       The adjacency-forming decision occurs in two places in the
       neighbor state machine.  First, when bidirectional communication
       is initially established with the neighbor, and secondly, when
       the identity of the attached network's (Backup) Designated
       Router changes.  If the decision is made to not attempt an
       adjacency, the state of the neighbor communication stops at 2-
       Way.

       An adjacency should be established with a bidirectional neighbor
       when at least one of the following conditions holds:


       o   The underlying network type is point-to-point

       o   The underlying network type is virtual link

       o   The router itself is the Designated Router

       o   The router itself is the Backup Designated Router

       o   The neighboring router is the Designated Router

       o   The neighboring router is the Backup Designated Router


   10.5.  Receiving Hello Packets

       This section explains the detailed processing of a received
       Hello Packet.  (See Section A.3.2 for the format of Hello
       packets.)  The generic input processing of OSPF packets will
       have checked the validity of the IP header and the OSPF packet
       header.  Next, the values of the Network Mask, HelloInterval,
       and RouterDeadInterval fields in the received Hello packet must
       be checked against the values configured for the receiving
       interface.  Any mismatch causes processing to stop and the



Moy                                                            [Page 83]

RFC 1583                     OSPF Version 2                   March 1994


       packet to be dropped.  In other words, the above fields are
       really describing the attached network's configuration. However,
       there is one exception to the above rule: on point-to-point
       networks and on virtual links, the Network Mask in the received
       Hello Packet should be ignored.

       The receiving interface attaches to a single OSPF area (this
       could be the backbone).  The setting of the E-bit found in the
       Hello Packet's Options field must match this area's
       ExternalRoutingCapability.  If AS external advertisements are
       not flooded into/throughout the area (i.e, the area is a "stub")
       the E-bit must be clear in received Hello Packets, otherwise the
       E-bit must be set.  A mismatch causes processing to stop and the
       packet to be dropped.  The setting of the rest of the bits in
       the Hello Packet's Options field should be ignored.

       At this point, an attempt is made to match the source of the
       Hello Packet to one of the receiving interface's neighbors.  If
       the receiving interface is a multi-access network (either
       broadcast or non-broadcast) the source is identified by the IP
       source address found in the Hello's IP header.  If the receiving
       interface is a point-to-point link or a virtual link, the source
       is identified by the Router ID found in the Hello's OSPF packet
       header.  The interface's current list of neighbors is contained
       in the interface's data structure.  If a matching neighbor
       structure cannot be found, (i.e., this is the first time the
       neighbor has been detected), one is created.  The initial state
       of a newly created neighbor is set to Down.

       When receiving an Hello Packet from a neighbor on a multi-access
       network (broadcast or non-broadcast), set the neighbor
       structure's Neighbor ID equal to the Router ID found in the
       packet's OSPF header.  When receiving an Hello on a point-to-
       point network (but not on a virtual link) set the neighbor
       structure's Neighbor IP address to the packet's IP source
       address.

       Now the rest of the Hello Packet is examined, generating events
       to be given to the neighbor and interface state machines.  These
       state machines are specified either to be executed or scheduled
       (see Section 4.4).  For example, by specifying below that the
       neighbor state machine be executed in line, several neighbor
       state transitions may be effected by a single received Hello:


       o   Each Hello Packet causes the neighbor state machine to be
           executed with the event HelloReceived.




Moy                                                            [Page 84]

RFC 1583                     OSPF Version 2                   March 1994


       o   Then the list of neighbors contained in the Hello Packet is
           examined.  If the router itself appears in this list, the
           neighbor state machine should be executed with the event 2-
           WayReceived.  Otherwise, the neighbor state machine should
           be executed with the event 1-WayReceived, and the processing
           of the packet stops.

       o   Next, the Hello Packet's Router Priority field is examined.
           If this field is different than the one previously received
           from the neighbor, the receiving interface's state machine
           is scheduled with the event NeighborChange.  In any case,
           the Router Priority field in the neighbor data structure
           should be updated accordingly.

       o   Next the Designated Router field in the Hello Packet is
           examined.  If the neighbor is both declaring itself to be
           Designated Router (Designated Router field = Neighbor IP
           address) and the Backup Designated Router field in the
           packet is equal to 0.0.0.0 and the receiving interface is in
           state Waiting, the receiving interface's state machine is
           scheduled with the event BackupSeen.  Otherwise, if the
           neighbor is declaring itself to be Designated Router and it
           had not previously, or the neighbor is not declaring itself
           Designated Router where it had previously, the receiving
           interface's state machine is scheduled with the event
           NeighborChange.  In any case, the Neighbors' Designated
           Router item in the neighbor structure is updated
           accordingly.

       o   Finally, the Backup Designated Router field in the Hello
           Packet is examined.  If the neighbor is declaring itself to
           be Backup Designated Router (Backup Designated Router field
           = Neighbor IP address) and the receiving interface is in
           state Waiting, the receiving interface's state machine is
           scheduled with the event BackupSeen.  Otherwise, if the
           neighbor is declaring itself to be Backup Designated Router
           and it had not previously, or the neighbor is not declaring
           itself Backup Designated Router where it had previously, the
           receiving interface's state machine is scheduled with the
           event NeighborChange.  In any case, the Neighbor's Backup
           Designated Router item in the neighbor structure is updated
           accordingly.

       On non-broadcast multi-access networks, receipt of an Hello
       Packet may also cause an Hello Packet to be sent back to the
       neighbor in response. See Section 9.5.1 for more details.





Moy                                                            [Page 85]

RFC 1583                     OSPF Version 2                   March 1994


   10.6.  Receiving Database Description Packets

       This section explains the detailed processing of a received
       Database Description Packet.  The incoming Database Description
       Packet has already been associated with a neighbor and receiving
       interface by the generic input packet processing (Section 8.2).
       The further processing of the Database Description Packet
       depends on the neighbor state.  If the neighbor's state is Down
       or Attempt the packet should be ignored.  Otherwise, if the
       state is:


       Init
           The neighbor state machine should be executed with the event
           2-WayReceived.  This causes an immediate state change to
           either state 2-Way or state ExStart. If the new state is
           ExStart, the processing of the current packet should then
           continue in this new state by falling through to case
           ExStart below.

       2-Way
           The packet should be ignored.  Database Description Packets
           are used only for the purpose of bringing up adjacencies.[7]

       ExStart
           If the received packet matches one of the following cases,
           then the neighbor state machine should be executed with the
           event NegotiationDone (causing the state to transition to
           Exchange), the packet's Options field should be recorded in
           the neighbor structure's Neighbor Options field and the
           packet should be accepted as next in sequence and processed
           further (see below).  Otherwise, the packet should be
           ignored.

           o   The initialize(I), more (M) and master(MS) bits are set,
               the contents of the packet are empty, and the neighbor's
               Router ID is larger than the router's own.  In this case
               the router is now Slave.  Set the master/slave bit to
               slave, and set the DD sequence number to that specified
               by the master.

           o   The initialize(I) and master(MS) bits are off, the
               packet's DD sequence number equals the router's own DD
               sequence number (indicating acknowledgment) and the
               neighbor's Router ID is smaller than the router's own.
               In this case the router is Master.





Moy                                                            [Page 86]

RFC 1583                     OSPF Version 2                   March 1994


       Exchange
           If the state of the MS-bit is inconsistent with the
           master/slave state of the connection, generate the neighbor
           event SeqNumberMismatch and stop processing the packet.
           Otherwise:

           o   If the initialize(I) bit is set, generate the neighbor
               event SeqNumberMismatch and stop processing the packet.

           o   If the packet's Options field indicates a different set
               of optional OSPF capabilities than were previously
               received from the neighbor (recorded in the Neighbor
               Options field of the neighbor structure), generate the
               neighbor event SeqNumberMismatch and stop processing the
               packet.

           o   If the router is master, and the packet's DD sequence
               number equals the router's own DD sequence number (this
               packet is the next in sequence) the packet should be
               accepted and its contents processed (below).

           o   If the router is master, and the packet's DD sequence
               number is one less than the router's DD sequence number,
               the packet is a duplicate.  Duplicates should be
               discarded by the master.

           o   If the router is slave, and the packet's DD sequence
               number is one more than the router's own DD sequence
               number (this packet is the next in sequence) the packet
               should be accepted and its contents processed (below).

           o   If the router is slave, and the packet's DD sequence
               number is equal to the router's DD sequence number, the
               packet is a duplicate.  The slave must respond to
               duplicates by repeating the last Database Description
               packet that it had sent.

           o   Else, generate the neighbor event SeqNumberMismatch and
               stop processing the packet.

       Loading or Full
           In this state, the router has sent and received an entire
           sequence of Database Description Packets.  The only packets
           received should be duplicates (see above).  In particular,
           the packet's Options field should match the set of optional
           OSPF capabilities previously indicated by the neighbor
           (stored in the neighbor structure's Neighbor Options field).
           Any other packets received, including the reception of a



Moy                                                            [Page 87]

RFC 1583                     OSPF Version 2                   March 1994


           packet with the Initialize(I) bit set, should generate the
           neighbor event SeqNumberMismatch.[8] Duplicates should be
           discarded by the master.  The slave must respond to
           duplicates by repeating the last Database Description packet
           that it had sent.


       When the router accepts a received Database Description Packet
       as the next in sequence the packet contents are processed as
       follows.  For each link state advertisement listed, the
       advertisement's LS type is checked for validity.  If the LS type
       is unknown (e.g., not one of the LS types 1-5 defined by this
       specification), or if this is a AS external advertisement (LS
       type = 5) and the neighbor is associated with a stub area,
       generate the neighbor event SeqNumberMismatch and stop
       processing the packet.  Otherwise, the router looks up the
       advertisement in its database to see whether it also has an
       instance of the link state advertisement.  If it does not, or if
       the database copy is less recent (see Section 13.1), the link
       state advertisement is put on the Link state request list so
       that it can be requested (immediately or at some later time) in
       Link State Request Packets.

       When the router accepts a received Database Description Packet
       as the next in sequence, it also performs the following actions,
       depending on whether it is master or slave:


       Master
           Increments the DD sequence number.  If the router has
           already sent its entire sequence of Database Description
           Packets, and the just accepted packet has the more bit (M)
           set to 0, the neighbor event ExchangeDone is generated.
           Otherwise, it should send a new Database Description to the
           slave.

       Slave
           Sets the DD sequence number to the DD sequence number
           appearing in the received packet.  The slave must send a
           Database Description Packet in reply.  If the received
           packet has the more bit (M) set to 0, and the packet to be
           sent by the slave will also have the M-bit set to 0, the
           neighbor event ExchangeDone is generated.  Note that the
           slave always generates this event before the master.







Moy                                                            [Page 88]

RFC 1583                     OSPF Version 2                   March 1994


   10.7.  Receiving Link State Request Packets

       This section explains the detailed processing of received Link
       State Request packets.  Received Link State Request Packets
       specify a list of link state advertisements that the neighbor
       wishes to receive.  Link State Request Packets should be
       accepted when the neighbor is in states Exchange, Loading, or
       Full.  In all other states Link State Request Packets should be
       ignored.

       Each link state advertisement specified in the Link State
       Request packet should be located in the router's database, and
       copied into Link State Update packets for transmission to the
       neighbor.  These link state advertisements should NOT be placed
       on the Link state retransmission list for the neighbor.  If a
       link state advertisement cannot be found in the database,
       something has gone wrong with the Database Exchange process, and
       neighbor event BadLSReq should be generated.


   10.8.  Sending Database Description Packets

       This section describes how Database Description Packets are sent
       to a neighbor.  The router's optional OSPF capabilities (see
       Section 4.5) are transmitted to the neighbor in the Options
       field of the Database Description packet.  The router should
       maintain the same set of optional capabilities throughout the
       Database Exchange and flooding procedures.  If for some reason
       the router's optional capabilities change, the Database Exchange
       procedure should be restarted by reverting to neighbor state
       ExStart.  There are currently two optional capabilities defined.
       The T-bit should be set if and only if the router is capable of
       calculating separate routes for each IP TOS.  The E-bit should
       be set if and only if the attached network belongs to a non-stub
       area.  The rest of the Options field should be set to zero.

       The sending of Database Description packets depends on the
       neighbor's state.  In state ExStart the router sends empty
       Database Description packets, with the initialize (I), more (M)
       and master (MS) bits set.  These packets are retransmitted every
       RxmtInterval seconds.

       In state Exchange the Database Description Packets actually
       contain summaries of the link state information contained in the
       router's database.  Each link state advertisement in the area's
       topological database (at the time the neighbor transitions into
       Exchange state) is listed in the neighbor Database summary list.
       When a new Database Description Packet is to be sent, the



Moy                                                            [Page 89]

RFC 1583                     OSPF Version 2                   March 1994


       packet's DD sequence number is incremented, and the (new) top of
       the Database summary list is described by the packet.  Items are
       removed from the Database summary list when the previous packet
       is acknowledged.

       In state Exchange, the determination of when to send a Database
       Description packet depends on whether the router is master or
       slave:


       Master
           Database Description packets are sent when either a) the
           slave acknowledges the previous Database Description packet
           by echoing the DD sequence number or b) RxmtInterval seconds
           elapse without an acknowledgment, in which case the previous
           Database Description packet is retransmitted.

       Slave
           Database Description packets are sent only in response to
           Database Description packets received from the master.  If
           the Database Description packet received from the master is
           new, a new Database Description packet is sent, otherwise
           the previous Database Description packet is resent.


       In states Loading and Full the slave must resend its last
       Database Description packet in response to duplicate Database
       Description packets received from the master.  For this reason
       the slave must wait RouterDeadInterval seconds before freeing
       the last Database Description packet.  Reception of a Database
       Description packet from the master after this interval will
       generate a SeqNumberMismatch neighbor event.


   10.9.  Sending Link State Request Packets

       In neighbor states Exchange or Loading, the Link state request
       list contains a list of those link state advertisements that
       need to be obtained from the neighbor.  To request these
       advertisements, a router sends the neighbor the beginning of the
       Link state request list, packaged in a Link State Request
       packet.

       When the neighbor responds to these requests with the proper
       Link State Update packet(s), the Link state request list is
       truncated and a new Link State Request packet is sent.  This
       process continues until the Link state request list becomes
       empty.  Unsatisfied Link State Request packets are retransmitted



Moy                                                            [Page 90]

RFC 1583                     OSPF Version 2                   March 1994


       at intervals of RxmtInterval.  There should be at most one Link
       State Request packet outstanding at any one time.

       When the Link state request list becomes empty, and the neighbor
       state is Loading (i.e., a complete sequence of Database
       Description packets has been sent to and received from the
       neighbor), the Loading Done neighbor event is generated.


   10.10.  An Example

       Figure 14 shows an example of an adjacency forming.  Routers RT1
       and RT2 are both connected to a broadcast network.  It is
       assumed that RT2 is the Designated Router for the network, and
       that RT2 has a higher Router ID than Router RT1.

       The neighbor state changes realized by each router are listed on
       the sides of the figure.

       At the beginning of Figure 14, Router RT1's interface to the
       network becomes operational.  It begins sending Hello Packets,
       although it doesn't know the identity of the Designated Router
       or of any other neighboring routers.  Router RT2 hears this
       hello (moving the neighbor to Init state), and in its next Hello
       Packet indicates that it is itself the Designated Router and
       that it has heard Hello Packets from RT1.  This in turn causes
       RT1 to go to state ExStart, as it starts to bring up the
       adjacency.

       RT1 begins by asserting itself as the master.  When it sees that
       RT2 is indeed the master (because of RT2's higher Router ID),
       RT1 transitions to slave state and adopts its neighbor's DD
       sequence number.  Database Description packets are then
       exchanged, with polls coming from the master (RT2) and responses
       from the slave (RT1).  This sequence of Database Description
       Packets ends when both the poll and associated response has the
       M-bit off.

       In this example, it is assumed that RT2 has a completely up to
       date database.  In that case, RT2 goes immediately into Full
       state.  RT1 will go into Full state after updating the necessary
       parts of its database.  This is done by sending Link State
       Request Packets, and receiving Link State Update Packets in
       response.  Note that, while RT1 has waited until a complete set
       of Database Description Packets has been received (from RT2)
       before sending any Link State Request Packets, this need not be
       the case.  RT1 could have interleaved the sending of Link State
       Request Packets with the reception of Database Description



Moy                                                            [Page 91]

RFC 1583                     OSPF Version 2                   March 1994







           +---+                                         +---+
           |RT1|                                         |RT2|
           +---+                                         +---+

           Down                                          Down
                           Hello(DR=0,seen=0)
                      ------------------------------>
                        Hello (DR=RT2,seen=RT1,...)      Init
                      <------------------------------
           ExStart        D-D (Seq=x,I,M,Master)
                      ------------------------------>
                          D-D (Seq=y,I,M,Master)         ExStart
                      <------------------------------
           Exchange       D-D (Seq=y,M,Slave)
                      ------------------------------>
                          D-D (Seq=y+1,M,Master)         Exchange
                      <------------------------------
                          D-D (Seq=y+1,M,Slave)
                      ------------------------------>
                                    ...
                                    ...
                                    ...
                          D-D (Seq=y+n, Master)
                      <------------------------------
                          D-D (Seq=y+n, Slave)
            Loading   ------------------------------>
                                LS Request                Full
                      ------------------------------>
                                LS Update
                      <------------------------------
                                LS Request
                      ------------------------------>
                                LS Update
                      <------------------------------
            Full


                  Figure 14: An adjacency bring-up example








Moy                                                            [Page 92]

RFC 1583                     OSPF Version 2                   March 1994


       Packets.


11.  The Routing Table Structure

   The routing table data structure contains all the information
   necessary to forward an IP data packet toward its destination.  Each
   routing table entry describes the collection of best paths to a
   particular destination.  When forwarding an IP data packet, the
   routing table entry providing the best match for the packet's IP
   destination is located.  The matching routing table entry then
   provides the next hop towards the packet's destination.  OSPF also
   provides for the existence of a default route (Destination ID =
   DefaultDestination, Address Mask =  0x00000000).  When the default
   route exists, it matches all IP destinations (although any other
   matching entry is a better match).  Finding the routing table entry
   that best matches an IP destination is further described in Section
   11.1.

   There is a single routing table in each router.  Two sample routing
   tables are described in Sections 11.2 and 11.3.  The building of the
   routing table is discussed in Section 16.

   The rest of this section defines the fields found in a routing table
   entry.  The first set of fields describes the routing table entry's
   destination.


   Destination Type
       The destination can be one of three types.  Only the first type,
       Network, is actually used when forwarding IP data traffic.  The
       other destinations are used solely as intermediate steps in the
       routing table build process.

       Network
           A range of IP addresses, to which IP data traffic may be
           forwarded.  This includes IP networks (class A, B, or C), IP
           subnets, IP supernets and single IP hosts.  The default
           route also falls in this category.

       Area border router
           Routers that are connected to multiple OSPF areas.  Such
           routers originate summary link advertisements.  These
           routing table entries are used when calculating the inter-
           area routes (see Section 16.2).  These routing table entries
           may also be associated with configured virtual links.





Moy                                                            [Page 93]

RFC 1583                     OSPF Version 2                   March 1994


       AS boundary router
           Routers that originate AS external link advertisements.
           These routing table entries are used when calculating the AS
           external routes (see Section 16.4).

   Destination ID
       The destination's identifier or name.  This depends on the
       Destination Type.  For networks, the identifier is their
       associated IP address.  For all other types, the identifier is
       the OSPF Router ID.[9]

   Address Mask
       Only defined for networks.  The network's IP address together
       with its address mask defines a range of IP addresses.  For IP
       subnets, the address mask is referred to as the subnet mask.
       For host routes, the mask is "all ones" (0xffffffff).

   Optional Capabilities
       When the destination is a router (either an area border router
       or an AS boundary router) this field indicates the optional OSPF
       capabilities supported by the destination router.  The two
       optional capabilities currently defined by this specification
       are the ability to route based on IP TOS and the ability to
       process AS external link advertisements.  For a further
       discussion of OSPF's optional capabilities, see Section 4.5.


   The set of paths to use for a destination may vary based on IP Type
   of Service and the OSPF area to which the paths belong.  This means
   that there may be multiple routing table entries for the same
   destination, depending on the values of the next two fields.


   Type of Service
       There can be a separate set of routes for each IP Type of
       Service.  The encoding of TOS in OSPF link state advertisements
       is described in Section 12.3.

   Area
       This field indicates the area whose link state information has
       led to the routing table entry's collection of paths.  This is
       called the entry's associated area.  For sets of AS external
       paths, this field is not defined.  For destinations of type
       "area border router", there may be separate sets of paths (and
       therefore separate routing table entries) associated with each
       of several areas.  This will happen when two area border routers
       share multiple areas in common.  For all other destination
       types, only the set of paths associated with the best area (the



Moy                                                            [Page 94]

RFC 1583                     OSPF Version 2                   March 1994


       one providing the shortest route) is kept.


   The rest of the routing table entry describes the set of paths to
   the destination.  The following fields pertain to the set of paths
   as a whole.  In other words, each one of the paths contained in a
   routing table entry is of the same path-type and cost (see below).


   Path-type
       There are four possible types of paths used to route traffic to
       the destination, listed here in order of preference: intra-area,
       inter-area, type 1 external or type 2 external.  Intra-area
       paths indicate destinations belonging to one of the router's
       attached areas.  Inter-area paths are paths to destinations in
       other OSPF areas.  These are discovered through the examination
       of received summary link advertisements.  AS external paths are
       paths to destinations external to the AS.  These are detected
       through the examination of received AS external link
       advertisements.

   Cost
       The link state cost of the path to the destination.  For all
       paths except type 2 external paths this describes the entire
       path's cost.  For Type 2 external paths, this field describes
       the cost of the portion of the path internal to the AS.  This
       cost is calculated as the sum of the costs of the path's
       constituent links.

   Type 2 cost
       Only valid for type 2 external paths.  For these paths, this
       field indicates the cost of the path's external portion.  This
       cost has been advertised by an AS boundary router, and is the
       most significant part of the total path cost.  For example, a
       type 2 external path with type 2 cost of 5 is always preferred
       over a path with type 2 cost of 10, regardless of the cost of
       the two paths' internal components.

   Link State Origin
       Valid only for intra-area paths, this field indicates the link
       state advertisement (router links or network links) that
       directly references the destination.  For example, if the
       destination is a transit network, this is the transit network's
       network links advertisement.  If the destination is a stub
       network, this is the router links advertisement for the attached
       router.  The advertisement is discovered during the shortest-
       path tree calculation (see Section 16.1).  Multiple
       advertisements may reference the destination, however a tie-



Moy                                                            [Page 95]

RFC 1583                     OSPF Version 2                   March 1994


       breaking scheme always reduces the choice to a single
       advertisement. The Link State Origin field is not used by the
       OSPF protocol, but it is used by the routing table calculation
       in OSPF's Multicast routing extensions (MOSPF).

   When multiple paths of equal path-type and cost exist to a
   destination (called elsewhere "equal-cost" paths), they are stored
   in a single routing table entry.  Each one of the "equal-cost" paths
   is distinguished by the following fields:


   Next hop
       The outgoing router interface to use when forwarding traffic to
       the destination.  On multi-access networks, the next hop also
       includes the IP address of the next router (if any) in the path
       towards the destination.  This next router will always be one of
       the adjacent neighbors.

   Advertising router
       Valid only for inter-area and AS external paths.  This field
       indicates the Router ID of the router advertising the summary
       link or AS external link that led to this path.


   11.1.  Routing table lookup

       When an IP data packet is received, an OSPF router finds the
       routing table entry that best matches the packet's destination.
       This routing table entry then provides the outgoing interface
       and next hop router to use in forwarding the packet. This
       section describes the process of finding the best matching
       routing table entry. The process consists of a number of steps,
       wherein the collection of routing table entries is progressively
       pruned. In the end, the single routing table entry remaining is
       the called best match.

       Note that the steps described below may fail to produce a best
       match routing table entry (i.e., all existing routing table
       entries are pruned for some reason or another). In this case,
       the packet's IP destination is considered unreachable. Instead
       of being forwarded, the packet should be dropped and an ICMP
       destination unreachable message should be returned to the
       packet's source.


       (1) Select the complete set of "matching" routing table entries
           from the routing table.  Each routing table entry describes
           a (set of) path(s) to a range of IP addresses. If the data



Moy                                                            [Page 96]

RFC 1583                     OSPF Version 2                   March 1994


           packet's IP destination falls into an entry's range of IP
           addresses, the routing table entry is called a match. (It is
           quite likely that multiple entries will match the data
           packet.  For example, a default route will match all
           packets.)

       (2) Suppose that the packet's IP destination falls into one of
           the router's configured area address ranges (see Section
           3.5), and that the particular area address range is active.
           This means that there are one or more reachable (by intra-
           area paths) networks contained in the area address range.
           The packet's IP destination is then required to belong to
           one of these constituent networks. For this reason, only
           matching routing table entries with path-type of intra-area
           are considered (all others are pruned). If no such matching
           entries exist, the destination is unreachable (see above).
           Otherwise, skip to step 4.

       (3) Reduce the set of matching entries to those having the most
           preferential path-type (see Section 11). OSPF has a four
           level hierarchy of paths. Intra-area paths are the most
           preferred, followed in order by inter-area, type 1 external
           and type 2 external paths.

       (4) Select the remaining routing table entry that provides the
           longest (most specific) match. Another way of saying this is
           to choose the remaining entry that specifies the narrowest
           range of IP addresses.[10] For example, the entry for the
           address/mask pair of (128.185.1.0, 0xffffff00) is more
           specific than an entry for the pair (128.185.0.0,
           0xffff0000). The default route is the least specific match,
           since it matches all destinations.

       (5) At this point, there may still be multiple routing table
           entries remaining. Each routing entry will specify the same
           range of IP addresses, but a different IP Type of Service.
           Select the routing table entry whose TOS value matches the
           TOS found in the packet header. If there is no routing table
           entry for this TOS, select the routing table entry for TOS
           0. In other words, packets requesting TOS X are routed along
           the TOS 0 path if a TOS X path does not exist.


   11.2.  Sample routing table, without areas

       Consider the Autonomous System pictured in Figure 2.  No OSPF
       areas have been configured.  A single metric is shown per
       outbound interface, indicating that routes will not vary based



Moy                                                            [Page 97]

RFC 1583                     OSPF Version 2                   March 1994


       on TOS.  The calculation of Router RT6's routing table proceeds
       as described in Section 2.1.  The resulting routing table is
       shown in Table 12.  Destination types are abbreviated: Network
       as "N", area border router as "BR" and AS boundary router as
       "ASBR".

       There are no instances of multiple equal-cost shortest paths in
       this example.  Also, since there are no areas, there are no
       inter-area paths.

       Routers RT5 and RT7 are AS boundary routers.  Intra-area routes
       have been calculated to Routers RT5 and RT7.  This allows
       external routes to be calculated to the destinations advertised
       by RT5 and RT7 (i.e., Networks N12, N13, N14 and N15).  It is
       assumed all AS external advertisements originated by RT5 and RT7
       are advertising type 1 external metrics.  This results in type 1
       external paths being calculated to destinations N12-N15.



   11.3.  Sample routing table, with areas

       Consider the previous example, this time split into OSPF areas.
       An OSPF area configuration is pictured in Figure 6.  Router
       RT4's routing table will be described for this area
       configuration.  Router RT4 has a connection to Area 1 and a
       backbone connection.  This causes Router RT4 to view the AS as
       the concatenation of the two graphs shown in Figures 7 and 8.
       The resulting routing table is displayed in Table 13.

       Again, Routers RT5 and RT7 are AS boundary routers.  Routers
       RT3, RT4, RT7, RT10 and RT11 are area border routers.  Note that
       there are two routing table entries (in this case having
       identical paths) for Router RT7, in its dual capacities as an
       area border router and an AS boundary router.  Note also that
       there are two routing entries for the area border router RT3,
       since it has two areas in common with RT4 (Area 1 and the
       backbone).

       Backbone paths have been calculated to all area border routers
       (BR).  These are used when determining the inter-area routes.
       Note that all of the inter-area routes are associated with the
       backbone; this is always the case when the calculating router is
       itself an area border router.  Routing information is condensed
       at area boundaries.  In this example, we assume that Area 3 has
       been defined so that networks N9-N11 and the host route to H1
       are all condensed to a single route when advertised into the
       backbone (by Router RT11).  Note that the cost of this route is



Moy                                                            [Page 98]

RFC 1583                     OSPF Version 2                   March 1994




     Type   Dest   Area   Path  Type    Cost   Next     Adv.
                                               Hop(s)   Router(s)
     ____________________________________________________________
     N      N1     0      intra-area    10     RT3      *
     N      N2     0      intra-area    10     RT3      *
     N      N3     0      intra-area    7      RT3      *
     N      N4     0      intra-area    8      RT3      *
     N      Ib     0      intra-area    7      *        *
     N      Ia     0      intra-area    12     RT10     *
     N      N6     0      intra-area    8      RT10     *
     N      N7     0      intra-area    12     RT10     *
     N      N8     0      intra-area    10     RT10     *
     N      N9     0      intra-area    11     RT10     *
     N      N10    0      intra-area    13     RT10     *
     N      N11    0      intra-area    14     RT10     *
     N      H1     0      intra-area    21     RT10     *
     ASBR   RT5    0      intra-area    6      RT5      *
     ASBR   RT7    0      intra-area    8      RT10     *
     ____________________________________________________________
     N      N12    *      type 1 ext.   10     RT10     RT7
     N      N13    *      type 1 ext.   14     RT5      RT5
     N      N14    *      type 1 ext.   14     RT5      RT5
     N      N15    *      type 1 ext.   17     RT10     RT7


              Table 12: The routing table for Router RT6
                        (no configured areas).

       the minimum of the set of costs to its individual components.

       There is a virtual link configured between Routers RT10 and
       RT11.  Without this configured virtual link, RT11 would be
       unable to advertise a route for networks N9-N11 and Host H1 into
       the backbone, and there would not be an entry for these networks
       in Router RT4's routing table.

       In this example there are two equal-cost paths to Network N12.
       However, they both use the same next hop (Router RT5).



       Router RT4's routing table would improve (i.e., some of the
       paths in the routing table would become shorter) if an
       additional virtual link were configured between Router RT4 and
       Router RT3.  The new virtual link would itself be associated
       with the first entry for area border router RT3 in Table 13 (an



Moy                                                            [Page 99]

RFC 1583                     OSPF Version 2                   March 1994




  Type   Dest        Area   Path  Type    Cost   Next      Adv.
                                                 Hops(s)   Router(s)
  __________________________________________________________________
  N      N1          1      intra-area    4      RT1       *
  N      N2          1      intra-area    4      RT2       *
  N      N3          1      intra-area    1      *         *
  N      N4          1      intra-area    3      RT3       *
  BR     RT3         1      intra-area    1      *         *
  __________________________________________________________________
  N      Ib          0      intra-area    22     RT5       *
  N      Ia          0      intra-area    27     RT5       *
  BR     RT3         0      intra-area    21     RT5       *
  BR     RT7         0      intra-area    14     RT5       *
  BR     RT10        0      intra-area    22     RT5       *
  BR     RT11        0      intra-area    25     RT5       *
  ASBR   RT5         0      intra-area    8      *         *
  ASBR   RT7         0      intra-area    14     RT5       *
  __________________________________________________________________
  N      N6          0      inter-area    15     RT5       RT7
  N      N7          0      inter-area    19     RT5       RT7
  N      N8          0      inter-area    18     RT5       RT7
  N      N9-N11,H1   0      inter-area    26     RT5       RT11
  __________________________________________________________________
  N      N12         *      type 1 ext.   16     RT5       RT5,RT7
  N      N13         *      type 1 ext.   16     RT5       RT5
  N      N14         *      type 1 ext.   16     RT5       RT5
  N      N15         *      type 1 ext.   23     RT5       RT7


                 Table 13: Router RT4's routing table
                      in the presence of areas.

       intra-area path through Area 1).  This would yield a cost of 1
       for the virtual link.  The routing table entries changes that
       would be caused by the addition of this virtual link are shown
       in Table 14.



12.  Link State Advertisements

   Each router in the Autonomous System originates one or more link
   state advertisements.  There are five distinct types of link state
   advertisements, which are described in Section 4.3.  The collection
   of link state advertisements forms the link state or topological
   database.  Each separate type of advertisement has a separate



Moy                                                           [Page 100]

RFC 1583                     OSPF Version 2                   March 1994




   Type   Dest        Area   Path  Type   Cost   Next     Adv.
                                                 Hop(s)   Router(s)
   ________________________________________________________________
   N      Ib          0      intra-area   16     RT3      *
   N      Ia          0      intra-area   21     RT3      *
   BR     RT3         0      intra-area   1      *        *
   BR     RT10        0      intra-area   16     RT3      *
   BR     RT11        0      intra-area   19     RT3      *
   ________________________________________________________________
   N      N9-N11,H1   0      inter-area   20     RT3      RT11


                 Table 14: Changes resulting from an
                       additional virtual link.

   function.  Router links and network links advertisements describe
   how an area's routers and networks are interconnected.  Summary link
   advertisements provide a way of condensing an area's routing
   information.  AS external advertisements provide a way of
   transparently advertising externally-derived routing information
   throughout the Autonomous System.

   Each link state advertisement begins with a standard 20-byte header.
   This link state advertisement header is discussed below.


   12.1.  The Link State Advertisement Header

       The link state advertisement header contains the LS type, Link
       State ID and Advertising Router fields.  The combination of
       these three fields uniquely identifies the link state
       advertisement.

       There may be several instances of an advertisement present in
       the Autonomous System, all at the same time.  It must then be
       determined which instance is more recent.  This determination is
       made by examining the LS sequence, LS checksum and LS age
       fields.  These fields are also contained in the 20-byte link
       state advertisement header.

       Several of the OSPF packet types list link state advertisements.
       When the instance is not important, an advertisement is referred
       to by its LS type, Link State ID and Advertising Router (see
       Link State Request Packets).  Otherwise, the LS sequence number,
       LS age and LS checksum fields must also be referenced.




Moy                                                           [Page 101]

RFC 1583                     OSPF Version 2                   March 1994


       A detailed explanation of the fields contained in the link state
       advertisement header follows.


       12.1.1.  LS age

           This field is the age of the link state advertisement in
           seconds.  It should be processed as an unsigned 16-bit
           integer.  It is set to 0 when the link state advertisement
           is originated.  It must be incremented by InfTransDelay on
           every hop of the flooding procedure.  Link state
           advertisements are also aged as they are held in each
           router's database.

           The age of a link state advertisement is never incremented
           past MaxAge.  Advertisements having age MaxAge are not used
           in the routing table calculation.  When an advertisement's
           age first reaches MaxAge, it is reflooded.  A link state
           advertisement of age MaxAge is finally flushed from the
           database when it is no longer needed to ensure database
           synchronization.  For more information on the aging of link
           state advertisements, consult Section 14.

           The LS age field is examined when a router receives two
           instances of a link state advertisement, both having
           identical LS sequence numbers and LS checksums.  An instance
           of age MaxAge is then always accepted as most recent; this
           allows old advertisements to be flushed quickly from the
           routing domain.  Otherwise, if the ages differ by more than
           MaxAgeDiff, the instance having the smaller age is accepted
           as most recent.[11] See Section 13.1 for more details.


       12.1.2.  Options

           The Options field in the link state advertisement header
           indicates which optional capabilities are associated with
           the advertisement.  OSPF's optional capabilities are
           described in Section 4.5.  There are currently two optional
           capabilities defined; they are represented by the T-bit and
           E-bit found in the Options field.  The rest of the Options
           field should be set to zero.

           The E-bit represents OSPF's ExternalRoutingCapability.  This
           bit should be set in all advertisements associated with the
           backbone, and all advertisements associated with non-stub
           areas (see Section 3.6).  It should also be set in all AS
           external link advertisements.  It should be reset in all



Moy                                                           [Page 102]

RFC 1583                     OSPF Version 2                   March 1994


           router links, network links and summary link advertisements
           associated with a stub area.  For all link state
           advertisements, the setting of the E-bit is for
           informational purposes only; it does not affect the routing
           table calculation.

           The T-bit represents OSPF's TOS routing capability.  This
           bit should be set in a router links advertisement if and
           only if the router is capable of calculating separate routes
           for each IP TOS (see Section 2.4).  The T-bit should always
           be set in network links advertisements.  It should be set in
           summary link and AS external link advertisements if and only
           if the advertisement describes paths for all TOS values,
           instead of just the TOS 0 path.  Note that, with the T-bit
           set, there may still be only a single metric in the
           advertisement (the TOS 0 metric).  This would mean that
           paths for non-zero TOS exist, but are equivalent to the TOS
           0 path.  A link state advertisement's T-bit is examined when
           calculating the routing table's non-zero TOS paths (see
           Section 16.9).


       12.1.3.  LS type

           The LS type field dictates the format and function of the
           link state advertisement.  Advertisements of different types
           have different names (e.g., router links or network links).
           All advertisement types, except the AS external link
           advertisements (LS type = 5), are flooded throughout a
           single area only.  AS external link advertisements are
           flooded throughout the entire Autonomous System, excepting
           stub areas (see Section 3.6).  Each separate advertisement
           type is briefly described below in Table 15.

       12.1.4.  Link State ID

           This field identifies the piece of the routing domain that
           is being described by the advertisement.  Depending on the
           advertisement's LS type, the Link State ID takes on the
           values listed in Table 16.


           Actually, for Type 3 summary link (LS type = 3)
           advertisements and AS external link (LS type = 5)
           advertisements, the Link State ID may additionally have one
           or more of the destination network's "host" bits set. For
           example, when originating an AS external link for the
           network 10.0.0.0 with mask of 255.0.0.0, the Link State ID



Moy                                                           [Page 103]

RFC 1583                     OSPF Version 2                   March 1994




          LS Type   Advertisement description
          __________________________________________________
          1         These are the router links
                    advertisements. They describe the
                    collected states of the router's
                    interfaces. For more information,
                    consult Section 12.4.1.
          __________________________________________________
          2         These are the network links
                    advertisements. They describe the set
                    of routers attached to the network. For
                    more information, consult
                    Section 12.4.2.
          __________________________________________________
          3 or 4    These are the summary link
                    advertisements. They describe
                    inter-area routes, and enable the
                    condensation of routing information at
                    area borders. Originated by area border
                    routers, the Type 3 advertisements
                    describe routes to networks while the
                    Type 4 advertisements describe routes to
                    AS boundary routers.
          __________________________________________________
          5         These are the AS external link
                    advertisements. Originated by AS
                    boundary routers, they describe routes
                    to destinations external to the
                    Autonomous System. A default route for
                    the Autonomous System can also be
                    described by an AS external link
                    advertisement.


              Table 15: OSPF link state advertisements.














Moy                                                           [Page 104]

RFC 1583                     OSPF Version 2                   March 1994


           LS Type   Link State ID
           _______________________________________________
           1         The originating router's Router ID.
           2         The IP interface address of the
                     network's Designated Router.
           3         The destination network's IP address.
           4         The Router ID of the described AS
                     boundary router.
           5         The destination network's IP address.


             Table 16: The advertisement's Link State ID.

           can be set to anything in the range 10.0.0.0 through
           10.255.255.255 inclusive (although 10.0.0.0 should be used
           whenever possible). The freedom to set certain host bits
           allows a router to originate separate advertisements for two
           networks having the same address but different masks. See
           Appendix F for details.

           When the link state advertisement is describing a network
           (LS type = 2, 3 or 5), the network's IP address is easily
           derived by masking the Link State ID with the network/subnet
           mask contained in the body of the link state advertisement.
           When the link state advertisement is describing a router (LS
           type = 1 or 4), the Link State ID is always the described
           router's OSPF Router ID.

           When an AS external advertisement (LS Type = 5) is
           describing a default route, its Link State ID is set to
           DefaultDestination (0.0.0.0).


       12.1.5.  Advertising Router

           This field specifies the OSPF Router ID of the
           advertisement's originator.  For router links
           advertisements, this field is identical to the Link State ID
           field.  Network link advertisements are originated by the
           network's Designated Router.  Summary link advertisements
           are originated by area border routers.  AS external link
           advertisements are originated by AS boundary routers.


       12.1.6.  LS sequence number

           The sequence number field is a signed 32-bit integer.  It is
           used to detect old and duplicate link state advertisements.



Moy                                                           [Page 105]

RFC 1583                     OSPF Version 2                   March 1994


           The space of sequence numbers is linearly ordered.  The
           larger the sequence number (when compared as signed 32-bit
           integers) the more recent the advertisement.  To describe to
           sequence number space more precisely, let N refer in the
           discussion below to the constant 2**31.

           The sequence number -N (0x80000000) is reserved (and
           unused).  This leaves -N + 1 (0x80000001) as the smallest
           (and therefore oldest) sequence number.  A router uses this
           sequence number the first time it originates any link state
           advertisement.  Afterwards, the advertisement's sequence
           number is incremented each time the router originates a new
           instance of the advertisement.  When an attempt is made to
           increment the sequence number past the maximum value of N -
           1 (0x7fffffff), the current instance of the advertisement
           must first be flushed from the routing domain.  This is done
           by prematurely aging the advertisement (see Section 14.1)
           and reflooding it.  As soon as this flood has been
           acknowledged by all adjacent neighbors, a new instance can
           be originated with sequence number of -N + 1 (0x80000001).

           The router may be forced to promote the sequence number of
           one of its advertisements when a more recent instance of the
           advertisement is unexpectedly received during the flooding
           process.  This should be a rare event.  This may indicate
           that an out-of-date advertisement, originated by the router
           itself before its last restart/reload, still exists in the
           Autonomous System.  For more information see Section 13.4.


       12.1.7.  LS checksum

           This field is the checksum of the complete contents of the
           advertisement, excepting the LS age field.  The LS age field
           is excepted so that an advertisement's age can be
           incremented without updating the checksum.  The checksum
           used is the same that is used for ISO connectionless
           datagrams; it is commonly referred to as the Fletcher
           checksum.  It is documented in Annex B of [RFC 905].  The
           link state advertisement header also contains the length of
           the advertisement in bytes; subtracting the size of the LS
           age field (two bytes) yields the amount of data to checksum.

           The checksum is used to detect data corruption of an
           advertisement.  This corruption can occur while an
           advertisement is being flooded, or while it is being held in
           a router's memory.  The LS checksum field cannot take on the
           value of zero; the occurrence of such a value should be



Moy                                                           [Page 106]

RFC 1583                     OSPF Version 2                   March 1994


           considered a checksum failure.  In other words, calculation
           of the checksum is not optional.

           The checksum of a link state advertisement is verified in
           two cases: a) when it is received in a Link State Update
           Packet and b) at times during the aging of the link state
           database.  The detection of a checksum failure leads to
           separate actions in each case.  See Sections 13 and 14 for
           more details.

           Whenever the LS sequence number field indicates that two
           instances of an advertisement are the same, the LS checksum
           field is examined.  If there is a difference, the instance
           with the larger LS checksum is considered to be most
           recent.[12] See Section 13.1 for more details.


   12.2.  The link state database

       A router has a separate link state database for every area to
       which it belongs.  The link state database has been referred to
       elsewhere in the text as the topological database.  All routers
       belonging to the same area have identical topological databases
       for the area.

       The databases for each individual area are always dealt with
       separately.  The shortest path calculation is performed
       separately for each area (see Section 16).  Components of the
       area topological database are flooded throughout the area only.
       Finally, when an adjacency (belonging to Area A) is being
       brought up, only the database for Area A is synchronized between
       the two routers.

       The area database is composed of router links advertisements,
       network links advertisements, and summary link advertisements
       (all listed in the area data structure).  In addition, external
       routes (AS external advertisements) are included in all non-stub
       area databases (see Section 3.6).

       An implementation of OSPF must be able to access individual
       pieces of an area database.  This lookup function is based on an
       advertisement's LS type, Link State ID and Advertising
       Router.[13] There will be a single instance (the most up-to-
       date) of each link state advertisement in the database.  The
       database lookup function is invoked during the link state
       flooding procedure (Section 13) and the routing table
       calculation (Section 16).  In addition, using this lookup
       function the router can determine whether it has itself ever



Moy                                                           [Page 107]

RFC 1583                     OSPF Version 2                   March 1994


       originated a particular link state advertisement, and if so,
       with what LS sequence number.

       A link state advertisement is added to a router's database when
       either a) it is received during the flooding process (Section
       13) or b) it is originated by the router itself (Section 12.4).
       A link state advertisement is deleted from a router's database
       when either a) it has been overwritten by a newer instance
       during the flooding process (Section 13) or b) the router
       originates a newer instance of one of its self-originated
       advertisements (Section 12.4) or c) the advertisement ages out
       and is flushed from the routing domain (Section 14).  Whenever a
       link state advertisement is deleted from the database it must
       also be removed from all neighbors' Link state retransmission
       lists (see Section 10).


   12.3.  Representation of TOS

       All OSPF link state advertisements (with the exception of
       network links advertisements) specify metrics.  In router links
       advertisements, the metrics indicate the costs of the described
       interfaces.  In summary link and AS external link
       advertisements, the metric indicates the cost of the described
       path.  In all of these advertisements, a separate metric can be
       specified for each IP TOS.  The encoding of TOS in OSPF link
       state advertisements is specified in Table 17. That table
       relates the OSPF encoding to the IP packet header's TOS field
       (defined in [RFC 1349]).  The OSPF encoding is expressed as a
       decimal integer, and the IP packet header's TOS field is
       expressed in the binary TOS values used in [RFC 1349].




















Moy                                                           [Page 108]

RFC 1583                     OSPF Version 2                   March 1994



                   OSPF encoding   RFC 1349 TOS values
                   ___________________________________________
                   0               0000 normal service
                   2               0001 minimize monetary cost
                   4               0010 maximize reliability
                   6               0011
                   8               0100 maximize throughput
                   10              0101
                   12              0110
                   14              0111
                   16              1000 minimize delay
                   18              1001
                   20              1010
                   22              1011
                   24              1100
                   26              1101
                   28              1110
                   30              1111


                       Table 17: Representing TOS in OSPF.


       Each OSPF link state advertisement must specify the TOS 0
       metric.  Other TOS metrics, if they appear, must appear in order
       of increasing TOS encoding.  For example, the TOS 8 (maximize
       throughput) metric must always appear before the TOS 16
       (minimize delay) metric when both are specified.  If a metric
       for some non-zero TOS is not specified, its cost defaults to the
       cost for TOS 0, unless the T-bit is reset in the advertisement's
       Options field (see Section 12.1.2 for more details).


   12.4.  Originating link state advertisements

       Into any given OSPF area, a router will originate several link
       state advertisements.  Each router originates a router links
       advertisement.  If the router is also the Designated Router for
       any of the area's networks, it will originate network links
       advertisements for those networks.

       Area border routers originate a single summary link
       advertisement for each known inter-area destination.  AS
       boundary routers originate a single AS external link
       advertisement for each known AS external destination.
       Destinations are advertised one at a time so that the change in
       any single route can be flooded without reflooding the entire



Moy                                                           [Page 109]

RFC 1583                     OSPF Version 2                   March 1994


       collection of routes.  During the flooding procedure, many link
       state advertisements can be carried by a single Link State
       Update packet.

       As an example, consider Router RT4 in Figure 6.  It is an area
       border router, having a connection to Area 1 and the backbone.
       Router RT4 originates 5 distinct link state advertisements into
       the backbone (one router links, and one summary link for each of
       the networks N1-N4).  Router RT4 will also originate 8 distinct
       link state advertisements into Area 1 (one router links and
       seven summary link advertisements as pictured in Figure 7).  If
       RT4 has been selected as Designated Router for Network N3, it
       will also originate a network links advertisement for N3 into
       Area 1.

       In this same figure, Router RT5 will be originating 3 distinct
       AS external link advertisements (one for each of the networks
       N12-N14).  These will be flooded throughout the entire AS,
       assuming that none of the areas have been configured as stubs.
       However, if area 3 has been configured as a stub area, the
       external advertisements for networks N12-N14 will not be flooded
       into area 3 (see Section 3.6).  Instead, Router RT11 would
       originate a default summary link advertisement that would be
       flooded throughout area 3 (see Section 12.4.3).  This instructs
       all of area 3's internal routers to send their AS external
       traffic to RT11.

       Whenever a new instance of a link state advertisement is
       originated, its LS sequence number is incremented, its LS age is
       set to 0, its LS checksum is calculated, and the advertisement
       is added to the link state database and flooded out the
       appropriate interfaces.  See Section 13.2 for details concerning
       the installation of the advertisement into the link state
       database.  See Section 13.3 for details concerning the flooding
       of newly originated advertisements.


       The ten events that can cause a new instance of a link state
       advertisement to be originated are:


       (1) The LS age field of one of the router's self-originated
           advertisements reaches the value LSRefreshTime. In this
           case, a new instance of the link state advertisement is
           originated, even though the contents of the advertisement
           (apart from the link state advertisement header) will be the
           same.  This guarantees periodic originations of all link
           state advertisements. This periodic updating of link state



Moy                                                           [Page 110]

RFC 1583                     OSPF Version 2                   March 1994


           advertisements adds robustness to the link state algorithm.
           Link state advertisements that solely describe unreachable
           destinations should not be refreshed, but should instead be
           flushed from the routing domain (see Section 14.1).


       When whatever is being described by a link state advertisement
       changes, a new advertisement is originated.  However, two
       instances of the same link state advertisement may not be
       originated within the time period MinLSInterval.  This may
       require that the generation of the next instance be delayed by
       up to MinLSInterval.  The following events may cause the
       contents of a link state advertisement to change.  These events
       should cause new originations if and only if the contents of the
       new advertisement would be different:


       (2) An interface's state changes (see Section 9.1).  This may
           mean that it is necessary to produce a new instance of the
           router links advertisement.

       (3) An attached network's Designated Router changes.  A new
           router links advertisement should be originated.  Also, if
           the router itself is now the Designated Router, a new
           network links advertisement should be produced.  If the
           router itself is no longer the Designated Router, any
           network links advertisement that it might have originated
           for the network should be flushed from the routing domain
           (see Section 14.1).

       (4) One of the neighboring routers changes to/from the FULL
           state.  This may mean that it is necessary to produce a new
           instance of the router links advertisement.  Also, if the
           router is itself the Designated Router for the attached
           network, a new network links advertisement should be
           produced.


       The next four events concern area border routers only:


       (5) An intra-area route has been added/deleted/modified in the
           routing table.  This may cause a new instance of a summary
           links advertisement (for this route) to be originated in
           each attached area (possibly including the backbone).

       (6) An inter-area route has been added/deleted/modified in the
           routing table.  This may cause a new instance of a summary



Moy                                                           [Page 111]

RFC 1583                     OSPF Version 2                   March 1994


           links advertisement (for this route) to be originated in
           each attached area (but NEVER for the backbone).

       (7) The router becomes newly attached to an area.  The router
           must then originate summary link advertisements into the
           newly attached area for all pertinent intra-area and inter-
           area routes in the router's routing table.  See Section
           12.4.3 for more details.

       (8) When the state of one of the router's configured virtual
           links changes, it may be necessary to originate a new router
           links advertisement into the virtual link's transit area
           (see the discussion of the router links advertisement's bit
           V in Section 12.4.1), as well as originating a new router
           links advertisement into the backbone.


       The last two events concern AS boundary routers (and former AS
       boundary routers) only:


       (9) An external route gained through direct experience with an
           external routing protocol (like EGP) changes.  This will
           cause an AS boundary router to originate a new instance of
           an AS external link advertisement.

       (10)
           A router ceases to be an AS boundary router, perhaps after
           restarting. In this situation the router should flush all AS
           external link advertisements that it had previously
           originated.  These advertisements can be flushed via the
           premature aging procedure specified in Section 14.1.


       The construction of each type of link state advertisement is
       explained in detail below.  In general, these sections describe
       the contents of the advertisement body (i.e., the part coming
       after the 20-byte advertisement header).  For information
       concerning the building of the link state advertisement header,
       see Section 12.1.

       12.4.1.  Router links

           A router originates a router links advertisement for each
           area that it belongs to.  Such an advertisement describes
           the collected states of the router's links to the area.  The
           advertisement is flooded throughout the particular area, and
           no further.



Moy                                                           [Page 112]

RFC 1583                     OSPF Version 2                   March 1994



                 ....................................
                 . 192.1.2                   Area 1 .
                 .     +                            .
                 .     |                            .
                 .     | 3+---+1                    .
                 .  N1 |--|RT1|-----+               .
                 .     |  +---+                    .
                 .     |                _______N3  .
                 .     +               /          .  1+---+
                 .                     * 192.1.1 *------|RT4|
                 .     +               /_______/   .   +---+
                 .     |              /     |       .
                 .     | 3+---+1     /      |       .
                 .  N2 |--|RT2|-----+      1|       .
                 .     |  +---+           +---+8    .         6+---+
                 .     |                  |RT3|----------------|RT6|
                 .     +                  +---+     .          +---+
                 . 192.1.3                  |2      .   18.10.0.6|7
                 .                          |       .            |
                 .                   +------------+ .
                 .                     192.1.4 (N4) .
                 ....................................


                   Figure 15: Area 1 with IP addresses shown

           The format of a router links advertisement is shown in
           Appendix A (Section A.4.2).  The first 20 bytes of the
           advertisement consist of the generic link state
           advertisement header that was discussed in Section 12.1.
           Router links advertisements have LS type = 1.  The router
           indicates whether it is willing to calculate separate routes
           for each IP TOS by setting (or resetting) the T-bit of the
           link state advertisement's Options field.

           A router also indicates whether it is an area border router,
           or an AS boundary router, by setting the appropriate bits
           (bit B and bit E, respectively) in its router links
           advertisements. This enables paths to those types of routers
           to be saved in the routing table, for later processing of
           summary link advertisements and AS external link
           advertisements.  Bit B should be set whenever the router is
           actively attached to two or more areas, even if the router
           is not currently attached to the OSPF backbone area.  Bit E
           should never be set in a router links advertisement for a
           stub area (stub areas cannot contain AS boundary routers).
           In addition, the router sets bit V in its router links



Moy                                                           [Page 113]

RFC 1583                     OSPF Version 2                   March 1994


           advertisement for Area A if and only if it is the endpoint
           of an active virtual link using Area A as its Transit area.
           This enables the other routers attached to Area A to
           discover whether the area supports any virtual links (i.e.,
           is a transit area).

           The router links advertisement then describes the router's
           working connections (i.e., interfaces or links) to the area.
           Each link is typed according to the kind of attached
           network.  Each link is also labelled with its Link ID.  This
           Link ID gives a name to the entity that is on the other end
           of the link.  Table 18 summarizes the values used for the
           Type and Link ID fields.



                  Link type   Description       Link ID
                  __________________________________________________
                  1           Point-to-point    Neighbor Router ID
                              link
                  2           Link to transit   Interface address of
                              network           Designated Router
                  3           Link to stub      IP network number
                              network
                  4           Virtual link      Neighbor Router ID


                          Table 18: Link descriptions in the
                             router links advertisement.


           In addition, the Link Data field is specified for each link.
           This field gives 32 bits of extra information for the link.
           For links to transit networks, numbered links to routers and
           virtual links, this field specifies the IP interface address
           of the associated router interface (this is needed by the
           routing table calculation, see Section 16.1.1).  For links
           to stub networks, this field specifies the network's IP
           address mask.  For unnumbered point-to-point networks, the
           Link Data field should be set to the unnumbered interface's
           MIB-II [RFC 1213] ifIndex value.

           Finally, the cost of using the link for output (possibly
           specifying a different cost for each Type of Service) is
           specified.  The output cost of a link is configurable.  It
           must always be non-zero.

           To further describe the process of building the list of link



Moy                                                           [Page 114]

RFC 1583                     OSPF Version 2                   March 1994


           descriptions, suppose a router wishes to build a router
           links advertisement for Area A.  The router examines its
           collection of interface data structures.  For each
           interface, the following steps are taken:


           o   If the attached network does not belong to Area A, no
               links are added to the advertisement, and the next
               interface should be examined.

           o   Else, if the state of the interface is Down, no links
               are added.

           o   Else, if the state of the interface is Point-to-Point,
               then add links according to the following:

               -   If the neighboring router is fully adjacent, add a
                   Type 1 link (point-to-point) if this is an interface
                   to a point-to-point network, or add a Type 4 link
                   (virtual link) if this is a virtual link.  The Link
                   ID should be set to the Router ID of the neighboring
                   router. For virtual links and numbered point-to-
                   point networks, the Link Data should specify the IP
                   interface address. For unnumbered point-to-point
                   networks, the Link Data field should specify the
                   interface's MIB-II [RFC 1213] ifIndex value.

               -   If this is a numbered point-to-point network (i.e,
                   not a virtual link and not an unnumbered point-to-
                   point network) and the neighboring router's IP
                   address is known, add a Type 3 link (stub network)
                   whose Link ID is the neighbor's IP address, whose
                   Link Data is the mask 0xffffffff indicating a host
                   route, and whose cost is the interface's configured
                   output cost.

           o   Else if the state of the interface is Loopback, add a
               Type 3 link (stub network) as long as this is not an
               interface to an unnumbered serial line.  The Link ID
               should be set to the IP interface address, the Link Data
               set to the mask 0xffffffff (indicating a host route),
               and the cost set to 0.

           o   Else if the state of the interface is Waiting, add a
               Type 3 link (stub network) whose Link ID is the IP
               network number of the attached network and whose Link
               Data is the attached network's address mask.




Moy                                                           [Page 115]

RFC 1583                     OSPF Version 2                   March 1994


           o   Else, there has been a Designated Router selected for
               the attached network.  If the router is fully adjacent
               to the Designated Router, or if the router itself is
               Designated Router and is fully adjacent to at least one
               other router, add a single Type 2 link (transit network)
               whose Link ID is the IP interface address of the
               attached network's Designated Router (which may be the
               router itself) and whose Link Data is the router's own
               IP interface address.  Otherwise, add a link as if the
               interface state were Waiting (see above).


           Unless otherwise specified, the cost of each link generated
           by the above procedure is equal to the output cost of the
           associated interface.  Note that in the case of serial
           lines, multiple links may be generated by a single
           interface.

           After consideration of all the router interfaces, host links
           are added to the advertisement by examining the list of
           attached hosts.  A host route is represented as a Type 3
           link (stub network) whose Link ID is the host's IP address
           and whose Link Data is the mask of all ones (0xffffffff).

           As an example, consider the router links advertisements
           generated by Router RT3, as pictured in Figure 6.  The area
           containing Router RT3 (Area 1) has been redrawn, with actual
           network addresses, in Figure 15.  Assume that the last byte
           of all of RT3's interface addresses is 3, giving it the
           interface addresses 192.1.1.3 and 192.1.4.3, and that the
           other routers have similar addressing schemes.  In addition,
           assume that all links are functional, and that Router IDs
           are assigned as the smallest IP interface address.

           RT3 originates two router links advertisements, one for Area
           1 and one for the backbone.  Assume that Router RT4 has been
           selected as the Designated router for network 192.1.1.0.
           RT3's router links advertisement for Area 1 is then shown
           below.  It indicates that RT3 has two connections to Area 1,
           the first a link to the transit network 192.1.1.0 and the
           second a link to the stub network 192.1.4.0.  Note that the
           transit network is identified by the IP interface of its
           Designated Router (i.e., the Link ID = 192.1.1.4 which is
           the Designated Router RT4's IP interface to 192.1.1.0).
           Note also that RT3 has indicated that it is capable of
           calculating separate routes based on IP TOS, through setting
           the T-bit in the Options field.  It has also indicated that
           it is an area border router.



Moy                                                           [Page 116]

RFC 1583                     OSPF Version 2                   March 1994


             ; RT3's router links advertisement for Area 1

             LS age = 0                     ;always true on origination
             Options = (T-bit|E-bit)        ;TOS-capable
             LS type = 1                    ;indicates router links
             Link State ID = 192.1.1.3      ;RT3's Router ID
             Advertising Router = 192.1.1.3 ;RT3's Router ID
             bit E = 0                      ;not an AS boundary router
             bit B = 1                      ;area border router
             #links = 2
                    Link ID = 192.1.1.4     ;IP address of Desig. Rtr.
                    Link Data = 192.1.1.3   ;RT3's IP interface to net
                    Type = 2                ;connects to transit network
                    # other metrics = 0
                    TOS 0 metric = 1

                    Link ID = 192.1.4.0     ;IP Network number
                    Link Data = 0xffffff00  ;Network mask
                    Type = 3                ;connects to stub network
                    # other metrics = 0
                    TOS 0 metric = 2

           Next RT3's router links advertisement for the backbone is
           shown.  It indicates that RT3 has a single attachment to the
           backbone.  This attachment is via an unnumbered point-to-
           point link to Router RT6.  RT3 has again indicated that it
           is TOS-capable, and that it is an area border router.

             ; RT3's router links advertisement for the backbone

             LS age = 0                     ;always true on origination
             Options = (T-bit|E-bit)        ;TOS-capable
             LS type = 1                    ;indicates router links
             Link State ID = 192.1.1.3      ;RT3's router ID
             Advertising Router = 192.1.1.3 ;RT3's router ID
             bit E = 0                      ;not an AS boundary router
             bit B = 1                      ;area border router
             #links = 1
                    Link ID = 18.10.0.6     ;Neighbor's Router ID
                    Link Data = 0.0.0.3     ;MIB-II ifIndex of P-P link
                    Type = 1                ;connects to router
                    # other metrics = 0
                    TOS 0 metric = 8

           Even though Router RT3 has indicated that it is TOS-capable
           in the above examples, only a single metric (the TOS 0
           metric) has been specified for each interface.  Different
           metrics can be specified for each TOS.  The encoding of TOS



Moy                                                           [Page 117]

RFC 1583                     OSPF Version 2                   March 1994


           in OSPF link state advertisements is described in Section
           12.3.

           As an example, suppose the point-to-point link between
           Routers RT3 and RT6 in Figure 15 is a satellite link.  The
           AS administrator may want to encourage the use of the line
           for high bandwidth traffic.  This would be done by setting
           the metric artificially low for the appropriate TOS value.
           Router RT3 would then originate the following router links
           advertisement for the backbone (TOS 8 = maximize
           throughput):

             ; RT3's router links advertisement for the backbone

             LS age = 0                  ;always true on origination
             Options = (T-bit|E-bit)     ;TOS-capable
             LS type = 1                 ;indicates router links
             Link State ID = 192.1.1.3   ;RT3's Router ID
             Advertising Router = 192.1.1.3
             bit E = 0                   ;not an AS boundary router
             bit B = 1                   ;area border router
             #links = 1
                    Link ID = 18.10.0.6  ;Neighbor's Router ID
                    Link Data = 0.0.0.3  ;MIB-II ifIndex of P-P link
                    Type = 1             ;connects to router
                    # other metrics = 1
                    TOS 0 metric = 8
                            TOS = 8      ;maximize throughput
                            metric = 1   ;traffic preferred


       12.4.2.  Network links

           A network links advertisement is generated for every transit
           multi-access network.  (A transit network is a network
           having two or more attached routers).  The network links
           advertisement describes all the routers that are attached to
           the network.

           The Designated Router for the network originates the
           advertisement.  The Designated Router originates the
           advertisement only if it is fully adjacent to at least one
           other router on the network.  The network links
           advertisement is flooded throughout the area that contains
           the transit network, and no further.  The networks links
           advertisement lists those routers that are fully adjacent to
           the Designated Router; each fully adjacent router is
           identified by its OSPF Router ID.  The Designated Router



Moy                                                           [Page 118]

RFC 1583                     OSPF Version 2                   March 1994


           includes itself in this list.

           The Link State ID for a network links advertisement is the
           IP interface address of the Designated Router.  This value,
           masked by the network's address mask (which is also
           contained in the network links advertisement) yields the
           network's IP address.

           A router that has formerly been the Designated Router for a
           network, but is no longer, should flush the network links
           advertisement that it had previously originated.  This
           advertisement is no longer used in the routing table
           calculation.  It is flushed by prematurely incrementing the
           advertisement's age to MaxAge and reflooding (see Section
           14.1). In addition, in those rare cases where a router's
           Router ID has changed, any network links advertisements that
           were originated with the router's previous Router ID must be
           flushed. Since the router may have no idea what it's
           previous Router ID might have been, these network links
           advertisements are indicated by having their Link State ID
           equal to one of the router's IP interface addresses and
           their Advertising Router not equal to the router's current
           Router ID (see Section 13.4 for more details).

           As an example of a network links advertisement, again
           consider the area configuration in Figure 6.  Network links
           advertisements are originated for Network N3 in Area 1,
           Networks N6 and N8 in Area 2, and Network N9 in Area 3.
           Assuming that Router RT4 has been selected as the Designated
           Router for Network N3, the following network links
           advertisement is generated by RT4 on behalf of Network N3
           (see Figure 15 for the address assignments):

             ; network links advertisement for Network N3

             LS age = 0                     ;always true on origination
             Options = (T-bit|E-bit)        ;TOS-capable
             LS type = 2                    ;indicates network links
             Link State ID = 192.1.1.4      ;IP address of Desig. Rtr.
             Advertising Router = 192.1.1.4 ;RT4's Router ID
             Network Mask = 0xffffff00
                    Attached Router = 192.1.1.4    ;Router ID
                    Attached Router = 192.1.1.1    ;Router ID
                    Attached Router = 192.1.1.2    ;Router ID
                    Attached Router = 192.1.1.3    ;Router ID






Moy                                                           [Page 119]

RFC 1583                     OSPF Version 2                   March 1994


       12.4.3.  Summary links

           Each summary link advertisement describes a route to a
           single destination.  Summary link advertisements are flooded
           throughout a single area only.  The destination described is
           one that is external to the area, yet still belonging to the
           Autonomous System.

           Summary link advertisements are originated by area border
           routers.  The precise summary routes to advertise into an
           area are determined by examining the routing table structure
           (see Section 11) in accordance with the algorithm described
           below. Note that only intra-area routes are advertised into
           the backbone, while both intra-area and inter-area routes
           are advertised into the other areas.

           To determine which routes to advertise into an attached Area
           A, each routing table entry is processed as follows.
           Remember that each routing table entry describes a set of
           equal-cost best paths to a particular destination:


           o   Only Destination Types of network and AS boundary router
               are advertised in summary link advertisements.  If the
               routing table entry's Destination Type is area border
               router, examine the next routing table entry.

           o   AS external routes are never advertised in summary link
               advertisements.  If the routing table entry has Path-
               type of type 1 external or type 2 external, examine the
               next routing table entry.

           o   Else, if the area associated with this set of paths is
               the Area A itself, do not generate a summary link
               advertisement for the route.[14]

           o   Else, if the next hops associated with this set of paths
               belong to Area A itself, do not generate a summary link
               advertisement for the route.[15] This is the logical
               equivalent of a Distance Vector protocol's split horizon
               logic.

           o   Else, if the routing table cost equals or exceeds the
               value LSInfinity, a summary link advertisement cannot be
               generated for this route.

           o   Else, if the destination of this route is an AS boundary
               router, generate a Type 4 link state advertisement for



Moy                                                           [Page 120]

RFC 1583                     OSPF Version 2                   March 1994


               the destination, with Link State ID equal to the AS
               boundary router's Router ID and metric equal to the
               routing table entry's cost.  These advertisements should
               not be generated if Area A has been configured as a stub
               area.

           o   Else, the Destination type is network. If this is an
               inter-area route, generate a Type 3 advertisement for
               the destination, with Link State ID equal to the
               network's address (if necessary, the Link State ID can
               also have one or more of the network's host bits set;
               see Appendix F for details) and metric equal to the
               routing table cost.

           o   The one remaining case is an intra-area route to a
               network.  This means that the network is contained in
               one of the router's directly attached areas.  In
               general, this information must be condensed before
               appearing in summary link advertisements.  Remember that
               an area has been defined as a list of address ranges,
               each range consisting of an [address,mask] pair and a
               status indication of either Advertise or DoNotAdvertise.
               At most a single Type 3 advertisement is made for each
               range. When the range's status indicates Advertise, a
               Type 3 advertisement is generated with Link State ID
               equal to the range's address (if necessary, the Link
               State ID can also have one or more of the range's "host"
               bits set; see Appendix F for details) and cost equal to
               the smallest cost of any of the component networks. When
               the range's status indicates DoNotAdvertise, the Type 3
               advertisement is suppressed and the component networks
               remain hidden from other areas.

               By default, if a network is not contained in any
               explicitly configured address range, a Type 3
               advertisement is generated with Link State ID equal to
               the network's address (if necessary, the Link State ID
               can also have one or more of the network's "host" bits
               set; see Appendix F for details) and metric equal to the
               network's routing table cost.

               If virtual links are being used to provide/increase
               connectivity of the backbone, routing information
               concerning the backbone networks should not be condensed
               before being summarized into the virtual links' Transit
               areas. Nor should the advertisement of backbone networks
               into Transit areas be suppressed.  In other words, the
               backbone's configured ranges should be ignored when



Moy                                                           [Page 121]

RFC 1583                     OSPF Version 2                   March 1994


               originating summary links into Transit areas.  The
               existence of virtual links is determined during the
               shortest path calculation for the Transit areas (see
               Section 16.1).

           If a router advertises a summary advertisement for a
           destination which then becomes unreachable, the router must
           then flush the advertisement from the routing domain by
           setting its age to MaxAge and reflooding (see Section 14.1).
           Also, if the destination is still reachable, yet can no
           longer be advertised according to the above procedure (e.g.,
           it is now an inter-area route, when it used to be an intra-
           area route associated with some non-backbone area; it would
           thus no longer be advertisable to the backbone), the
           advertisement should also be flushed from the routing
           domain.

           For an example of summary link advertisements, consider
           again the area configuration in Figure 6.  Routers RT3, RT4,
           RT7, RT10 and RT11 are all area border routers, and
           therefore are originating summary link advertisements.
           Consider in particular Router RT4.  Its routing table was
           calculated as the example in Section 11.3.  RT4 originates
           summary link advertisements into both the backbone and Area
           1.  Into the backbone, Router RT4 originates separate
           advertisements for each of the networks N1-N4.  Into Area 1,
           Router RT4 originates separate advertisements for networks
           N6-N8 and the AS boundary routers RT5,RT7.  It also
           condenses host routes Ia and Ib into a single summary link
           advertisement.  Finally, the routes to networks N9,N10,N11
           and Host H1 are advertised by a single summary link
           advertisement.  This condensation was originally performed
           by the router RT11.

           These advertisements are illustrated graphically in Figures
           7 and 8.  Two of the summary link advertisements originated
           by Router RT4 follow.  The actual IP addresses for the
           networks and routers in question have been assigned in
           Figure 15.

             ; summary link advertisement for Network N1,
             ; originated by Router RT4 into the backbone

             LS age = 0                  ;always true on origination
             Options = (T-bit|E-bit)     ;TOS-capable
             LS type = 3                 ;summary link to IP net
             Link State ID = 192.1.2.0   ;N1's IP network number
             Advertising Router = 192.1.1.4       ;RT4's ID



Moy                                                           [Page 122]

RFC 1583                     OSPF Version 2                   March 1994


                    TOS = 0
                    metric = 4

             ; summary link advertisement for AS boundary router RT7
             ; originated by Router RT4 into Area 1

             LS age = 0                  ;always true on origination
             Options = (T-bit|E-bit)     ;TOS-capable
             LS type = 4                 ;summary link to ASBR
             Link State ID = Router RT7's ID
             Advertising Router = 192.1.1.4       ;RT4's ID
                    TOS = 0
                    metric = 14

           Summary link advertisements pertain to a single destination
           (IP network or AS boundary router).  However, for a single
           destination there may be separate sets of paths, and
           therefore separate routing table entries, for each Type of
           Service.  All these entries must be considered when building
           the summary link advertisement for the destination; a single
           advertisement must specify the separate costs (if they
           exist) for each TOS.  The encoding of TOS in OSPF link state
           advertisements is described in Section 12.3.

           Clearing the T-bit in the Options field of a summary link
           advertisement indicates that there is a TOS 0 path to the
           destination, but no paths for non-zero TOS.  This can happen
           when non-TOS-capable routers exist in the routing domain
           (see Section 2.4).

       12.4.4.  Originating summary links into stub areas

           The algorithm in Section 12.4.3 is optional when Area A is
           an OSPF stub area. Area border routers connecting to a stub
           area can originate summary link advertisements into the area
           according to the above Section's algorithm, or can choose to
           originate only a subset of the advertisements, possibly
           under configuration control.  The fewer advertisements
           originated, the smaller the stub area's link state database,
           further reducing the demands on its routers' resources.
           However, omitting advertisements may also lead to sub-
           optimal inter-area routing, although routing will continue
           to function.

           As specified in Section 12.4.3, Type 4 link state
           advertisements (ASBR summary links) are never originated
           into stub areas.




Moy                                                           [Page 123]

RFC 1583                     OSPF Version 2                   March 1994


           In a stub area, instead of importing external routes each
           area border router originates a "default summary link" into
           the area. The Link State ID for the default summary link is
           set to DefaultDestination, and the metric set to the (per-
           area) configurable parameter StubDefaultCost.  Note that
           StubDefaultCost need not be configured identically in all of
           the stub area's area border routers.

       12.4.5.  AS external links

           AS external link advertisements describe routes to
           destinations external to the Autonomous System.  Most AS
           external link advertisements describe routes to specific
           external destinations; in these cases the advertisement's
           Link State ID is set to the destination network's IP address
           (if necessary, the Link State ID can also have one or more
           of the network's "host" bits set; see Appendix F for
           details).  However, a default route for the Autonomous
           System can be described in an AS external link advertisement
           by setting the advertisement's Link State ID to
           DefaultDestination (0.0.0.0).  AS external link
           advertisements are originated by AS boundary routers.  An AS
           boundary router originates a single AS external link
           advertisement for each external route that it has learned,
           either through another routing protocol (such as EGP), or
           through configuration information.

           In general, AS external link advertisements are the only
           type of link state advertisements that are flooded
           throughout the entire Autonomous System; all other types of
           link state advertisements are specific to a single area.
           However, AS external link advertisements are not flooded
           into/throughout stub areas (see Section 3.6).  This enables
           a reduction in link state database size for routers internal
           to stub areas.

           The metric that is advertised for an external route can be
           one of two types.  Type 1 metrics are comparable to the link
           state metric.  Type 2 metrics are assumed to be larger than
           the cost of any intra-AS path.  As with summary link
           advertisements, if separate paths exist based on TOS,
           separate TOS costs can be included in the AS external link
           advertisement.  The encoding of TOS in OSPF link state
           advertisements is described in Section 12.3.  If the T-bit
           of the advertisement's Options field is clear, no non-zero
           TOS paths to the destination exist.

           If a router advertises an AS external link advertisement for



Moy                                                           [Page 124]

RFC 1583                     OSPF Version 2                   March 1994


           a destination which then becomes unreachable, the router
           must then flush the advertisement from the routing domain by
           setting its age to MaxAge and reflooding (see Section 14.1).

           For an example of AS external link advertisements, consider
           once again the AS pictured in Figure 6.  There are two AS
           boundary routers: RT5 and RT7.  Router RT5 originates three
           external link advertisements, for networks N12-N14.  Router
           RT7 originates two external link advertisements, for
           networks N12 and N15.  Assume that RT7 has learned its route
           to N12 via EGP, and that it wishes to advertise a Type 2
           metric to the AS.  RT7 would then originate the following
           advertisement for N12:

             ; AS external link advertisement for Network N12,
             ; originated by Router RT7

             LS age = 0                  ;always true on origination
             Options = (T-bit|E-bit)     ;TOS-capable
             LS type = 5                 ;indicates AS external link
             Link State ID = N12's IP network number
             Advertising Router = Router RT7's ID
                    bit E = 1            ;Type 2 metric
                    TOS = 0
                    metric = 2
                    Forwarding address = 0.0.0.0

           In the above example, the forwarding address field has been
           set to 0.0.0.0, indicating that packets for the external
           destination should be forwarded to the advertising OSPF
           router (RT7).  This is not always desirable.  Consider the
           example pictured in Figure 16.  There are three OSPF routers
           (RTA, RTB and RTC) connected to a common network.  Only one
           of these routers, RTA, is exchanging EGP information with
           the non-OSPF router RTX.  RTA must then originate AS
           external link advertisements for those destinations it has
           learned from RTX.  By using the AS external link
           advertisement's forwarding address field, RTA can specify
           that packets for these destinations be forwarded directly to
           RTX.  Without this feature, Routers RTB and RTC would take
           an extra hop to get to these destinations.

           Note that when the forwarding address field is non-zero, it
           should point to a router belonging to another Autonomous
           System.

           A forwarding address can also be specified for the default
           route.  For example, in figure 16 RTA may want to specify



Moy                                                           [Page 125]

RFC 1583                     OSPF Version 2                   March 1994


           that all externally-destined packets should by default be
           forwarded to its EGP peer RTX.  The resulting AS external
           link advertisement is pictured below.  Note that the Link
           State ID is set to DefaultDestination.

             ; Default route, originated by Router RTA
             ; Packets forwarded through RTX

             LS age = 0                  ;always true on origination
             Options = (T-bit|E-bit)          ;TOS-capable
             LS type = 5                 ;indicates AS external link
             Link State ID = DefaultDestination  ; default route
             Advertising Router = Router RTA's ID
                    bit E = 1            ;Type 2 metric
                    TOS = 0
                    metric = 1
                    Forwarding address = RTX's IP address

           In figure 16, suppose instead that both RTA and RTB exchange
           EGP information with RTX.  In this case, RTA and RTB would
           originate the same set of AS external link advertisements.
           These advertisements, if they specify the same metric, would
           be functionally equivalent since they would specify the same
           destination and forwarding address (RTX).  This leads to a
           clear duplication of effort.  If only one of RTA or RTB
           originated the set of external advertisements, the routing
           would remain the same, and the size of the link state
           database would decrease.  However, it must be unambiguously
           defined as to which router originates the advertisements
           (otherwise neither may, or the identity of the originator
           may oscillate).  The following rule is thereby established:
           if two routers, both reachable from one another, originate
           functionally equivalent AS external advertisements (i.e.,
           same destination, cost and non-zero forwarding address),
           then the advertisement originated by the router having the
           highest OSPF Router ID is used.  The router having the lower
           OSPF Router ID can then flush its advertisement.  Flushing a
           link state advertisement is discussed in Section 14.1.

13.  The Flooding Procedure

   Link State Update packets provide the mechanism for flooding link
   state advertisements.  A Link State Update packet may contain
   several distinct advertisements, and floods each advertisement one
   hop further from its point of origination.  To make the flooding
   procedure reliable, each advertisement must be acknowledged
   separately.  Acknowledgments are transmitted in Link State
   Acknowledgment packets.  Many separate acknowledgments can also be



Moy                                                           [Page 126]

RFC 1583                     OSPF Version 2                   March 1994



                               +
                               |
                     +---+.....|.EGP
                     |RTA|-----|.....+---+
                     +---+     |-----|RTX|
                               |     +---+
                     +---+     |
                     |RTB|-----|
                     +---+     |
                               |
                     +---+     |
                     |RTC|-----|
                     +---+     |
                               |
                               +


              Figure 16: Forwarding address example

   grouped together into a single packet.

   The flooding procedure starts when a Link State Update packet has
   been received.  Many consistency checks have been made on the
   received packet before being handed to the flooding procedure (see
   Section 8.2).  In particular, the Link State Update packet has been
   associated with a particular neighbor, and a particular area.  If
   the neighbor is in a lesser state than Exchange, the packet should
   be dropped without further processing.

   All types of link state advertisements, other than AS external link
   advertisements, are associated with a specific area.  However, link
   state advertisements do not contain an area field.  A link state
   advertisement's area must be deduced from the Link State Update
   packet header.

   For each link state advertisement contained in the packet, the
   following steps are taken:


   (1) Validate the advertisement's LS checksum.  If the checksum turns
       out to be invalid, discard the advertisement and get the next
       one from the Link State Update packet.

   (2) Examine the link state advertisement's LS type.  If the LS type
       is unknown, discard the advertisement and get the next one from
       the Link State Update Packet.  This specification defines LS
       types 1-5 (see Section 4.3).



Moy                                                           [Page 127]

RFC 1583                     OSPF Version 2                   March 1994


   (3) Else if this is a AS external link advertisement (LS type = 5),
       and the area has been configured as a stub area, discard the
       advertisement and get the next one from the Link State Update
       Packet.  AS external link advertisements are not flooded
       into/throughout stub areas (see Section 3.6).

   (4) Else if the advertisement's LS age is equal to MaxAge, and there
       is currently no instance of the advertisement in the router's
       link state database, then take the following actions:

       (a) Acknowledge the receipt of the advertisement by sending a
           Link State Acknowledgment packet back to the sending
           neighbor (see Section 13.5).

       (b) Purge all outstanding requests for equal or previous
           instances of the advertisement from the sending neighbor's
           Link State Request list (see Section 10).

       (c) If the sending neighbor is in state Exchange or in state
           Loading, then install the MaxAge advertisement in the link
           state database.  Otherwise, simply discard the
           advertisement.  In either case, examine the next
           advertisement (if any) listed in the Link State Update
           packet.

   (5) Otherwise, find the instance of this advertisement that is
       currently contained in the router's link state database.  If
       there is no database copy, or the received advertisement is more
       recent than the database copy (see Section 13.1 below for the
       determination of which advertisement is more recent) the
       following steps must be performed:

       (a) If there is already a database copy, and if the database
           copy was installed less than MinLSInterval seconds ago,
           discard the new advertisement (without acknowledging it) and
           examine the next advertisement (if any) listed in the Link
           State Update packet.

       (b) Otherwise immediately flood the new advertisement out some
           subset of the router's interfaces (see Section 13.3).  In
           some cases (e.g., the state of the receiving interface is DR
           and the advertisement was received from a router other than
           the Backup DR) the advertisement will be flooded back out
           the receiving interface.  This occurrence should be noted
           for later use by the acknowledgment process (Section 13.5).

       (c) Remove the current database copy from all neighbors' Link
           state retransmission lists.



Moy                                                           [Page 128]

RFC 1583                     OSPF Version 2                   March 1994


       (d) Install the new advertisement in the link state database
           (replacing the current database copy).  This may cause the
           routing table calculation to be scheduled.  In addition,
           timestamp the new advertisement with the current time (i.e.,
           the time it was received).  The flooding procedure cannot
           overwrite the newly installed advertisement until
           MinLSInterval seconds have elapsed.  The advertisement
           installation process is discussed further in Section 13.2.

       (e) Possibly acknowledge the receipt of the advertisement by
           sending a Link State Acknowledgment packet back out the
           receiving interface.  This is explained below in Section
           13.5.

       (f) If this new link state advertisement indicates that it was
           originated by the receiving router itself (i.e., is
           considered a self-originated advertisement), the router must
           take special action, either updating the advertisement or in
           some cases flushing it from the routing domain. For a
           description of how self-originated advertisements are
           detected and subsequently handled, see Section 13.4.

   (6) Else, if there is an instance of the advertisement on the
       sending neighbor's Link state request list, an error has
       occurred in the Database Exchange process.  In this case,
       restart the Database Exchange process by generating the neighbor
       event BadLSReq for the sending neighbor and stop processing the
       Link State Update packet.

   (7) Else, if the received advertisement is the same instance as the
       database copy (i.e., neither one is more recent) the following
       two steps should be performed:

       (a) If the advertisement is listed in the Link state
           retransmission list for the receiving adjacency, the router
           itself is expecting an acknowledgment for this
           advertisement.  The router should treat the received
           advertisement as an acknowledgment, by removing the
           advertisement from the Link state retransmission list.  This
           is termed an "implied acknowledgment".  Its occurrence
           should be noted for later use by the acknowledgment process
           (Section 13.5).

       (b) Possibly acknowledge the receipt of the advertisement by
           sending a Link State Acknowledgment packet back out the
           receiving interface.  This is explained below in Section
           13.5.




Moy                                                           [Page 129]

RFC 1583                     OSPF Version 2                   March 1994


   (8) Else, the database copy is more recent.  Note an unusual event
       to network management, discard the advertisement and process the
       next link state advertisement contained in the Link State Update
       packet.


   13.1.  Determining which link state is newer

       When a router encounters two instances of a link state
       advertisement, it must determine which is more recent.  This
       occurred above when comparing a received advertisement to its
       database copy.  This comparison must also be done during the
       Database Exchange procedure which occurs during adjacency
       bring-up.

       A link state advertisement is identified by its LS type, Link
       State ID and Advertising Router.  For two instances of the same
       advertisement, the LS sequence number, LS age, and LS checksum
       fields are used to determine which instance is more recent:


       o   The advertisement having the newer LS sequence number is
           more recent.  See Section 12.1.6 for an explanation of the
           LS sequence number space.  If both instances have the same
           LS sequence number, then:

       o   If the two instances have different LS checksums, then the
           instance having the larger LS checksum (when considered as a
           16-bit unsigned integer) is considered more recent.

       o   Else, if only one of the instances has its LS age field set
           to MaxAge, the instance of age MaxAge is considered to be
           more recent.

       o   Else, if the LS age fields of the two instances differ by
           more than MaxAgeDiff, the instance having the smaller
           (younger) LS age is considered to be more recent.

       o   Else, the two instances are considered to be identical.


   13.2.  Installing link state advertisements in the database

       Installing a new link state advertisement in the database,
       either as the result of flooding or a newly self-originated
       advertisement, may cause the OSPF routing table structure to be
       recalculated.  The contents of the new advertisement should be
       compared to the old instance, if present.  If there is no



Moy                                                           [Page 130]

RFC 1583                     OSPF Version 2                   March 1994


       difference, there is no need to recalculate the routing table.
       (Note that even if the contents are the same, the LS checksum
       will probably be different, since the checksum covers the LS
       sequence number.)

       If the contents are different, the following pieces of the
       routing table must be recalculated, depending on the new
       advertisement's LS type field:


       Router links and network links advertisements
           The entire routing table must be recalculated, starting with
           the shortest path calculations for each area (not just the
           area whose topological database has changed).  The reason
           that the shortest path calculation cannot be restricted to
           the single changed area has to do with the fact that AS
           boundary routers may belong to multiple areas.  A change in
           the area currently providing the best route may force the
           router to use an intra-area route provided by a different
           area.[16]

       Summary link advertisements
           The best route to the destination described by the summary
           link advertisement must be recalculated (see Section 16.5).
           If this destination is an AS boundary router, it may also be
           necessary to re-examine all the AS external link
           advertisements.

       AS external link advertisements
           The best route to the destination described by the AS
           external link advertisement must be recalculated (see
           Section 16.6).


       Also, any old instance of the advertisement must be removed from
       the database when the new advertisement is installed.  This old
       instance must also be removed from all neighbors' Link state
       retransmission lists (see Section 10).


   13.3.  Next step in the flooding procedure

       When a new (and more recent) advertisement has been received, it
       must be flooded out some set of the router's interfaces.  This
       section describes the second part of flooding procedure (the
       first part being the processing that occurred in Section 13),
       namely, selecting the outgoing interfaces and adding the
       advertisement to the appropriate neighbors' Link state



Moy                                                           [Page 131]

RFC 1583                     OSPF Version 2                   March 1994


       retransmission lists.  Also included in this part of the
       flooding procedure is the maintenance of the neighbors' Link
       state request lists.

       This section is equally applicable to the flooding of an
       advertisement that the router itself has just originated (see
       Section 12.4).  For these advertisements, this section provides
       the entirety of the flooding procedure (i.e., the processing of
       Section 13 is not performed, since, for example, the
       advertisement has not been received from a neighbor and
       therefore does not need to be acknowledged).

       Depending upon the advertisement's LS type, the advertisement
       can be flooded out only certain interfaces.  These interfaces,
       defined by the following, are called the eligible interfaces:


       AS external link advertisements (LS Type = 5)
           AS external link advertisements are flooded throughout the
           entire AS, with the exception of stub areas (see Section
           3.6).  The eligible interfaces are all the router's
           interfaces, excluding virtual links and those interfaces
           attaching to stub areas.

       All other LS types
           All other types are specific to a single area (Area A).  The
           eligible interfaces are all those interfaces attaching to
           the Area A.  If Area A is the backbone, this includes all
           the virtual links.


       Link state databases must remain synchronized over all
       adjacencies associated with the above eligible interfaces.  This
       is accomplished by executing the following steps on each
       eligible interface.  It should be noted that this procedure may
       decide not to flood a link state advertisement out a particular
       interface, if there is a high probability that the attached
       neighbors have already received the advertisement.  However, in
       these cases the flooding procedure must be absolutely sure that
       the neighbors eventually do receive the advertisement, so the
       advertisement is still added to each adjacency's Link state
       retransmission list.  For each eligible interface:


       (1) Each of the neighbors attached to this interface are
           examined, to determine whether they must receive the new
           advertisement.  The following steps are executed for each
           neighbor:



Moy                                                           [Page 132]

RFC 1583                     OSPF Version 2                   March 1994


           (a) If the neighbor is in a lesser state than Exchange, it
               does not participate in flooding, and the next neighbor
               should be examined.

           (b) Else, if the adjacency is not yet full (neighbor state
               is Exchange or Loading), examine the Link state request
               list associated with this adjacency.  If there is an
               instance of the new advertisement on the list, it
               indicates that the neighboring router has an instance of
               the advertisement already.  Compare the new
               advertisement to the neighbor's copy:

               o   If the new advertisement is less recent, then
                   examine the next neighbor.

               o   If the two copies are the same instance, then delete
                   the advertisement from the Link state request list,
                   and examine the next neighbor.[17]

               o   Else, the new advertisement is more recent.  Delete
                   the advertisement from the Link state request list.

           (c) If the new advertisement was received from this
               neighbor, examine the next neighbor.

           (d) At this point we are not positive that the neighbor has
               an up-to-date instance of this new advertisement.  Add
               the new advertisement to the Link state retransmission
               list for the adjacency.  This ensures that the flooding
               procedure is reliable; the advertisement will be
               retransmitted at intervals until an acknowledgment is
               seen from the neighbor.

       (2) The router must now decide whether to flood the new link
           state advertisement out this interface.  If in the previous
           step, the link state advertisement was NOT added to any of
           the Link state retransmission lists, there is no need to
           flood the advertisement out the interface and the next
           interface should be examined.

       (3) If the new advertisement was received on this interface, and
           it was received from either the Designated Router or the
           Backup Designated Router, chances are that all the neighbors
           have received the advertisement already.  Therefore, examine
           the next interface.

       (4) If the new advertisement was received on this interface, and
           the interface state is Backup (i.e., the router itself is



Moy                                                           [Page 133]

RFC 1583                     OSPF Version 2                   March 1994


           the Backup Designated Router), examine the next interface.
           The Designated Router will do the flooding on this
           interface.  If the Designated Router fails, this router will
           end up retransmitting the updates.

       (5) If this step is reached, the advertisement must be flooded
           out the interface.  Send a Link State Update packet (with
           the new advertisement as contents) out the interface.  The
           advertisement's LS age must be incremented by InfTransDelay
           (which must be > 0) when copied into the outgoing Link State
           Update packet (until the LS age field reaches its maximum
           value of MaxAge).

           On broadcast networks, the Link State Update packets are
           multicast.  The destination IP address specified for the
           Link State Update Packet depends on the state of the
           interface.  If the interface state is DR or Backup, the
           address AllSPFRouters should be used.  Otherwise, the
           address AllDRouters should be used.

           On non-broadcast, multi-access networks, separate Link State
           Update packets must be sent, as unicasts, to each adjacent
           neighbor (i.e., those in state Exchange or greater).  The
           destination IP addresses for these packets are the
           neighbors' IP addresses.


   13.4.  Receiving self-originated link state

       It is a common occurrence for a router to receive self-
       originated link state advertisements via the flooding procedure.
       A self-originated advertisement is detected when either 1) the
       advertisement's Advertising Router is equal to the router's own
       Router ID or 2) the advertisement is a network links
       advertisement and its Link State ID is equal to one of the
       router's own IP interface addresses.

       However, if the received self-originated advertisement is newer
       than the last instance that the router actually originated, the
       router must take special action.  The reception of such an
       advertisement indicates that there are link state advertisements
       in the routing domain that were originated before the last time
       the router was restarted. In most cases, the router must then
       advance the advertisement's LS sequence number one past the
       received LS sequence number, and originate a new instance of the
       advertisement.

       It may be the case the router no longer wishes to originate the



Moy                                                           [Page 134]

RFC 1583                     OSPF Version 2                   March 1994


       received advertisement. Possible examples include: 1) the
       advertisement is a summary link or AS external link and the
       router no longer has an (advertisable) route to the destination,
       2) the advertisement is a network links advertisement but the
       router is no longer Designated Router for the network or 3) the
       advertisement is a network links advertisement whose Link State
       ID is one of the router's own IP interface addresses but whose
       Advertising Router is not equal to the router's own Router ID
       (this latter case should be rare, and it indicates that the
       router's Router ID has changed since originating the
       advertisement).  In all these cases, instead of updating the
       advertisement, the advertisement should be flushed from the
       routing domain by incrementing the received advertisement's LS
       age to MaxAge and reflooding (see Section 14.1).


   13.5.  Sending Link State Acknowledgment packets

       Each newly received link state advertisement must be
       acknowledged.  This is usually done by sending Link State
       Acknowledgment packets.  However, acknowledgments can also be
       accomplished implicitly by sending Link State Update packets
       (see step 7a of Section 13).

       Many acknowledgments may be grouped together into a single Link
       State Acknowledgment packet.  Such a packet is sent back out the
       interface that has received the advertisements.  The packet can
       be sent in one of two ways: delayed and sent on an interval
       timer, or sent directly (as a unicast) to a particular neighbor.
       The particular acknowledgment strategy used depends on the
       circumstances surrounding the receipt of the advertisement.

       Sending delayed acknowledgments accomplishes several things: it
       facilitates the packaging of multiple acknowledgments in a
       single Link State Acknowledgment packet; it enables a single
       Link State Acknowledgment packet to indicate acknowledgments to
       several neighbors at once (through multicasting); and it
       randomizes the Link State Acknowledgment packets sent by the
       various routers attached to a multi-access network.  The fixed
       interval between a router's delayed transmissions must be short
       (less than RxmtInterval) or needless retransmissions will ensue.

       Direct acknowledgments are sent to a particular neighbor in
       response to the receipt of duplicate link state advertisements.
       These acknowledgments are sent as unicasts, and are sent
       immediately when the duplicate is received.

       The precise procedure for sending Link State Acknowledgment



Moy                                                           [Page 135]

RFC 1583                     OSPF Version 2                   March 1994


       packets is described in Table 19.  The circumstances surrounding
       the receipt of the advertisement are listed in the left column.
       The acknowledgment action then taken is listed in one of the two
       right columns.  This action depends on the state of the
       concerned interface; interfaces in state Backup behave
       differently from interfaces in all other states.  Delayed
       acknowledgments must be delivered to all adjacent routers
       associated with the interface.  On broadcast networks, this is
       accomplished by sending the delayed Link State Acknowledgment
       packets as multicasts.  The Destination IP address used depends
       on the state of the interface.  If the state is DR or Backup,
       the destination AllSPFRouters is used.  In other states, the
       destination AllDRouters is used.  On non-broadcast networks,
       delayed Link State Acknowledgment packets must be unicast
       separately over each adjacency (i.e., neighbor whose state is >=
       Exchange).

       The reasoning behind sending the above packets as multicasts is
       best explained by an example.  Consider the network
       configuration depicted in Figure 15.  Suppose RT4 has been
       elected as Designated Router, and RT3 as Backup Designated
       Router for the network N3.  When Router RT4 floods a new
       advertisement to Network N3, it is received by routers RT1, RT2,
       and RT3.  These routers will not flood the advertisement back
       onto net N3, but they still must ensure that their topological
       databases remain synchronized with their adjacent neighbors.  So
       RT1, RT2, and RT4 are waiting to see an acknowledgment from RT3.
       Likewise, RT4 and RT3 are both waiting to see acknowledgments
       from RT1 and RT2.  This is best achieved by sending the
       acknowledgments as multicasts.

       The reason that the acknowledgment logic for Backup DRs is
       slightly different is because they perform differently during
       the flooding of link state advertisements (see Section 13.3,
       step 4).



   13.6.  Retransmitting link state advertisements

       Advertisements flooded out an adjacency are placed on the
       adjacency's Link state retransmission list.  In order to ensure
       that flooding is reliable, these advertisements are
       retransmitted until they are acknowledged.  The length of time
       between retransmissions is a configurable per-interface value,
       RxmtInterval.  If this is set too low for an interface, needless
       retransmissions will ensue.  If the value is set too high, the
       speed of the flooding, in the face of lost packets, may be



Moy                                                           [Page 136]

RFC 1583                     OSPF Version 2                   March 1994






                                   Action taken in state
   Circumstances          Backup                All other states
   _______________________________________________________________
   Advertisement  has     No  acknowledgment    No  acknowledgment
   been  flooded back     sent.                 sent.
   out receiving  in-
   terface  (see Sec-
   tion 13, step 5b).
   _______________________________________________________________
   Advertisement   is     Delayed acknowledg-   Delayed       ack-
   more  recent  than     ment sent if adver-   nowledgment sent.
   database copy, but     tisement   received
   was   not  flooded     from    Designated
   back out receiving     Router,  otherwise
   interface              do nothing
   _______________________________________________________________
   Advertisement is a     Delayed acknowledg-   No  acknowledgment
   duplicate, and was     ment sent if adver-   sent.
   treated as an  im-     tisement   received
   plied  acknowledg-     from    Designated
   ment (see  Section     Router,  otherwise
   13, step 7a).          do nothing
   _______________________________________________________________
   Advertisement is a     Direct acknowledg-    Direct acknowledg-
   duplicate, and was     ment sent.            ment sent.
   not treated as  an
   implied       ack-
   nowledgment.
   _______________________________________________________________
   Advertisement's LS     Direct acknowledg-    Direct acknowledg-
   age is equal to        ment sent.            ment sent.
   MaxAge, and there is
   no current instance
   of the advertisement
   in the link state
   database (see
   Section 13, step 4).


            Table 19: Sending link state acknowledgements.







Moy                                                           [Page 137]

RFC 1583                     OSPF Version 2                   March 1994


       affected.

       Several retransmitted advertisements may fit into a single Link
       State Update packet.  When advertisements are to be
       retransmitted, only the number fitting in a single Link State
       Update packet should be transmitted.  Another packet of
       retransmissions can be sent when some of the advertisements are
       acknowledged, or on the next firing of the retransmission timer.

       Link State Update Packets carrying retransmissions are always
       sent as unicasts (directly to the physical address of the
       neighbor).  They are never sent as multicasts.  Each
       advertisement's LS age must be incremented by InfTransDelay
       (which must be > 0) when copied into the outgoing Link State
       Update packet (until the LS age field reaches its maximum value
       of MaxAge).

       If the adjacent router goes down, retransmissions may occur
       until the adjacency is destroyed by OSPF's Hello Protocol.  When
       the adjacency is destroyed, the Link state retransmission list
       is cleared.


   13.7.  Receiving link state acknowledgments

       Many consistency checks have been made on a received Link State
       Acknowledgment packet before it is handed to the flooding
       procedure.  In particular, it has been associated with a
       particular neighbor.  If this neighbor is in a lesser state than
       Exchange, the Link State Acknowledgment packet is discarded.

       Otherwise, for each acknowledgment in the Link State
       Acknowledgment packet, the following steps are performed:


       o   Does the advertisement acknowledged have an instance on the
           Link state retransmission list for the neighbor?  If not,
           examine the next acknowledgment.  Otherwise:

       o   If the acknowledgment is for the same instance that is
           contained on the list, remove the item from the list and
           examine the next acknowledgment.  Otherwise:

       o   Log the questionable acknowledgment, and examine the next
           one.






Moy                                                           [Page 138]

RFC 1583                     OSPF Version 2                   March 1994


14.  Aging The Link State Database

   Each link state advertisement has an LS age field.  The LS age is
   expressed in seconds.  An advertisement's LS age field is
   incremented while it is contained in a router's database.  Also,
   when copied into a Link State Update Packet for flooding out a
   particular interface, the advertisement's LS age is incremented by
   InfTransDelay.

   An advertisement's LS age is never incremented past the value
   MaxAge.  Advertisements having age MaxAge are not used in the
   routing table calculation.  As a router ages its link state
   database, an advertisement's LS age may reach MaxAge.[18] At this
   time, the router must attempt to flush the advertisement from the
   routing domain.  This is done simply by reflooding the MaxAge
   advertisement just as if it was a newly originated advertisement
   (see Section 13.3).

   When creating a Database summary list for a newly forming adjacency,
   any MaxAge advertisements present in the link state database are
   added to the neighbor's Link state retransmission list instead of
   the neighbor's Database summary list.  See Section 10.3 for more
   details.

   A MaxAge advertisement must be removed immediately from the router's
   link state database as soon as both a) it is no longer contained on
   any neighbor Link state retransmission lists and b) none of the
   router's neighbors are in states Exchange or Loading.

   When, in the process of aging the link state database, an
   advertisement's LS age hits a multiple of CheckAge, its LS checksum
   should be verified.  If the LS checksum is incorrect, a program or
   memory error has been detected, and at the very least the router
   itself should be restarted.


   14.1.  Premature aging of advertisements

       A link state advertisement can be flushed from the routing
       domain by setting its LS age to MaxAge and reflooding the
       advertisement.  This procedure follows the same course as
       flushing an advertisement whose LS age has naturally reached the
       value MaxAge (see Section 14).  In particular, the MaxAge
       advertisement is removed from the router's link state database
       as soon as a) it is no longer contained on any neighbor Link
       state retransmission lists and b) none of the router's neighbors
       are in states Exchange or Loading.  We call the setting of an
       advertisement's LS age to MaxAge premature aging.



Moy                                                           [Page 139]

RFC 1583                     OSPF Version 2                   March 1994


       Premature aging is used when it is time for a self-originated
       advertisement's sequence number field to wrap.  At this point,
       the current advertisement instance (having LS sequence number of
       0x7fffffff) must be prematurely aged and flushed from the
       routing domain before a new instance with sequence number
       0x80000001 can be originated.  See Section 12.1.6 for more
       information.

       Premature aging can also be used when, for example, one of the
       router's previously advertised external routes is no longer
       reachable.  In this circumstance, the router can flush its
       external advertisement from the routing domain via premature
       aging. This procedure is preferable to the alternative, which is
       to originate a new advertisement for the destination specifying
       a metric of LSInfinity.  Premature aging is also be used when
       unexpectedly receiving self-originated advertisements during the
       flooding procedure (see Section 13.4).

       A router may only prematurely age its own self-originated link
       state advertisements. The router may not prematurely age
       advertisements that have been originated by other routers. An
       advertisement is considered self-originated when either 1) the
       advertisement's Advertising Router is equal to the router's own
       Router ID or 2) the advertisement is a network links
       advertisement and its Link State ID is equal to one of the
       router's own IP interface addresses.


15.  Virtual Links

   The single backbone area (Area ID = 0.0.0.0) cannot be disconnected,
   or some areas of the Autonomous System will become unreachable.  To
   establish/maintain connectivity of the backbone, virtual links can
   be configured through non-backbone areas.  Virtual links serve to
   connect physically separate components of the backbone.  The two
   endpoints of a virtual link are area border routers.  The virtual
   link must be configured in both routers.  The configuration
   information in each router consists of the other virtual endpoint
   (the other area border router), and the non-backbone area the two
   routers have in common (called the transit area).  Virtual links
   cannot be configured through stub areas (see Section 3.6).

   The virtual link is treated as if it were an unnumbered point-to-
   point network (belonging to the backbone) joining the two area
   border routers.  An attempt is made to establish an adjacency over
   the virtual link.  When this adjacency is established, the virtual
   link will be included in backbone router links advertisements, and
   OSPF packets pertaining to the backbone area will flow over the



Moy                                                           [Page 140]

RFC 1583                     OSPF Version 2                   March 1994


   adjacency.  Such an adjacency has been referred to in this document
   as a "virtual adjacency".

   In each endpoint router, the cost and viability of the virtual link
   is discovered by examining the routing table entry for the other
   endpoint router.  (The entry's associated area must be the
   configured transit area).  Actually, there may be a separate routing
   table entry for each Type of Service.  These are called the virtual
   link's corresponding routing table entries.  The InterfaceUp event
   occurs for a virtual link when its corresponding TOS 0 routing table
   entry becomes reachable.  Conversely, the InterfaceDown event occurs
   when its TOS 0 routing table entry becomes unreachable.[19] In other
   words, the virtual link's viability is determined by the existence
   of an intra-area path, through the transit area, between the two
   endpoints.  Note that a virtual link whose underlying path has cost
   greater than hexadecimal 0xffff (the maximum size of an interface
   cost in a router links advertisement) should be considered
   inoperational (i.e., treated the same as if the path did not exist).

   The other details concerning virtual links are as follows:

   o   AS external links are NEVER flooded over virtual adjacencies.
       This would be duplication of effort, since the same AS external
       links are already flooded throughout the virtual link's transit
       area.  For this same reason, AS external link advertisements are
       not summarized over virtual adjacencies during the Database
       Exchange process.

   o   The cost of a virtual link is NOT configured.  It is defined to
       be the cost of the intra-area path between the two defining area
       border routers.  This cost appears in the virtual link's
       corresponding routing table entry.  When the cost of a virtual
       link changes, a new router links advertisement should be
       originated for the backbone area.

   o   Just as the virtual link's cost and viability are determined by
       the routing table build process (through construction of the
       routing table entry for the other endpoint), so are the IP
       interface address for the virtual interface and the virtual
       neighbor's IP address.  These are used when sending OSPF
       protocol packets over the virtual link. Note that when one (or
       both) of the virtual link endpoints connect to the transit area
       via an unnumbered point-to-point link, it may be impossible to
       calculate either the virtual interface's IP address and/or the
       virtual neighbor's IP address, thereby causing the virtual link
       to fail.





Moy                                                           [Page 141]

RFC 1583                     OSPF Version 2                   March 1994


   o   In each endpoint's router links advertisement for the backbone,
       the virtual link is represented as a Type 4 link whose Link ID
       is set to the virtual neighbor's OSPF Router ID and whose Link
       Data is set to the virtual interface's IP address.  See Section
       12.4.1 for more information. Note that it may be the case that
       there is a TOS 0 path, but no non-zero TOS paths, between the
       two endpoint routers.  In this case, both routers must revert to
       being non-TOS-capable, clearing the T-bit in the Options field
       of their backbone router links advertisements.

   o   When virtual links are configured for the backbone, information
       concerning backbone networks should not be condensed before
       being summarized for the transit areas.  In other words, each
       backbone network should be advertised into the transit areas in
       a separate summary link advertisement, regardless of the
       backbone's configured area address ranges.  See Section 12.4.3
       for more information.

   o   The time between link state retransmissions, RxmtInterval, is
       configured for a virtual link.  This should be well over the
       expected round-trip delay between the two routers.  This may be
       hard to estimate for a virtual link; it is better to err on the
       side of making it too large.


16.  Calculation Of The Routing Table

   This section details the OSPF routing table calculation.  Using its
   attached areas' link state databases as input, a router runs the
   following algorithm, building its routing table step by step.  At
   each step, the router must access individual pieces of the link
   state databases (e.g., a router links advertisement originated by a
   certain router).  This access is performed by the lookup function
   discussed in Section 12.2.  The lookup process may return a link
   state advertisement whose LS age is equal to MaxAge.  Such an
   advertisement should not be used in the routing table calculation,
   and is treated just as if the lookup process had failed.

   The OSPF routing table's organization is explained in Section 11.
   Two examples of the routing table build process are presented in
   Sections 11.2 and 11.3.  This process can be broken into the
   following steps:


   (1) The present routing table is invalidated.  The routing table is
       built again from scratch.  The old routing table is saved so
       that changes in routing table entries can be identified.




Moy                                                           [Page 142]

RFC 1583                     OSPF Version 2                   March 1994


   (2) The intra-area routes are calculated by building the shortest-
       path tree for each attached area.  In particular, all routing
       table entries whose Destination Type is "area border router" are
       calculated in this step.  This step is described in two parts.
       At first the tree is constructed by only considering those links
       between routers and transit networks.  Then the stub networks
       are incorporated into the tree. During the area's shortest-path
       tree calculation, the area's TransitCapability is also
       calculated for later use in Step 4.

   (3) The inter-area routes are calculated, through examination of
       summary link advertisements.  If the router is attached to
       multiple areas (i.e., it is an area border router), only
       backbone summary link advertisements are examined.

   (4) In area border routers connecting to one or more transit areas
       (i.e, non-backbone areas whose TransitCapability is found to be
       TRUE), the transit areas' summary link advertisements are
       examined to see whether better paths exist using the transit
       areas than were found in Steps 2-3 above.

   (5) Routes to external destinations are calculated, through
       examination of AS external link advertisements.  The locations
       of the AS boundary routers (which originate the AS external link
       advertisements) have been determined in steps 2-4.


   Steps 2-5 are explained in further detail below.  The explanations
   describe the calculations for TOS 0 only.  It may also be necessary
   to perform each step (separately) for each of the non-zero TOS
   values.[20] For more information concerning the building of non-zero
   TOS routes see Section 16.9.

   Changes made to routing table entries as a result of these
   calculations can cause the OSPF protocol to take further actions.
   For example, a change to an intra-area route will cause an area
   border router to originate new summary link advertisements (see
   Section 12.4).  See Section 16.7 for a complete list of the OSPF
   protocol actions resulting from routing table changes.


   16.1.  Calculating the shortest-path tree for an area

       This calculation yields the set of intra-area routes associated
       with an area (called hereafter Area A).  A router calculates the
       shortest-path tree using itself as the root.[21] The formation
       of the shortest path tree is done here in two stages.  In the
       first stage, only links between routers and transit networks are



Moy                                                           [Page 143]

RFC 1583                     OSPF Version 2                   March 1994


       considered.  Using the Dijkstra algorithm, a tree is formed from
       this subset of the link state database.  In the second stage,
       leaves are added to the tree by considering the links to stub
       networks.

       The procedure will be explained using the graph terminology that
       was introduced in Section 2.  The area's link state database is
       represented as a directed graph.  The graph's vertices are
       routers, transit networks and stub networks.  The first stage of
       the procedure concerns only the transit vertices (routers and
       transit networks) and their connecting links.  Throughout the
       shortest path calculation, the following data is also associated
       with each transit vertex:


       Vertex (node) ID
           A 32-bit number uniquely identifying the vertex.  For router
           vertices this is the router's OSPF Router ID.  For network
           vertices, this is the IP address of the network's Designated
           Router.

       A link state advertisement
           Each transit vertex has an associated link state
           advertisement.  For router vertices, this is a router links
           advertisement.  For transit networks, this is a network
           links advertisement (which is actually originated by the
           network's Designated Router).  In any case, the
           advertisement's Link State ID is always equal to the above
           Vertex ID.

       List of next hops
           The list of next hops for the current set of shortest paths
           from the root to this vertex.  There can be multiple
           shortest paths due to the equal-cost multipath capability.
           Each next hop indicates the outgoing router interface to use
           when forwarding traffic to the destination.  On multi-access
           networks, the next hop also includes the IP address of the
           next router (if any) in the path towards the destination.

       Distance from root
           The link state cost of the current set of shortest paths
           from the root to the vertex.  The link state cost of a path
           is calculated as the sum of the costs of the path's
           constituent links (as advertised in router links and network
           links advertisements).  One path is said to be "shorter"
           than another if it has a smaller link state cost.





Moy                                                           [Page 144]

RFC 1583                     OSPF Version 2                   March 1994


       The first stage of the procedure (i.e., the Dijkstra algorithm)
       can now be summarized as follows. At each iteration of the
       algorithm, there is a list of candidate vertices.  Paths from
       the root to these vertices have been found, but not necessarily
       the shortest ones.  However, the paths to the candidate vertex
       that is closest to the root are guaranteed to be shortest; this
       vertex is added to the shortest-path tree, removed from the
       candidate list, and its adjacent vertices are examined for
       possible addition to/modification of the candidate list.  The
       algorithm then iterates again.  It terminates when the candidate
       list becomes empty.

       The following steps describe the algorithm in detail.  Remember
       that we are computing the shortest path tree for Area A.  All
       references to link state database lookup below are from Area A's
       database.


       (1) Initialize the algorithm's data structures.  Clear the list
           of candidate vertices.  Initialize the shortest-path tree to
           only the root (which is the router doing the calculation).
           Set Area A's TransitCapability to FALSE.

       (2) Call the vertex just added to the tree vertex V.  Examine
           the link state advertisement associated with vertex V.  This
           is a lookup in the Area A's link state database based on the
           Vertex ID.  If this is a router links advertisement, and bit
           V of the router links advertisement (see Section A.4.2) is
           set, set Area A's TransitCapability to TRUE.  In any case,
           each link described by the advertisement gives the cost to
           an adjacent vertex.  For each described link, (say it joins
           vertex V to vertex W):

           (a) If this is a link to a stub network, examine the next
               link in V's advertisement.  Links to stub networks will
               be considered in the second stage of the shortest path
               calculation.

           (b) Otherwise, W is a transit vertex (router or transit
               network).  Look up the vertex W's link state
               advertisement (router links or network links) in Area
               A's link state database.  If the advertisement does not
               exist, or its LS age is equal to MaxAge, or it does not
               have a link back to vertex V, examine the next link in
               V's advertisement.[22]

           (c) If vertex W is already on the shortest-path tree,
               examine the next link in the advertisement.



Moy                                                           [Page 145]

RFC 1583                     OSPF Version 2                   March 1994


           (d) Calculate the link state cost D of the resulting path
               from the root to vertex W.  D is equal to the sum of the
               link state cost of the (already calculated) shortest
               path to vertex V and the advertised cost of the link
               between vertices V and W.  If D is:

               o   Greater than the value that already appears for
                   vertex W on the candidate list, then examine the
                   next link.

               o   Equal to the value that appears for vertex W on the
                   candidate list, calculate the set of next hops that
                   result from using the advertised link.  Input to
                   this calculation is the destination (W), and its
                   parent (V).  This calculation is shown in Section
                   16.1.1.  This set of hops should be added to the
                   next hop values that appear for W on the candidate
                   list.

               o   Less than the value that appears for vertex W on the
                   candidate list, or if W does not yet appear on the
                   candidate list, then set the entry for W on the
                   candidate list to indicate a distance of D from the
                   root.  Also calculate the list of next hops that
                   result from using the advertised link, setting the
                   next hop values for W accordingly.  The next hop
                   calculation is described in Section 16.1.1; it takes
                   as input the destination (W) and its parent (V).

       (3) If at this step the candidate list is empty, the shortest-
           path tree (of transit vertices) has been completely built
           and this stage of the procedure terminates.  Otherwise,
           choose the vertex belonging to the candidate list that is
           closest to the root, and add it to the shortest-path tree
           (removing it from the candidate list in the process). Note
           that when there is a choice of vertices closest to the root,
           network vertices must be chosen before router vertices in
           order to necessarily find all equal-cost paths. This is
           consistent with the tie-breakers that were introduced in the
           modified Dijkstra algorithm used by OSPF's Multicast routing
           extensions (MOSPF).

       (4) Possibly modify the routing table.  For those routing table
           entries modified, the associated area will be set to Area A,
           the path type will be set to intra-area, and the cost will
           be set to the newly discovered shortest path's calculated
           distance.




Moy                                                           [Page 146]

RFC 1583                     OSPF Version 2                   March 1994


           If the newly added vertex is an area border router (call it
           ABR), a routing table entry is added whose destination type
           is "area border router". The Options field found in the
           associated router links advertisement is copied into the
           routing table entry's Optional capabilities field. If in
           addition ABR is the endpoint of one of the calculating
           router's configured virtual links that uses Area A as its
           Transit area: the virtual link is declared up, the IP
           address of the virtual interface is set to the IP address of
           the outgoing interface calculated above for ABR, and the
           virtual neighbor's IP address is set to the ABR interface
           address (contained in ABR's router links advertisement) that
           points back to the root of the shortest-path tree;
           equivalently, this is the interface that points back to
           ABR's parent vertex on the shortest-path tree (similar to
           the calculation in Section 16.1.1).

           If the newly added vertex is an AS boundary router, the
           routing table entry of type "AS boundary router" for the
           destination is located.  Since routers can belong to more
           than one area, it is possible that several sets of intra-
           area paths exist to the AS boundary router, each set using a
           different area.  However, the AS boundary router's routing
           table entry must indicate a set of paths which utilize a
           single area.  The area leading to the routing table entry is
           selected as follows: The area providing the shortest path is
           always chosen; if more than one area provides paths with the
           same minimum cost, the area with the largest OSPF Area ID
           (when considered as an unsigned 32-bit integer) is chosen.
           Note that whenever an AS boundary router's routing table
           entry is added/modified, the Options found in the associated
           router links advertisement is copied into the routing table
           entry's Optional capabilities field.

           If the newly added vertex is a transit network, the routing
           table entry for the network is located.  The entry's
           Destination ID is the IP network number, which can be
           obtained by masking the Vertex ID (Link State ID) with its
           associated subnet mask (found in the body of the associated
           network links advertisement).  If the routing table entry
           already exists (i.e., there is already an intra-area route
           to the destination installed in the routing table), multiple
           vertices have mapped to the same IP network.  For example,
           this can occur when a new Designated Router is being
           established.  In this case, the current routing table entry
           should be overwritten if and only if the newly found path is
           just as short and the current routing table entry's Link
           State Origin has a smaller Link State ID than the newly



Moy                                                           [Page 147]

RFC 1583                     OSPF Version 2                   March 1994


           added vertex' link state advertisement.

           If there is no routing table entry for the network (the
           usual case), a routing table entry for the IP network should
           be added.  The routing table entry's Link State Origin
           should be set to the newly added vertex' link state
           advertisement.

       (5) Iterate the algorithm by returning to Step 2.


       The stub networks are added to the tree in the procedure's
       second stage.  In this stage, all router vertices are again
       examined.  Those that have been determined to be unreachable in
       the above first phase are discarded.  For each reachable router
       vertex (call it V), the associated router links advertisement is
       found in the link state database.  Each stub network link
       appearing in the advertisement is then examined, and the
       following steps are executed:


       (1) Calculate the distance D of stub network from the root.  D
           is equal to the distance from the root to the router vertex
           (calculated in stage 1), plus the stub network link's
           advertised cost.  Compare this distance to the current best
           cost to the stub network.  This is done by looking up the
           stub network's current routing table entry.  If the
           calculated distance D is larger, go on to examine the next
           stub network link in the advertisement.

       (2) If this step is reached, the stub network's routing table
           entry must be updated.  Calculate the set of next hops that
           would result from using the stub network link.  This
           calculation is shown in Section 16.1.1; input to this
           calculation is the destination (the stub network) and the
           parent vertex (the router vertex).  If the distance D is the
           same as the current routing table cost, simply add this set
           of next hops to the routing table entry's list of next hops.
           In this case, the routing table already has a Link State
           Origin.  If this Link State Origin is a router links
           advertisement whose Link State ID is smaller than V's Router
           ID, reset the Link State Origin to V's router links
           advertisement.

           Otherwise D is smaller than the routing table cost.
           Overwrite the current routing table entry by setting the
           routing table entry's cost to D, and by setting the entry's
           list of next hops to the newly calculated set.  Set the



Moy                                                           [Page 148]

RFC 1583                     OSPF Version 2                   March 1994


           routing table entry's Link State Origin to V's router links
           advertisement.  Then go on to examine the next stub network
           link.


       For all routing table entries added/modified in the second
       stage, the associated area will be set to Area A and the path
       type will be set to intra-area.  When the list of reachable
       router links is exhausted, the second stage is completed.  At
       this time, all intra-area routes associated with Area A have
       been determined.

       The specification does not require that the above two stage
       method be used to calculate the shortest path tree.  However, if
       another algorithm is used, an identical tree must be produced.
       For this reason, it is important to note that links between
       transit vertices must be bidirectional in ordered to be included
       in the above tree.  It should also be mentioned that more
       efficient algorithms exist for calculating the tree; for
       example, the incremental SPF algorithm described in [BBN].


       16.1.1.  The next hop calculation

           This section explains how to calculate the current set of
           next hops to use for a destination.  Each next hop consists
           of the outgoing interface to use in forwarding packets to
           the destination together with the next hop router (if any).
           The next hop calculation is invoked each time a shorter path
           to the destination is discovered.  This can happen in either
           stage of the shortest-path tree calculation (see Section
           16.1).  In stage 1 of the shortest-path tree calculation a
           shorter path is found as the destination is added to the
           candidate list, or when the destination's entry on the
           candidate list is modified (Step 2d of Stage 1).  In stage 2
           a shorter path is discovered each time the destination's
           routing table entry is modified (Step 2 of Stage 2).

           The set of next hops to use for the destination may be
           recalculated several times during the shortest-path tree
           calculation, as shorter and shorter paths are discovered.
           In the end, the destination's routing table entry will
           always reflect the next hops resulting from the absolute
           shortest path(s).

           Input to the next hop calculation is a) the destination and
           b) its parent in the current shortest path between the root
           (the calculating router) and the destination.  The parent is



Moy                                                           [Page 149]

RFC 1583                     OSPF Version 2                   March 1994


           always a transit vertex (i.e., always a router or a transit
           network).

           If there is at least one intervening router in the current
           shortest path between the destination and the root, the
           destination simply inherits the set of next hops from the
           parent.  Otherwise, there are two cases.  In the first case,
           the parent vertex is the root (the calculating router
           itself).  This means that the destination is either a
           directly connected network or directly connected router.
           The next hop in this case is simply the OSPF interface
           connecting to the network/router; no next hop router is
           required. If the connecting OSPF interface in this case is a
           virtual link, the setting of the next hop should be deferred
           until the calculation in Section 16.3.

           In the second case, the parent vertex is a network that
           directly connects the calculating router to the destination
           router.  The list of next hops is then determined by
           examining the destination's router links advertisement.  For
           each link in the advertisement that points back to the
           parent network, the link's Link Data field provides the IP
           address of a next hop router.  The outgoing interface to use
           can then be derived from the next hop IP address (or it can
           be inherited from the parent network).


   16.2.  Calculating the inter-area routes

       The inter-area routes are calculated by examining summary link
       advertisements.  If the router has active attachments to
       multiple areas, only backbone summary link advertisements are
       examined.  Routers attached to a single area examine that area's
       summary links.  In either case, the summary links examined below
       are all part of a single area's link state database (call it
       Area A).

       Summary link advertisements are originated by the area border
       routers.  Each summary link advertisement in Area A is
       considered in turn.  Remember that the destination described by
       a summary link advertisement is either a network (Type 3 summary
       link advertisements) or an AS boundary router (Type 4 summary
       link advertisements).  For each summary link advertisement:


       (1) If the cost specified by the advertisement is LSInfinity, or
           if the advertisement's LS age is equal to MaxAge, then
           examine the the next advertisement.



Moy                                                           [Page 150]

RFC 1583                     OSPF Version 2                   March 1994


       (2) If the advertisement was originated by the calculating
           router itself, examine the next advertisement.

       (3) If the collection of destinations described by the summary
           link advertisement falls into one of the router's configured
           area address ranges (see Section 3.5) and the particular
           area address range is active, the summary link advertisement
           should be ignored.  Active means that there are one or more
           reachable (by intra-area paths) networks contained in the
           area range.  In this case, all addresses in the area range
           are assumed to be either reachable via intra-area paths, or
           else to be unreachable by any other means.

       (4) Else, call the destination described by the advertisement N
           (for Type 3 summary links, N's address is obtained by
           masking the advertisement's Link State ID with the
           network/subnet mask contained in the body of the
           advertisement), and the area border originating the
           advertisement BR.  Look up the routing table entry for BR
           having Area A as its associated area.  If no such entry
           exists for router BR (i.e., BR is unreachable in Area A), do
           nothing with this advertisement and consider the next in the
           list.  Else, this advertisement describes an inter-area path
           to destination N, whose cost is the distance to BR plus the
           cost specified in the advertisement. Call the cost of this
           inter-area path IAC.

       (5) Next, look up the routing table entry for the destination N.
           (The entry's Destination Type is either Network or AS
           boundary router.)  If no entry exists for N or if the
           entry's path type is "type 1 external" or "type 2 external",
           then install the inter-area path to N, with associated area
           Area A, cost IAC, next hop equal to the list of next hops to
           router BR, and Advertising router equal to BR.

       (6) Else, if the paths present in the table are intra-area
           paths, do nothing with the advertisement (intra-area paths
           are always preferred).

       (7) Else, the paths present in the routing table are also
           inter-area paths.  Install the new path through BR if it is
           cheaper, overriding the paths in the routing table.
           Otherwise, if the new path is the same cost, add it to the
           list of paths that appear in the routing table entry.







Moy                                                           [Page 151]

RFC 1583                     OSPF Version 2                   March 1994


   16.3.  Examining transit areas' summary links

       This step is only performed by area border routers attached to
       one or more transit areas. Transit areas are those areas
       supporting one or more virtual links; their TransitCapability
       parameter has been set to TRUE in Step 2 of the Dijkstra
       algorithm (see Section 16.1). They are the only non-backbone
       areas that can carry data traffic that neither originates nor
       terminates in the area itself.

       The purpose of the calculation below is to examine the transit
       areas to see whether they provide any better (shorter) paths
       than the paths previously calculated in Sections 16.1 and 16.2.
       Any paths found that are better than or equal to previously
       discovered paths are installed in the routing table.

       The calculation proceeds as follows. All the transit areas'
       summary link advertisements are examined in turn.  Each such
       summary link advertisement describes a route through a transit
       area Area A to a Network N (N's address is obtained by masking
       the advertisement's Link State ID with the network/subnet mask
       contained in the body of the advertisement) or in the case of a
       Type 4 summary link advertisement, to an AS boundary router N.
       Suppose also that the summary link advertisement was originated
       by an area border router BR.

       (1) If the cost advertised by the summary link advertisement is
           LSInfinity, or if the advertisement's LS age is equal to
           MaxAge, then examine the next advertisement.

       (2) If the summary link advertisement was originated by the
           calculating router itself, examine the next advertisement.

       (3) Look up the routing table entry for N. If it does not exist,
           or if the route type is other than intra-area or inter-area,
           or if the area associated with the routing table entry is
           not the backbone area, then examine the next advertisement.
           In other words, this calculation only updates backbone
           intra-area routes found in Section 16.1 and inter-area
           routes found in Section 16.2.

       (4) Look up the routing table entry for the advertising router
           BR associated with the Area A. If it is unreachable, examine
           the next advertisement. Otherwise, the cost to destination N
           is the sum of the cost in BR's Area A routing table entry
           and the cost advertised in the advertisement. Call this cost
           IAC.




Moy                                                           [Page 152]

RFC 1583                     OSPF Version 2                   March 1994


       (5) If this cost is less than the cost occurring in N's routing
           table entry, overwrite N's list of next hops with those used
           for BR, and set N's routing table cost to IAC. Else, if IAC
           is the same as N's current cost, add BR's list of next hops
           to N's list of next hops. In any case, the area associated
           with N's routing table entry must remain the backbone area,
           and the path type (either intra-area or inter-area) must
           also remain the same.

       It is important to note that the above calculation never makes
       unreachable destinations reachable, but instead just potentially
       finds better paths to already reachable destinations. Also,
       unlike Section 16.3 of [RFC 1247], the above calculation
       installs any better cost found into the routing table entry,
       from which it may be readvertised in summary link advertisements
       to other areas.

       As an example of the calculation, consider the Autonomous System
       pictured in Figure 17.  There is a single non-backbone area
       (Area 1) that physically divides the backbone into two separate
       pieces. To maintain connectivity of the backbone, a virtual link
       has been configured between routers RT1 and RT4. On the right
       side of the figure, Network N1 belongs to the backbone. The
       dotted lines indicate that there is a much shorter intra-area

                     ........................
                     . Area 1 (transit)     .            +
                     .                      .            |
                     .      +---+1        1+---+100      |
                     .      |RT2|----------|RT4|=========|
                     .    1/+---+********* +---+         |
                     .    /*******          .            |
                     .  1/*Virtual          .            |
                  1+---+/*  Link            .         Net|work
            =======|RT1|*                   .            | N1
                   +---+\                   .            |
                     .   \                  .            |
                     .    \                 .            |
                     .    1\+---+1        1+---+20       |
                     .      |RT3|----------|RT5|=========|
                     .      +---+          +---+         |
                     .                      .            |
                     ........................            +


                   Figure 17: Routing through transit areas





Moy                                                           [Page 153]

RFC 1583                     OSPF Version 2                   March 1994


       backbone path between router RT5 and Network N1 (cost 20) than
       there is between Router RT4 and Network N1 (cost 100). Both
       Router RT4 and Router RT5 will inject summary link
       advertisements for Network N1 into Area 1.

       After the shortest-path tree has been calculated for the
       backbone in Section 16.1, Router RT1 (left end of the virtual
       link) will have calculated a path through Router RT4 for all
       data traffic destined for Network N1. However, since Router RT5
       is so much closer to Network N1, all routers internal to Area 1
       (e.g., Routers RT2 and RT3) will forward their Network N1
       traffic towards Router RT5, instead of RT4. And indeed, after
       examining Area 1's summary link advertisements by the above
       calculation, Router RT1 will also forward Network N1 traffic
       towards RT5. Note that in this example the virtual link enables
       Network N1 traffic to be forwarded through the transit area Area
       1, but the actual path the data traffic takes does not follow
       the virtual link.  In other words, virtual links allow transit
       traffic to be forwarded through an area, but do not dictate the
       precise path that the traffic will take.

   16.4.  Calculating AS external routes

       AS external routes are calculated by examining AS external link
       advertisements.  Each of the AS external link advertisements is
       considered in turn.  Most AS external link advertisements
       describe routes to specific IP destinations.  An AS external
       link advertisement can also describe a default route for the
       Autonomous System (Destination ID = DefaultDestination,
       network/subnet mask = 0x00000000).  For each AS external link
       advertisement:


       (1) If the cost specified by the advertisement is LSInfinity, or
           if the advertisement's LS age is equal to MaxAge, then
           examine the next advertisement.

       (2) If the advertisement was originated by the calculating
           router itself, examine the next advertisement.

       (3) Call the destination described by the advertisement N.  N's
           address is obtained by masking the advertisement's Link
           State ID with the network/subnet mask contained in the body
           of the advertisement.  Look up the routing table entry for
           the AS boundary router (ASBR) that originated the
           advertisement. If no entry exists for router ASBR (i.e.,
           ASBR is unreachable), do nothing with this advertisement and
           consider the next in the list.



Moy                                                           [Page 154]

RFC 1583                     OSPF Version 2                   March 1994


           Else, this advertisement describes an AS external path to
           destination N.  Examine the forwarding address specified in
           the AS external link advertisement.  This indicates the IP
           address to which packets for the destination should be
           forwarded.  If the forwarding address is set to 0.0.0.0,
           packets should be sent to the ASBR itself.  Otherwise, look
           up the forwarding address in the routing table.[23] An
           intra-area or inter-area path must exist to the forwarding
           address.  If no such path exists, do nothing with the
           advertisement and consider the next in the list.

           Call the routing table distance to the forwarding address X
           (when the forwarding address is set to 0.0.0.0, this is the
           distance to the ASBR itself), and the cost specified in the
           advertisement Y.  X is in terms of the link state metric,
           and Y is a type 1 or 2 external metric.

       (4) Next, look up the routing table entry for the destination N.
           If no entry exists for N, install the AS external path to N,
           with next hop equal to the list of next hops to the
           forwarding address, and advertising router equal to ASBR.
           If the external metric type is 1, then the path-type is set
           to type 1 external and the cost is equal to X+Y.  If the
           external metric type is 2, the path-type is set to type 2
           external, the link state component of the route's cost is X,
           and the type 2 cost is Y.

       (5) Else, if the paths present in the table are not type 1 or
           type 2 external paths, do nothing (AS external paths have
           the lowest priority).

       (6) Otherwise, compare the cost of this new AS external path to
           the ones present in the table.  Type 1 external paths are
           always shorter than type 2 external paths.  Type 1 external
           paths are compared by looking at the sum of the distance to
           the forwarding address and the advertised type 1 metric
           (X+Y).  Type 2 external paths are compared by looking at the
           advertised type 2 metrics, and then if necessary, the
           distance to the forwarding addresses.

           If the new path is shorter, it replaces the present paths in
           the routing table entry.  If the new path is the same cost,
           it is added to the routing table entry's list of paths.








Moy                                                           [Page 155]

RFC 1583                     OSPF Version 2                   March 1994


   16.5.  Incremental updates -- summary link advertisements

       When a new summary link advertisement is received, it is not
       necessary to recalculate the entire routing table.  Call the
       destination described by the summary link advertisement N (N's
       address is obtained by masking the advertisement's Link State ID
       with the network/subnet mask contained in the body of the
       advertisement), and let Area A be the area to which the
       advertisement belongs. There are then two separate cases:

       Case 1: Area A is the backbone and/or the router is not an area
           border router.
           In this case, the following calculations must be performed.
           First, if there is presently an inter-area route to the
           destination N, N's routing table entry is invalidated,
           saving the entry's values for later comparisons. Then the
           calculation in Section 16.2 is run again for the single
           destination N. In this calculation, all of Area A's summary
           link advertisements that describe a route to N are examined.
           In addition, if the router is an area border router attached
           to one or more transit areas, the calculation in Section
           16.3 must be run again for the single destination.  If the
           results of these calculations have changed the cost/path to
           an AS boundary router (as would be the case for a Type 4
           summary link advertisement) or to any forwarding addresses,
           all AS external link advertisements will have to be
           reexamined by rerunning the calculation in Section 16.4.
           Otherwise, if N is now newly unreachable, the calculation in
           Section 16.4 must be rerun for the single destination N, in
           case an alternate external route to N exists.

       Case 2: Area A is a transit area and the router is an area
           border router.
           In this case, the following calculations must be performed.
           First, if N's routing table entry presently contains one or
           more inter-area paths that utilize the transit area Area A,
           these paths should be removed. If this removes all paths
           from the routing table entry, the entry should be
           invalidated.  The entry's old values should be saved for
           later comparisons. Next the calculation in Section 16.3 must
           be run again for the single destination N. If the results of
           this calculation have caused the cost to N to increase, the
           complete routing table calculation must be rerun starting
           with the Dijkstra algorithm specified in Section 16.1.
           Otherwise, if the cost/path to an AS boundary router (as
           would be the case for a Type 4 summary link advertisement)
           or to any forwarding addresses has changed, all AS external
           link advertisements will have to be reexamined by rerunning



Moy                                                           [Page 156]

RFC 1583                     OSPF Version 2                   March 1994


           the calculation in Section 16.4.  Otherwise, if N is now
           newly unreachable, the calculation in Section 16.4 must be
           rerun for the single destination N, in case an alternate
           external route to N exists.

   16.6.  Incremental updates -- AS external link advertisements

       When a new AS external link advertisement is received, it is not
       necessary to recalculate the entire routing table.  Call the
       destination described by the AS external link advertisement N.
       N's address is obtained by masking the advertisement's Link
       State ID with the network/subnet mask contained in the body of
       the advertisement. If there is already an intra-area or inter-
       area route to the destination, no recalculation is necessary
       (internal routes take precedence).

       Otherwise, the procedure in Section 16.4 will have to be
       performed, but only for those AS external link advertisements
       whose destination is N.  Before this procedure is performed, the
       present routing table entry for N should be invalidated.


   16.7.  Events generated as a result of routing table changes

       Changes to routing table entries sometimes cause the OSPF area
       border routers to take additional actions.  These routers need
       to act on the following routing table changes:


       o   The cost or path type of a routing table entry has changed.
           If the destination described by this entry is a Network or
           AS boundary router, and this is not simply a change of AS
           external routes, new summary link advertisements may have to
           be generated (potentially one for each attached area,
           including the backbone).  See Section 12.4.3 for more
           information.  If a previously advertised entry has been
           deleted, or is no longer advertisable to a particular area,
           the advertisement must be flushed from the routing domain by
           setting its LS age to MaxAge and reflooding (see Section
           14.1).

       o   A routing table entry associated with a configured virtual
           link has changed.  The destination of such a routing table
           entry is an area border router.  The change indicates a
           modification to the virtual link's cost or viability.

           If the entry indicates that the area border router is newly
           reachable (via TOS 0), the corresponding virtual link is now



Moy                                                           [Page 157]

RFC 1583                     OSPF Version 2                   March 1994


           operational.  An InterfaceUp event should be generated for
           the virtual link, which will cause a virtual adjacency to
           begin to form (see Section 10.3).  At this time the virtual
           link's IP interface address and the virtual neighbor's
           Neighbor IP address are also calculated.

           If the entry indicates that the area border router is no
           longer reachable (via TOS 0), the virtual link and its
           associated adjacency should be destroyed.  This means an
           InterfaceDown event should be generated for the associated
           virtual link.

           If the cost of the entry has changed, and there is a fully
           established virtual adjacency, a new router links
           advertisement for the backbone must be originated.  This in
           turn may cause further routing table changes.


   16.8.  Equal-cost multipath

       The OSPF protocol maintains multiple equal-cost routes to all
       destinations.  This can be seen in the steps used above to
       calculate the routing table, and in the definition of the
       routing table structure.

       Each one of the multiple routes will be of the same type
       (intra-area, inter-area, type 1 external or type 2 external),
       cost, and will have the same associated area.  However, each
       route specifies a separate next hop and Advertising router.

       There is no requirement that a router running OSPF keep track of
       all possible equal-cost routes to a destination.  An
       implementation may choose to keep only a fixed number of routes
       to any given destination.  This does not affect any of the
       algorithms presented in this specification.


   16.9.  Building the non-zero-TOS portion of the routing table

       The OSPF protocol can calculate a different set of routes for
       each IP TOS (see Section 2.4).  Support for TOS-based routing is
       optional.  TOS-capable and non-TOS-capable routers can be mixed
       in an OSPF routing domain.  Routers not supporting TOS calculate
       only the TOS 0 route to each destination.  These routes are then
       used to forward all data traffic, regardless of the TOS
       indications in the data packet's IP header.  A router that does
       not support TOS indicates this fact to the other OSPF routers by
       clearing the T-bit in the Options field of its router links



Moy                                                           [Page 158]

RFC 1583                     OSPF Version 2                   March 1994


       advertisement.

       The above sections detailing the routing table calculations
       handle the TOS 0 case only.  In general, for routers supporting
       TOS-based routing, each piece of the routing table calculation
       must be rerun separately for the non-zero TOS values.  When
       calculating routes for TOS X, only TOS X metrics can be used.
       Any link state advertisement may specify a separate cost for
       each TOS (a cost for TOS 0 must always be specified).  The
       encoding of TOS in OSPF link state advertisements is described
       in Section 12.3.

       An advertisement can specify that it is restricted to TOS 0
       (i.e., non-zero TOS is not handled) by clearing the T-bit in the
       link state advertisement's Option field.  Such advertisements
       are not used when calculating routes for non-zero TOS.  For this
       reason, it is possible that a destination is unreachable for
       some non-zero TOS.  In this case, the TOS 0 path is used when
       forwarding packets (see Section 11.1).

       The following lists the modifications needed when running the
       routing table calculation for a non-zero TOS value (called TOS
       X).  In general, routers and advertisements that do not support
       TOS are omitted from the calculation.


       Calculating the shortest-path tree (Section  16.1).
           Routers that do not support TOS-based routing should be
           omitted from the shortest-path tree calculation.  These
           routers are identified as those having the T-bit reset in
           the Options field of their router links advertisements.
           Such routers should never be added to the Dijktra
           algorithm's candidate list, nor should their router links
           advertisements be examined when adding the stub networks to
           the tree.  In particular, if the T-bit is reset in the
           calculating router's own router links advertisement, it does
           not run the shortest-path tree calculation for non-zero TOS
           values.

       Calculating the inter-area routes (Section  16.2).
           Inter-area paths are the concatenation of a path to an area
           border router with a summary link.  When calculating TOS X
           routes, both path components must also specify TOS X.  In
           other words, only TOS X paths to the area border router are
           examined, and the area border router must be advertising a
           TOS X route to the destination.  Note that this means that
           summary link advertisements having the T-bit reset in their
           Options field are not considered.



Moy                                                           [Page 159]

RFC 1583                     OSPF Version 2                   March 1994


       Examining transit areas' summary links (Section 16.3).
           This calculation again considers the concatenation of a path
           to an area border router with a summary link.  As with
           inter-area routes, only TOS X paths to the area border
           router are examined, and the area border router must be
           advertising a TOS X route to the destination.

       Calculating AS external routes (Section 16.4).
           This calculation considers the concatenation of a path to a
           forwarding address with an AS external link.  Only TOS X
           paths to the forwarding address are examined, and the AS
           boundary router must be advertising a TOS X route to the
           destination.  Note that this means that AS external link
           advertisements having the T-bit reset in their Options field
           are not considered.

           In addition, the advertising AS boundary router must also be
           reachable for its advertisements to be considered (see
           Section 16.4).  However, if the advertising router and the
           forwarding address are not one in the same, the advertising
           router need only be reachable via TOS 0.






























Moy                                                           [Page 160]

RFC 1583                     OSPF Version 2                   March 1994


Footnotes


   [1]The graph's vertices represent either routers, transit networks,
   or stub networks.  Since routers may belong to multiple areas, it is
   not possible to color the graph's vertices.

   [2]It is possible for all of a router's interfaces to be unnumbered
   point-to-point links.  In this case, an IP address must be assigned
   to the router.  This address will then be advertised in the router's
   router links advertisement as a host route.

   [3]Note that in these cases both interfaces, the non-virtual and the
   virtual, would have the same IP address.

   [4]Note that no host route is generated for, and no IP packets can
   be addressed to, interfaces to unnumbered point-to-point networks.
   This is regardless of such an interface's state.

   [5]It is instructive to see what happens when the Designated Router
   for the network crashes.  Call the Designated Router for the network
   RT1, and the Backup Designated Router RT2.  If Router RT1 crashes
   (or maybe its interface to the network dies), the other routers on
   the network will detect RT1's absence within RouterDeadInterval
   seconds.  All routers may not detect this at precisely the same
   time; the routers that detect RT1's absence before RT2 does will,
   for a time, select RT2 to be both Designated Router and Backup
   Designated Router.  When RT2 detects that RT1 is gone it will move
   itself to Designated Router.  At this time, the remaining router
   having highest Router Priority will be selected as Backup Designated
   Router.

   [6]On point-to-point networks, the lower level protocols indicate
   whether the neighbor is up and running.  Likewise, existence of the
   neighbor on virtual links is indicated by the routing table
   calculation.  However, in both these cases, the Hello Protocol is
   still used.  This ensures that communication between the neighbors
   is bidirectional, and that each of the neighbors has a functioning
   routing protocol layer.

   [7]When the identity of the Designated Router is changing, it may be
   quite common for a neighbor in this state to send the router a
   Database Description packet; this means that there is some momentary
   disagreement on the Designated Router's identity.

   [8]Note that it is possible for a router to resynchronize any of its
   fully established adjacencies by setting the adjacency's state back
   to ExStart.  This will cause the other end of the adjacency to



Moy                                                           [Page 161]

RFC 1583                     OSPF Version 2                   March 1994


   process a SeqNumberMismatch event, and therefore to also go back to
   ExStart state.

   [9]The address space of IP networks and the address space of OSPF
   Router IDs may overlap.  That is, a network may have an IP address
   which is identical (when considered as a 32-bit number) to some
   router's Router ID.

   [10]It is assumed that, for two different address ranges matching
   the destination, one range is more specific than the other. Non-
   contiguous subnet masks can be configured to violate this
   assumption. Such subnet mask configurations cannot be handled by the
   OSPF protocol.

   [11]MaxAgeDiff is an architectural constant.  It indicates the
   maximum dispersion of ages, in seconds, that can occur for a single
   link state instance as it is flooded throughout the routing domain.
   If two advertisements differ by more than this, they are assumed to
   be different instances of the same advertisement.  This can occur
   when a router restarts and loses track of the advertisement's
   previous LS sequence number.  See Section 13.4 for more details.

   [12]When two advertisements have different LS checksums, they are
   assumed to be separate instances.  This can occur when a router
   restarts, and loses track of the advertisement's previous LS
   sequence number.  In the case where the two advertisements have the
   same LS sequence number, it is not possible to determine which link
   state is actually newer.  If the wrong advertisement is accepted as
   newer, the originating router will originate another instance.  See
   Section 13.4 for further details.

   [13]There is one instance where a lookup must be done based on
   partial information.  This is during the routing table calculation,
   when a network links advertisement must be found based solely on its
   Link State ID.  The lookup in this case is still well defined, since
   no two network links advertisements can have the same Link State ID.

   [14]This clause covers the case: Inter-area routes are not
   summarized to the backbone.  This is because inter-area routes are
   always associated with the backbone area.

   [15]This clause is only invoked when Area A is a Transit area
   supporting one or more virtual links. For example, in the area
   configuration of Figure 6, Router RT11 need only originate a single
   summary link having the (collapsed) destination N9-N11,H1 into its
   connected Transit area Area 2, since all of its other eligible
   routes have next hops belonging to Area 2 (and as such only need be
   advertised by other area border routers; in this case, Routers RT10



Moy                                                           [Page 162]

RFC 1583                     OSPF Version 2                   March 1994


   and RT7).

   [16]By keeping more information in the routing table, it is possible
   for an implementation to recalculate the shortest path tree only for
   a single area.  In fact, there are incremental algorithms that allow
   an implementation to recalculate only a portion of a single area's
   shortest path tree [BBN].  However, these algorithms are beyond the
   scope of this specification.

   [17]This is how the Link state request list is emptied, which
   eventually causes the neighbor state to transition to Full.  See
   Section 10.9 for more details.

   [18]It should be a relatively rare occurrence for an advertisement's
   LS age to reach MaxAge in this fashion.  Usually, the advertisement
   will be replaced by a more recent instance before it ages out.

   [19]Only the TOS 0 routes are important here because all OSPF
   protocol packets are sent with TOS = 0.  See Appendix A.

   [20]It may be the case that paths to certain destinations do not
   vary based on TOS.  For these destinations, the routing calculation
   need not be repeated for each TOS value.  In addition, there need
   only be a single routing table entry for these destinations (instead
   of a separate entry for each TOS value).

   [21]Strictly speaking, because of equal-cost multipath, the
   algorithm does not create a tree.  We continue to use the "tree"
   terminology because that is what occurs most often in the existing
   literature.

   [22]Note that the presence of any link back to V is sufficient; it
   need not be the matching half of the link under consideration from V
   to W. This is enough to ensure that, before data traffic flows
   between a pair of neighboring routers, their link state databases
   will be synchronized.

   [23]When the forwarding address is non-zero, it should point to a
   router belonging to another Autonomous System.  See Section 12.4.5
   for more details.











Moy                                                           [Page 163]

RFC 1583                     OSPF Version 2                   March 1994


References

   [BBN]           McQuillan, J., I. Richer and E. Rosen, "ARPANET
                   Routing Algorithm Improvements", BBN Technical
                   Report 3803, April 1978.

   [DEC]           Digital Equipment Corporation, "Information
                   processing systems -- Data communications --
                   Intermediate System to Intermediate System Intra-
                   Domain Routing Protocol", October 1987.

   [McQuillan]     McQuillan, J. et.al., "The New Routing Algorithm for
                   the Arpanet", IEEE Transactions on Communications,
                   May 1980.

   [Perlman]       Perlman, R., "Fault-Tolerant Broadcast of Routing
                   Information", Computer Networks, December 1983.

   [RFC 791]       Postel, J., "Internet Protocol", STD 5, RFC 791,
                   USC/Information Sciences Institute, September 1981.

   [RFC 905]       McKenzie, A., "ISO Transport Protocol specification
                   ISO DP 8073", RFC 905, ISO, April 1984.

   [RFC 1112]      Deering, S., "Host extensions for IP multicasting",
                   STD 5, RFC 1112, Stanford University, May 1988.

   [RFC 1213]      McCloghrie, K., and M. Rose, "Management Information
                   Base for network management of TCP/IP-based
                   internets: MIB-II", STD 17, RFC 1213, Hughes LAN
                   Systems, Performance Systems International, March
                   1991.

   [RFC 1247]      Moy, J., "OSPF Version 2", RFC 1247, Proteon, Inc.,
                   July 1991.

   [RFC 1519]      Fuller, V., T. Li, J. Yu, and K. Varadhan,
                   "Classless Inter-Domain Routing (CIDR): an Address
                   Assignment and Aggregation Strategy", RFC1519,
                   BARRNet, cisco, MERIT, OARnet, September 1993.

   [RFC 1340]      Reynolds, J., and J. Postel, "Assigned Numbers", STD
                   2, RFC 1340, USC/Information Sciences Institute,
                   July 1992.

   [RFC 1349]      Almquist, P., "Type of Service in the Internet
                   Protocol Suite", RFC 1349, July 1992.




Moy                                                           [Page 164]

RFC 1583                     OSPF Version 2                   March 1994


   [RS-85-153]     Leiner, B., et.al., "The DARPA Internet Protocol
                   Suite", DDN Protocol Handbook, April 1985.

















































Moy                                                           [Page 165]

RFC 1583                     OSPF Version 2                   March 1994


A. OSPF data formats

   This appendix describes the format of OSPF protocol packets and OSPF
   link state advertisements.  The OSPF protocol runs directly over the
   IP network layer.  Before any data formats are described, the
   details of the OSPF encapsulation are explained.

   Next the OSPF Options field is described.  This field describes
   various capabilities that may or may not be supported by pieces of
   the OSPF routing domain. The OSPF Options field is contained in OSPF
   Hello packets, Database Description packets and in OSPF link state
   advertisements.

   OSPF packet formats are detailed in Section A.3.  A description of
   OSPF link state advertisements appears in Section A.4.

A.1 Encapsulation of OSPF packets

   OSPF runs directly over the Internet Protocol's network layer.  OSPF
   packets are therefore encapsulated solely by IP and local data-link
   headers.

   OSPF does not define a way to fragment its protocol packets, and
   depends on IP fragmentation when transmitting packets larger than
   the network MTU.  The OSPF packet types that are likely to be large
   (Database Description Packets, Link State Request, Link State
   Update, and Link State Acknowledgment packets) can usually be split
   into several separate protocol packets, without loss of
   functionality.  This is recommended; IP fragmentation should be
   avoided whenever possible.  Using this reasoning, an attempt should
   be made to limit the sizes of packets sent over virtual links to 576
   bytes.  However, if necessary, the length of OSPF packets can be up
   to 65,535 bytes (including the IP header).

   The other important features of OSPF's IP encapsulation are:

   o   Use of IP multicast.  Some OSPF messages are multicast, when
       sent over multi-access networks.  Two distinct IP multicast
       addresses are used.  Packets sent to these multicast addresses
       should never be forwarded; they are meant to travel a single hop
       only.  To ensure that these packets will not travel multiple
       hops, their IP TTL must be set to 1.

       AllSPFRouters
           This multicast address has been assigned the value
           224.0.0.5.  All routers running OSPF should be prepared to
           receive packets sent to this address.  Hello packets are
           always sent to this destination.  Also, certain OSPF



Moy                                                           [Page 166]

RFC 1583                     OSPF Version 2                   March 1994


           protocol packets are sent to this address during the
           flooding procedure.

       AllDRouters
           This multicast address has been assigned the value
           224.0.0.6.  Both the Designated Router and Backup Designated
           Router must be prepared to receive packets destined to this
           address.  Certain OSPF protocol packets are sent to this
           address during the flooding procedure.

   o   OSPF is IP protocol number 89.  This number has been registered
       with the Network Information Center.  IP protocol number
       assignments are documented in [RFC 1340].

   o   Routing protocol packets are sent with IP TOS of 0.  The OSPF
       protocol supports TOS-based routing.  Routes to any particular
       destination may vary based on TOS.  However, all OSPF routing
       protocol packets are sent using the normal service TOS value of
       binary 0000 defined in [RFC 1349].

   o   Routing protocol packets are sent with IP precedence set to
       Internetwork Control.  OSPF protocol packets should be given
       precedence over regular IP data traffic, in both sending and
       receiving.  Setting the IP precedence field in the IP header to
       Internetwork Control [RFC 791] may help implement this
       objective.

























Moy                                                           [Page 167]

RFC 1583                     OSPF Version 2                   March 1994


A.2 The Options field

   The OSPF Options field is present in OSPF Hello packets, Database
   Description packets and all link state advertisements.  The Options
   field enables OSPF routers to support (or not support) optional
   capabilities, and to communicate their capability level to other
   OSPF routers.  Through this mechanism routers of differing
   capabilities can be mixed within an OSPF routing domain.

   When used in Hello packets, the Options field allows a router to
   reject a neighbor because of a capability mismatch.  Alternatively,
   when capabilities are exchanged in Database Description packets a
   router can choose not to forward certain link state advertisements
   to a neighbor because of its reduced functionality.  Lastly, listing
   capabilities in link state advertisements allows routers to route
   traffic around reduced functionality routers, by excluding them from
   parts of the routing table calculation.

   Two capabilities are currently defined.  For each capability, the
   effect of the capability's appearance (or lack of appearance) in
   Hello packets, Database Description packets and link state
   advertisements is specified below.  For example, the
   ExternalRoutingCapability (below called the E-bit) has meaning only
   in OSPF Hello Packets.  Routers should reset (i.e.  clear) the
   unassigned part of the capability field when sending Hello packets
   or Database Description packets and when originating link state
   advertisements.

   Additional capabilities may be assigned in the future.  Routers
   encountering unrecognized capabilities in received Hello Packets,
   Database Description packets or link state advertisements should
   ignore the capability and process the packet/advertisement normally.

                              +-+-+-+-+-+-+-+-+
                              | | | | | | |E|T|
                              +-+-+-+-+-+-+-+-+

                            The Options field


   T-bit
       This describes the router's TOS capability.  If the T-bit is
       reset, then the router supports only a single TOS (TOS 0).  Such
       a router is also said to be incapable of TOS-routing, and
       elsewhere in this document referred to as a TOS-0-only router.
       The absence of the T-bit in a router links advertisement causes
       the router to be skipped when building a non-zero TOS shortest-
       path tree (see Section 16.9).  In other words, routers incapable



Moy                                                           [Page 168]

RFC 1583                     OSPF Version 2                   March 1994


       of TOS routing will be avoided as much as possible when
       forwarding data traffic requesting a non-zero TOS.  The absence
       of the T-bit in a summary link advertisement or an AS external
       link advertisement indicates that the advertisement is
       describing a TOS 0 route only (and not routes for non-zero TOS).

   E-bit
       This bit reflects the associated area's
       ExternalRoutingCapability.  AS external link advertisements are
       not flooded into/through OSPF stub areas (see Section 3.6).  The
       E-bit ensures that all members of a stub area agree on that
       area's configuration.  The E-bit is meaningful only in OSPF
       Hello packets.  When the E-bit is reset in the Hello packet sent
       out a particular interface, it means that the router will
       neither send nor receive AS external link state advertisements
       on that interface (in other words, the interface connects to a
       stub area).  Two routers will not become neighbors unless they
       agree on the state of the E-bit.

































Moy                                                           [Page 169]

RFC 1583                     OSPF Version 2                   March 1994


A.3 OSPF Packet Formats

   There are five distinct OSPF packet types.  All OSPF packet types
   begin with a standard 24 byte header.  This header is described
   first.  Each packet type is then described in a succeeding section.
   In these sections each packet's division into fields is displayed,
   and then the field definitions are enumerated.

   All OSPF packet types (other than the OSPF Hello packets) deal with
   lists of link state advertisements.  For example, Link State Update
   packets implement the flooding of advertisements throughout the OSPF
   routing domain.  Because of this, OSPF protocol packets cannot be
   parsed unless the format of link state advertisements is also
   understood.  The format of Link state advertisements is described in
   Section A.4.

   The receive processing of OSPF packets is detailed in Section 8.2.
   The sending of OSPF packets is explained in Section 8.1.

































Moy                                                           [Page 170]

RFC 1583                     OSPF Version 2                   March 1994


A.3.1 The OSPF packet header

   Every OSPF packet starts with a common 24 byte header.  This header
   contains all the necessary information to determine whether the
   packet should be accepted for further processing.  This
   determination is described in Section 8.2 of the specification.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Version #   |     Type      |         Packet length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Router ID                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Area ID                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Checksum            |             AuType            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



   Version #
       The OSPF version number.  This specification documents version 2
       of the protocol.

   Type
       The OSPF packet types are as follows.  The format of each of
       these packet types is described in a succeeding section.



                         Type   Description
                         ________________________________
                         1      Hello
                         2      Database Description
                         3      Link State Request
                         4      Link State Update
                         5      Link State Acknowledgment








Moy                                                           [Page 171]

RFC 1583                     OSPF Version 2                   March 1994


   Packet length
       The length of the protocol packet in bytes.  This length
       includes the standard OSPF header.

   Router ID
       The Router ID of the packet's source.  In OSPF, the source and
       destination of a routing protocol packet are the two ends of an
       (potential) adjacency.

   Area ID
       A 32 bit number identifying the area that this packet belongs
       to.  All OSPF packets are associated with a single area.  Most
       travel a single hop only.  Packets travelling over a virtual
       link are labelled with the backbone Area ID of 0.0.0.0.

   Checksum
       The standard IP checksum of the entire contents of the packet,
       starting with the OSPF packet header but excluding the 64-bit
       authentication field.  This checksum is calculated as the 16-bit
       one's complement of the one's complement sum of all the 16-bit
       words in the packet, excepting the authentication field.  If the
       packet's length is not an integral number of 16-bit words, the
       packet is padded with a byte of zero before checksumming.

   AuType
       Identifies the authentication scheme to be used for the packet.
       Authentication is discussed in Appendix D of the specification.
       Consult Appendix D for a list of the currently defined
       authentication types.

   Authentication
       A 64-bit field for use by the authentication scheme.



















Moy                                                           [Page 172]

RFC 1583                     OSPF Version 2                   March 1994


A.3.2 The Hello packet

   Hello packets are OSPF packet type 1.  These packets are sent
   periodically on all interfaces (including virtual links) in order to
   establish and maintain neighbor relationships.  In addition, Hello
   Packets are multicast on those physical networks having a multicast
   or broadcast capability, enabling dynamic discovery of neighboring
   routers.

   All routers connected to a common network must agree on certain
   parameters (Network mask, HelloInterval and RouterDeadInterval).
   These parameters are included in Hello packets, so that differences
   can inhibit the forming of neighbor relationships.  A detailed
   explanation of the receive processing for Hello packets is presented
   in Section 10.5.  The sending of Hello packets is covered in Section
   9.5.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Version #   |       1       |         Packet length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Router ID                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Area ID                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Checksum            |             AuType            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Network Mask                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         HelloInterval         |    Options    |    Rtr Pri    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     RouterDeadInterval                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Designated Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Backup Designated Router                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Neighbor                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |





Moy                                                           [Page 173]

RFC 1583                     OSPF Version 2                   March 1994


   Network mask
       The network mask associated with this interface.  For example,
       if the interface is to a class B network whose third byte is
       used for subnetting, the network mask is 0xffffff00.

   Options
       The optional capabilities supported by the router, as documented
       in Section A.2.

   HelloInterval
       The number of seconds between this router's Hello packets.

   Rtr Pri
       This router's Router Priority.  Used in (Backup) Designated
       Router election.  If set to 0, the router will be ineligible to
       become (Backup) Designated Router.

   RouterDeadInterval
       The number of seconds before declaring a silent router down.

   Designated Router
       The identity of the Designated Router for this network, in the
       view of the advertising router.  The Designated Router is
       identified here by its IP interface address on the network.  Set
       to 0.0.0.0 if there is no Designated Router.

   Backup Designated Router
       The identity of the Backup Designated Router for this network,
       in the view of the advertising router.  The Backup Designated
       Router is identified here by its IP interface address on the
       network.  Set to 0.0.0.0 if there is no Backup Designated
       Router.

   Neighbor
       The Router IDs of each router from whom valid Hello packets have
       been seen recently on the network.  Recently means in the last
       RouterDeadInterval seconds.














Moy                                                           [Page 174]

RFC 1583                     OSPF Version 2                   March 1994


A.3.3 The Database Description packet

   Database Description packets are OSPF packet type 2.  These packets
   are exchanged when an adjacency is being initialized.  They describe
   the contents of the topological database.  Multiple packets may be
   used to describe the database.  For this purpose a poll-response
   procedure is used.  One of the routers is designated to be master,
   the other a slave.  The master sends Database Description packets
   (polls) which are acknowledged by Database Description packets sent
   by the slave (responses).  The responses are linked to the polls via
   the packets' DD sequence numbers.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Version #   |       2       |         Packet length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Router ID                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Area ID                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Checksum            |             AuType            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       0       |       0       |    Options    |0|0|0|0|0|I|M|MS
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     DD sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +-                                                             -+
      |                             A                                 |
      +-                 Link State Advertisement                    -+
      |                           Header                              |
      +-                                                             -+
      |                                                               |
      +-                                                             -+
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |


   The format of the Database Description packet is very similar to
   both the Link State Request and Link State Acknowledgment packets.
   The main part of all three is a list of items, each item describing



Moy                                                           [Page 175]

RFC 1583                     OSPF Version 2                   March 1994


   a piece of the topological database.  The sending of Database
   Description Packets is documented in Section 10.8.  The reception of
   Database Description packets is documented in Section 10.6.

   0   These fields are reserved.  They must be 0.

   Options
       The optional capabilities supported by the router, as documented
       in Section A.2.

   I-bit
       The Init bit.  When set to 1, this packet is the first in the
       sequence of Database Description Packets.

   M-bit
       The More bit.  When set to 1, it indicates that more Database
       Description Packets are to follow.

   MS-bit
       The Master/Slave bit.  When set to 1, it indicates that the
       router is the master during the Database Exchange process.
       Otherwise, the router is the slave.

   DD sequence number
       Used to sequence the collection of Database Description Packets.
       The initial value (indicated by the Init bit being set) should
       be unique.  The DD sequence number then increments until the
       complete database description has been sent.


   The rest of the packet consists of a (possibly partial) list of the
   topological database's pieces.  Each link state advertisement in the
   database is described by its link state advertisement header.  The
   link state advertisement header is documented in Section A.4.1.  It
   contains all the information required to uniquely identify both the
   advertisement and the advertisement's current instance.















Moy                                                           [Page 176]

RFC 1583                     OSPF Version 2                   March 1994


A.3.4 The Link State Request packet

   Link State Request packets are OSPF packet type 3.  After exchanging
   Database Description packets with a neighboring router, a router may
   find that parts of its topological database are out of date.  The
   Link State Request packet is used to request the pieces of the
   neighbor's database that are more up to date.  Multiple Link State
   Request packets may need to be used.  The sending of Link State
   Request packets is the last step in bringing up an adjacency.

   A router that sends a Link State Request packet has in mind the
   precise instance of the database pieces it is requesting, defined by
   LS sequence number, LS checksum, and LS age, although these fields
   are not specified in the Link State Request Packet itself.  The
   router may receive even more recent instances in response.

   The sending of Link State Request packets is documented in Section
   10.9.  The reception of Link State Request packets is documented in
   Section 10.7.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Version #   |       3       |         Packet length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Router ID                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Area ID                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Checksum            |             AuType            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          LS type                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Link State ID                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |


   Each advertisement requested is specified by its LS type, Link State
   ID, and Advertising Router.  This uniquely identifies the
   advertisement, but not its instance.  Link State Request packets are



Moy                                                           [Page 177]

RFC 1583                     OSPF Version 2                   March 1994


   understood to be requests for the most recent instance (whatever
   that might be).

















































Moy                                                           [Page 178]

RFC 1583                     OSPF Version 2                   March 1994


A.3.5 The Link State Update packet

   Link State Update packets are OSPF packet type 4.  These packets
   implement the flooding of link state advertisements.  Each Link
   State Update packet carries a collection of link state
   advertisements one hop further from its origin.  Several link state
   advertisements may be included in a single packet.

   Link State Update packets are multicast on those physical networks
   that support multicast/broadcast.  In order to make the flooding
   procedure reliable, flooded advertisements are acknowledged in Link
   State Acknowledgment packets.  If retransmission of certain
   advertisements is necessary, the retransmitted advertisements are
   always carried by unicast Link State Update packets.  For more
   information on the reliable flooding of link state advertisements,
   consult Section 13.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Version #   |       4       |         Packet length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Router ID                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Area ID                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Checksum            |             AuType            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      # advertisements                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +-                                                            +-+
      |                  Link state advertisements                    |
      +-                                                            +-+
      |                              ...                              |



   # advertisements
       The number of link state advertisements included in this update.






Moy                                                           [Page 179]

RFC 1583                     OSPF Version 2                   March 1994


   The body of the Link State Update packet consists of a list of link
   state advertisements.  Each advertisement begins with a common 20
   byte header, the link state advertisement header.  This header is
   described in Section A.4.1.  Otherwise, the format of each of the
   five types of link state advertisements is different.  Their formats
   are described in Section A.4.













































Moy                                                           [Page 180]

RFC 1583                     OSPF Version 2                   March 1994


A.3.6 The Link State Acknowledgment packet

   Link State Acknowledgment Packets are OSPF packet type 5.  To make
   the flooding of link state advertisements reliable, flooded
   advertisements are explicitly acknowledged.  This acknowledgment is
   accomplished through the sending and receiving of Link State
   Acknowledgment packets.  Multiple link state advertisements can be
   acknowledged in a single Link State Acknowledgment packet.

   Depending on the state of the sending interface and the source of
   the advertisements being acknowledged, a Link State Acknowledgment
   packet is sent either to the multicast address AllSPFRouters, to the
   multicast address AllDRouters, or as a unicast.  The sending of Link
   State Acknowledgement packets is documented in Section 13.5.  The
   reception of Link State Acknowledgement packets is documented in
   Section 13.7.

   The format of this packet is similar to that of the Data Description
   packet.  The body of both packets is simply a list of link state
   advertisement headers.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Version #   |       5       |         Packet length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Router ID                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Area ID                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Checksum            |             AuType            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +-                                                             -+
      |                             A                                 |
      +-                 Link State Advertisement                    -+
      |                           Header                              |
      +-                                                             -+
      |                                                               |
      +-                                                             -+
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |



Moy                                                           [Page 181]

RFC 1583                     OSPF Version 2                   March 1994


   Each acknowledged link state advertisement is described by its link
   state advertisement header.  The link state advertisement header is
   documented in Section A.4.1.  It contains all the information
   required to uniquely identify both the advertisement and the
   advertisement's current instance.














































Moy                                                           [Page 182]

RFC 1583                     OSPF Version 2                   March 1994


A.4 Link state advertisement formats

   There are five distinct types of link state advertisements.  Each
   link state advertisement begins with a standard 20-byte link state
   advertisement header.  This header is explained in Section A.4.1.
   Succeeding sections then diagram the separate link state
   advertisement types.

   Each link state advertisement describes a piece of the OSPF routing
   domain.  Every router originates a router links advertisement.  In
   addition, whenever the router is elected Designated Router, it
   originates a network links advertisement.  Other types of link state
   advertisements may also be originated (see Section 12.4).  All link
   state advertisements are then flooded throughout the OSPF routing
   domain.  The flooding algorithm is reliable, ensuring that all
   routers have the same collection of link state advertisements.  (See
   Section 13 for more information concerning the flooding algorithm).
   This collection of advertisements is called the link state (or
   topological) database.

   From the link state database, each router constructs a shortest path
   tree with itself as root.  This yields a routing table (see Section
   11).  For the details of the routing table build process, see
   Section 16.



























Moy                                                           [Page 183]

RFC 1583                     OSPF Version 2                   March 1994


A.4.1 The Link State Advertisement header

   All link state advertisements begin with a common 20 byte header.
   This header contains enough information to uniquely identify the
   advertisement (LS type, Link State ID, and Advertising Router).
   Multiple instances of the link state advertisement may exist in the
   routing domain at the same time.  It is then necessary to determine
   which instance is more recent.  This is accomplished by examining
   the LS age, LS sequence number and LS checksum fields that are also
   contained in the link state advertisement header.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |    Options    |    LS type    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Link State ID                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



   LS age
       The time in seconds since the link state advertisement was
       originated.

   Options
       The optional capabilities supported by the described portion of
       the routing domain.  OSPF's optional capabilities are documented
       in Section A.2.

   LS type
       The type of the link state advertisement.  Each link state type
       has a separate advertisement format.  The link state types are
       as follows (see Section 12.1.3 for further explanation):










Moy                                                           [Page 184]

RFC 1583                     OSPF Version 2                   March 1994



                       LS Type   Description
                       ___________________________________
                       1         Router links
                       2         Network links
                       3         Summary link (IP network)
                       4         Summary link (ASBR)
                       5         AS external link




   Link State ID
       This field identifies the portion of the internet environment
       that is being described by the advertisement.  The contents of
       this field depend on the advertisement's LS type.  For example,
       in network links advertisements the Link State ID is set to the
       IP interface address of the network's Designated Router (from
       which the network's IP address can be derived).  The Link State
       ID is further discussed in Section 12.1.4.

   Advertising Router
       The Router ID of the router that originated the link state
       advertisement.  For example, in network links advertisements
       this field is set to the Router ID of the network's Designated
       Router.

   LS sequence number
       Detects old or duplicate link state advertisements.  Successive
       instances of a link state advertisement are given successive LS
       sequence numbers.  See Section 12.1.6 for more details.

   LS checksum
       The Fletcher checksum of the complete contents of the link state
       advertisement, including the link state advertisement header but
       excepting the LS age field. See Section 12.1.7 for more details.

   length
       The length in bytes of the link state advertisement.  This
       includes the 20 byte link state advertisement header.











Moy                                                           [Page 185]

RFC 1583                     OSPF Version 2                   March 1994


A.4.2 Router links advertisements

   Router links advertisements are the Type 1 link state
   advertisements.  Each router in an area originates a router links
   advertisement.  The advertisement describes the state and cost of
   the router's links (i.e., interfaces) to the area.  All of the
   router's links to the area must be described in a single router
   links advertisement.  For details concerning the construction of
   router links advertisements, see Section 12.4.1.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |     Options   |       1       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Link State ID                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    0    |V|E|B|        0      |            # links            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Link ID                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Data                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Type      |     # TOS     |        TOS 0 metric           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      TOS      |        0      |            metric             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      TOS      |        0      |            metric             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Link ID                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Data                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |


   In router links advertisements, the Link State ID field is set to
   the router's OSPF Router ID.  The T-bit is set in the
   advertisement's Option field if and only if the router is able to



Moy                                                           [Page 186]

RFC 1583                     OSPF Version 2                   March 1994


   calculate a separate set of routes for each IP TOS.  Router links
   advertisements are flooded throughout a single area only.

   bit V
       When set, the router is an endpoint of an active virtual link
       that is using the described area as a Transit area (V is for
       virtual link endpoint).

   bit E
       When set, the router is an AS boundary router (E is for
       external)

   bit B
       When set, the router is an area border router (B is for border)

   # links
       The number of router links described by this advertisement.
       This must be the total collection of router links (i.e.,
       interfaces) to the area.


   The following fields are used to describe each router link (i.e.,
   interface). Each router link is typed (see the below Type field).
   The Type field indicates the kind of link being described.  It may
   be a link to a transit network, to another router or to a stub
   network.  The values of all the other fields describing a router
   link depend on the link's Type.  For example, each link has an
   associated 32-bit data field.  For links to stub networks this field
   specifies the network's IP address mask.  For other link types the
   Link Data specifies the router's associated IP interface address.


   Type
       A quick description of the router link.  One of the following.
       Note that host routes are classified as links to stub networks
       whose network mask is 0xffffffff.



                Type   Description
                __________________________________________________
                1      Point-to-point connection to another router
                2      Connection to a transit network
                3      Connection to a stub network
                4      Virtual link






Moy                                                           [Page 187]

RFC 1583                     OSPF Version 2                   March 1994


   Link ID
       Identifies the object that this router link connects to.  Value
       depends on the link's Type.  When connecting to an object that
       also originates a link state advertisement (i.e., another router
       or a transit network) the Link ID is equal to the neighboring
       advertisement's Link State ID.  This provides the key for
       looking up said advertisement in the link state database.  See
       Section 12.2 for more details.



                      Type   Link ID
                      ______________________________________
                      1      Neighboring router's Router ID
                      2      IP address of Designated Router
                      3      IP network/subnet number
                      4      Neighboring router's Router ID




   Link Data
       Contents again depend on the link's Type field. For connections
       to stub networks, it specifies the network's IP address mask.
       For unnumbered point-to-point connections, it specifies the
       interface's MIB-II [RFC 1213] ifIndex value. For the other link
       types it specifies the router's associated IP interface address.
       This latter piece of information is needed during the routing
       table build process, when calculating the IP address of the next
       hop. See Section 16.1.1 for more details.

   # TOS
       The number of different TOS metrics given for this link, not
       counting the required metric for TOS 0.  For example, if no
       additional TOS metrics are given, this field should be set to 0.

   TOS 0 metric
       The cost of using this router link for TOS 0.


   For each link, separate metrics may be specified for each Type of
   Service (TOS).  The metric for TOS 0 must always be included, and
   was discussed above.  Metrics for non-zero TOS are described below.
   The encoding of TOS in OSPF link state advertisements is described
   in Section 12.3.  Note that the cost for non-zero TOS values that
   are not specified defaults to the TOS 0 cost.  Metrics must be
   listed in order of increasing TOS encoding.  For example, the metric
   for TOS 16 must always follow the metric for TOS 8 when both are



Moy                                                           [Page 188]

RFC 1583                     OSPF Version 2                   March 1994


   specified.


   TOS IP Type of Service that this metric refers to.  The encoding of
       TOS in OSPF link state advertisements is described in Section
       12.3.

   metric
       The cost of using this outbound router link, for traffic of the
       specified TOS.









































Moy                                                           [Page 189]

RFC 1583                     OSPF Version 2                   March 1994


A.4.3 Network links advertisements

   Network links advertisements are the Type 2 link state
   advertisements.  A network links advertisement is originated for
   each transit network in the area.  A transit network is a multi-
   access network that has more than one attached router.  The network
   links advertisement is originated by the network's Designated
   Router.  The advertisement describes all routers attached to the
   network, including the Designated Router itself.  The
   advertisement's Link State ID field lists the IP interface address
   of the Designated Router.

   The distance from the network to all attached routers is zero, for
   all Types of Service.  This is why the TOS and metric fields need
   not be specified in the network links advertisement.  For details
   concerning the construction of network links advertisements, see
   Section 12.4.2.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |      Options  |      2        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Link State ID                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Network Mask                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Attached Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |



   Network Mask
       The IP address mask for the network.  For example, a class A
       network would have the mask 0xff000000.

   Attached Router
       The Router IDs of each of the routers attached to the network.
       Actually, only those routers that are fully adjacent to the
       Designated Router are listed.  The Designated Router includes



Moy                                                           [Page 190]

RFC 1583                     OSPF Version 2                   March 1994


       itself in this list.  The number of routers included can be
       deduced from the link state advertisement header's length field.

















































Moy                                                           [Page 191]

RFC 1583                     OSPF Version 2                   March 1994


A.4.4 Summary link advertisements

   Summary link advertisements are the Type 3 and 4 link state
   advertisements.  These advertisements are originated by area border
   routers.  A separate summary link advertisement is made for each
   destination (known to the router) which belongs to the AS, yet is
   outside the area.  For details concerning the construction of
   summary link advertisements, see Section 12.4.3.

   Type 3 link state advertisements are used when the destination is an
   IP network.  In this case the advertisement's Link State ID field is
   an IP network number (if necessary, the Link State ID can also have
   one or more of the network's "host" bits set; see Appendix F for
   details). When the destination is an AS boundary router, a Type 4
   advertisement is used, and the Link State ID field is the AS
   boundary router's OSPF Router ID.  (To see why it is necessary to
   advertise the location of each ASBR, consult Section 16.4.)  Other
   than the difference in the Link State ID field, the format of Type 3
   and 4 link state advertisements is identical.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |     Options   |    3 or 4     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Link State ID                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Network Mask                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     TOS       |                  metric                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |


   For stub areas, Type 3 summary link advertisements can also be used
   to describe a (per-area) default route.  Default summary routes are
   used in stub areas instead of flooding a complete set of external
   routes.  When describing a default summary route, the
   advertisement's Link State ID is always set to DefaultDestination
   (0.0.0.0) and the Network Mask is set to 0.0.0.0.




Moy                                                           [Page 192]

RFC 1583                     OSPF Version 2                   March 1994


   Separate costs may be advertised for each IP Type of Service.  The
   encoding of TOS in OSPF link state advertisements is described in
   Section 12.3.  Note that the cost for TOS 0 must be included, and is
   always listed first.  If the T-bit is reset in the advertisement's
   Option field, only a route for TOS 0 is described by the
   advertisement.  Otherwise, routes for the other TOS values are also
   described; if a cost for a certain TOS is not included, its cost
   defaults to that specified for TOS 0.

   Network Mask
       For Type 3 link state advertisements, this indicates the
       destination network's IP address mask.  For example, when
       advertising the location of a class A network the value
       0xff000000 would be used.  This field is not meaningful and must
       be zero for Type 4 link state advertisements.


   For each specified Type of Service, the following fields are
   defined.  The number of TOS routes included can be calculated from
   the link state advertisement header's length field.  Values for TOS
   0 must be specified; they are listed first.  Other values must be
   listed in order of increasing TOS encoding.  For example, the cost
   for TOS 16 must always follow the cost for TOS 8 when both are
   specified.


   TOS The Type of Service that the following cost concerns.  The
       encoding of TOS in OSPF link state advertisements is described
       in Section 12.3.

   metric
       The cost of this route.  Expressed in the same units as the
       interface costs in the router links advertisements.


















Moy                                                           [Page 193]

RFC 1583                     OSPF Version 2                   March 1994


A.4.5 AS external link advertisements

   AS external link advertisements are the Type 5 link state
   advertisements.  These advertisements are originated by AS boundary
   routers.  A separate advertisement is made for each destination
   (known to the router) which is external to the AS.  For details
   concerning the construction of AS external link advertisements, see
   Section 12.4.3.

   AS external link advertisements usually describe a particular
   external destination.  For these advertisements the Link State ID
   field specifies an IP network number (if necessary, the Link State
   ID can also have one or more of the network's "host" bits set; see
   Appendix F for details).  AS external link advertisements are also
   used to describe a default route.  Default routes are used when no
   specific route exists to the destination.  When describing a default
   route, the Link State ID is always set to DefaultDestination
   (0.0.0.0) and the Network Mask is set to 0.0.0.0.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |     Options   |      5        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Link State ID                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Network Mask                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |E|    TOS      |                  metric                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Forwarding address                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      External Route Tag                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |



   Separate costs may be advertised for each IP Type of Service.  The
   encoding of TOS in OSPF link state advertisements is described in
   Section 12.3.  Note that the cost for TOS 0 must be included, and is



Moy                                                           [Page 194]

RFC 1583                     OSPF Version 2                   March 1994


   always listed first.  If the T-bit is reset in the advertisement's
   Option field, only a route for TOS 0 is described by the
   advertisement.  Otherwise, routes for the other TOS values are also
   described; if a cost for a certain TOS is not included, its cost
   defaults to that specified for TOS 0.

   Network Mask
       The IP address mask for the advertised destination.  For
       example, when advertising a class A network the mask 0xff000000
       would be used.


   For each specified Type of Service, the following fields are
   defined.  The number of TOS routes included can be calculated from
   the link state advertisement header's length field.  Values for TOS
   0 must be specified; they are listed first.  Other values must be
   listed in order of increasing TOS encoding.  For example, the cost
   for TOS 16 must always follow the cost for TOS 8 when both are
   specified.


   bit E
       The type of external metric.  If bit E is set, the metric
       specified is a Type 2 external metric.  This means the metric is
       considered larger than any link state path.  If bit E is zero,
       the specified metric is a Type 1 external metric.  This means
       that is is comparable directly (without translation) to the link
       state metric.

   Forwarding address
       Data traffic for the advertised destination will be forwarded to
       this address.  If the Forwarding address is set to 0.0.0.0, data
       traffic will be forwarded instead to the advertisement's
       originator (i.e., the responsible AS boundary router).

   TOS The Type of Service that the following cost concerns.  The
       encoding of TOS in OSPF link state advertisements is described
       in Section 12.3.

   metric
       The cost of this route.  Interpretation depends on the external
       type indication (bit E above).

   External Route Tag
       A 32-bit field attached to each external route.  This is not
       used by the OSPF protocol itself.  It may be used to communicate
       information between AS boundary routers; the precise nature of
       such information is outside the scope of this specification.



Moy                                                           [Page 195]

RFC 1583                     OSPF Version 2                   March 1994


B. Architectural Constants

   Several OSPF protocol parameters have fixed architectural values.
   These parameters have been referred to in the text by names such as
   LSRefreshTime.  The same naming convention is used for the
   configurable protocol parameters.  They are defined in Appendix C.

   The name of each architectural constant follows, together with its
   value and a short description of its function.


   LSRefreshTime
       The maximum time between distinct originations of any particular
       link state advertisement.  When the LS age field of one of the
       router's self-originated advertisements reaches the value
       LSRefreshTime, a new instance of the link state advertisement is
       originated, even though the contents of the advertisement (apart
       from the link state header) will be the same.  The value of
       LSRefreshTime is set to 30 minutes.

   MinLSInterval
       The minimum time between distinct originations of any particular
       link state advertisement.  The value of MinLSInterval is set to
       5 seconds.

   MaxAge
       The maximum age that a link state advertisement can attain. When
       an advertisement's LS age field reaches MaxAge, it is reflooded
       in an attempt to flush the advertisement from the routing domain
       (See Section 14). Advertisements of age MaxAge are not used in
       the routing table calculation.  The value of MaxAge must be
       greater than LSRefreshTime.  The value of MaxAge is set to 1
       hour.

   CheckAge
       When the age of a link state advertisement (that is contained in
       the link state database) hits a multiple of CheckAge, the
       advertisement's checksum is verified.  An incorrect checksum at
       this time indicates a serious error.  The value of CheckAge is
       set to 5 minutes.

   MaxAgeDiff
       The maximum time dispersion that can occur, as a link state
       advertisement is flooded throughout the AS.  Most of this time
       is accounted for by the link state advertisements sitting on
       router output queues (and therefore not aging) during the
       flooding process.  The value of MaxAgeDiff is set to 15 minutes.




Moy                                                           [Page 196]

RFC 1583                     OSPF Version 2                   March 1994


   LSInfinity
       The metric value indicating that the destination described by a
       link state advertisement is unreachable. Used in summary link
       advertisements and AS external link advertisements as an
       alternative to premature aging (see Section 14.1). It is defined
       to be the 24-bit binary value of all ones: 0xffffff.

   DefaultDestination
       The Destination ID that indicates the default route.  This route
       is used when no other matching routing table entry can be found.
       The default destination can only be advertised in AS external
       link advertisements and in stub areas' type 3 summary link
       advertisements.  Its value is the IP address 0.0.0.0.






































Moy                                                           [Page 197]

RFC 1583                     OSPF Version 2                   March 1994


C. Configurable Constants

   The OSPF protocol has quite a few configurable parameters.  These
   parameters are listed below.  They are grouped into general
   functional categories (area parameters, interface parameters, etc.).
   Sample values are given for some of the parameters.

   Some parameter settings need to be consistent among groups of
   routers.  For example, all routers in an area must agree on that
   area's parameters, and all routers attached to a network must agree
   on that network's IP network number and mask.

   Some parameters may be determined by router algorithms outside of
   this specification (e.g., the address of a host connected to the
   router via a SLIP line).  From OSPF's point of view, these items are
   still configurable.

   C.1 Global parameters

       In general, a separate copy of the OSPF protocol is run for each
       area.  Because of this, most configuration parameters are
       defined on a per-area basis.  The few global configuration
       parameters are listed below.


       Router ID
           This is a 32-bit number that uniquely identifies the router
           in the Autonomous System.  One algorithm for Router ID
           assignment is to choose the largest or smallest IP address
           assigned to the router.  If a router's OSPF Router ID is
           changed, the router's OSPF software should be restarted
           before the new Router ID takes effect. Before restarting in
           order to change its Router ID, the router should flush its
           self-originated link state advertisements from the routing
           domain (see Section 14.1), or they will persist for up to
           MaxAge minutes.

       TOS capability
           This item indicates whether the router will calculate
           separate routes based on TOS.  For more information, see
           Sections 4.5 and 16.9.

   C.2 Area parameters

       All routers belonging to an area must agree on that area's
       configuration.  Disagreements between two routers will lead to
       an inability for adjacencies to form between them, with a
       resulting hindrance to the flow of routing protocol and data



Moy                                                           [Page 198]

RFC 1583                     OSPF Version 2                   March 1994


       traffic.  The following items must be configured for an area:


       Area ID
           This is a 32-bit number that identifies the area.  The Area
           ID of 0.0.0.0 is reserved for the backbone.  If the area
           represents a subnetted network, the IP network number of the
           subnetted network may be used for the Area ID.

       List of address ranges
           An OSPF area is defined as a list of address ranges. Each
           address range consists of the following items:

           [IP address, mask]
                   Describes the collection of IP addresses contained
                   in the address range. Networks and hosts are
                   assigned to an area depending on whether their
                   addresses fall into one of the area's defining
                   address ranges.  Routers are viewed as belonging to
                   multiple areas, depending on their attached
                   networks' area membership.

           Status  Set to either Advertise or DoNotAdvertise.  Routing
                   information is condensed at area boundaries.
                   External to the area, at most a single route is
                   advertised (via a summary link advertisement) for
                   each address range. The route is advertised if and
                   only if the address range's Status is set to
                   Advertise.  Unadvertised ranges allow the existence
                   of certain networks to be intentionally hidden from
                   other areas. Status is set to Advertise by default.

           As an example, suppose an IP subnetted network is to be its
           own OSPF area.  The area would be configured as a single
           address range, whose IP address is the address of the
           subnetted network, and whose mask is the natural class A, B,
           or C address mask.  A single route would be advertised
           external to the area, describing the entire subnetted
           network.

       AuType
           Each area can be configured for a separate type of
           authentication.  See Appendix D for a discussion of the
           defined authentication types.

       ExternalRoutingCapability
           Whether AS external advertisements will be flooded
           into/throughout the area.  If AS external advertisements are



Moy                                                           [Page 199]

RFC 1583                     OSPF Version 2                   March 1994


           excluded from the area, the area is called a "stub".
           Internal to stub areas, routing to external destinations
           will be based solely on a default summary route.  The
           backbone cannot be configured as a stub area.  Also, virtual
           links cannot be configured through stub areas.  For more
           information, see Section 3.6.

       StubDefaultCost
           If the area has been configured as a stub area, and the
           router itself is an area border router, then the
           StubDefaultCost indicates the cost of the default summary
           link that the router should advertise into the area.  There
           can be a separate cost configured for each IP TOS.  See
           Section 12.4.3 for more information.

   C.3 Router interface parameters

       Some of the configurable router interface parameters (such as IP
       interface address and subnet mask) actually imply properties of
       the attached networks, and therefore must be consistent across
       all the routers attached to that network.  The parameters that
       must be configured for a router interface are:


       IP interface address
           The IP protocol address for this interface.  This uniquely
           identifies the router over the entire internet.  An IP
           address is not required on serial lines.  Such a serial line
           is called "unnumbered".

       IP interface mask
           Also referred to as the subnet mask, this indicates the
           portion of the IP interface address that identifies the
           attached network.  Masking the IP interface address with the
           IP interface mask yields the IP network number of the
           attached network.  On point-to-point networks and virtual
           links, the IP interface mask is not defined. On these
           networks, the link itself is not assigned an IP network
           number, and so the addresses of each side of the link are
           assigned independently, if they are assigned at all.

       Interface output cost(s)
           The cost of sending a packet on the interface, expressed in
           the link state metric.  This is advertised as the link cost
           for this interface in the router's router links
           advertisement.  There may be a separate cost for each IP
           Type of Service.  The interface output cost(s) must always
           be greater than 0.



Moy                                                           [Page 200]

RFC 1583                     OSPF Version 2                   March 1994


       RxmtInterval
           The number of seconds between link state advertisement
           retransmissions, for adjacencies belonging to this
           interface.  Also used when retransmitting Database
           Description and Link State Request Packets.  This should be
           well over the expected round-trip delay between any two
           routers on the attached network.  The setting of this value
           should be conservative or needless retransmissions will
           result.  It will need to be larger on low speed serial lines
           and virtual links.  Sample value for a local area network: 5
           seconds.

       InfTransDelay
           The estimated number of seconds it takes to transmit a Link
           State Update Packet over this interface.  Link state
           advertisements contained in the update packet must have
           their age incremented by this amount before transmission.
           This value should take into account the transmission and
           propagation delays of the interface.  It must be greater
           than 0.  Sample value for a local area network: 1 second.

       Router Priority
           An 8-bit unsigned integer.  When two routers attached to a
           network both attempt to become Designated Router, the one
           with the highest Router Priority takes precedence.  If there
           is still a tie, the router with the highest Router ID takes
           precedence.  A router whose Router Priority is set to 0 is
           ineligible to become Designated Router on the attached
           network.  Router Priority is only configured for interfaces
           to multi-access networks.

       HelloInterval
           The length of time, in seconds, between the Hello Packets
           that the router sends on the interface.  This value is
           advertised in the router's Hello Packets.  It must be the
           same for all routers attached to a common network.  The
           smaller the HelloInterval, the faster topological changes
           will be detected, but more OSPF routing protocol traffic
           will ensue.  Sample value for a X.25 PDN network: 30
           seconds.  Sample value for a local area network: 10 seconds.

       RouterDeadInterval
           After ceasing to hear a router's Hello Packets, the number
           of seconds before its neighbors declare the router down.
           This is also advertised in the router's Hello Packets in
           their RouterDeadInterval field.  This should be some
           multiple of the HelloInterval (say 4).  This value again
           must be the same for all routers attached to a common



Moy                                                           [Page 201]

RFC 1583                     OSPF Version 2                   March 1994


           network.

       Authentication key
           This configured data allows the authentication procedure to
           generate and/or verify the authentication field in the OSPF
           header.  This value again must be the same for all routers
           attached to a common network.  For example, if the AuType
           indicates simple password, the Authentication key would be a
           64-bit password. This key would be inserted directly into
           the OSPF header when originating routing protocol packets.
           There could be a separate password for each network.

   C.4 Virtual link parameters

       Virtual links are used to restore/increase connectivity of the
       backbone.  Virtual links may be configured between any pair of
       area border routers having interfaces to a common (non-backbone)
       area.  The virtual link appears as an unnumbered point-to-point
       link in the graph for the backbone.  The virtual link must be
       configured in both of the area border routers.

       A virtual link appears in router links advertisements (for the
       backbone) as if it were a separate router interface to the
       backbone.  As such, it has all of the parameters associated with
       a router interface (see Section C.3).  Although a virtual link
       acts like an unnumbered point-to-point link, it does have an
       associated IP interface address.  This address is used as the IP
       source in OSPF protocol packets it sends along the virtual link,
       and is set dynamically during the routing table build process.
       Interface output cost is also set dynamically on virtual links
       to be the cost of the intra-area path between the two routers.
       The parameter RxmtInterval must be configured, and should be
       well over the expected round-trip delay between the two routers.
       This may be hard to estimate for a virtual link; it is better to
       err on the side of making it too large.  Router Priority is not
       used on virtual links.

       A virtual link is defined by the following two configurable
       parameters: the Router ID of the virtual link's other endpoint,
       and the (non-backbone) area through which the virtual link runs
       (referred to as the virtual link's Transit area).  Virtual links
       cannot be configured through stub areas.

   C.5 Non-broadcast, multi-access network parameters

       OSPF treats a non-broadcast, multi-access network much like it
       treats a broadcast network.  Since there may be many routers
       attached to the network, a Designated Router is selected for the



Moy                                                           [Page 202]

RFC 1583                     OSPF Version 2                   March 1994


       network.  This Designated Router then originates a networks
       links advertisement, which lists all routers attached to the
       non-broadcast network.

       However, due to the lack of broadcast capabilities, it is
       necessary to use configuration parameters in the Designated
       Router selection.  These parameters need only be configured in
       those routers that are themselves eligible to become Designated
       Router (i.e., those router's whose Router Priority for the
       network is non-zero):


       List of all other attached routers
           The list of all other routers attached to the non-broadcast
           network.  Each router is listed by its IP interface address
           on the network.  Also, for each router listed, that router's
           eligibility to become Designated Router must be defined.
           When an interface to a non-broadcast network comes up, the
           router sends Hello Packets only to those neighbors eligible
           to become Designated Router, until the identity of the
           Designated Router is discovered.

       PollInterval
           If a neighboring router has become inactive (Hello Packets
           have not been seen for RouterDeadInterval seconds), it may
           still be necessary to send Hello Packets to the dead
           neighbor.  These Hello Packets will be sent at the reduced
           rate PollInterval, which should be much larger than
           HelloInterval.  Sample value for a PDN X.25 network: 2
           minutes.

   C.6 Host route parameters

       Host routes are advertised in router links advertisements as
       stub networks with mask 0xffffffff.  They indicate either router
       interfaces to point-to-point networks, looped router interfaces,
       or IP hosts that are directly connected to the router (e.g., via
       a SLIP line).  For each host directly connected to the router,
       the following items must be configured:


       Host IP address
           The IP address of the host.

       Cost of link to host
           The cost of sending a packet to the host, in terms of the
           link state metric.  There may be multiple costs configured,
           one for each IP TOS.  However, since the host probably has



Moy                                                           [Page 203]

RFC 1583                     OSPF Version 2                   March 1994


           only a single connection to the internet, the actual
           configured cost(s) in many cases is unimportant (i.e., will
           have no effect on routing).
















































Moy                                                           [Page 204]

RFC 1583                     OSPF Version 2                   March 1994


D. Authentication

   All OSPF protocol exchanges are authenticated.  The OSPF packet
   header (see Section A.3.1) includes an authentication type field,
   and 64-bits of data for use by the appropriate authentication scheme
   (determined by the type field).

   The authentication type is configurable on a per-area basis.
   Additional authentication data is configurable on a per-interface
   basis.  For example, if an area uses a simple password scheme for
   authentication, a separate password may be configured for each
   network contained in the area.

   Authentication types 0 and 1 are defined by this specification.  All
   other authentication types are reserved for definition by the IANA
   ([email protected]).  The current list of authentication types is
   described below in Table 20.



                 AuType       Description
                 ___________________________________________
                 0            No authentication
                 1            Simple password
                 All others   Reserved for assignment by the
                              IANA ([email protected])


                     Table 20: OSPF authentication types.



   D.1 AuType 0 -- No authentication

       Use of this authentication type means that routing exchanges in
       the area are not authenticated.  The 64-bit field in the OSPF
       header can contain anything; it is not examined on packet
       reception.

   D.2 AuType 1 -- Simple password

       Using this authentication type, a 64-bit field is configured on
       a per-network basis.  All packets sent on a particular network
       must have this configured value in their OSPF header 64-bit
       authentication field.  This essentially serves as a "clear" 64-
       bit password.





Moy                                                           [Page 205]

RFC 1583                     OSPF Version 2                   March 1994


       This guards against routers inadvertently joining the area.
       They must first be configured with their attached networks'
       passwords before they can participate in the routing domain.
















































Moy                                                           [Page 206]

RFC 1583                     OSPF Version 2                   March 1994


E. Differences from RFC 1247

   This section documents the differences between this memo and RFC
   1247.  These differences include a fix for a problem involving OSPF
   virtual links, together with minor enhancements and clarifications
   to the protocol. All differences are backward-compatible.
   Implementations of this memo and of RFC 1247 will interoperate.

   E.1 A fix for a problem with OSPF Virtual links

       In RFC 1247, certain configurations of OSPF virtual links can
       cause routing loops. The root of the problem is that while there
       is an information mismatch at the boundary of any virtual link's
       Transit area, a backbone path can still cross the boundary. RFC
       1247 attempted to compensate for this information mismatch by
       adjusting any backbone path as it enters the transit area (see
       Section 16.3 in RFC 1247). However, this proved not to be
       enough. This memo fixes the problem by having all area border
       routers determine, by looking at summary links, whether better
       backbone paths can be found through the transit areas.

       This fix simplifies the OSPF virtual link logic, and consists of
       the following components:

       o   A new bit has been defined in the router links
           advertisement, called bit V. Bit V is set in a router's
           router links advertisement for Area A if and only if the
           router is an endpoint of an active virtual link that uses
           Area A as its Transit area (see Sections 12.4.1 and A.4.2).
           This enables the other routers attached to Area A to
           discover whether the area supports any virtual links (i.e.,
           is a transit area). This discovery is done during the
           calculation of Area A's shortest-path tree (see Section
           16.1).

       o   To aid in the description of the algorithm, a new parameter
           has been added to the OSPF area structure:
           TransitCapability. This parameter indicates whether the area
           supports any active virtual links. Equivalently, it
           indicates whether the area can carry traffic that neither
           originates nor terminates in the area itself.

       o   The calculation in Section 16.3 of RFC 1247 has been
           replaced. The new calculation, performed by area border
           routers only, examines the summary links belonging to all
           attached transit areas to see whether the transit areas can
           provide better paths than those already found in Sections
           16.1 and 16.2.



Moy                                                           [Page 207]

RFC 1583                     OSPF Version 2                   March 1994


       o   The incremental calculations in Section 16.5 have been
           updated as a result of the new calculations in Section 16.3.

   E.2 Supporting supernetting and subnet 0

       In RFC 1247, an OSPF router cannot originate separate AS
       external link advertisements (or separate summary link
       advertisements) for two networks that have the same address but
       different masks. This situation can arise when subnet 0 of a
       network has been assigned (a practice that is generally
       discouraged), or when using supernetting as described in [RFC
       1519] (a practice that is generally encouraged to reduce the
       size of routing tables), or even when in transition from one
       mask to another on a subnet.  Using supernetting as an example,
       you might want to aggregate the four class C networks
       192.9.4.0-192.9.7.0, advertising one route for the aggregation
       and another for the single class C network 192.9.4.0.

       The reason behind this limitation is that in RFC 1247, the Link
       State ID of AS external link advertisements and summary link
       advertisements is set equal to the described network's IP
       address. In the above example, RFC 1247 would assign both
       advertisements the Link State ID of 192.9.4.0, making them in
       essence the same advertisement. This memo fixes the problem by
       relaxing the setting of the Link State ID so that any of the
       "host" bits of the network address can also be set. This allows
       you to disambiguate advertisements for networks having the same
       address but different masks. Given an AS external link
       advertisement (or a summary link advertisement), the described
       network's address can now be obtained by masking the Link State
       ID with the network mask carried in the body of the
       advertisement.  Again using the above example, the aggregate can
       now be advertised using a Link State ID of 192.9.4.0 and the
       single class C network advertised simultaneously using the Link
       State ID of 192.9.4.255.

       Appendix F gives one possible algorithm for setting one or more
       "host" bits in the Link State ID in order to disambiguate
       advertisements. It should be noted that this is a local
       decision. Each router in an OSPF system is free to use its own
       algorithm, since only those advertisements originated by the
       router itself are affected.

       It is believed that this change will be more or less compatible
       with implementations of RFC 1247. Implementations of RFC 1247
       will probably either a) install routing table entries that won't
       be used or b) do the correct processing as outlined in this memo
       or c) mark the advertisement as unusable when presented with a



Moy                                                           [Page 208]

RFC 1583                     OSPF Version 2                   March 1994


       Link State ID that has one or more of the host bits set.
       However, in the interest of interoperability, implementations of
       this memo should only set the host bits in Link State IDs when
       absolutely necessary.

       The change affects Sections 12.1.4, 12.4.3, 12.4.5, 16.2, 16.3,
       16.4, 16.5, 16.6, A.4.4 and A.4.5.

   E.3 Obsoleting LSInfinity in router links advertisements

       The metric of LSInfinity can no longer be used in router links
       advertisements to indicate unusable links. This is being done
       for several reasons:

       o   It removes any possible confusion in an OSPF area as to just
           which routers/networks are reachable in the area. For
           example, the above virtual link fix relies on detecting the
           existence of virtual links when running the Dijkstra.
           However, when one-directional links (i.e., cost of
           LSInfinity in one direction, but not the other) are
           possible, some routers may detect the existence of virtual
           links while others may not. This may defeat the fix for the
           virtual link problem.

       o   It also helps OSPF's Multicast routing extensions (MOSPF),
           because one-way reachability can lead to places that are
           reachable via unicast but not multicast, or vice versa.

       The two prior justifications for using LSInfinity in router
       links advertisements were 1) it was a way to not support TOS
       before TOS was optional and 2) it went along with strong TOS
       interpretations. These justifications are no longer valid.
       However, LSInfinity will continue to mean "unreachable" in
       summary link advertisements and AS external link advertisements,
       as some implementations use this as an alternative to the
       premature aging procedure specified in Section 14.1.

       This change has one other side effect. When two routers are
       connected via a virtual link whose underlying path is non-TOS-
       capable, they must now revert to being non-TOS-capable routers
       themselves, instead of the previous behavior of advertising the
       non-zero TOS costs of the virtual link as LSInfinity. See
       Section 15 for details.

   E.4 TOS encoding updated

       The encoding of TOS in OSPF link state advertisements has been
       updated to reflect the new TOS value (minimize monetary cost)



Moy                                                           [Page 209]

RFC 1583                     OSPF Version 2                   March 1994


       defined by [RFC 1349]. The OSPF encoding is defined in Section
       12.3, which is identical in content to Section A.5 of [RFC
       1349].

   E.5 Summarizing routes into transit areas

       RFC 1247 mandated that routes associated with Area A are never
       summarized back into Area A. However, this memo further reduces
       the number of summary links originated by refusing to summarize
       into Area A those routes having next hops belonging to Area A.
       This is an optimization over RFC 1247 behavior when virtual
       links are present.  For example, in the area configuration of
       Figure 6, Router RT11 need only originate a single summary link
       having the (collapsed) destination N9-N11,H1 into its connected
       transit area Area 2, since all of its other eligible routes have
       next hops belonging to Area 2 (and as such only need be
       advertised by other area border routers; in this case, Routers
       RT10 and RT7). This is the logical equivalent of a Distance
       Vector protocol's split horizon logic.

       This change appears in Section 12.4.3.

   E.6 Summarizing routes into stub areas

       RFC 1247 mandated that area border routers attached to stub
       areas must summarize all inter-area routes into the stub areas.
       However, while area border routers connected to OSPF stub areas
       must originate default summary links into the stub area, they
       need not summarize other routes into the stub area. The amount
       of summarization done into stub areas can instead be put under
       configuration control. The network administrator can then make
       the trade-off between optimal routing and database size.

       This change appears in Sections 12.4.3 and 12.4.4.

   E.7 Flushing anomalous network links advertisements

       Text was added indicating that a network links advertisement
       whose Link State ID is equal to one of the router's own IP
       interface addresses should be considered to be self-originated,
       regardless of the setting of the advertisement's Advertising
       Router. If the Advertising Router of such an advertisement is
       not equal to the router's own Router ID, the advertisement
       should be flushed from the routing domain using the premature
       aging procedure specified in Section 14.1. This case should be
       rare, and it indicates that the router's Router ID has changed
       since originating the advertisement.




Moy                                                           [Page 210]

RFC 1583                     OSPF Version 2                   March 1994


       Failure to flush these anomalous advertisements could lead to
       multiple network links advertisements having the same Link State
       ID. This in turn could cause the Dijkstra calculation in Section
       16.1 to fail, since it would be impossible to tell which network
       links advertisement is valid (i.e., more recent).

       This change appears in Sections 13.4 and 14.1.

   E.8 Required Statistics appendix deleted

       Appendix D of RFC 1247, which specified a list of required
       statistics for an OSPF implementation, has been deleted. That
       appendix has been superseded by the two documents: the OSPF
       Version 2 Management Information Base and the OSPF Version 2
       Traps.

   E.9 Other changes

       The following small changes were also made to RFC 1247:

       o   When representing unnumbered point-to-point networks in
           router links advertisements, the corresponding Link Data
           field should be set to the unnumbered interface's MIB-II
           [RFC 1213] ifIndex value.

       o   A comment was added to Step 3 of the Dijkstra algorithm in
           Section 16.1. When removing vertices from the candidate
           list, and when there is a choice of vertices closest to the
           root, network vertices must be chosen before router vertices
           in order to necessarily find all equal-cost paths.

       o   A comment was added to Section 12.4.3 noting that a summary
           link advertisement cannot express a reachable destination
           whose path cost equals or exceeds LSInfinity.

       o   A comment was added to Section 15 noting that a virtual link
           whose underlying path has cost greater than hexadecimal
           0xffff (the maximum size of an interface cost in a router
           links advertisement) should be considered inoperational.

       o   An option was added to the definition of area address
           ranges, allowing the network administrator to specify that a
           particular range should not be advertised to other OSPF
           areas. This enables the existence of certain networks to be
           hidden from other areas. This change appears in Sections
           12.4.3 and C.2.





Moy                                                           [Page 211]

RFC 1583                     OSPF Version 2                   March 1994


       o   A note was added reminding implementors that bit E (the AS
           boundary router indication) should never be set in a router
           links advertisement for a stub area, since stub areas cannot
           contain AS boundary routers.  This change appears in Section
           12.4.1.














































Moy                                                           [Page 212]

RFC 1583                     OSPF Version 2                   March 1994


F. An algorithm for assigning Link State IDs

   In RFC 1247, the Link State ID in AS external link advertisements
   and summary link advertisements is set to the described network's IP
   address. This memo relaxes that requirement, allowing one or more of
   the network's host bits to be set in the Link State ID. This allows
   the router to originate separate advertisements for networks having
   the same addresses, yet different masks. Such networks can occur in
   the presence of supernetting and subnet 0s (see Section E.2 for more
   information).

   This appendix gives one possible algorithm for setting the host bits
   in Link State IDs.  The choice of such an algorithm is a local
   decision. Separate routers are free to use different algorithms,
   since the only advertisements affected are the ones that the router
   itself originates. The only requirement on the algorithms used is
   that the network's IP address should be used as the Link State ID
   (the RFC 1247 behavior) whenever possible.

   The algorithm below is stated for AS external link advertisements.
   This is only for clarity; the exact same algorithm can be used for
   summary link advertisements. Suppose that the router wishes to
   originate an AS external link advertisement for a network having
   address NA and mask NM1. The following steps are then used to
   determine the advertisement's Link State ID:

   (1) Determine whether the router is already originating an AS
       external link advertisement with Link State ID equal to NA (in
       such an advertisement the router itself will be listed as the
       advertisement's Advertising Router).  If not, set the Link State
       ID equal to NA (the RFC 1247 behavior) and the algorithm
       terminates. Otherwise,

   (2) Obtain the network mask from the body of the already existing AS
       external link advertisement. Call this mask NM2. There are then
       two cases:

       o   NM1 is longer (i.e., more specific) than NM2. In this case,
           set the Link State ID in the new advertisement to be the
           network [NA,NM1] with all the host bits set (i.e., equal to
           NA or'ed together with all the bits that are not set in NM1,
           which is network [NA,NM1]'s broadcast address).

       o   NM2 is longer than NM1. In this case, change the existing
           advertisement (having Link State ID of NA) to reference the
           new network [NA,NM1] by incrementing the sequence number,
           changing the mask in the body to NM1 and using the cost for
           the new network. Then originate a new advertisement for the



Moy                                                           [Page 213]

RFC 1583                     OSPF Version 2                   March 1994


           old network [NA,NM2], with Link State ID equal to NA or'ed
           together with the bits that are not set in NM2 (i.e.,
           network [NA,NM2]'s broadcast address).

   The above algorithm assumes that all masks are contiguous; this
   ensures that when two networks have the same address, one mask is
   more specific than the other. The algorithm also assumes that no
   network exists having an address equal to another network's
   broadcast address. Given these two assumptions, the above algorithm
   always produces unique Link State IDs. The above algorithm can also
   be reworded as follows: When originating an AS external link state
   advertisement, try to use the network number as the Link State ID.
   If that produces a conflict, examine the two networks in conflict.
   One will be a subset of the other. For the less specific network,
   use the network number as the Link State ID and for the more
   specific use the network's broadcast address instead (i.e., flip all
   the "host" bits to 1).  If the most specific network was originated
   first, this will cause you to originate two link state
   advertisements at once.

   As an example of the algorithm, consider its operation when the
   following sequence of events occurs in a single router (Router A).


   (1) Router A wants to originate an AS external link advertisement
       for [10.0.0.0,255.255.255.0]:

       (a) A Link State ID of 10.0.0.0 is used.

   (2) Router A then wants to originate an AS external link
       advertisement for [10.0.0.0,255.255.0.0]:

       (a) The advertisement for [10.0.0,0,255.255.255.0] is
           reoriginated using a new Link State ID of 10.0.0.255.

       (b) A Link State ID of 10.0.0.0 is used for
           [10.0.0.0,255.255.0.0].

   (3) Router A then wants to originate an AS external link
       advertisement for [10.0.0.0,255.0.0.0]:

       (a) The advertisement for [10.0.0.0,255.255.0.0] is reoriginated
           using a new Link State ID of 10.0.255.255.

       (b) A Link State ID of 10.0.0.0 is used for
           [10.0.0.0,255.0.0.0].





Moy                                                           [Page 214]

RFC 1583                     OSPF Version 2                   March 1994


       (c) The network [10.0.0.0,255.255.255.0] keeps its Link State ID
           of 10.0.0.255.

















































Moy                                                           [Page 215]

RFC 1583                     OSPF Version 2                   March 1994


Security Considerations

   All OSPF protocol exchanges are authenticated. This is accomplished
   through authentication fields contained in the OSPF packet header.
   For more information, see Sections 8.1, 8.2, and Appendix D.

Author's Address

   John Moy
   Proteon, Inc.
   9 Technology Drive
   Westborough, MA 01581

   Phone: 508-898-2800
   Fax:   508-898-3176
   Email: [email protected]



































Moy                                                           [Page 216]