Network Working Group                                      D. Piscitello
Request for Comments: 1561                               Core Competence
Category: Experimental                                     December 1993


                 Use of ISO CLNP in TUBA Environments

Status of this Memo

  This memo defines an Experimental Protocol for the Internet
  community.  This memo does not specify an Internet standard of any
  kind.  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Abstract

  This memo specifies a profile of the ISO/IEC 8473 Connectionless-mode
  Network Layer Protocol (CLNP, [1]) for use in conjunction with RFC
  1347, TCP/UDP over Bigger Addresses (TUBA, [2]).  It describes the
  use of CLNP to provide the lower-level service expected by
  Transmission Control Protocol (TCP, [3]) and User Datagram Protocol
  (UDP, [4]).  CLNP provides essentially the same datagram service as
  Internet Protocol (IP, [5]), but offers a means of conveying bigger
  network addresses (with additional structure, to aid routing).

  While the protocols offer nearly the same services, IP and CLNP are
  not identical. This document describes a means of preserving the
  semantics of IP information that is absent from CLNP while preserving
  consistency between the use of CLNP in Internet and OSI environments.
  This maximizes the use of already-deployed CLNP implementations.

Acknowledgments

  Many thanks to Ross Callon (Wellfleet Communications), John Curran
  (BBN), Cyndi Jung (3Com), Paul Brooks (UNSW), Brian Carpenter (CERN),
  Keith Sklower (Cal Berkeley), Dino Farinacci and Dave Katz (Cisco
  Systems), Rich Colella (NIST/CSL) and David Oran (DEC) for their
  assistance in composing this text.













Piscitello                                                      [Page 1]

RFC 1561               CLNP in TUBA Environments           December 1993


Conventions

  The following language conventions are used in the items of
  specification in this document:

        * MUST, SHALL, or MANDATORY -- the item is an absolute
          requirement of the specification.

        * SHOULD or RECOMMENDED -- the item should generally be
          followed for all but exceptional circumstances.

        * MAY or OPTIONAL -- the item is truly optional and may be
          followed or ignored according to the needs of the
          implementor.

1.  Terminology

  To the extent possible, this document is written in the language of
  the Internet. For example, packet is used rather than "protocol data
  unit", and "fragment" is used rather than "segment".  There are some
  terms that carry over from OSI; these are, for the most part, used so
  that cross-reference between this document and RFC 994 [6] or ISO/IEC
  8473 is not entirely painful.  OSI acronyms are for the most part
  avoided.

2.  Introduction

  The goal of this specification is to allow compatible and
  interoperable implementations to encapsulate TCP and UDP packets in
  CLNP data units. In a sense, it is more of a "hosts requirements"
  document for the network layer of TUBA implementations than a
  protocol specification. It is assumed that readers are familiar with
  STD 5, RFC 791, STD 5, RFC 792 [7], STD 3, RFC 1122 [8], and, to a
  lesser extent, RFC 994 and ISO/IEC 8473.  This document is compatible
  with (although more restrictive than) ISO/IEC 8473; specifically, the
  order, semantics, and processing of CLNP header fields is consistent
  between this and ISO/IEC 8473.

  [Note: RFC 994 contains the Draft International Standard version of
  ISO CLNP, in ASCII text. This is not the final version of the ISO/IEC
  protocol specification; however, it should provide sufficient
  background for the purpose of understanding the relationship of CLNP
  to IP, and the means whereby IP information is to be encoded in CLNP
  header fields. Postscript versions of ISO CLNP and associated routing
  protocols are available via anonymous FTP from merit.edu, and may be
  found in the directory /pub/ISO/IEC.





Piscitello                                                      [Page 2]

RFC 1561               CLNP in TUBA Environments           December 1993


3.  Overview of CLNP

  ISO CLNP is a datagram network protocol. It provides fundamentally
  the same underlying service to a transport layer as IP. CLNP provides
  essentially the same maximum datagram size, and for those
  circumstances where datagrams may need to traverse a network whose
  maximum packet size is smaller than the size of the datagram, CLNP
  provides mechanisms for fragmentation (data unit identification,
  fragment/total length and offset). Like IP, a checksum computed on
  the CLNP header provides a verification that the information used in
  processing the CLNP datagram has been transmitted correctly, and a
  lifetime control mechanism ("Time to Live") imposes a limit on the
  amount of time a datagram is allowed to remain in the internet
  system. As is the case in IP, a set of options provides control
  functions needed or useful in some situations but unnecessary for the
  most common communications.

  Note that the encoding of options differs between the two protocols,
  as do the means of higher level protocol identification. Note also
  that CLNP and IP differ in the way header and fragment lengths are
  represented, and that the granularity of lifetime control (time-to-
  live) is finer in CLNP.

  Some of these differences are not considered "issues", as CLNP
  provides flexibility in the way that certain options may be specified
  and encoded (this will facilitate the use and encoding of certain IP
  options without change in syntax); others, e.g., higher level
  protocol identification and timestamp, must be accommodated in a
  transparent manner in this profile for correct operation of TCP and
  UDP, and continued interoperability with OSI implementations. Section
  4 describes how header fields of CLNP must be populated to satisfy
  the needs of TCP and UDP.

  Errors detected during the processing of a CLNP datagram MAY be
  reported using CLNP Error Reports. Implementations of CLNP for TUBA
  environments MUST be capable of processing Error Reports (this is
  consistent with the 1992 edition (2)  of the ISO/IEC 8473 standard).
  Control messages (e.g., echo request/reply and redirect) are
  similarly handled in CLNP, i.e., identified as separate network layer
  packet types.  The relationship between CLNP Error and Control
  messages and Internet Control Message Protocol (ICMP, [7]), and
  issues relating to the handling of these messages is described in
  Section 5.








Piscitello                                                      [Page 3]

RFC 1561               CLNP in TUBA Environments           December 1993


  Table 1 provides a high-level comparison of CLNP to IP:

Function              | ISO CLNP               | DOD IP
----------------------|------------------------|-----------------------
Header Length         | indicated in octets    | in 32-bit words
Version Identifier    | 1 octet                | 4 bits
Lifetime (TTL)        | 500 msec units         | 1 sec units
Flags                 | Fragmentation allowed, | Don't Fragment,
                      | More Fragments         | More Fragments,
                      | Suppress Error Reports | <not defined>
Packet Type           | 5 bits                 | <not defined>
Fragment Length       | 16 bits, in octets     | 16 bits, in octets
Header Checksum       | 16-bit (Fletcher)      | 16-bit
Total Length          | 16 bits, in octets     | <not defined>
Addressing            | Variable length        | 32-bit fixed
Data Unit Identifier  | 16 bits                | 16 bits
Fragment offset       | 16 bits, in octets     | 13 bits, 8-octet units
Higher Layer Protocol | Selector in address    | Protocol
Options               | Security               | Security
                      | Priority               | TOS Precedence bits
                      | Complete Source Route  | Strict Source Route
                      | Quality of Service     | Type of Service
                      | Partial Source Route   | Loose Source Route
                      | Record Route           | Record Route
                      | Padding                | Padding
                      | <defined herein>       | Timestamp

                Table 1. Comparison of IP to CLNP

  The composition and processing of a TCP pseudo-header when CLNP is
  used to provide the lower-level service expected by TCP and UDP is
  described in Section 6.

  [Note: This experimental RFC does not discuss multicasting.
  Presently, there are proposals for multicast extensions for CLNP in
  ISO/IEC/JTC1/SC6, and a parallel effort within TUBA. A future
  revision to this RFC will incorporate any extensions to CLNP that may
  be introduced as a result of the adoption of one of these
  alternatives.]












Piscitello                                                      [Page 4]

RFC 1561               CLNP in TUBA Environments           December 1993


4.  Proposed Internet Header using CLNP

  A summary of the contents of the CLNP header, as it is proposed for
  use in TUBA environments, is illustrated in Figure 4-1:

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        ........Data Link Header........       | NLP ID        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Header Length  |     Version   | Lifetime (TTL)|Flags|  Type   |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Fragment Length        |           Checksum            |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Dest Addr Len |               Destination Address...          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |               ... Destination Address...                      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |               ... Destination Address...                      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |               ... Destination Address...                      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |               ... Destination Address...                      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | PROTO field   | Src  Addr Len |  Source  Address...           |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |               ... Source Address...                           |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |               ... Source Address...                           |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |               ... Source Address...                           |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |               ... Source Address...                           |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Source Address |   Reserved    |       Data Unit Identifier    |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |         Fragment Offset       |   Total Length of packet      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                   Options  (see Table 1)                      |
 |                                                               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                               Data                            |
 |                                                               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Note that each tick mark represents one bit position.

                    Figure 4-1. CLNP for TUBA



Piscitello                                                      [Page 5]

RFC 1561               CLNP in TUBA Environments           December 1993


 Note 1: For illustrative purposes, Figure 4-1 shows Destination
         and Source Addresses having a length of 19 octets,
         including the PROTO/reserved field. In general, addresses
         can be variable length, up to a maximum of 20 octets,
         including the PROTO/reserved field.

 Note 2: Due to differences in link layer protocols, it is not
         possible to ensure that the packet starts on an even
         alignment. Note, however, that many link level protocols
         over which CLNP is operated use a odd length link
         (e.g., IEEE 802.2). (In Figure 4-1, the rest of the CLNP
         packet is even-aligned.)

  The encoding of CLNP fields for use in TUBA environments is as
  follows.

4.1  Network Layer Protocol Identification (NLP ID)

  This one-octet field identifies this as the ISO/IEC 8473 protocol; it
  MUST set to binary 1000 0001.

4.2  Header Length Indication (Header Length)

  Header Length is the length of the CLNP header in octets, and thus
  points to the beginning of the data. The value 255 is reserved. The
  header length is the same for all fragments of the same (original)
  CLNP packet.

4.3  Version

  This one-octet field identifies the version of the protocol; it MUST
  be set to a binary value 0000 0001.

4.4  Lifetime (TTL)

  Like the TTL field of IP, this field indicates the maximum time the
  datagram is allowed to remain in the internet system.  If this field
  contains the value zero, then the datagram MUST be destroyed; a host,
  however, MUST NOT send a datagram with a lifetime value of zero.
  This field is modified in internet header processing.  The time is
  measured in units of 500 milliseconds, but since every module that
  processes a datagram MUST decrease the TTL by at least one even if it
  process the datagram in less than 500 millisecond, the TTL must be
  thought of only as an upper bound on the time a datagram may exist.
  The intention is to cause undeliverable datagrams to be discarded,
  and to bound the maximum CLNP datagram lifetime. [Like IP, the
  colloquial usage of TTL in CLNP is as a coarse hop-count.]




Piscitello                                                      [Page 6]

RFC 1561               CLNP in TUBA Environments           December 1993


  Unless otherwise directed, a host SHOULD use a value of 255 as the
  initial lifetime value.

4.5  Flags

  Three flags are defined. These occupy bits 0, 1, and 2 of the
  Flags/Type octet:

                         0   1   2
                       +---+---+---+
                       | F | M | E |
                       | P | F | R |
                       +---+---+---+

  The Fragmentation Permitted (FP) flag, when set to a value of one
  (1), is semantically equivalent to the "may fragment" value of the
  Don't Fragment field of IP; similarly, when set to zero (0), the
  Fragmentation Permitted flag is semantically equivalent to the "Don't
  Fragment" value of the Don't Fragment Flag of IP.

  [Note: If the Fragmentation Permitted field is set to the value 0,
  then the Data Unit Identifier, Fragment Offset, and Total Length
  fields are not present. This denotes a single fragment datagram. In
  such datagrams, the Fragment Length field contains the total length
  of the datagram.]

  The More Fragments flag of CLNP is semantically and syntactically the
  same as the More Fragments flag of IP; a value of one (1) indicates
  that more segments/fragments are forthcoming; a value of zero (0)
  indicates that the last octet of the original packet is present in
  this segment.

  The Error Report (ER) flag is used to suppress the generation of an
  error message by a host/router that detects an error during the
  processing of a CLNP datagram; a value of one (1) indicates that the
  host that originated this datagram thinks error reports are useful,
  and would dearly love to receive one if a host/router finds it
  necessary to discard its datagram(s).













Piscitello                                                      [Page 7]

RFC 1561               CLNP in TUBA Environments           December 1993


4.6  Type field

  The type field distinguishes data CLNP packets from Error Reports
  from Echo packets. The following values of the type field apply:

    0   1   2   3   4   5   6   7
  +---+---+---+---+---+---+---+---+
  |   flags   | 1 | 1 | 1 | 0 | 0 |  => Encoding of Type = data packet
  +---+---+---+---+---+---+---+---+
  |   flags   | 0 | 0 | 0 | 0 | 1 |  => Encoding of Type = error report
  +---+---+---+---+---+---+---+---+
  |   flags   | 1 | 1 | 1 | 1 | 0 |  => Encoding of Type = echo request
  +---+---+---+---+---+---+---+---+
  |   flags   | 1 | 1 | 1 | 1 | 1 |  => Encoding of Type = echo reply
  +---+---+---+---+---+---+---+---+

  Error Report packets are described in Section 5.

  Echo packets and their use are described in RFC 1139 [9].

4.7  Fragment Length

  Like the Total Length of the IP header, the Fragment length field
  contains the length in octets of the fragment (i.e., this datagram)
  including both header and data.

  [Note: CLNP also may also have a Total Length field, that contains
  the length of the original datagram; i.e., the sum of the length of
  the CLNP header plus the length of the data submitted by the higher
  level protocol, e.g., TCP or UDP. See Section 4.12.]

4.8  Checksum

  A checksum is computed on the header only. It MUST be verified at
  each host/router that processes the packet; if header fields are
  changed during processing (e.g., the Lifetime), the checksum is
  modified. If the checksum is not used, this field MUST be coded with
  a value of zero (0). See Appendix A for algorithms used in the
  computation and adjustment of the checksum. Readers are encouraged to
  see [10] for a description of an efficient implementation of the
  checksum algorithm.

4.9  Addressing

  CLNP uses OSI network service access point addresses (NSAPAs); NSAPAs
  serve the same identification and location functions as an IP
  address, plus the protocol selector value encoded in the IPv4
  datagram header, and  with additional hierarchy.  General purpose



Piscitello                                                      [Page 8]

RFC 1561               CLNP in TUBA Environments           December 1993


  CLNP implementations MUST handle NSAP addresses of variable length up
  to 20 octets, as defined in ISO/IEC 8348 [11]. TUBA implementations,
  especially routers, MUST accommodate these as well. Thus, for
  compatibility and interoperability with OSI use of CLNP, the initial
  octet of the Destination Address is assumed to be an Authority and
  Format Indicator, as defined in ISO/IEC 8348. NSAP addresses may be
  between 8 and 20 octets long (inclusive).

  TUBA implementations MUST support both ANSI and GOSIP style
  addresses; these are described in RFC 1237 [12], and illustrated in
  Figure 4-2.  RFC 1237 describes the ANSI/GOSIP initial domain parts
  as well as the format and composition of the domain specific part. It
  is further recommended that TUBA implementations support the
  assignment of system identifiers for TUBA/CLNP hosts defined in [13]
  for the purposes of host address autoconfiguration as described in
  [14]. Additional considerations specific to the interpretation and
  encoding of the selector part are described in sections 4.9.2 and
  4.9.4.

           +-------------+
           | <-- IDP --> |
           +----+--------+----------------------------------+
           |AFI |  IDI   |           <-- DSP -->            |
           +----+--------+----+---+-----+----+-----+---+----+
           | 47 |  0005  |DFI |AA |Rsvd | RD |Area |ID |Sel |
           +----+--------+----+---+-----+----+-----+---+----+
    octets | 1  |   2    | 1  | 3 |  2  | 2  | 2   | 6 | 1  |
           +----+--------+----+---+-----+----+-----+---+----+

                Figure 4-2 (a): GOSIP Version 2 NSAP structure.

           +-------------+
           |<-- IDP -->  |
           +----+--------+----------------------------------+
           |AFI |  IDI   |          <-- DSP -->             |
           +----+--------+----+---+-----+----+-----+---+----+
           | 39 |  840   |DFI |ORG|Rsvd | RD |Area |ID |Sel |
           +----+--------+----+---+-----+----+-----+---+----+
    octets | 1  |   2    | 1  | 3 |  2  | 2  |  2  | 6 | 1  |
           +----+--------+----+---+-----+----+-----+---+----+

            Figure 4-2 (b): ANSI NSAP address format for DCC=840









Piscitello                                                      [Page 9]

RFC 1561               CLNP in TUBA Environments           December 1993


       Definitions:
                    IDP   Initial Domain Part
                    AFI   Authority and Format Identifier
                    IDI   Initial Domain Identifier
                    DSP   Domain Specific Part
                    DFI   DSP Format Identifier
                    AA    Administration Authority
                    ORG   Organization Name (numeric form)
                    Rsvd  Reserved
                    RD    Routing Domain Identifier
                    Area  Area Identifier
                    ID    System Identifier
                    Sel   NSAP Selector

4.9.1  Destination Address Length Indicator

  This field indicates the length, in octets, of the Destination
  Address.

4.9.2  Destination Address

  This field contains an OSI NSAP address, as described in Section 4.9.
  It MUST always contain the address of the final destination. (This is
  true even for packets containing a source route option, see Section
  4.13.4).

  The final octet of the destination address MUST always contain the
  value of the PROTO field, as defined in IP.  The 8-bit PROTO field
  indicates the next level protocol used in the data portion of the
  CLNP datagram.  The values for various protocols are specified in
  "Assigned Numbers" [15]. For the PROTO field, the value of zero (0)
  is reserved.

  TUBA implementations that support TCP/UDP as well as OSI MUST use the
  protocol value (1Dh, Internet decimal 29) reserved for ISO transport
  protocol class 4.

4.9.3  Source Address Length Indicator

  This field indicates the length, in octets, of the Source Address.

4.9.4  Source Address

  This field contains an OSI NSAP address, as described in Section 4.9.

  The final octet of the source address is reserved. It MAY be set to
  the protocol field value on transmission, and shall be ignored on
  reception (the value of zero MUST not be used).



Piscitello                                                     [Page 10]

RFC 1561               CLNP in TUBA Environments           December 1993


4.10  Data Unit Identifier

  Like the Identification field of IP, this 16-bit field is used to
  distinguish segments of the same (original) packet for the purposes
  of reassembly. This field is present when the fragmentation permitted
  flag is set to one.

4.11  Fragment Offset

  Like the Fragment Offset of IP, this 16-bit is used to identify the
  relative octet position of the data in this fragment with respect to
  the start of the data submitted to CLNP; i.e., it indicates where in
  the original datagram this fragment belongs.  The offset is measured
  in octets; the value of this field shall always be a multiple of
  eight (8). This field is present when the fragmentation permitted
  flag is set to one.

4.12  Total Length

  The total length of the CLNP packet in octets is determined by the
  originator and placed in the Total Length field of the header. The
  Total Length field specifies the entire length of the original
  datagram, including both the header and data. This field MUST NOT be
  changed in any fragment of the original packet for the duration of
  the packet lifetime. This field is present when the fragmentation
  permitted flag is set to one.

4.13  Options

  All CLNP options are "triplets" of the form <parameter code>,
  <parameter length>, and <parameter value>.  Both the parameter code
  and length fields are always one octet long; the length parameter
  value, in octets, is indicated in the parameter length field. The
  following options are defined for CLNP for TUBA.

4.13.1  Security

  The value of the parameter code field is binary 1100 0101. The length
  field MUST be set to the length of a Basic (and Extended) Security IP
  option(s) as identified in RFC 1108 [16], plus 1.  Octet 1 of the
  security parameter value field -- the CLNP Security Format Code -- is
  set to a binary value 0100 0000, indicating that the remaining octets
  of the security field contain either the Basic or Basic and Extended
  Security options as identified in RFC 1108. This encoding points to
  the administration of the source address (e.g., ISOC) as the
  administration of the security option; it is thus distinguished from
  the globally unique format whose definition is reserved for OSI use.
  Implementations wishing to use a security option MUST examine the



Piscitello                                                     [Page 11]

RFC 1561               CLNP in TUBA Environments           December 1993


  PROTO field in the source address; if the value of PROTO indicates
  the CLNP client is TCP or UDP, the security option described in RFC
  1108 is used.

  [Note: If IP options change, TUBA implementations MUST follow the new
  recommendations. This RFC, or revisions thereof, must document the
  new recommendations to assure compatibility.]

  The formats of the Security option, encoded as a CLNP option, is as
  follows. The CLNP option will be used to convey the Basic and
  Extended Security options as sub-options; i.e., the exact encoding of
  the Basic/Extended Security IP Option is carried in a single CLNP
  Security Option, with the length of the CLNP Security option
  reflecting the sum of the lengths of the Basic and Extended Security
  IP Option.

  +--------+--------+--------+--------+--------+---//----+-
  |11000100|XXXXXXXX|01000000|10000010|YYYYYYYY|         |      ...
  +--------+--------+--------+--------+--------+---//----+----
   CLNP       CLNP     CLNP     BASIC   BASIC    BASIC
   OPTION    OPTION   FORMAT  SECURITY  OPTION   OPTION
   TYPE      LENGTH    CODE    TYPE     LENGTH   VALUE
   (197)                       (130)

                         ---+------------+------------+----//-------+
                    ...     |  10000101  |  000LLLLL  |             |
                       -----+------------+------------+----//-------+
                               EXTENDED     EXTENDED    EXTENDED OPTION
                               OPTION       OPTION          VALUE
                              TYPE (133)    LENGTH

  The syntax, semantics and  processing of the Basic and Extended IP
  Security Options are defined in RFC 1108.

4.13.2  Type of Service

  [Note: Early drafts recommended the use of IP Type of Service as
  specified in RFC 1349. There now appears to be a broad consensus that
  this encoding is insufficient, and there is renewed interest in
  exploring the utility of the "congestion experienced" flag available
  in the CLNP QOS Maintenance option. This RFC thus recommends the use
  of the QOS Maintenance option native to CLNP.]

  The Quality of Service Maintenance option allows the originator of a
  CLNP datagram to convey information about the quality of service
  requested by the originating upper layer process. Routers MAY use
  this information as an aid in selecting a route when more than one
  route satisfying other routing criteria is available and the



Piscitello                                                     [Page 12]

RFC 1561               CLNP in TUBA Environments           December 1993


  available routes are know to differ with respect to the following
  qualities of service: ability to preserve sequence, transit delay,
  cost, residual error probability. Through this option, a router may
  also indicate that it is experiencing congestion.

  The encoding of this option is as follows:

     +-----------+-----------+----------+
     | 1100 0011 | 0000 0001 | 110ABCDE |
     +-----------+-----------+----------+
      CLNP QOS     OPTION      QOS FLAGS
      TYPE (195)   LENGTH

  The value of the parameter code field MUST be set to a value of
  binary 1100 0011 (the CLNP Quality of Service Option Code point).
  The length field MUST be set to one (1).

  Bits 8-6 MUST be set as indicated in the figure. The flags "ABCDE"
  are interpreted as follows:

        A=1  choose path that maintains sequence over
             one that minimizes transit delay
        A=0  choose path that minimizes transit delay over
             one that maintains sequence
        B=1  congestion experienced
        B=0  no congestion to report
        C=1  choose path that minimizes transit delay over
             over low cost
        C=0  choose low cost over path that
             minimizes transit delay
        D=1  choose pathe with low residual error probability over
             one that minimizes transit delay
        D=0  choose path that minimizes transit delay over
             one with low residual error probability
        E=1  choose path with low residual error probability over
             low cost
        E=0  choose path with low cost over one with low
             residual error probability

4.13.3  Padding

  The padding field is used to lengthen the packet header to a
  convenient size. The parameter code field MUST be set to a value of
  binary 1100 1100. The value of the  parameter length field is
  variable. The parameter value MAY contain any value; the contents of
  padding fields MUST be ignored by the receiver.





Piscitello                                                     [Page 13]

RFC 1561               CLNP in TUBA Environments           December 1993


     +----------+----------+-----------+
     | 11001100 | LLLLLLLL | VVVV VVVV |
     +----------+----------+-----------+

4.13.4  Source Routing

  Like the strict source route option of IP, the Complete Source Route
  option of CLNP is used to specify the exact and entire route an
  internet datagram MUST take. Similarly, the Partial Source Route
  option of CLNP provides the equivalent of the loose source route
  option of IP; i.e., a means for the source of an internet datagram to
  supply (some) routing information to be used by gateways in
  forwarding the internet datagram towards its destination. The
  identifiers encoded in this option are network entity titles, which
  are semantically and syntactically the same as NSAPAs and which can
  be used to unambiguously identify a network entity in an intermediate
  system (router).

  The parameter code for Source Routing is binary 1100 1000. The length
  of the source routing parameter value is variable.

  The first octet of the parameter value is a type code, indicating
  Complete Source Routing (binary 0000 0001) or Partial Source Routing
  (binary 0000 0000). The second octet identifies the offset of the
  next network entity title to be processed in the list, relative to
  the start of the parameter (i.e., a value of 3 is used to identify
  the first address in the list). The offset value is modified by each
  router using a complete source route or by each listed router using a
  partial source route to point to the next NET.

  The third octet begins the list of network entity titles. Only the
  NETs of intermediate systems are included in the list; the source and
  destination addresses shall not be included.  The list consists of
  variable length network entity title entries; the first octet of each
  entry gives the length of the network entity title that comprises the
  remainder of the entry.

4.13.5  Record Route

  Like the IP record route option, the Record route option of CLNP is
  used to trace the route a CLNP datagram takes.  A recorded route
  consists of a list of network entity titles (see Source Routing). The
  list is constructed as the CLNP datagram is forwarded along a path
  towards its final destination. Only titles of intermediate systems
  (routers) that processed the datagram are included in the recorded
  route; the network entity title of the originator of the datagram
  SHALL NOT be recorded in the list.




Piscitello                                                     [Page 14]

RFC 1561               CLNP in TUBA Environments           December 1993


  The parameter code for Record Route is binary 1100 1011. The length
  of the record route parameter value is variable.

  The first octet of the parameter value is a type code, indicating
  Complete Recording of Route (0000 0001) or Partial Recording of Route
  (0000 0000). When complete recording of route is selected, reassembly
  at intermediate systems MAY be performed only when all fragments of a
  given datagram followed the same route; partial recording of route
  eliminates or "loosens" this constraint.

  The second octet identifies the offset where the next network entity
  title entry (see Source Routing) MAY be recorded (i.e., the end of
  the current list), relative to the start of the parameter.  A value
  of 3 is used to identify the initial recording position. The process
  of recording a network entity title entry is as follows. A router
  adds the length of its network entity title entry to the value of
  record route offset and compares this new value to the record route
  list length indicator; if the value does not exceed the length of the
  list, entity title entry is recorded, and the offset value is
  incremented by the value of the length of the network entity title
  entry. Otherwise, the recording of route is terminated, and the
  router MUST not record its network entity title in the option. If
  recording of route has been terminated, this (second) octet has a
  value 255.

  The third octet begins the list of network entity titles.

4.13.6  Timestamp

  [Note: There is no timestamp option in edition 1 of ISO/IEC 8473, but
  the option has been proposed and submitted to ISO/IEC JTC1/SC6.]

  The parameter code value 1110 1110 is used to identify the Timestamp
  option; the syntax and semantics of Timestamp are identical to that
  defined in IP.

  The Timestamp Option is defined in STD 5, RFC 791. The CLNP parameter
  code 1110 1110 is used rather than the option type code 68 to
  identify the Timestamp option, and  the parameter value conveys the
  option length. Octet 1 of the Timestamp parameter value shall be
  encoded as the pointer (octet 3 of IP Timestamp); octet 2 of the
  parameter value shall be encoded as the overflow/format octet (octet
  4 of IP Timestamp); the remaining octets shall be used to encode the
  timestamp list. The size is fixed by the source, and cannot be
  changed to accommodate additional timestamp information.






Piscitello                                                     [Page 15]

RFC 1561               CLNP in TUBA Environments           December 1993


       +--------+--------+--------+--------+
       |11101110| length | pointer|oflw|flg|
       +--------+--------+--------+--------+
       |         network entity title      |
       +--------+--------+--------+--------+
       |             timestamp             |
       +--------+--------+--------+--------+
       |                 .                 |
                         .

5.  Error Reporting and Control Message Handling

  CLNP and IP  differ in the way in which errors are reported to hosts.
  In IP environments, the Internet Control Message Protocol (ICMP, [7])
  is used to return (error) messages to hosts that originate packets
  that cannot be processed. ICMP messages are transmitted as user data
  in IP datagrams. Unreachable destinations, incorrectly composed IP
  datagram headers, IP datagram discards due to congestion, and
  lifetime/reassembly time exceeded are reported; the complete internet
  header that caused the error plus (at least) 8 octets of the segment
  contained in that IP datagram are returned to the sender as part of
  the ICMP error message. For certain errors, e.g., incorrectly
  composed IP datagram headers, the specific octet which caused the
  problem is identified.

  In CLNP environments, an unique message type, the Error Report type,
  is used in the network layer protocol header to distinguish Error
  Reports from CLNP datagrams. CLNP Error Reports are generated on
  detection of the same types of errors as with ICMP.  Like ICMP error
  messages, the complete CLNP header that caused the error is returned
  to the sender in the data portion of the Error Report.
  Implementations SHOULD return at least 8 octets of the datagram
  contained in the CLNP datagram to the sender of the original CLNP
  datagram. Here too, for certain errors, the specific octet which
  caused the problem is identified.

  A summary of the contents of the CLNP Error Report, as it is proposed
  for use in TUBA environments, is illustrated in Figure 5-1:













Piscitello                                                     [Page 16]

RFC 1561               CLNP in TUBA Environments           December 1993


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        ........Data Link Header........       | NLP ID        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Header Length  |     Version   | Lifetime (TTL)| 000 | Type=ER |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  TOTAL Length of Error Report |           Checksum            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Dest Addr Len |               Destination Address...          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               ... Destination Address...                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               ... Destination Address...                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               ... Destination Address...                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               ... Destination Address...                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | PROTO field   | Src  Addr Len |  Source  Address...           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               ... Source Address...                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               ... Source Address...                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               ... Source Address...                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               ... Source Address...                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       ... Source Address      | Reason for Discard (type/len) |
  |                               |   1100 0001   | 0000 0010     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Reason for Discard        |    Options...                 |
  |   code        |   pointer     |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           Options                             |
  :                                                               :
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            Data                               |
  :                                                               :
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Note that each tick mark represents one bit position.

                     Figure 5-1. Error Report Format




Piscitello                                                     [Page 17]

RFC 1561               CLNP in TUBA Environments           December 1993


5.1  Rules for processing an Error Report

  The following is a summary of the rules for processing an Error
  Report:

        * An Error Report is not generated to report a problem
          encountered while processing an Error Report.

        * Error Reports MAY NOT be fragmented (hence, the
          fragmentation part is absent).

        * The Reason for Discard Code field is populated with one of
          the values from Table 5-1.

        * The Pointer field is populated with number of the first
          octet of the field that caused the Error Report to be
          generated. If it is not possible to identify the offending
          octet, this field MUST be zeroed.

        * If the Priority or Type of Service option is present in the
          errored datagram, the Error Report MUST specify the same
          option, using the value specified in the original datagram.

        * If the Security option is present in the errored datagram,
          the Error Report MUST specify the same option, using the
          value specified in the original datagram; if the Security
          option is not supported by the intermediate system, no Error
          Report is to be generated (i.e., "silently discard" the
          received datagram).

        * If the Complete Source Route option is specified in the
          errored datagram, the Error Report MUST compose a reverse of
          that route, and return the datagram along the same path.


















Piscitello                                                     [Page 18]

RFC 1561               CLNP in TUBA Environments           December 1993


5.2  Comparison of ICMP and CLNP Error Messages

  Table 5-1 provides a loose comparison of ICMP message types and codes
  to CLNP Error Type Codes (values in Internet decimal):

CLNP Error Type  Codes            | ICMP Message           (Type, Code)
----------------------------------|------------------------------------
Reason not specified          (0) | Parameter Problem           (12, 0)
Protocol Procedure Error      (1) | Parameter Problem           (12, 0)
Incorrect Checksum            (2) | Parameter Problem           (12, 0)
PDU Discarded--Congestion     (3) | Source Quench                (4, 0)
Header Syntax Error           (4) | Parameter problem           (12, 0)
Need to Fragment could not    (5) | Frag needed, DF set          (3, 4)
Incomplete PDU received       (6) | Parameter Problem           (12, 0)
Duplicate Option              (7) | Parameter Problem           (12, 0)
Destination Unreachable     (128) | Dest Unreachable,Net unknown (3, 0)
Destination Unknown         (129) | Dest Unreachable,host unknown(3, 1)
Source Routing Error        (144) | Source Route failed          (3, 5)
Source Route Syntax Error   (145) | Source Route failed          (3, 5)
Unknown Address in Src Route(146) | Source Route failed          (3, 5)
Path not acceptable         (147) | Source Route failed          (3, 5)
Lifetime expired            (160) | TTL exceeded                (11, 0)
Reassembly Lifetime Expired (161) | Reassembly time exceeded    (11, 1)
Unsupported Option          (176) | Parameter Problem           (12, 0)
Unsupported Protocol Version(177) | Parameter problem           (12, 0)
Unsupported Security Option (178) | Parameter problem           (12, 0)
Unsupported Src Rte Option  (179) | Parameter problem           (12, 0)
Unsupported Rcrd Rte        (180) | Parameter problem           (12, 0)
Reassembly interference     (192) | Reassembly time exceeded    (11, 1)

   Table 5-1. Comparison of CLNP Error Reports to ICMP Error Messages

Note 1: The current accepted practice for IP is that source quench
        should not be used; if it is used, implementations MUST
        not return a source quench packet for every relevant packet.
        TUBA/CLNP implementations are encouraged to adhere to these
        guidelines.

Note 2: There are no corresponding CLNP Error Report Codes for the
        following ICMP error message types:
        - Protocol Unreachable  (3, 2)
        - Port Unreachable      (3, 3)
        [Note: Additional error code points available in the ER type
             code block can be used to identify these message types.]







Piscitello                                                     [Page 19]

RFC 1561               CLNP in TUBA Environments           December 1993


6.  Pseudo-Header Considerations

  A checksum is computed on UDP and TCP segments to verify the
  integrity of the UDP/TCP segment. To further verify that the UDP/TCP
  segment has arrived at its correct destination, a pseudo-header
  consisting of information used in the delivery of the UDP/TCP segment
  is composed and included in the checksum computation.

  To compute the checksum on a UDP or TCP segment prior to
  transmission, implementations MUST compose a pseudo-header to the
  UDP/TCP segment consisting of the following information that will be
  used when composing the CLNP datagram:

        * Destination Address Length Indicator

        * Destination Address (including PROTO field)

        * Source Address Length Indicator

        * Source Address (including Reserved field)

        * A two-octet encoding of the Protocol value

        * TCP/UDP segment length

  If the length of the {source address length field + source address +
  destination address field + destination address } is not an integral
  number of octets, a trailing 0x00 nibble is padded. If GOSIP
  compliant NSAP addresses are used, this never happens (this is known
  as the Farinacci uncertainty principle).  The last byte in the
  Destination Address has the value 0x06 for TCP and 0x11 for UDP, and
  the Protocol field is encoded 0x0006 for TCP and 0x0011 for UDP.  If
  needed, an octet of zero is added to the end of the UDP/TCP segment
  to pad the datagram to a length that is a multiple of 16 bits.

  [Note: the pseudoheader is encoded in this manner to expedite
  processing, as it allows implementations to grab a contiguous stream
  of octets beginning at the destination address length indicator and
  terminating at the final octet of the source address; the PROTOCOL
  field is present to have a consistent representation across IPv4 and
  CLNP/TUBA implementations.]










Piscitello                                                     [Page 20]

RFC 1561               CLNP in TUBA Environments           December 1993


  Figure 6-1 illustrates the resulting pseudo-header when both source
  and destination addresses are maximum length.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Dest Addr Len |               Destination Address...          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               ... Destination Address...                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               ... Destination Address...                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               ... Destination Address...                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               ... Destination Address...                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    (PROTO)    | Src  Addr Len |  Source  Address...           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               ... Source Address...                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               ... Source Address...                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               ... Source Address...                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               ... Source Address...                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | ...           | (Reserved)    |    Protocol                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   UDP/TCP segment length      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                          Figure 6-1. Pseudo-header

7.  Security Considerations

  ISO CLNP is an unreliable network datagram protocol, and is subject
  to the same security considerations as Internet Protocol ([5], [8]);
  methods for conveying the same security handling information
  recommended for IP are described in Section 4.13.1, Security Option.












Piscitello                                                     [Page 21]

RFC 1561               CLNP in TUBA Environments           December 1993


8.  Author's Address

  David M. Piscitello
  Core Competence
  1620 Tuckerstown Road
  Dresher, PA 19025

  Phone: 215-830-0692
  EMail: [email protected]

9.  References

  [1] ISO/IEC 8473-1992. International Standards Organization -- Data
      Communications -- Protocol for Providing the Connectionless
      Network Service, Edition 2.

  [2] Callon, R., "TCP/UDP over Bigger Addresses (TUBA)", RFC 1347,
      Internet Architecture Board, May 1992.

  [3] Postel, J., "Transmission Control Protocol (TCP)", STD 7, RFC
      793, USC/Information Sciences Institute, September 1981.

  [4] Postel, J., "User Datagram Protocol (UDP)", STD 6, RFC 768,
      USC/Information Sciences Institute, September 1981.

  [5] Postel, J., "Internet Protocol (IP)", STD 5, RFC 791,
      USC/Information Sciences Institute, September 1981.

  [6] Chapin, L., "ISO DIS 8473, Protocol for Providing the
      Connectionless Network Service", RFC 994, March 1986.

  [7] Postel, J., "Internet Control Message Protocol (ICMP)", STD 5,
      RFC 792, USC/Information Sciences Institute, September 1981.

  [8] Braden, R., Editor, "Requirements for Internet Hosts -
      Communication Layers", STD 3, RFC 1122, Internet Engineering Task
      Force, October 1989.

  [9] Hagens, R., "An Echo Function for ISO 8473", RFC 1139, IETF-OSI
      Working Group, May 1993.

 [10] Sklower, K., "Improving the Efficiency of the ISO Checksum
      Calculation" ACM SIGCOMM CCR 18, no. 5 (October 1989):32-43.

 [11] ISO/IEC 8348-1992. International Standards Organization--Data
      Communications--OSI Network Layer Service and Addressing.





Piscitello                                                     [Page 22]

RFC 1561               CLNP in TUBA Environments           December 1993


 [12] Callon, R., Gardner, E., and R. Hagens, "Guidelines for OSI NSAP
      Allocation in the Internet", RFC 1237, NIST, Mitre, DEC, July
      1991.

 [13] Piscitello, D., "Assignment of System Identifiers for TUBA/CLNP
      Hosts", RFC 1526, Bellcore, September 1993.

 [14] ISO/IEC 9542:1988/PDAM 1. Information Processing Systems -- Data
      Communications -- ES/IS Routeing Protocol for use with ISO CLNP
      -- Amendment 1: Dynamic Discovery of OSI NSAP Addresses by End
      Systems.

 [15] Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC 1340
      USC/Information Sciences Institute, July 1992.

 [16] Kent, S., "Security Option for IP", RFC 1108, BBN Communications,
      November 1991.


































Piscitello                                                     [Page 23]

RFC 1561               CLNP in TUBA Environments           December 1993


Appendix A. Checksum Algorithms (from ISO/IEC 8473)

      Symbols used in algorithms:

       c0, c1          variables used in the algorithms
       i               position of octet in header (first
                       octet is i=1)
       Bi              value of octet i in the header
       n               position of first octet of checksum (n=8)
       L               Length of header in octets
       X               Value of octet one of the checksum parameter
       Y               Value of octet two of the checksum parameter

  Addition is performed in one of the two following modes:

        * modulo 255 arithmetic;

        * eight-bit one's complement arithmetic;

  The algorithm for Generating the Checksum Parameter Value is as
  follows:

 A.  Construct the complete header with the value of the
     checksum parameter field set to zero; i.e., c0 <- c1 <- 0;

 B.  Process each octet of the header sequentially from i=1 to L
     by:

        * c0 <- c0 + Bi

        * c1 <- c1 + c0

 C.  Calculate X, Y as follows:

        * X <- (L - 8)(c0 - c1) modulo 255

        * Y <- (L - 7)(-C0) + c1

 D.  If X = 0, then X <- 255

 E.  If Y = 0, then Y <- 255

 F.  place the values of X and Y in octets 8 and 9 of the
     header, respectively

  The algorithm for checking the value of the checksum parameter is as
  follows:




Piscitello                                                     [Page 24]

RFC 1561               CLNP in TUBA Environments           December 1993


 A.  If octets 8 and 9 of the header both contain zero, then the
     checksum calculation has succeeded; else if either but not
     both of these octets contains the value zero then the
     checksum is incorrect; otherwise, initialize: c0 <- c1 <- 0

 B.  Process each octet of the header sequentially from i = 1 to
     L by:

        * c0 <- c0 + Bi

        * c1 <- c1 + c0

 C.  When all the octets have been processed, if c0 = c1 = 0,
     then the checksum calculation has succeeded, else it has
     failed.

  There is a separate algorithm to adjust the checksum parameter value
  when a octet has been modified (such as the TTL). Suppose the value
  in octet k is changed by Z = newvalue - oldvalue. If X and Y denote
  the checksum values held in octets n and n+1 respectively, then
  adjust X and Y as follows:

  If X = 0 and Y = 0 then do nothing, else if X = 0 or Y = 0 then the
  checksum is incorrect, else:

  X <- (k - n - 1)Z + X   modulo 255

  Y <- (n - k)Z + Y       modulo 255

  If X = 0, then X <- 255; if Y = 0, then Y <- 255.

  In the example, n = 89; if the octet altered is the TTL (octet 4),
  then k = 4. For the case where the lifetime is decreased by one unit
  (Z = -1), the assignment statements for the new values of X and Y in
  the immediately preceeding algorithm simplify to:

  X <- X + 5      Modulo 255

  Y <- Y - 4      Modulo 255












Piscitello                                                     [Page 25]