Network Working Group                                            J. Kohl
Request for Comments: 1510                 Digital Equipment Corporation
                                                              C. Neuman
                                                                    ISI
                                                         September 1993


           The Kerberos Network Authentication Service (V5)

Status of this Memo

  This RFC specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" for the standardization state and status
  of this protocol.  Distribution of this memo is unlimited.

Abstract

  This document gives an overview and specification of Version 5 of the
  protocol for the Kerberos network authentication system. Version 4,
  described elsewhere [1,2], is presently in production use at MIT's
  Project Athena, and at other Internet sites.

Overview

  Project Athena, Athena, Athena MUSE, Discuss, Hesiod, Kerberos,
  Moira, and Zephyr are trademarks of the Massachusetts Institute of
  Technology (MIT).  No commercial use of these trademarks may be made
  without prior written permission of MIT.

  This RFC describes the concepts and model upon which the Kerberos
  network authentication system is based. It also specifies Version 5
  of the Kerberos protocol.

  The motivations, goals, assumptions, and rationale behind most design
  decisions are treated cursorily; for Version 4 they are fully
  described in the Kerberos portion of the Athena Technical Plan [1].
  The protocols are under review, and are not being submitted for
  consideration as an Internet standard at this time.  Comments are
  encouraged.  Requests for addition to an electronic mailing list for
  discussion of Kerberos, [email protected], may be addressed to
  [email protected].  This mailing list is gatewayed onto the
  Usenet as the group comp.protocols.kerberos.  Requests for further
  information, including documents and code availability, may be sent
  to [email protected].





Kohl & Neuman                                                   [Page 1]

RFC 1510                        Kerberos                  September 1993


Background

  The Kerberos model is based in part on Needham and Schroeder's
  trusted third-party authentication protocol [3] and on modifications
  suggested by Denning and Sacco [4].  The original design and
  implementation of Kerberos Versions 1 through 4 was the work of two
  former Project Athena staff members, Steve Miller of Digital
  Equipment Corporation and Clifford Neuman (now at the Information
  Sciences Institute of the University of Southern California), along
  with Jerome Saltzer, Technical Director of Project Athena, and
  Jeffrey Schiller, MIT Campus Network Manager.  Many other members of
  Project Athena have also contributed to the work on Kerberos.
  Version 4 is publicly available, and has seen wide use across the
  Internet.

  Version 5 (described in this document) has evolved from Version 4
  based on new requirements and desires for features not available in
  Version 4.  Details on the differences between Kerberos Versions 4
  and 5 can be found in [5].

Table of Contents

  1. Introduction .......................................    5
  1.1. Cross-Realm Operation ............................    7
  1.2. Environmental assumptions ........................    8
  1.3. Glossary of terms ................................    9
  2. Ticket flag uses and requests ......................   12
  2.1. Initial and pre-authenticated tickets ............   12
  2.2. Invalid tickets ..................................   12
  2.3. Renewable tickets ................................   12
  2.4. Postdated tickets ................................   13
  2.5. Proxiable and proxy tickets ......................   14
  2.6. Forwardable tickets ..............................   15
  2.7. Other KDC options ................................   15
  3. Message Exchanges ..................................   16
  3.1. The Authentication Service Exchange ..............   16
  3.1.1. Generation of KRB_AS_REQ message ...............   17
  3.1.2. Receipt of KRB_AS_REQ message ..................   17
  3.1.3. Generation of KRB_AS_REP message ...............   17
  3.1.4. Generation of KRB_ERROR message ................   19
  3.1.5. Receipt of KRB_AS_REP message ..................   19
  3.1.6. Receipt of KRB_ERROR message ...................   20
  3.2. The Client/Server Authentication Exchange ........   20
  3.2.1. The KRB_AP_REQ message .........................   20
  3.2.2. Generation of a KRB_AP_REQ message .............   20
  3.2.3. Receipt of KRB_AP_REQ message ..................   21
  3.2.4. Generation of a KRB_AP_REP message .............   23
  3.2.5. Receipt of KRB_AP_REP message ..................   23



Kohl & Neuman                                                   [Page 2]

RFC 1510                        Kerberos                  September 1993


  3.2.6. Using the encryption key .......................   24
  3.3. The Ticket-Granting Service (TGS) Exchange .......   24
  3.3.1. Generation of KRB_TGS_REQ message ..............   25
  3.3.2. Receipt of KRB_TGS_REQ message .................   26
  3.3.3. Generation of KRB_TGS_REP message ..............   27
  3.3.3.1. Encoding the transited field .................   29
  3.3.4. Receipt of KRB_TGS_REP message .................   31
  3.4. The KRB_SAFE Exchange ............................   31
  3.4.1. Generation of a KRB_SAFE message ...............   31
  3.4.2. Receipt of KRB_SAFE message ....................   32
  3.5. The KRB_PRIV Exchange ............................   33
  3.5.1. Generation of a KRB_PRIV message ...............   33
  3.5.2. Receipt of KRB_PRIV message ....................   33
  3.6. The KRB_CRED Exchange ............................   34
  3.6.1. Generation of a KRB_CRED message ...............   34
  3.6.2. Receipt of KRB_CRED message ....................   34
  4. The Kerberos Database ..............................   35
  4.1. Database contents ................................   35
  4.2. Additional fields ................................   36
  4.3. Frequently Changing Fields .......................   37
  4.4. Site Constants ...................................   37
  5. Message Specifications .............................   38
  5.1. ASN.1 Distinguished Encoding Representation ......   38
  5.2. ASN.1 Base Definitions ...........................   38
  5.3. Tickets and Authenticators .......................   42
  5.3.1. Tickets ........................................   42
  5.3.2. Authenticators .................................   47
  5.4. Specifications for the AS and TGS exchanges ......   49
  5.4.1. KRB_KDC_REQ definition .........................   49
  5.4.2. KRB_KDC_REP definition .........................   56
  5.5. Client/Server (CS) message specifications ........   58
  5.5.1. KRB_AP_REQ definition ..........................   58
  5.5.2. KRB_AP_REP definition ..........................   60
  5.5.3. Error message reply ............................   61
  5.6. KRB_SAFE message specification ...................   61
  5.6.1. KRB_SAFE definition ............................   61
  5.7. KRB_PRIV message specification ...................   62
  5.7.1. KRB_PRIV definition ............................   62
  5.8. KRB_CRED message specification ...................   63
  5.8.1. KRB_CRED definition ............................   63
  5.9. Error message specification ......................   65
  5.9.1. KRB_ERROR definition ...........................   66
  6. Encryption and Checksum Specifications .............   67
  6.1. Encryption Specifications ........................   68
  6.2. Encryption Keys ..................................   71
  6.3. Encryption Systems ...............................   71
  6.3.1. The NULL Encryption System (null) ..............   71
  6.3.2. DES in CBC mode with a CRC-32 checksum (descbc-crc)71



Kohl & Neuman                                                   [Page 3]

RFC 1510                        Kerberos                  September 1993


  6.3.3. DES in CBC mode with an MD4 checksum (descbc-md4)  72
  6.3.4. DES in CBC mode with an MD5 checksum (descbc-md5)  72
  6.4. Checksums ........................................   74
  6.4.1. The CRC-32 Checksum (crc32) ....................   74
  6.4.2. The RSA MD4 Checksum (rsa-md4) .................   75
  6.4.3. RSA MD4 Cryptographic Checksum Using DES
  (rsa-md4-des) .........................................   75
  6.4.4. The RSA MD5 Checksum (rsa-md5) .................   76
  6.4.5. RSA MD5 Cryptographic Checksum Using DES
  (rsa-md5-des) .........................................   76
  6.4.6. DES cipher-block chained checksum (des-mac)
  6.4.7. RSA MD4 Cryptographic Checksum Using DES
  alternative (rsa-md4-des-k) ...........................   77
  6.4.8. DES cipher-block chained checksum alternative
  (des-mac-k) ...........................................   77
  7. Naming Constraints .................................   78
  7.1. Realm Names ......................................   77
  7.2. Principal Names ..................................   79
  7.2.1. Name of server principals ......................   80
  8. Constants and other defined values .................   80
  8.1. Host address types ...............................   80
  8.2. KDC messages .....................................   81
  8.2.1. IP transport ...................................   81
  8.2.2. OSI transport ..................................   82
  8.2.3. Name of the TGS ................................   82
  8.3. Protocol constants and associated values .........   82
  9. Interoperability requirements ......................   86
  9.1. Specification 1 ..................................   86
  9.2. Recommended KDC values ...........................   88
  10. Acknowledgments ...................................   88
  11. References ........................................   89
  12. Security Considerations ...........................   90
  13. Authors' Addresses ................................   90
  A. Pseudo-code for protocol processing ................   91
  A.1. KRB_AS_REQ generation ............................   91
  A.2. KRB_AS_REQ verification and KRB_AS_REP generation    92
  A.3. KRB_AS_REP verification ..........................   95
  A.4. KRB_AS_REP and KRB_TGS_REP common checks .........   96
  A.5. KRB_TGS_REQ generation ...........................   97
  A.6. KRB_TGS_REQ verification and KRB_TGS_REP generation  98
  A.7. KRB_TGS_REP verification .........................  104
  A.8. Authenticator generation .........................  104
  A.9. KRB_AP_REQ generation ............................  105
  A.10. KRB_AP_REQ verification .........................  105
  A.11. KRB_AP_REP generation ...........................  106
  A.12. KRB_AP_REP verification .........................  107
  A.13. KRB_SAFE generation .............................  107
  A.14. KRB_SAFE verification ...........................  108



Kohl & Neuman                                                   [Page 4]

RFC 1510                        Kerberos                  September 1993


  A.15. KRB_SAFE and KRB_PRIV common checks .............  108
  A.16. KRB_PRIV generation .............................  109
  A.17. KRB_PRIV verification ...........................  110
  A.18. KRB_CRED generation .............................  110
  A.19. KRB_CRED verification ...........................  111
  A.20. KRB_ERROR generation ............................  112

1.  Introduction

  Kerberos provides a means of verifying the identities of principals,
  (e.g., a workstation user or a network server) on an open
  (unprotected) network.  This is accomplished without relying on
  authentication by the host operating system, without basing trust on
  host addresses, without requiring physical security of all the hosts
  on the network, and under the assumption that packets traveling along
  the network can be read, modified, and inserted at will. (Note,
  however, that many applications use Kerberos' functions only upon the
  initiation of a stream-based network connection, and assume the
  absence of any "hijackers" who might subvert such a connection.  Such
  use implicitly trusts the host addresses involved.)  Kerberos
  performs authentication under these conditions as a trusted third-
  party authentication service by using conventional cryptography,
  i.e., shared secret key.  (shared secret key - Secret and private are
  often used interchangeably in the literature.  In our usage, it takes
  two (or more) to share a secret, thus a shared DES key is a secret
  key.  Something is only private when no one but its owner knows it.
  Thus, in public key cryptosystems, one has a public and a private
  key.)

  The authentication process proceeds as follows: A client sends a
  request to the authentication server (AS) requesting "credentials"
  for a given server.  The AS responds with these credentials,
  encrypted in the client's key.  The credentials consist of 1) a
  "ticket" for the server and 2) a temporary encryption key (often
  called a "session key").  The client transmits the ticket (which
  contains the client's identity and a copy of the session key, all
  encrypted in the server's key) to the server.  The session key (now
  shared by the client and server) is used to authenticate the client,
  and may optionally be used to authenticate the server.  It may also
  be used to encrypt further communication between the two parties or
  to exchange a separate sub-session key to be used to encrypt further
  communication.

  The implementation consists of one or more authentication servers
  running on physically secure hosts.  The authentication servers
  maintain a database of principals (i.e., users and servers) and their
  secret keys. Code libraries provide encryption and implement the
  Kerberos protocol.  In order to add authentication to its



Kohl & Neuman                                                   [Page 5]

RFC 1510                        Kerberos                  September 1993


  transactions, a typical network application adds one or two calls to
  the Kerberos library, which results in the transmission of the
  necessary messages to achieve authentication.

  The Kerberos protocol consists of several sub-protocols (or
  exchanges).  There are two methods by which a client can ask a
  Kerberos server for credentials.  In the first approach, the client
  sends a cleartext request for a ticket for the desired server to the
  AS. The reply is sent encrypted in the client's secret key. Usually
  this request is for a ticket-granting ticket (TGT) which can later be
  used with the ticket-granting server (TGS).  In the second method,
  the client sends a request to the TGS.  The client sends the TGT to
  the TGS in the same manner as if it were contacting any other
  application server which requires Kerberos credentials.  The reply is
  encrypted in the session key from the TGT.

  Once obtained, credentials may be used to verify the identity of the
  principals in a transaction, to ensure the integrity of messages
  exchanged between them, or to preserve privacy of the messages.  The
  application is free to choose whatever protection may be necessary.

  To verify the identities of the principals in a transaction, the
  client transmits the ticket to the server.  Since the ticket is sent
  "in the clear" (parts of it are encrypted, but this encryption
  doesn't thwart replay) and might be intercepted and reused by an
  attacker, additional information is sent to prove that the message
  was originated by the principal to whom the ticket was issued.  This
  information (called the authenticator) is encrypted in the session
  key, and includes a timestamp.  The timestamp proves that the message
  was recently generated and is not a replay.  Encrypting the
  authenticator in the session key proves that it was generated by a
  party possessing the session key.  Since no one except the requesting
  principal and the server know the session key (it is never sent over
  the network in the clear) this guarantees the identity of the client.

  The integrity of the messages exchanged between principals can also
  be guaranteed using the session key (passed in the ticket and
  contained in the credentials).  This approach provides detection of
  both replay attacks and message stream modification attacks.  It is
  accomplished by generating and transmitting a collision-proof
  checksum (elsewhere called a hash or digest function) of the client's
  message, keyed with the session key.  Privacy and integrity of the
  messages exchanged between principals can be secured by encrypting
  the data to be passed using the session key passed in the ticket, and
  contained in the credentials.

  The authentication exchanges mentioned above require read-only access
  to the Kerberos database.  Sometimes, however, the entries in the



Kohl & Neuman                                                   [Page 6]

RFC 1510                        Kerberos                  September 1993


  database must be modified, such as when adding new principals or
  changing a principal's key.  This is done using a protocol between a
  client and a third Kerberos server, the Kerberos Administration
  Server (KADM).  The administration protocol is not described in this
  document. There is also a protocol for maintaining multiple copies of
  the Kerberos database, but this can be considered an implementation
  detail and may vary to support different database technologies.

1.1.  Cross-Realm Operation

  The Kerberos protocol is designed to operate across organizational
  boundaries.  A client in one organization can be authenticated to a
  server in another.  Each organization wishing to run a Kerberos
  server establishes its own "realm".  The name of the realm in which a
  client is registered is part of the client's name, and can be used by
  the end-service to decide whether to honor a request.

  By establishing "inter-realm" keys, the administrators of two realms
  can allow a client authenticated in the local realm to use its
  authentication remotely (Of course, with appropriate permission the
  client could arrange registration of a separately-named principal in
  a remote realm, and engage in normal exchanges with that realm's
  services. However, for even small numbers of clients this becomes
  cumbersome, and more automatic methods as described here are
  necessary).  The exchange of inter-realm keys (a separate key may be
  used for each direction) registers the ticket-granting service of
  each realm as a principal in the other realm.  A client is then able
  to obtain a ticket-granting ticket for the remote realm's ticket-
  granting service from its local realm. When that ticket-granting
  ticket is used, the remote ticket-granting service uses the inter-
  realm key (which usually differs from its own normal TGS key) to
  decrypt the ticket-granting ticket, and is thus certain that it was
  issued by the client's own TGS. Tickets issued by the remote ticket-
  granting service will indicate to the end-service that the client was
  authenticated from another realm.

  A realm is said to communicate with another realm if the two realms
  share an inter-realm key, or if the local realm shares an inter-realm
  key with an intermediate realm that communicates with the remote
  realm.  An authentication path is the sequence of intermediate realms
  that are transited in communicating from one realm to another.

  Realms are typically organized hierarchically. Each realm shares a
  key with its parent and a different key with each child.  If an
  inter-realm key is not directly shared by two realms, the
  hierarchical organization allows an authentication path to be easily
  constructed.  If a hierarchical organization is not used, it may be
  necessary to consult some database in order to construct an



Kohl & Neuman                                                   [Page 7]

RFC 1510                        Kerberos                  September 1993


  authentication path between realms.

  Although realms are typically hierarchical, intermediate realms may
  be bypassed to achieve cross-realm authentication through alternate
  authentication paths (these might be established to make
  communication between two realms more efficient).  It is important
  for the end-service to know which realms were transited when deciding
  how much faith to place in the authentication process. To facilitate
  this decision, a field in each ticket contains the names of the
  realms that were involved in authenticating the client.

1.2.  Environmental assumptions

  Kerberos imposes a few assumptions on the environment in which it can
  properly function:

  +    "Denial of service" attacks are not solved with Kerberos.  There
       are places in these protocols where an intruder intruder can
       prevent an application from participating in the proper
       authentication steps.  Detection and solution of such attacks
       (some of which can appear to be not-uncommon "normal" failure
       modes for the system) is usually best left to the human
       administrators and users.

  +    Principals must keep their secret keys secret.  If an intruder
       somehow steals a principal's key, it will be able to masquerade
       as that principal or impersonate any server to the legitimate
       principal.

  +    "Password guessing" attacks are not solved by Kerberos.  If a
       user chooses a poor password, it is possible for an attacker to
       successfully mount an offline dictionary attack by repeatedly
       attempting to decrypt, with successive entries from a
       dictionary, messages obtained which are encrypted under a key
       derived from the user's password.

  +    Each host on the network must have a clock which is "loosely
       synchronized" to the time of the other hosts; this
       synchronization is used to reduce the bookkeeping needs of
       application servers when they do replay detection.  The degree
       of "looseness" can be configured on a per-server basis.  If the
       clocks are synchronized over the network, the clock
       synchronization protocol must itself be secured from network
       attackers.

  +    Principal identifiers are not recycled on a short-term basis.  A
       typical mode of access control will use access control lists
       (ACLs) to grant permissions to particular principals.  If a



Kohl & Neuman                                                   [Page 8]

RFC 1510                        Kerberos                  September 1993


       stale ACL entry remains for a deleted principal and the
       principal identifier is reused, the new principal will inherit
       rights specified in the stale ACL entry. By not re-using
       principal identifiers, the danger of inadvertent access is
       removed.

1.3.  Glossary of terms

  Below is a list of terms used throughout this document.


  Authentication      Verifying the claimed identity of a
                      principal.


  Authentication header A record containing a Ticket and an
                        Authenticator to be presented to a
                        server as part of the authentication
                        process.


  Authentication path  A sequence of intermediate realms transited
                       in the authentication process when
                       communicating from one realm to another.

  Authenticator       A record containing information that can
                      be shown to have been recently generated
                      using the session key known only by  the
                      client and server.


  Authorization       The process of determining whether a
                      client may use a service, which objects
                      the client is allowed to access, and the
                      type of access allowed for each.


  Capability          A token that grants the bearer permission
                      to access an object or service.  In
                      Kerberos, this might be a ticket whose
                      use is restricted by the contents of the
                      authorization data field, but which
                      lists no network addresses, together
                      with the session key necessary to use
                      the ticket.






Kohl & Neuman                                                   [Page 9]

RFC 1510                        Kerberos                  September 1993


  Ciphertext          The output of an encryption function.
                      Encryption transforms plaintext into
                      ciphertext.


  Client              A process that makes use of a network
                      service on behalf of a user.  Note that
                      in some cases a Server may itself be a
                      client of some other server (e.g., a
                      print server may be a client of a file
                      server).


  Credentials         A ticket plus the secret session key
                      necessary to successfully use that
                      ticket in an authentication exchange.


  KDC                 Key Distribution Center, a network service
                      that supplies tickets and temporary
                      session keys; or an instance of that
                      service or the host on which it runs.
                      The KDC services both initial ticket and
                      ticket-granting ticket requests.  The
                      initial ticket portion is sometimes
                      referred to as the Authentication Server
                      (or service).  The ticket-granting
                      ticket portion is sometimes referred to
                      as the ticket-granting server (or service).

  Kerberos            Aside from the 3-headed dog guarding
                      Hades, the name given to Project
                      Athena's authentication service, the
                      protocol used by that service, or the
                      code used to implement the authentication
                      service.


  Plaintext           The input to an encryption function  or
                      the output of a decryption function.
                      Decryption transforms ciphertext into
                      plaintext.


  Principal           A uniquely named client or server
                      instance that participates in a network
                      communication.




Kohl & Neuman                                                  [Page 10]

RFC 1510                        Kerberos                  September 1993


  Principal identifier The name used to uniquely identify each
                       different principal.


  Seal                To encipher a record containing several
                      fields in such a way that the fields
                      cannot be individually replaced without
                      either knowledge of the encryption key
                      or leaving evidence of tampering.


  Secret key          An encryption key shared by a principal
                      and the KDC, distributed outside the
                      bounds of the system, with a long lifetime.
                      In the case of a human user's
                      principal, the secret key is derived
                      from a password.


  Server              A particular Principal which provides a
                      resource to network clients.


  Service             A resource provided to network clients;
                      often provided by more than one server
                      (for example, remote file service).


  Session key         A temporary encryption key used between
                      two principals, with a lifetime limited
                      to the duration of a single login "session".


  Sub-session key     A temporary encryption key used between
                      two principals, selected and exchanged
                      by the principals using the session key,
                      and with a lifetime limited to the duration
                      of a single association.


  Ticket              A record that helps a client authenticate
                      itself to a server; it contains the
                      client's identity, a session key, a
                      timestamp, and other information, all
                      sealed using the server's secret key.
                      It only serves to authenticate a client
                      when presented along with a fresh
                      Authenticator.



Kohl & Neuman                                                  [Page 11]

RFC 1510                        Kerberos                  September 1993


2.  Ticket flag uses and requests

  Each Kerberos ticket contains a set of flags which are used to
  indicate various attributes of that ticket.  Most flags may be
  requested by a client when the ticket is obtained; some are
  automatically turned on and off by a Kerberos server as required.
  The following sections explain what the various flags mean, and gives
  examples of reasons to use such a flag.

2.1.  Initial and pre-authenticated tickets

  The INITIAL flag indicates that a ticket was issued using the AS
  protocol and not issued based on a ticket-granting ticket.
  Application servers that want to require the knowledge of a client's
  secret key (e.g., a passwordchanging program) can insist that this
  flag be set in any tickets they accept, and thus be assured that the
  client's key was recently presented to the application client.

  The PRE-AUTHENT and HW-AUTHENT flags provide addition information
  about the initial authentication, regardless of whether the current
  ticket was issued directly (in which case INITIAL will also be set)
  or issued on the basis of a ticket-granting ticket (in which case the
  INITIAL flag is clear, but the PRE-AUTHENT and HW-AUTHENT flags are
  carried forward from the ticket-granting ticket).

2.2.  Invalid tickets

  The INVALID flag indicates that a ticket is invalid.  Application
  servers must reject tickets which have this flag set.  A postdated
  ticket will usually be issued in this form. Invalid tickets must be
  validated by the KDC before use, by presenting them to the KDC in a
  TGS request with the VALIDATE option specified.  The KDC will only
  validate tickets after their starttime has passed.  The validation is
  required so that postdated tickets which have been stolen before
  their starttime can be rendered permanently invalid (through a hot-
  list mechanism).

2.3.  Renewable tickets

  Applications may desire to hold tickets which can be valid for long
  periods of time.  However, this can expose their credentials to
  potential theft for equally long periods, and those stolen
  credentials would be valid until the expiration time of the
  ticket(s).  Simply using shortlived tickets and obtaining new ones
  periodically would require the client to have long-term access to its
  secret key, an even greater risk.  Renewable tickets can be used to
  mitigate the consequences of theft.  Renewable tickets have two
  "expiration times": the first is when the current instance of the



Kohl & Neuman                                                  [Page 12]

RFC 1510                        Kerberos                  September 1993


  ticket expires, and the second is the latest permissible value for an
  individual expiration time.  An application client must periodically
  (i.e., before it expires) present a renewable ticket to the KDC, with
  the RENEW option set in the KDC request.  The KDC will issue a new
  ticket with a new session key and a later expiration time.  All other
  fields of the ticket are left unmodified by the renewal process.
  When the latest permissible expiration time arrives, the ticket
  expires permanently.  At each renewal, the KDC may consult a hot-list
  to determine if the ticket had been reported stolen since its last
  renewal; it will refuse to renew such stolen tickets, and thus the
  usable lifetime of stolen tickets is reduced.

  The RENEWABLE flag in a ticket is normally only interpreted by the
  ticket-granting service (discussed below in section 3.3).  It can
  usually be ignored by application servers.  However, some
  particularly careful application servers may wish to disallow
  renewable tickets.

  If a renewable ticket is not renewed by its  expiration time, the KDC
  will not renew the ticket.  The RENEWABLE flag is reset by default,
  but a client may request it be  set  by setting  the RENEWABLE option
  in the KRB_AS_REQ message.  If it is set, then the renew-till field
  in the ticket  contains the time after which the ticket may not be
  renewed.

2.4.  Postdated tickets

  Applications may occasionally need to obtain tickets for use much
  later, e.g., a batch submission system would need tickets to be valid
  at the time the batch job is serviced.  However, it is dangerous to
  hold valid tickets in a batch queue, since they will be on-line
  longer and more prone to theft.  Postdated tickets provide a way to
  obtain these tickets from the KDC at job submission time, but to
  leave them "dormant" until they are activated and validated by a
  further request of the KDC.  If a ticket theft were reported in the
  interim, the KDC would refuse to validate the ticket, and the thief
  would be foiled.

  The MAY-POSTDATE flag in a ticket is normally only interpreted by the
  ticket-granting service.  It can be ignored by application servers.
  This flag must be set in a ticket-granting ticket in order to issue a
  postdated ticket based on the presented ticket. It is reset by
  default; it may be requested by a client by setting the ALLOW-
  POSTDATE option in the KRB_AS_REQ message.  This flag does not allow
  a client to obtain a postdated ticket-granting ticket; postdated
  ticket-granting tickets can only by obtained by requesting the
  postdating in the KRB_AS_REQ message.  The life (endtime-starttime)
  of a postdated ticket will be the remaining life of the ticket-



Kohl & Neuman                                                  [Page 13]

RFC 1510                        Kerberos                  September 1993


  granting ticket at the time of the request, unless the RENEWABLE
  option is also set, in which case it can be the full life (endtime-
  starttime) of the ticket-granting ticket.  The KDC may limit how far
  in the future a ticket may be postdated.

  The POSTDATED flag indicates that a ticket has been postdated.  The
  application server can check the authtime field in the ticket to see
  when the original authentication occurred.  Some services may choose
  to reject postdated tickets, or they may only accept them within a
  certain period after the original authentication. When the KDC issues
  a POSTDATED ticket, it will also be marked as INVALID, so that the
  application client must present the ticket to the KDC to be validated
  before use.

2.5.  Proxiable and proxy tickets

  At times it may be necessary for a principal to allow a service  to
  perform an operation on its behalf.  The service must be able to take
  on the identity of the client, but only for  a particular purpose.  A
  principal can allow a service to take on the principal's identity for
  a particular purpose by granting it a proxy.

  The PROXIABLE flag in a ticket is normally only interpreted by the
  ticket-granting service. It can be ignored by application servers.
  When set, this flag tells the ticket-granting server that it is OK to
  issue a new ticket (but not a ticket-granting ticket) with a
  different network address based on this ticket.  This flag is set by
  default.

  This flag allows a client to pass a proxy to a server to perform a
  remote request on its behalf, e.g., a print service client can give
  the print server a proxy to access the client's files on a particular
  file server in order to satisfy a print request.

  In order to complicate the use of stolen credentials, Kerberos
  tickets are usually valid from only those network addresses
  specifically included in the ticket (It is permissible to request or
  issue tickets with no network addresses specified, but we do not
  recommend it).  For this reason, a client wishing to grant a proxy
  must request a new ticket valid for the network address of the
  service to be granted the proxy.

  The PROXY flag is set in a ticket by the  TGS  when  it issues a
  proxy ticket.  Application servers may check this flag and require
  additional authentication  from  the  agent presenting the proxy in
  order to provide an audit trail.





Kohl & Neuman                                                  [Page 14]

RFC 1510                        Kerberos                  September 1993


2.6.  Forwardable tickets

  Authentication forwarding is an instance of the proxy case where the
  service is granted complete use of the client's identity.  An example
  where it might be used is when a user logs in to a remote system and
  wants authentication to work from that system as if the login were
  local.

  The FORWARDABLE flag in a ticket is normally only interpreted by the
  ticket-granting service.  It can be ignored by application servers.
  The FORWARDABLE flag has an interpretation similar to that of the
  PROXIABLE flag, except ticket-granting tickets may also be issued
  with different network addresses.  This flag is reset by default, but
  users may request that it be set by setting the FORWARDABLE option in
  the AS request when they request their initial ticket-granting
  ticket.

  This flag allows for authentication forwarding without requiring the
  user to enter a password again.  If the flag is not set, then
  authentication forwarding is not permitted, but the same end result
  can still be achieved if the user engages in the AS exchange with the
  requested network addresses and supplies a password.

  The FORWARDED flag is set by the TGS when a client presents a ticket
  with the FORWARDABLE flag set and requests it be set by specifying
  the FORWARDED KDC option and supplying a set of addresses for the new
  ticket.  It is also set in all tickets issued based on tickets with
  the FORWARDED flag set.  Application servers may wish to process
  FORWARDED tickets differently than non-FORWARDED tickets.

2.7.  Other KDC options

  There are two additional options which may be set in a client's
  request of the KDC.  The RENEWABLE-OK option indicates that the
  client will accept a renewable ticket if a ticket with the requested
  life cannot otherwise be provided.  If a ticket with the requested
  life cannot be provided, then the KDC may issue a renewable ticket
  with a renew-till equal to the the requested endtime.  The value of
  the renew-till field may still be adjusted by site-determined limits
  or limits imposed by the individual principal or server.

  The ENC-TKT-IN-SKEY option is honored only by the ticket-granting
  service.  It indicates that the to-be-issued ticket for the end
  server is to be encrypted in the session key from the additional
  ticket-granting ticket provided with the request.  See section 3.3.3
  for specific details.





Kohl & Neuman                                                  [Page 15]

RFC 1510                        Kerberos                  September 1993


3.  Message Exchanges

  The following sections describe the interactions between network
  clients and servers and the messages involved in those exchanges.

3.1.  The Authentication Service Exchange

                            Summary

        Message direction       Message type    Section
        1. Client to Kerberos   KRB_AS_REQ      5.4.1
        2. Kerberos to client   KRB_AS_REP or   5.4.2
                                KRB_ERROR       5.9.1

  The Authentication Service (AS) Exchange between the client and the
  Kerberos Authentication Server is usually initiated by a client when
  it wishes to obtain authentication credentials for a given server but
  currently holds no credentials.  The client's secret key is used for
  encryption and decryption.  This exchange is typically used at the
  initiation of a login session, to obtain credentials for a Ticket-
  Granting Server, which will subsequently be used to obtain
  credentials for other servers (see section 3.3) without requiring
  further use of the client's secret key.  This exchange is also used
  to request credentials for services which must not be mediated
  through the Ticket-Granting Service, but rather require a principal's
  secret key, such as the password-changing service.  (The password-
  changing request must not be honored unless the requester can provide
  the old password (the user's current secret key).  Otherwise, it
  would be possible for someone to walk up to an unattended session and
  change another user's password.)  This exchange does not by itself
  provide any assurance of the the identity of the user.  (To
  authenticate a user logging on to a local system, the credentials
  obtained in the AS exchange may first be used in a TGS exchange to
  obtain credentials for a local server.  Those credentials must then
  be verified by the local server through successful completion of the
  Client/Server exchange.)

  The exchange consists of two messages: KRB_AS_REQ from the client to
  Kerberos, and KRB_AS_REP or KRB_ERROR in reply. The formats for these
  messages are described in sections 5.4.1, 5.4.2, and 5.9.1.

  In the request, the client sends (in cleartext) its own identity and
  the identity of the server for which it is requesting credentials.
  The response, KRB_AS_REP, contains a ticket for the client to present
  to the server, and a session key that will be shared by the client
  and the server.  The session key and additional information are
  encrypted in the client's secret key.  The KRB_AS_REP message
  contains information which can be used to detect replays, and to



Kohl & Neuman                                                  [Page 16]

RFC 1510                        Kerberos                  September 1993


  associate it with the message to which it replies.  Various errors
  can occur; these are indicated by an error response (KRB_ERROR)
  instead of the KRB_AS_REP response.  The error message is not
  encrypted.  The KRB_ERROR message also contains information which can
  be used to associate it with the message to which it replies.  The
  lack of encryption in the KRB_ERROR message precludes the ability to
  detect replays or fabrications of such messages.

  In the normal case the authentication server does not know whether
  the client is actually the principal named in the request.  It simply
  sends a reply without knowing or caring whether they are the same.
  This is acceptable because nobody but the principal whose identity
  was given in the request will be able to use the reply. Its critical
  information is encrypted in that principal's key.  The initial
  request supports an optional field that can be used to pass
  additional information that might be needed for the initial exchange.
  This field may be used for preauthentication if desired, but the
  mechanism is not currently specified.

3.1.1. Generation of KRB_AS_REQ message

  The client may specify a number of options in the initial request.
  Among these options are whether preauthentication is to be performed;
  whether the requested ticket is to be renewable, proxiable, or
  forwardable; whether it should be postdated or allow postdating of
  derivative tickets; and whether a renewable ticket will be accepted
  in lieu of a non-renewable ticket if the requested ticket expiration
  date cannot be satisfied by a nonrenewable ticket (due to
  configuration constraints; see section 4).  See section A.1 for
  pseudocode.

  The client prepares the KRB_AS_REQ message and sends it to the KDC.

3.1.2. Receipt of KRB_AS_REQ message

  If all goes well, processing the KRB_AS_REQ message will result in
  the creation of a ticket for the client to present to the server.
  The format for the ticket is described in section 5.3.1.  The
  contents of the ticket are determined as follows.

3.1.3. Generation of KRB_AS_REP message

  The authentication server looks up the client and server principals
  named in the KRB_AS_REQ in its database, extracting their respective
  keys.  If required, the server pre-authenticates the request, and if
  the pre-authentication check fails, an error message with the code
  KDC_ERR_PREAUTH_FAILED is returned. If the server cannot accommodate
  the requested encryption type, an error message with code



Kohl & Neuman                                                  [Page 17]

RFC 1510                        Kerberos                  September 1993


  KDC_ERR_ETYPE_NOSUPP is returned. Otherwise it generates a "random"
  session key ("Random" means that, among other things, it should be
  impossible to guess the next session key based on knowledge of past
  session keys.  This can only be achieved in a pseudo-random number
  generator if it is based on cryptographic principles.  It would be
  more desirable to use a truly random number generator, such as one
  based on measurements of random physical phenomena.).

  If the requested start time is absent or indicates a time in the
  past, then the start time of the ticket is set to the authentication
  server's current time. If it indicates a time in the future, but the
  POSTDATED option has not been specified, then the error
  KDC_ERR_CANNOT_POSTDATE is returned.  Otherwise the requested start
  time is checked against the policy of the local realm (the
  administrator might decide to prohibit certain types or ranges of
  postdated tickets), and if acceptable, the ticket's start time is set
  as requested and the INVALID flag is set in the new ticket. The
  postdated ticket must be validated before use by presenting it to the
  KDC after the start time has been reached.

  The expiration time of the ticket will be set to the minimum of the
  following:

  +The expiration time (endtime) requested in the KRB_AS_REQ
   message.

  +The ticket's start time plus the maximum allowable lifetime
   associated with the client principal (the authentication
   server's database includes a maximum ticket lifetime field
   in each principal's record; see section 4).

  +The ticket's start time plus the maximum allowable lifetime
   associated with the server principal.

  +The ticket's start time plus the maximum lifetime set by
   the policy of the local realm.

  If the requested expiration time minus the start time (as determined
  above) is less than a site-determined minimum lifetime, an error
  message with code KDC_ERR_NEVER_VALID is returned.  If the requested
  expiration time for the ticket exceeds what was determined as above,
  and if the "RENEWABLE-OK" option was requested, then the "RENEWABLE"
  flag is set in the new ticket, and the renew-till value is set as if
  the "RENEWABLE" option were requested (the field and option names are
  described fully in section 5.4.1).  If the RENEWABLE option has been
  requested or if the RENEWABLE-OK option has been set and a renewable
  ticket is to be issued, then the renew-till field is set to the
  minimum of:



Kohl & Neuman                                                  [Page 18]

RFC 1510                        Kerberos                  September 1993


  +Its requested value.

  +The start time of the ticket plus the minimum of the two
   maximum renewable lifetimes associated with the principals'
   database entries.

  +The start time of the ticket plus the maximum renewable
   lifetime set by the policy of the local realm.

  The flags field of the new ticket will have the following options set
  if they have been requested and if the policy of the local realm
  allows: FORWARDABLE, MAY-POSTDATE, POSTDATED, PROXIABLE, RENEWABLE.
  If the new ticket is postdated (the start time is in the future), its
  INVALID flag will also be set.

  If all of the above succeed, the server formats a KRB_AS_REP message
  (see section 5.4.2), copying the addresses in the request into the
  caddr of the response, placing any required pre-authentication data
  into the padata of the response, and encrypts the ciphertext part in
  the client's key using the requested encryption method, and sends it
  to the client.  See section A.2 for pseudocode.

3.1.4. Generation of KRB_ERROR message

  Several errors can occur, and the Authentication Server responds by
  returning an error message, KRB_ERROR, to the client, with the
  error-code and e-text fields set to appropriate values.  The error
  message contents and details are described in Section 5.9.1.

3.1.5. Receipt of KRB_AS_REP message

  If the reply message type is KRB_AS_REP, then the client verifies
  that the cname and crealm fields in the cleartext portion of the
  reply match what it requested.  If any padata fields are present,
  they may be used to derive the proper secret key to decrypt the
  message.  The client decrypts the encrypted part of the response
  using its secret key, verifies that the nonce in the encrypted part
  matches the nonce it supplied in its request (to detect replays).  It
  also verifies that the sname and srealm in the response match those
  in the request, and that the host address field is also correct.  It
  then stores the ticket, session key, start and expiration times, and
  other information for later use.  The key-expiration field from the
  encrypted part of the response may be checked to notify the user of
  impending key expiration (the client program could then suggest
  remedial action, such as a password change).  See section A.3 for
  pseudocode.

  Proper decryption of the KRB_AS_REP message is not sufficient to



Kohl & Neuman                                                  [Page 19]

RFC 1510                        Kerberos                  September 1993


  verify the identity of the user; the user and an attacker could
  cooperate to generate a KRB_AS_REP format message which decrypts
  properly but is not from the proper KDC.  If the host wishes to
  verify the identity of the user, it must require the user to present
  application credentials which can be verified using a securely-stored
  secret key.  If those credentials can be verified, then the identity
  of the user can be assured.

3.1.6. Receipt of KRB_ERROR message

  If the reply message type is KRB_ERROR, then the client interprets it
  as an error and performs whatever application-specific tasks are
  necessary to recover.

3.2.  The Client/Server Authentication Exchange

                       Summary

  Message direction                         Message type    Section
  Client to Application server              KRB_AP_REQ      5.5.1
  [optional] Application server to client   KRB_AP_REP or   5.5.2
                                            KRB_ERROR       5.9.1

  The client/server authentication (CS) exchange is used by network
  applications to authenticate the client to the server and vice versa.
  The client must have already acquired credentials for the server
  using the AS or TGS exchange.

3.2.1. The KRB_AP_REQ message

  The KRB_AP_REQ contains authentication information which should be
  part of the first message in an authenticated transaction.  It
  contains a ticket, an authenticator, and some additional bookkeeping
  information (see section 5.5.1 for the exact format).  The ticket by
  itself is insufficient to authenticate a client, since tickets are
  passed across the network in cleartext(Tickets contain both an
  encrypted and unencrypted portion, so cleartext here refers to the
  entire unit, which can be copied from one message and replayed in
  another without any cryptographic skill.), so the authenticator is
  used to prevent invalid replay of tickets by proving to the server
  that the client knows the session key of the ticket and thus is
  entitled to use it.  The KRB_AP_REQ message is referred to elsewhere
  as the "authentication header."

3.2.2. Generation of a KRB_AP_REQ message

  When a client wishes to initiate authentication to a server, it
  obtains (either through a credentials cache, the AS exchange, or the



Kohl & Neuman                                                  [Page 20]

RFC 1510                        Kerberos                  September 1993


  TGS exchange) a ticket and session key for the desired service.  The
  client may re-use any tickets it holds until they expire.  The client
  then constructs a new Authenticator from the the system time, its
  name, and optionally an application specific checksum, an initial
  sequence number to be used in KRB_SAFE or KRB_PRIV messages, and/or a
  session subkey to be used in negotiations for a session key unique to
  this particular session.  Authenticators may not be re-used and will
  be rejected if replayed to a server (Note that this can make
  applications based on unreliable transports difficult to code
  correctly, if the transport might deliver duplicated messages.  In
  such cases, a new authenticator must be generated for each retry.).
  If a sequence number is to be included, it should be randomly chosen
  so that even after many messages have been exchanged it is not likely
  to collide with other sequence numbers in use.

  The client may indicate a requirement of mutual authentication or the
  use of a session-key based ticket by setting the appropriate flag(s)
  in the ap-options field of the message.

  The Authenticator is encrypted in the session key and combined with
  the ticket to form the KRB_AP_REQ message which is then sent to the
  end server along with any additional application-specific
  information.  See section A.9 for pseudocode.

3.2.3. Receipt of KRB_AP_REQ message

  Authentication is based on the server's current time of day (clocks
  must be loosely synchronized), the authenticator, and the ticket.
  Several errors are possible.  If an error occurs, the server is
  expected to reply to the client with a KRB_ERROR message.  This
  message may be encapsulated in the application protocol if its "raw"
  form is not acceptable to the protocol. The format of error messages
  is described in section 5.9.1.

  The algorithm for verifying authentication information is as follows.
  If the message type is not KRB_AP_REQ, the server returns the
  KRB_AP_ERR_MSG_TYPE error. If the key version indicated by the Ticket
  in the KRB_AP_REQ is not one the server can use (e.g., it indicates
  an old key, and the server no longer possesses a copy of the old
  key), the KRB_AP_ERR_BADKEYVER error is returned.  If the USE-
  SESSION-KEY flag is set in the ap-options field, it indicates to the
  server that the ticket is encrypted in the session key from the
  server's ticket-granting ticket rather than its secret key (This is
  used for user-to-user authentication as described in [6]).  Since it
  is possible for the server to be registered in multiple realms, with
  different keys in each, the srealm field in the unencrypted portion
  of the ticket in the KRB_AP_REQ is used to specify which secret key
  the server should use to decrypt that ticket.  The KRB_AP_ERR_NOKEY



Kohl & Neuman                                                  [Page 21]

RFC 1510                        Kerberos                  September 1993


  error code is returned if the server doesn't have the proper key to
  decipher the ticket.

  The ticket is decrypted using the version of the server's key
  specified by the ticket.  If the decryption routines detect a
  modification of the ticket (each encryption system must provide
  safeguards to detect modified ciphertext; see section 6), the
  KRB_AP_ERR_BAD_INTEGRITY error is returned (chances are good that
  different keys were used to encrypt and decrypt).

  The authenticator is decrypted using the session key extracted from
  the decrypted ticket.  If decryption shows it to have been modified,
  the KRB_AP_ERR_BAD_INTEGRITY error is returned.  The name and realm
  of the client from the ticket are compared against the same fields in
  the authenticator.  If they don't match, the KRB_AP_ERR_BADMATCH
  error is returned (they might not match, for example, if the wrong
  session key was used to encrypt the authenticator).  The addresses in
  the ticket (if any) are then searched for an address matching the
  operating-system reported address of the client.  If no match is
  found or the server insists on ticket addresses but none are present
  in the ticket, the KRB_AP_ERR_BADADDR error is returned.

  If the local (server) time and the client time in the authenticator
  differ by more than the allowable clock skew (e.g., 5 minutes), the
  KRB_AP_ERR_SKEW error is returned.  If the server name, along with
  the client name, time and microsecond fields from the Authenticator
  match any recently-seen such tuples, the KRB_AP_ERR_REPEAT error is
  returned (Note that the rejection here is restricted to
  authenticators from the same principal to the same server.  Other
  client principals communicating with the same server principal should
  not be have their authenticators rejected if the time and microsecond
  fields happen to match some other client's authenticator.).  The
  server must remember any authenticator presented within the allowable
  clock skew, so that a replay attempt is guaranteed to fail. If a
  server loses track of any authenticator presented within the
  allowable clock skew, it must reject all requests until the clock
  skew interval has passed.  This assures that any lost or re-played
  authenticators will fall outside the allowable clock skew and can no
  longer be successfully replayed (If this is not done, an attacker
  could conceivably record the ticket and authenticator sent over the
  network to a server, then disable the client's host, pose as the
  disabled host, and replay the ticket and authenticator to subvert the
  authentication.).  If a sequence number is provided in the
  authenticator, the server saves it for later use in processing
  KRB_SAFE and/or KRB_PRIV messages.  If a subkey is present, the
  server either saves it for later use or uses it to help generate its
  own choice for a subkey to be returned in a KRB_AP_REP message.




Kohl & Neuman                                                  [Page 22]

RFC 1510                        Kerberos                  September 1993


  The server computes the age of the ticket: local (server) time minus
  the start time inside the Ticket.  If the start time is later than
  the current time by more than the allowable clock skew or if the
  INVALID flag is set in the ticket, the KRB_AP_ERR_TKT_NYV error is
  returned.  Otherwise, if the current time is later than end time by
  more than the allowable clock skew, the KRB_AP_ERR_TKT_EXPIRED error
  is returned.

  If all these checks succeed without an error, the server is assured
  that the client possesses the credentials of the principal named in
  the ticket and thus, the client has been authenticated to the server.
  See section A.10 for pseudocode.

3.2.4. Generation of a KRB_AP_REP message

  Typically, a client's request will include both the authentication
  information and its initial request in the same message, and the
  server need not explicitly reply to the KRB_AP_REQ.  However, if
  mutual authentication (not only authenticating the client to the
  server, but also the server to the client) is being performed, the
  KRB_AP_REQ message will have MUTUAL-REQUIRED set in its ap-options
  field, and a KRB_AP_REP message is required in response.  As with the
  error message, this message may be encapsulated in the application
  protocol if its "raw" form is not acceptable to the application's
  protocol.  The timestamp and microsecond field used in the reply must
  be the client's timestamp and microsecond field (as provided in the
  authenticator). [Note: In the Kerberos version 4 protocol, the
  timestamp in the reply was the client's timestamp plus one.  This is
  not necessary in version 5 because version 5 messages are formatted
  in such a way that it is not possible to create the reply by
  judicious message surgery (even in encrypted form) without knowledge
  of the appropriate encryption keys.]  If a sequence number is to be
  included, it should be randomly chosen as described above for the
  authenticator.  A subkey may be included if the server desires to
  negotiate a different subkey.  The KRB_AP_REP message is encrypted in
  the session key extracted from the ticket.  See section A.11 for
  pseudocode.

3.2.5. Receipt of KRB_AP_REP message

  If a KRB_AP_REP message is returned, the client uses the session key
  from the credentials obtained for the server (Note that for
  encrypting the KRB_AP_REP message, the sub-session key is not used,
  even if present in the Authenticator.) to decrypt the message, and
  verifies that the timestamp and microsecond fields match those in the
  Authenticator it sent to the server.  If they match, then the client
  is assured that the server is genuine. The sequence number and subkey
  (if present) are retained for later use.  See section A.12 for



Kohl & Neuman                                                  [Page 23]

RFC 1510                        Kerberos                  September 1993


  pseudocode.

3.2.6. Using the encryption key

  After the KRB_AP_REQ/KRB_AP_REP exchange has occurred, the client and
  server share an encryption key which can be used by the application.
  The "true session key" to be used for KRB_PRIV, KRB_SAFE, or other
  application-specific uses may be chosen by the application based on
  the subkeys in the KRB_AP_REP message and the authenticator
  (Implementations of the protocol may wish to provide routines to
  choose subkeys based on session keys and random numbers and to
  orchestrate a negotiated key to be returned in the KRB_AP_REP
  message.).  In some cases, the use of this session key will be
  implicit in the protocol; in others the method of use must be chosen
  from a several alternatives.  We leave the protocol negotiations of
  how to use the key (e.g., selecting an encryption or checksum type)
  to the application programmer; the Kerberos protocol does not
  constrain the implementation options.

  With both the one-way and mutual authentication exchanges, the peers
  should take care not to send sensitive information to each other
  without proper assurances.  In particular, applications that require
  privacy or integrity should use the KRB_AP_REP or KRB_ERROR responses
  from the server to client to assure both client and server of their
  peer's identity.  If an application protocol requires privacy of its
  messages, it can use the KRB_PRIV message (section 3.5). The KRB_SAFE
  message (section 3.4) can be used to assure integrity.

3.3.  The Ticket-Granting Service (TGS) Exchange

                            Summary

        Message direction       Message type     Section
        1. Client to Kerberos   KRB_TGS_REQ      5.4.1
        2. Kerberos to client   KRB_TGS_REP or   5.4.2
                                KRB_ERROR        5.9.1

  The TGS exchange between a client and the Kerberos Ticket-Granting
  Server is initiated by a client when it wishes to obtain
  authentication credentials for a given server (which might be
  registered in a remote realm), when it wishes to renew or validate an
  existing ticket, or when it wishes to obtain a proxy ticket.  In the
  first case, the client must already have acquired a ticket for the
  Ticket-Granting Service using the AS exchange (the ticket-granting
  ticket is usually obtained when a client initially authenticates to
  the system, such as when a user logs in).  The message format for the
  TGS exchange is almost identical to that for the AS exchange.  The
  primary difference is that encryption and decryption in the TGS



Kohl & Neuman                                                  [Page 24]

RFC 1510                        Kerberos                  September 1993


  exchange does not take place under the client's key.  Instead, the
  session key from the ticket-granting ticket or renewable ticket, or
  sub-session key from an Authenticator is used.  As is the case for
  all application servers, expired tickets are not accepted by the TGS,
  so once a renewable or ticket-granting ticket expires, the client
  must use a separate exchange to obtain valid tickets.

  The TGS exchange consists of two messages: A request (KRB_TGS_REQ)
  from the client to the Kerberos Ticket-Granting Server, and a reply
  (KRB_TGS_REP or KRB_ERROR).  The KRB_TGS_REQ message includes
  information authenticating the client plus a request for credentials.
  The authentication information consists of the authentication header
  (KRB_AP_REQ) which includes the client's previously obtained ticket-
  granting, renewable, or invalid ticket.  In the ticket-granting
  ticket and proxy cases, the request may include one or more of: a
  list of network addresses, a collection of typed authorization data
  to be sealed in the ticket for authorization use by the application
  server, or additional tickets (the use of which are described later).
  The TGS reply (KRB_TGS_REP) contains the requested credentials,
  encrypted in the session key from the ticket-granting ticket or
  renewable ticket, or if present, in the subsession key from the
  Authenticator (part of the authentication header). The KRB_ERROR
  message contains an error code and text explaining what went wrong.
  The KRB_ERROR message is not encrypted.  The KRB_TGS_REP message
  contains information which can be used to detect replays, and to
  associate it with the message to which it replies.  The KRB_ERROR
  message also contains information which can be used to associate it
  with the message to which it replies, but the lack of encryption in
  the KRB_ERROR message precludes the ability to detect replays or
  fabrications of such messages.

3.3.1. Generation of KRB_TGS_REQ message

  Before sending a request to the ticket-granting service, the client
  must determine in which realm the application server is registered
  [Note: This can be accomplished in several ways.  It might be known
  beforehand (since the realm is part of the principal identifier), or
  it might be stored in a nameserver.  Presently, however, this
  information is obtained from a configuration file.  If the realm to
  be used is obtained from a nameserver, there is a danger of being
  spoofed if the nameservice providing the realm name is not
  authenticated.  This might result in the use of a realm which has
  been compromised, and would result in an attacker's ability to
  compromise the authentication of the application server to the
  client.].  If the client does not already possess a ticket-granting
  ticket for the appropriate realm, then one must be obtained.  This is
  first attempted by requesting a ticket-granting ticket for the
  destination realm from the local Kerberos server (using the



Kohl & Neuman                                                  [Page 25]

RFC 1510                        Kerberos                  September 1993


  KRB_TGS_REQ message recursively).  The Kerberos server may return a
  TGT for the desired realm in which case one can proceed.
  Alternatively, the Kerberos server may return a TGT for a realm which
  is "closer" to the desired realm (further along the standard
  hierarchical path), in which case this step must be repeated with a
  Kerberos server in the realm specified in the returned TGT.  If
  neither are returned, then the request must be retried with a
  Kerberos server for a realm higher in the hierarchy.  This request
  will itself require a ticket-granting ticket for the higher realm
  which must be obtained by recursively applying these directions.

  Once the client obtains a ticket-granting ticket for the appropriate
  realm, it determines which Kerberos servers serve that realm, and
  contacts one. The list might be obtained through a configuration file
  or network service; as long as the secret keys exchanged by realms
  are kept secret, only denial of service results from a false Kerberos
  server.

  As in the AS exchange, the client may specify a number of options in
  the KRB_TGS_REQ message.  The client prepares the KRB_TGS_REQ
  message, providing an authentication header as an element of the
  padata field, and including the same fields as used in the KRB_AS_REQ
  message along with several optional fields: the enc-authorization-
  data field for application server use and additional tickets required
  by some options.

  In preparing the authentication header, the client can select a sub-
  session key under which the response from the Kerberos server will be
  encrypted (If the client selects a sub-session key, care must be
  taken to ensure the randomness of the selected subsession key.  One
  approach would be to generate a random number and XOR it with the
  session key from the ticket-granting ticket.). If the sub-session key
  is not specified, the session key from the ticket-granting ticket
  will be used.  If the enc-authorization-data is present, it must be
  encrypted in the sub-session key, if present, from the authenticator
  portion of the authentication header, or if not present in the
  session key from the ticket-granting ticket.

  Once prepared, the message is sent to a Kerberos server for the
  destination realm.  See section A.5 for pseudocode.

3.3.2. Receipt of KRB_TGS_REQ message

  The KRB_TGS_REQ message is processed in a manner similar to the
  KRB_AS_REQ message, but there are many additional checks to be
  performed.  First, the Kerberos server must determine which server
  the accompanying ticket is for and it must select the appropriate key
  to decrypt it. For a normal KRB_TGS_REQ message, it will be for the



Kohl & Neuman                                                  [Page 26]

RFC 1510                        Kerberos                  September 1993


  ticket granting service, and the TGS's key will be used.  If the TGT
  was issued by another realm, then the appropriate inter-realm key
  must be used.  If the accompanying ticket is not a ticket granting
  ticket for the current realm, but is for an application server in the
  current realm, the RENEW, VALIDATE, or PROXY options are specified in
  the request, and the server for which a ticket is requested is the
  server named in the accompanying ticket, then the KDC will decrypt
  the ticket in the authentication header using the key of the server
  for which it was issued.  If no ticket can be found in the padata
  field, the KDC_ERR_PADATA_TYPE_NOSUPP error is returned.

  Once the accompanying ticket has been decrypted, the user-supplied
  checksum in the Authenticator must be verified against the contents
  of the request, and the message rejected if the checksums do not
  match (with an error code of KRB_AP_ERR_MODIFIED) or if the checksum
  is not keyed or not collision-proof (with an error code of
  KRB_AP_ERR_INAPP_CKSUM).  If the checksum type is not supported, the
  KDC_ERR_SUMTYPE_NOSUPP error is returned.  If the authorization-data
  are present, they are decrypted using the sub-session key from the
  Authenticator.

  If any of the decryptions indicate failed integrity checks, the
  KRB_AP_ERR_BAD_INTEGRITY error is returned.

3.3.3. Generation of KRB_TGS_REP message

  The KRB_TGS_REP message shares its format with the KRB_AS_REP
  (KRB_KDC_REP), but with its type field set to KRB_TGS_REP.  The
  detailed specification is in section 5.4.2.

  The response will include a ticket for the requested server.  The
  Kerberos database is queried to retrieve the record for the requested
  server (including the key with which the ticket will be encrypted).
  If the request is for a ticket granting ticket for a remote realm,
  and if no key is shared with the requested realm, then the Kerberos
  server will select the realm "closest" to the requested realm with
  which it does share a key, and use that realm instead. This is the
  only case where the response from the KDC will be for a different
  server than that requested by the client.

  By default, the address field, the client's name and realm, the list
  of transited realms, the time of initial authentication, the
  expiration time, and the authorization data of the newly-issued
  ticket will be copied from the ticket-granting ticket (TGT) or
  renewable ticket.  If the transited field needs to be updated, but
  the transited type is not supported, the KDC_ERR_TRTYPE_NOSUPP error
  is returned.




Kohl & Neuman                                                  [Page 27]

RFC 1510                        Kerberos                  September 1993


  If the request specifies an endtime, then the endtime of the new
  ticket is set to the minimum of (a) that request, (b) the endtime
  from the TGT, and (c) the starttime of the TGT plus the minimum of
  the maximum life for the application server and the maximum life for
  the local realm (the maximum life for the requesting principal was
  already applied when the TGT was issued).  If the new ticket is to be
  a renewal, then the endtime above is replaced by the minimum of (a)
  the value of the renew_till field of the ticket and (b) the starttime
  for the new ticket plus the life (endtimestarttime) of the old
  ticket.

  If the FORWARDED option has been requested, then the resulting ticket
  will contain the addresses specified by the client.  This option will
  only be honored if the FORWARDABLE flag is set in the TGT.  The PROXY
  option is similar; the resulting ticket will contain the addresses
  specified by the client.  It will be honored only if the PROXIABLE
  flag in the TGT is set.  The PROXY option will not be honored on
  requests for additional ticket-granting tickets.

  If the requested start time is absent or indicates a time in the
  past, then the start time of the ticket is set to the authentication
  server's current time.  If it indicates a time in the future, but the
  POSTDATED option has not been specified or the MAY-POSTDATE flag is
  not set in the TGT, then the error KDC_ERR_CANNOT_POSTDATE is
  returned.  Otherwise, if the ticket-granting ticket has the
  MAYPOSTDATE flag set, then the resulting ticket will be postdated and
  the requested starttime is checked against the policy of the local
  realm. If acceptable, the ticket's start time is set as requested,
  and the INVALID flag is set.  The postdated ticket must be validated
  before use by presenting it to the KDC after the starttime has been
  reached. However, in no case may the starttime, endtime, or renew-
  till time of a newly-issued postdated ticket extend beyond the
  renew-till time of the ticket-granting ticket.

  If the ENC-TKT-IN-SKEY option has been specified and an additional
  ticket has been included in the request, the KDC will decrypt the
  additional ticket using the key for the server to which the
  additional ticket was issued and verify that it is a ticket-granting
  ticket.  If the name of the requested server is missing from the
  request, the name of the client in the additional ticket will be
  used.  Otherwise the name of the requested server will be compared to
  the name of the client in the additional ticket and if different, the
  request will be rejected.  If the request succeeds, the session key
  from the additional ticket will be used to encrypt the new ticket
  that is issued instead of using the key of the server for which the
  new ticket will be used (This allows easy implementation of user-to-
  user authentication [6], which uses ticket-granting ticket session
  keys in lieu of secret server keys in situations where such secret



Kohl & Neuman                                                  [Page 28]

RFC 1510                        Kerberos                  September 1993


  keys could be easily compromised.).

  If the name of the server in the ticket that is presented to the KDC
  as part of the authentication header is not that of the ticket-
  granting server itself, and the server is registered in the realm of
  the KDC, If the RENEW option is requested, then the KDC will verify
  that the RENEWABLE flag is set in the ticket and that the renew_till
  time is still in the future.  If the VALIDATE option is rqeuested,
  the KDC will check that the starttime has passed and the INVALID flag
  is set.  If the PROXY option is requested, then the KDC will check
  that the PROXIABLE flag is set in the ticket.  If the tests succeed,
  the KDC will issue the appropriate new ticket.

  Whenever a request is made to the ticket-granting server, the
  presented ticket(s) is(are) checked against a hot-list of tickets
  which have been canceled.  This hot-list might be implemented by
  storing a range of issue dates for "suspect tickets"; if a presented
  ticket had an authtime in that range, it would be rejected.  In this
  way, a stolen ticket-granting ticket or renewable ticket cannot be
  used to gain additional tickets (renewals or otherwise) once the
  theft has been reported.  Any normal ticket obtained before it was
  reported stolen will still be valid (because they require no
  interaction with the KDC), but only until their normal expiration
  time.

  The ciphertext part of the response in the KRB_TGS_REP message is
  encrypted in the sub-session key from the Authenticator, if present,
  or the session key key from the ticket-granting ticket.  It is not
  encrypted using the client's secret key.  Furthermore, the client's
  key's expiration date and the key version number fields are left out
  since these values are stored along with the client's database
  record, and that record is not needed to satisfy a request based on a
  ticket-granting ticket.  See section A.6 for pseudocode.

3.3.3.1.  Encoding the transited field

  If the identity of the server in the TGT that is presented to the KDC
  as part of the authentication header is that of the ticket-granting
  service, but the TGT was issued from another realm, the KDC will look
  up the inter-realm key shared with that realm and use that key to
  decrypt the ticket.  If the ticket is valid, then the KDC will honor
  the request, subject to the constraints outlined above in the section
  describing the AS exchange.  The realm part of the client's identity
  will be taken from the ticket-granting ticket.  The name of the realm
  that issued the ticket-granting ticket will be added to the transited
  field of the ticket to be issued.  This is accomplished by reading
  the transited field from the ticket-granting ticket (which is treated
  as an unordered set of realm names), adding the new realm to the set,



Kohl & Neuman                                                  [Page 29]

RFC 1510                        Kerberos                  September 1993


  then constructing and writing out its encoded (shorthand) form (this
  may involve a rearrangement of the existing encoding).

  Note that the ticket-granting service does not add the name of its
  own realm.  Instead, its responsibility is to add the name of the
  previous realm.  This prevents a malicious Kerberos server from
  intentionally leaving out its own name (it could, however, omit other
  realms' names).

  The names of neither the local realm nor the principal's realm are to
  be included in the transited field.  They appear elsewhere in the
  ticket and both are known to have taken part in authenticating the
  principal.  Since the endpoints are not included, both local and
  single-hop inter-realm authentication result in a transited field
  that is empty.

  Because the name of each realm transited  is  added  to this field,
  it might potentially be very long.  To decrease the length of this
  field, its contents are encoded.  The initially supported encoding is
  optimized for the normal case of inter-realm communication: a
  hierarchical arrangement of realms using either domain or X.500 style
  realm names. This encoding (called DOMAIN-X500-COMPRESS) is now
  described.

  Realm names in the transited field are separated by a ",".  The ",",
  "\", trailing "."s, and leading spaces (" ") are special characters,
  and if they are part of a realm name, they must be quoted in the
  transited field by preceding them with a "\".

  A realm name ending with a "." is interpreted as  being prepended to
  the previous realm.  For example, we can encode traversal of EDU,
  MIT.EDU,  ATHENA.MIT.EDU,  WASHINGTON.EDU, and CS.WASHINGTON.EDU as:

             "EDU,MIT.,ATHENA.,WASHINGTON.EDU,CS.".

  Note that if ATHENA.MIT.EDU, or CS.WASHINGTON.EDU were endpoints,
  that they would not be included in this field, and we would have:

             "EDU,MIT.,WASHINGTON.EDU"

  A realm name beginning with a "/" is interpreted as being appended to
  the previous realm (For the purpose of appending, the realm preceding
  the first listed realm is considered to be the null realm ("")).  If
  it is to stand by itself, then it should be preceded by a space ("
  ").  For example, we can encode traversal of /COM/HP/APOLLO, /COM/HP,
  /COM, and /COM/DEC as:

             "/COM,/HP,/APOLLO, /COM/DEC".



Kohl & Neuman                                                  [Page 30]

RFC 1510                        Kerberos                  September 1993


  Like the example above, if /COM/HP/APOLLO and /COM/DEC are endpoints,
  they they would not be included in this field, and we would have:

             "/COM,/HP"

  A null subfield preceding or following a "," indicates that all
  realms between the previous realm and the next realm have been
  traversed (For the purpose of interpreting null subfields, the
  client's realm is considered to precede those in the transited field,
  and the server's realm is considered to follow them.). Thus, ","
  means that all realms along the path between the client and the
  server have been traversed.  ",EDU, /COM," means that that all realms
  from the client's realm up to EDU (in a domain style hierarchy) have
  been traversed, and that everything from /COM down to the server's
  realm in an X.500 style has also been traversed.  This could occur if
  the EDU realm in one hierarchy shares an inter-realm key directly
  with the /COM realm in another hierarchy.

3.3.4. Receipt of KRB_TGS_REP message

  When the KRB_TGS_REP is received by the client, it is processed in
  the same manner as the KRB_AS_REP processing described above.  The
  primary difference is that the ciphertext part of the response must
  be decrypted using the session key from the ticket-granting ticket
  rather than the client's secret key.  See section A.7 for pseudocode.

3.4.  The KRB_SAFE Exchange

  The KRB_SAFE message may be used by clients requiring the ability to
  detect modifications of messages they exchange.  It achieves this by
  including a keyed collisionproof checksum of the user data and some
  control information.  The checksum is keyed with an encryption key
  (usually the last key negotiated via subkeys, or the session key if
  no negotiation has occured).

3.4.1. Generation of a KRB_SAFE message

  When an application wishes to send a KRB_SAFE message, it collects
  its data and the appropriate control information and computes a
  checksum over them.  The checksum algorithm should be some sort of
  keyed one-way hash function (such as the RSA-MD5-DES checksum
  algorithm specified in section 6.4.5, or the DES MAC), generated
  using the sub-session key if present, or the session key.  Different
  algorithms may be selected by changing the checksum type in the
  message.  Unkeyed or non-collision-proof checksums are not suitable
  for this use.

  The control information for the KRB_SAFE message includes both a



Kohl & Neuman                                                  [Page 31]

RFC 1510                        Kerberos                  September 1993


  timestamp and a sequence number.  The designer of an application
  using the KRB_SAFE message must choose at least one of the two
  mechanisms.  This choice should be based on the needs of the
  application protocol.

  Sequence numbers are useful when all messages sent will be received
  by one's peer.  Connection state is presently required to maintain
  the session key, so maintaining the next sequence number should not
  present an additional problem.

  If the application protocol is expected to tolerate lost messages
  without them being resent, the use of the timestamp is the
  appropriate replay detection mechanism.  Using timestamps is also the
  appropriate mechanism for multi-cast protocols where all of one's
  peers share a common sub-session key, but some messages will be sent
  to a subset of one's peers.

  After computing the checksum, the client then transmits the
  information and checksum to the recipient in the message format
  specified in section 5.6.1.

3.4.2. Receipt of KRB_SAFE message

  When an application receives a KRB_SAFE message, it verifies it as
  follows.  If any error occurs, an error code is reported for use by
  the application.

  The message is first checked by verifying that the protocol version
  and type fields match the current version and KRB_SAFE, respectively.
  A mismatch generates a KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE
  error.  The application verifies that the checksum used is a
  collisionproof keyed checksum, and if it is not, a
  KRB_AP_ERR_INAPP_CKSUM error is generated.  The recipient verifies
  that the operating system's report of the sender's address matches
  the sender's address in the message, and (if a recipient address is
  specified or the recipient requires an address) that one of the
  recipient's addresses appears as the recipient's address in the
  message.  A failed match for either case generates a
  KRB_AP_ERR_BADADDR error.  Then the timestamp and usec and/or the
  sequence number fields are checked.  If timestamp and usec are
  expected and not present, or they are present but not current, the
  KRB_AP_ERR_SKEW error is generated.  If the server name, along with
  the client name, time and microsecond fields from the Authenticator
  match any recently-seen such tuples, the KRB_AP_ERR_REPEAT error is
  generated.  If an incorrect sequence number is included, or a
  sequence number is expected but not present, the KRB_AP_ERR_BADORDER
  error is generated.  If neither a timestamp and usec or a sequence
  number is present, a KRB_AP_ERR_MODIFIED error is generated.



Kohl & Neuman                                                  [Page 32]

RFC 1510                        Kerberos                  September 1993


  Finally, the checksum is computed over the data and control
  information, and if it doesn't match the received checksum, a
  KRB_AP_ERR_MODIFIED error is generated.

  If all the checks succeed, the application is assured that the
  message was generated by its peer and was not modified in transit.

3.5.  The KRB_PRIV Exchange

  The KRB_PRIV message may be used by clients requiring confidentiality
  and the ability to detect modifications of exchanged messages.  It
  achieves this by encrypting the messages and adding control
  information.

3.5.1. Generation of a KRB_PRIV message

  When an application wishes to send a KRB_PRIV message, it collects
  its data and the appropriate control information (specified in
  section 5.7.1) and encrypts them under an encryption key (usually the
  last key negotiated via subkeys, or the session key if no negotiation
  has occured).  As part of the control information, the client must
  choose to use either a timestamp or a sequence number (or both); see
  the discussion in section 3.4.1 for guidelines on which to use.
  After the user data and control information are encrypted, the client
  transmits the ciphertext and some "envelope" information to the
  recipient.

3.5.2. Receipt of KRB_PRIV message

  When an application receives a KRB_PRIV message, it verifies it as
  follows.  If any error occurs, an error code is reported for use by
  the application.

  The message is first checked by verifying that the protocol version
  and type fields match the current version and KRB_PRIV, respectively.
  A mismatch generates a KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE
  error.  The application then decrypts the ciphertext and processes
  the resultant plaintext. If decryption shows the data to have been
  modified, a KRB_AP_ERR_BAD_INTEGRITY error is generated.  The
  recipient verifies that the operating system's report of the sender's
  address matches the sender's address in the message, and (if a
  recipient address is specified or the recipient requires an address)
  that one of the recipient's addresses appears as the recipient's
  address in the message.  A failed match for either case generates a
  KRB_AP_ERR_BADADDR error.  Then the timestamp and usec and/or the
  sequence number fields are checked. If timestamp and usec are
  expected and not present, or they are present but not current, the
  KRB_AP_ERR_SKEW error is generated.  If the server name, along with



Kohl & Neuman                                                  [Page 33]

RFC 1510                        Kerberos                  September 1993


  the client name, time and microsecond fields from the Authenticator
  match any recently-seen such tuples, the KRB_AP_ERR_REPEAT error is
  generated.  If an incorrect sequence number is included, or a
  sequence number is expected but not present, the KRB_AP_ERR_BADORDER
  error is generated.  If neither a timestamp and usec or a sequence
  number is present, a KRB_AP_ERR_MODIFIED error is generated.

  If all the checks succeed, the application can assume the message was
  generated by its peer, and was securely transmitted (without
  intruders able to see the unencrypted contents).

3.6.  The KRB_CRED Exchange

  The KRB_CRED message may be used by clients requiring the ability to
  send Kerberos credentials from one host to another.  It achieves this
  by sending the tickets together with encrypted data containing the
  session keys and other information associated with the tickets.

3.6.1. Generation of a KRB_CRED message

  When an application wishes to send a KRB_CRED message it first (using
  the KRB_TGS exchange) obtains credentials to be sent to the remote
  host.  It then constructs a KRB_CRED message using the ticket or
  tickets so obtained, placing the session key needed to use each
  ticket in the key field of the corresponding KrbCredInfo sequence of
  the encrypted part of the the KRB_CRED message.

  Other information associated with each ticket and obtained during the
  KRB_TGS exchange is also placed in the corresponding KrbCredInfo
  sequence in the encrypted part of the KRB_CRED message.  The current
  time and, if specifically required by the application the nonce, s-
  address, and raddress fields, are placed in the encrypted part of the
  KRB_CRED message which is then encrypted under an encryption key
  previosuly exchanged in the KRB_AP exchange (usually the last key
  negotiated via subkeys, or the session key if no negotiation has
  occured).

3.6.2. Receipt of KRB_CRED message

  When an application receives a KRB_CRED message, it verifies it.  If
  any error occurs, an error code is reported for use by the
  application.  The message is verified by checking that the protocol
  version and type fields match the current version and KRB_CRED,
  respectively.  A mismatch generates a KRB_AP_ERR_BADVERSION or
  KRB_AP_ERR_MSG_TYPE error.  The application then decrypts the
  ciphertext and processes the resultant plaintext. If decryption shows
  the data to have been modified, a KRB_AP_ERR_BAD_INTEGRITY error is
  generated.



Kohl & Neuman                                                  [Page 34]

RFC 1510                        Kerberos                  September 1993


  If present or required, the recipient verifies that the operating
  system's report of the sender's address matches the sender's address
  in the message, and that one of the recipient's addresses appears as
  the recipient's address in the message.  A failed match for either
  case generates a KRB_AP_ERR_BADADDR error.  The timestamp and usec
  fields (and the nonce field if required) are checked next.  If the
  timestamp and usec are not present, or they are present but not
  current, the KRB_AP_ERR_SKEW error is generated.

  If all the checks succeed, the application stores each of the new
  tickets in its ticket cache together with the session key and other
  information in the corresponding KrbCredInfo sequence from the
  encrypted part of the KRB_CRED message.

4.  The Kerberos Database

  The Kerberos server must have access to a database containing the
  principal identifiers and secret keys of principals to be
  authenticated (The implementation of the Kerberos server need not
  combine the database and the server on the same machine; it is
  feasible to store the principal database in, say, a network name
  service, as long as the entries stored therein are protected from
  disclosure to and modification by unauthorized parties.  However, we
  recommend against such strategies, as they can make system management
  and threat analysis quite complex.).

4.1.  Database contents

  A database entry should contain at least the following fields:

  Field                Value

  name                 Principal's identifier
  key                  Principal's secret key
  p_kvno               Principal's key version
  max_life             Maximum lifetime for Tickets
  max_renewable_life   Maximum total lifetime for renewable
                       Tickets

  The name field is an encoding of the principal's identifier.  The key
  field contains an encryption key.  This key is the principal's secret
  key.  (The key can be encrypted before storage under a Kerberos
  "master key" to protect it in case the database is compromised but
  the master key is not.  In that case, an extra field must be added to
  indicate the master key version used, see below.) The p_kvno field is
  the key version number of the principal's secret key.  The max_life
  field contains the maximum allowable lifetime (endtime - starttime)
  for any Ticket issued for this principal.  The max_renewable_life



Kohl & Neuman                                                  [Page 35]

RFC 1510                        Kerberos                  September 1993


  field contains the maximum allowable total lifetime for any renewable
  Ticket issued for this principal.  (See section 3.1 for a description
  of how these lifetimes are used in determining the lifetime of a
  given Ticket.)

  A server may provide KDC service to several realms, as long as the
  database representation provides a mechanism to distinguish between
  principal records with identifiers which differ only in the realm
  name.

  When an application server's key changes, if the change is routine
  (i.e.,  not the result of disclosure of the old key), the old key
  should be retained by the server until all tickets that had been
  issued using that key have expired.  Because of this, it is possible
  for several keys to be active for a single principal.  Ciphertext
  encrypted in a principal's key is always tagged with the version of
  the key that was used for encryption, to help the recipient find the
  proper key for decryption.

  When more than one key is active for a particular principal, the
  principal will have more than one record in the Kerberos database.
  The keys and key version numbers will differ between the records (the
  rest of the fields may or may not be the same). Whenever Kerberos
  issues a ticket, or responds to a request for initial authentication,
  the most recent key (known by the Kerberos server) will be used for
  encryption.  This is the key with the highest key version number.

4.2.  Additional fields

  Project Athena's KDC implementation uses additional fields in its
  database:

  Field        Value

  K_kvno       Kerberos' key version
  expiration   Expiration date for entry
  attributes   Bit field of attributes
  mod_date     Timestamp of last modification
  mod_name     Modifying principal's identifier

  The K_kvno field indicates the key version of the Kerberos master key
  under which the principal's secret key is encrypted.

  After an entry's expiration date has passed, the KDC will return an
  error to any client attempting to gain tickets as or for the
  principal.  (A database may want to maintain two expiration dates:
  one for the principal, and one for the principal's current key.  This
  allows password aging to work independently of the principal's



Kohl & Neuman                                                  [Page 36]

RFC 1510                        Kerberos                  September 1993


  expiration date.  However, due to the limited space in the responses,
  the KDC must combine the key expiration and principal expiration date
  into a single value called "key_exp", which is used as a hint to the
  user to take administrative action.)

  The attributes field is a bitfield used to govern the operations
  involving the principal.  This field might be useful in conjunction
  with user registration procedures, for site-specific policy
  implementations (Project Athena currently uses it for their user
  registration process controlled by the system-wide database service,
  Moira [7]), or to identify the "string to key" conversion algorithm
  used for a principal's key.  (See the discussion of the padata field
  in section 5.4.2 for details on why this can be useful.)  Other bits
  are used to indicate that certain ticket options should not be
  allowed in tickets encrypted under a principal's key (one bit each):
  Disallow issuing postdated tickets, disallow issuing forwardable
  tickets, disallow issuing tickets based on TGT authentication,
  disallow issuing renewable tickets, disallow issuing proxiable
  tickets, and disallow issuing tickets for which the principal is the
  server.

  The mod_date field contains the time of last modification of the
  entry, and the mod_name field contains the name of the principal
  which last modified the entry.

4.3.  Frequently Changing Fields

  Some KDC implementations may wish to maintain the last time that a
  request was made by a particular principal.  Information that might
  be maintained includes the time of the last request, the time of the
  last request for a ticket-granting ticket, the time of the last use
  of a ticket-granting ticket, or other times.  This information can
  then be returned to the user in the last-req field (see section 5.2).

  Other frequently changing information that can be maintained is the
  latest expiration time for any tickets that have been issued using
  each key.  This field would be used to indicate how long old keys
  must remain valid to allow the continued use of outstanding tickets.

4.4.  Site Constants

  The KDC implementation should have the following configurable
  constants or options, to allow an administrator to make and enforce
  policy decisions:

  + The minimum supported lifetime (used to determine whether the
     KDC_ERR_NEVER_VALID error should be returned). This constant
     should reflect reasonable expectations of round-trip time to the



Kohl & Neuman                                                  [Page 37]

RFC 1510                        Kerberos                  September 1993


     KDC, encryption/decryption time, and processing time by the client
     and target server, and it should allow for a minimum "useful"
     lifetime.

  + The maximum allowable total (renewable) lifetime of a ticket
     (renew_till - starttime).

  + The maximum allowable lifetime of a ticket (endtime - starttime).

  + Whether to allow the issue of tickets with empty address fields
     (including the ability to specify that such tickets may only be
     issued if the request specifies some authorization_data).

  + Whether proxiable, forwardable, renewable or post-datable tickets
     are to be issued.

5.  Message Specifications

  The following sections describe the exact contents and encoding of
  protocol messages and objects.  The ASN.1 base definitions are
  presented in the first subsection.  The remaining subsections specify
  the protocol objects (tickets and authenticators) and messages.
  Specification of encryption and checksum techniques, and the fields
  related to them, appear in section 6.

5.1.  ASN.1 Distinguished Encoding Representation

  All uses of ASN.1 in Kerberos shall use the Distinguished Encoding
  Representation of the data elements as described in the X.509
  specification, section 8.7 [8].

5.2.  ASN.1 Base Definitions

  The following ASN.1 base definitions are used in the rest of this
  section. Note that since the underscore character (_) is not
  permitted in ASN.1 names, the hyphen (-) is used in its place for the
  purposes of ASN.1 names.

  Realm ::=           GeneralString
  PrincipalName ::=   SEQUENCE {
                      name-type[0]     INTEGER,
                      name-string[1]   SEQUENCE OF GeneralString
  }

  Kerberos realms are encoded as GeneralStrings. Realms shall not
  contain a character with the code 0 (the ASCII NUL).  Most realms
  will usually consist of several components separated by periods (.),
  in the style of Internet Domain Names, or separated by slashes (/) in



Kohl & Neuman                                                  [Page 38]

RFC 1510                        Kerberos                  September 1993


  the style of X.500 names.  Acceptable forms for realm names are
  specified in section 7.  A PrincipalName is a typed sequence of
  components consisting of the following sub-fields:

  name-type This field specifies the type of name that follows.
            Pre-defined values for this field are
            specified in section 7.2.  The name-type should be
            treated as a hint.  Ignoring the name type, no two
            names can be the same (i.e., at least one of the
            components, or the realm, must be different).
            This constraint may be eliminated in the future.

  name-string This field encodes a sequence of components that
              form a name, each component encoded as a General
              String.  Taken together, a PrincipalName and a Realm
              form a principal identifier.  Most PrincipalNames
              will have only a few components (typically one or two).

          KerberosTime ::=   GeneralizedTime
                             -- Specifying UTC time zone (Z)

  The timestamps used in Kerberos are encoded as GeneralizedTimes.  An
  encoding shall specify the UTC time zone (Z) and shall not include
  any fractional portions of the seconds.  It further shall not include
  any separators.  Example: The only valid format for UTC time 6
  minutes, 27 seconds after 9 pm on 6 November 1985 is 19851106210627Z.

   HostAddress ::=     SEQUENCE  {
                       addr-type[0]             INTEGER,
                       address[1]               OCTET STRING
   }

   HostAddresses ::=   SEQUENCE OF SEQUENCE {
                       addr-type[0]             INTEGER,
                       address[1]               OCTET STRING
   }


  The host adddress encodings consists of two fields:

  addr-type  This field specifies the type of  address that
             follows. Pre-defined values for this field are
             specified in section 8.1.


  address   This field encodes a single address of type addr-type.

  The two forms differ slightly. HostAddress contains exactly one



Kohl & Neuman                                                  [Page 39]

RFC 1510                        Kerberos                  September 1993


  address; HostAddresses contains a sequence of possibly many
  addresses.

  AuthorizationData ::=   SEQUENCE OF SEQUENCE {
                          ad-type[0]               INTEGER,
                          ad-data[1]               OCTET STRING
  }


  ad-data   This field contains authorization data to be
            interpreted according to the value of the
            corresponding ad-type field.

  ad-type   This field specifies the format for the ad-data
            subfield.  All negative values are reserved for
            local use.  Non-negative values are reserved for
            registered use.

                  APOptions ::=   BIT STRING {
                                  reserved(0),
                                  use-session-key(1),
                                  mutual-required(2)
                  }


                  TicketFlags ::=   BIT STRING {
                                    reserved(0),
                                    forwardable(1),
                                    forwarded(2),
                                    proxiable(3),
                                    proxy(4),
                                    may-postdate(5),
                                    postdated(6),
                                    invalid(7),
                                    renewable(8),
                                    initial(9),
                                    pre-authent(10),
                                    hw-authent(11)
                  }

                 KDCOptions ::=   BIT STRING {
                                  reserved(0),
                                  forwardable(1),
                                  forwarded(2),
                                  proxiable(3),
                                  proxy(4),
                                  allow-postdate(5),
                                  postdated(6),



Kohl & Neuman                                                  [Page 40]

RFC 1510                        Kerberos                  September 1993


                                  unused7(7),
                                  renewable(8),
                                  unused9(9),
                                  unused10(10),
                                  unused11(11),
                                  renewable-ok(27),
                                  enc-tkt-in-skey(28),
                                  renew(30),
                                  validate(31)
                 }


           LastReq ::=   SEQUENCE OF SEQUENCE {
                         lr-type[0]               INTEGER,
                         lr-value[1]              KerberosTime
           }

  lr-type   This field indicates how the following lr-value
            field is to be interpreted.  Negative values indicate
            that the information pertains only to the
            responding server.  Non-negative values pertain to
            all servers for the realm.

            If the lr-type field is zero (0), then no information
            is conveyed by the lr-value subfield.  If the
            absolute value of the lr-type field is one (1),
            then the lr-value subfield is the time of last
            initial request for a TGT.  If it is two (2), then
            the lr-value subfield is the time of last initial
            request.  If it is three (3), then the lr-value
            subfield is the time of issue for the newest
            ticket-granting ticket used. If it is four (4),
            then the lr-value subfield is the time of the last
            renewal.  If it is five (5), then the lr-value
            subfield is the time of last request (of any
            type).

  lr-value  This field contains the time of the last request.
            The time must be interpreted according to the contents
            of the accompanying lr-type subfield.

  See section 6 for the definitions of Checksum, ChecksumType,
  EncryptedData, EncryptionKey, EncryptionType, and KeyType.








Kohl & Neuman                                                  [Page 41]

RFC 1510                        Kerberos                  September 1993


5.3.  Tickets and Authenticators

  This section describes the format and encryption parameters for
  tickets and authenticators.  When a ticket or authenticator is
  included in a protocol message it is treated as an opaque object.

5.3.1. Tickets

  A ticket is a record that helps a client authenticate to a service.
  A Ticket contains the following information:

Ticket ::=                    [APPLICATION 1] SEQUENCE {
                             tkt-vno[0]                   INTEGER,
                             realm[1]                     Realm,
                             sname[2]                     PrincipalName,
                             enc-part[3]                  EncryptedData
}
-- Encrypted part of ticket
EncTicketPart ::=     [APPLICATION 3] SEQUENCE {
                     flags[0]             TicketFlags,
                     key[1]               EncryptionKey,
                     crealm[2]            Realm,
                     cname[3]             PrincipalName,
                     transited[4]         TransitedEncoding,
                     authtime[5]          KerberosTime,
                     starttime[6]         KerberosTime OPTIONAL,
                     endtime[7]           KerberosTime,
                     renew-till[8]        KerberosTime OPTIONAL,
                     caddr[9]             HostAddresses OPTIONAL,
                     authorization-data[10]   AuthorizationData OPTIONAL
}
-- encoded Transited field
TransitedEncoding ::=         SEQUENCE {
                             tr-type[0]  INTEGER, -- must be registered
                             contents[1]          OCTET STRING
}

  The encoding of EncTicketPart is encrypted in the key shared by
  Kerberos and the end server (the server's secret key).  See section 6
  for the format of the ciphertext.

  tkt-vno   This field specifies the version number for the ticket
            format.  This document describes version number 5.

  realm     This field specifies the realm that issued a ticket.  It
            also serves to identify the realm part of the server's
            principal identifier.  Since a Kerberos server can only
            issue tickets for servers within its realm, the two will



Kohl & Neuman                                                  [Page 42]

RFC 1510                        Kerberos                  September 1993


            always be identical.

  sname     This field specifies the name part of the server's
            identity.

  enc-part  This field holds the encrypted encoding of the
            EncTicketPart sequence.

  flags     This field indicates which of various options were used or
            requested when the ticket was issued.  It is a bit-field,
            where the selected options are indicated by the bit being
            set (1), and the unselected options and reserved fields
            being reset (0).  Bit 0 is the most significant bit.  The
            encoding of the bits is specified in section 5.2.  The
            flags are described in more detail above in section 2.  The
            meanings of the flags are:

            Bit(s)    Name        Description

            0         RESERVED    Reserved for future expansion of this
                                  field.

            1         FORWARDABLE The FORWARDABLE flag is normally only
                                  interpreted by the TGS, and can be
                                  ignored by end servers.  When set,
                                  this flag tells the ticket-granting
                                  server that it is OK to issue a new
                                  ticket- granting ticket with a
                                  different network address based on
                                  the presented ticket.

            2         FORWARDED   When set, this flag indicates that
                                  the ticket has either been forwarded
                                  or was issued based on authentication
                                  involving a forwarded ticket-granting
                                  ticket.

            3         PROXIABLE   The PROXIABLE flag is normally only
                                  interpreted by the TGS, and can be
                                  ignored by end servers. The PROXIABLE
                                  flag has an interpretation identical
                                  to that of the FORWARDABLE flag,
                                  except that the PROXIABLE flag tells
                                  the ticket-granting server that only
                                  non- ticket-granting tickets may be
                                  issued with different network
                                  addresses.




Kohl & Neuman                                                  [Page 43]

RFC 1510                        Kerberos                  September 1993


            4         PROXY      When set, this flag indicates that a
                                  ticket is a proxy.

            5         MAY-POSTDATE The MAY-POSTDATE flag is normally
                                  only interpreted by the TGS, and can
                                  be ignored by end servers.  This flag
                                  tells the ticket-granting server that
                                  a post- dated ticket may be issued
                                  based on this ticket-granting ticket.

            6         POSTDATED   This flag indicates that this ticket
                                  has been postdated.  The end-service
                                  can check the authtime field to see
                                  when the original authentication
                                  occurred.

            7         INVALID     This flag indicates that a ticket is
                                  invalid, and it must be validated by
                                  the KDC before use.  Application
                                  servers must reject tickets which
                                  have this flag set.

            8         RENEWABLE   The RENEWABLE flag is normally only
                                  interpreted by the TGS, and can
                                  usually be ignored by end servers
                                  (some particularly careful servers
                                  may wish to disallow renewable
                                  tickets).  A renewable ticket can be
                                  used to obtain a replacement ticket
                                  that expires at a later date.

            9         INITIAL     This flag indicates that this ticket
                                  was issued using the AS protocol, and
                                  not issued based on a ticket-granting
                                  ticket.

            10        PRE-AUTHENT This flag indicates that during
                                  initial authentication, the client
                                  was authenticated by the KDC before a
                                  ticket was issued.  The strength of
                                  the preauthentication method is not
                                  indicated, but is acceptable to the
                                  KDC.

            11        HW-AUTHENT  This flag indicates that the protocol
                                  employed for initial authentication
                                  required the use of hardware expected
                                  to be possessed solely by the named



Kohl & Neuman                                                  [Page 44]

RFC 1510                        Kerberos                  September 1993


                                  client.  The hardware authentication
                                  method is selected by the KDC and the
                                  strength of the method is not
                                  indicated.

            12-31     RESERVED    Reserved for future use.

  key       This field exists in the ticket and the KDC response and is
            used to pass the session key from Kerberos to the
            application server and the client.  The field's encoding is
            described in section 6.2.

  crealm    This field contains the name of the realm in which the
            client is registered and in which initial authentication
            took place.

  cname     This field contains the name part of the client's principal
            identifier.

  transited This field lists the names of the Kerberos realms that took
            part in authenticating the user to whom this ticket was
            issued.  It does not specify the order in which the realms
            were transited.  See section 3.3.3.1 for details on how
            this field encodes the traversed realms.

  authtime  This field indicates the time of initial authentication for
            the named principal.  It is the time of issue for the
            original ticket on which this ticket is based.  It is
            included in the ticket to provide additional information to
            the end service, and  to provide  the necessary information
            for implementation of a `hot list' service at the KDC.   An
            end service that is particularly paranoid could refuse to
            accept tickets for which the initial authentication
            occurred "too far" in the past.

            This field is also returned as part of the response from
            the KDC.  When returned as part of the response to initial
            authentication (KRB_AS_REP), this is the current time on
            the Kerberos server (It is NOT recommended that this time
            value be used to adjust the workstation's clock since the
            workstation cannot reliably determine that such a
            KRB_AS_REP actually came from the proper KDC in a timely
            manner.).

  starttime This field in the ticket specifies the time after which the
            ticket is valid.  Together with endtime, this field
            specifies the life of the ticket.   If it is absent from
            the ticket, its value should be treated as that of the



Kohl & Neuman                                                  [Page 45]

RFC 1510                        Kerberos                  September 1993


            authtime field.

  endtime   This field contains the time after which the ticket will
            not be honored (its expiration time).  Note that individual
            services may place their own limits on the life of a ticket
            and may reject tickets which have not yet expired.  As
            such, this is really an upper bound on the expiration time
            for the ticket.

  renew-till This field is only present in tickets that have the
            RENEWABLE flag set in the flags field.  It indicates the
            maximum endtime that may be included in a renewal.  It can
            be thought of as the absolute expiration time for the
            ticket, including all renewals.

  caddr     This field in a ticket contains zero (if omitted) or more
            (if present) host addresses.  These are the addresses from
            which the ticket can be used.  If there are no addresses,
            the ticket can be used from any location.  The decision
            by the KDC to issue or by the end server to accept zero-
            address tickets is a policy decision and is left to the
            Kerberos and end-service administrators; they may refuse to
            issue or accept such tickets.  The suggested and default
            policy, however, is that such tickets will only be issued
            or accepted when additional information that can be used to
            restrict the use of the ticket is included in the
            authorization_data field.  Such a ticket is a capability.

            Network addresses are included in the ticket to make it
            harder for an attacker to use stolen credentials. Because
            the session key is not sent over the network in cleartext,
            credentials can't be stolen simply by listening to the
            network; an attacker has to gain access to the session key
            (perhaps through operating system security breaches or a
            careless user's unattended session) to make use of stolen
            tickets.

            It is important to note that the network address from which
            a connection is received cannot be reliably determined.
            Even if it could be, an attacker who has compromised the
            client's workstation could use the credentials from there.
            Including the network addresses only makes it more
            difficult, not impossible, for an attacker to walk off with
            stolen credentials and then use them from a "safe"
            location.






Kohl & Neuman                                                  [Page 46]

RFC 1510                        Kerberos                  September 1993


  authorization-data The authorization-data field is used to pass
            authorization data from the principal on whose behalf a
            ticket was issued to the application service.  If no
            authorization data is included, this field will be left
            out.  The data in this field are specific to the end
            service.  It is expected that the field will contain the
            names of service specific objects, and the rights to those
            objects.  The format for this field is described in section
            5.2.  Although Kerberos is not concerned with the format of
            the contents of the subfields, it does carry type
            information (ad-type).

            By using the authorization_data field, a principal is able
            to issue a proxy that is valid for a specific purpose.  For
            example, a client wishing to print a file can obtain a file
            server proxy to be passed to the print server.  By
            specifying the name of the file in the authorization_data
            field, the file server knows that the print server can only
            use the client's rights when accessing the particular file
            to be printed.

            It is interesting to note that if one specifies the
            authorization-data field of a proxy and leaves the host
            addresses blank, the resulting ticket and session key can
            be treated as a capability.  See [9] for some suggested
            uses of this field.

            The authorization-data field is optional and does not have
            to be included in a ticket.

5.3.2. Authenticators

  An authenticator is a record sent with a ticket to a server to
  certify the client's knowledge of the encryption key in the ticket,
  to help the server detect replays, and to help choose a "true session
  key" to use with the particular session.  The encoding is encrypted
  in the ticket's session key shared by the client and the server:

-- Unencrypted authenticator
Authenticator ::=    [APPLICATION 2] SEQUENCE    {
              authenticator-vno[0]          INTEGER,
              crealm[1]                     Realm,
              cname[2]                      PrincipalName,
              cksum[3]                      Checksum OPTIONAL,
              cusec[4]                      INTEGER,
              ctime[5]                      KerberosTime,
              subkey[6]                     EncryptionKey OPTIONAL,
              seq-number[7]                 INTEGER OPTIONAL,



Kohl & Neuman                                                  [Page 47]

RFC 1510                        Kerberos                  September 1993


              authorization-data[8]         AuthorizationData OPTIONAL
                    }

  authenticator-vno This field specifies the version number for the
            format of the authenticator. This document specifies
            version 5.

  crealm and cname These fields are the same as those described for the
            ticket in section 5.3.1.

  cksum     This field contains a checksum of the the application data
            that accompanies the KRB_AP_REQ.

  cusec     This field contains the microsecond part of the client's
            timestamp.  Its value (before encryption) ranges from 0 to
            999999.  It often appears along with ctime.  The two fields
            are used together to specify a reasonably accurate
            timestamp.

  ctime     This field contains the current time on the client's host.

  subkey    This field contains the client's choice for an encryption
            key which is to be used to protect this specific
            application session. Unless an application specifies
            otherwise, if this field is left out the session key from
            the ticket will be used.

  seq-number This optional field includes the initial sequence number
            to be used by the KRB_PRIV or KRB_SAFE messages when
            sequence numbers are used to detect replays (It may also be
            used by application specific messages).  When included in
            the authenticator this field specifies the initial sequence
            number for messages from the client to the server.  When
            included in the AP-REP message, the initial sequence number
            is that for messages from the server to the client.  When
            used in KRB_PRIV or KRB_SAFE messages, it is incremented by
            one after each message is sent.

            For sequence numbers to adequately support the detection of
            replays they should be non-repeating, even across
            connection boundaries. The initial sequence number should
            be random and uniformly distributed across the full space
            of possible sequence numbers, so that it cannot be guessed
            by an attacker and so that it and the successive sequence
            numbers do not repeat other sequences.






Kohl & Neuman                                                  [Page 48]

RFC 1510                        Kerberos                  September 1993


  authorization-data This field is the same as described for the ticket
            in section 5.3.1.  It is optional and will only appear when
            additional restrictions are to be placed on the use of a
            ticket, beyond those carried in the ticket itself.

5.4.  Specifications for the AS and TGS exchanges

  This section specifies the format of the messages used in exchange
  between the client and the Kerberos server.  The format of possible
  error messages appears in section 5.9.1.

5.4.1. KRB_KDC_REQ definition

  The KRB_KDC_REQ message has no type of its own.  Instead, its type is
  one of KRB_AS_REQ or KRB_TGS_REQ depending on whether the request is
  for an initial ticket or an additional ticket.  In either case, the
  message is sent from the client to the Authentication Server to
  request credentials for a service.

The message fields are:

AS-REQ ::=         [APPLICATION 10] KDC-REQ
TGS-REQ ::=        [APPLICATION 12] KDC-REQ

KDC-REQ ::=        SEQUENCE {
          pvno[1]               INTEGER,
          msg-type[2]           INTEGER,
          padata[3]             SEQUENCE OF PA-DATA OPTIONAL,
          req-body[4]           KDC-REQ-BODY
}

PA-DATA ::=        SEQUENCE {
          padata-type[1]        INTEGER,
          padata-value[2]       OCTET STRING,
                        -- might be encoded AP-REQ
}

KDC-REQ-BODY ::=   SEQUENCE {
           kdc-options[0]       KDCOptions,
           cname[1]             PrincipalName OPTIONAL,
                        -- Used only in AS-REQ
           realm[2]             Realm, -- Server's realm
                        -- Also client's in AS-REQ
           sname[3]             PrincipalName OPTIONAL,
           from[4]              KerberosTime OPTIONAL,
           till[5]              KerberosTime,
           rtime[6]             KerberosTime OPTIONAL,
           nonce[7]             INTEGER,



Kohl & Neuman                                                  [Page 49]

RFC 1510                        Kerberos                  September 1993


           etype[8]             SEQUENCE OF INTEGER, -- EncryptionType,
                        -- in preference order
           addresses[9]         HostAddresses OPTIONAL,
           enc-authorization-data[10]   EncryptedData OPTIONAL,
                        -- Encrypted AuthorizationData encoding
           additional-tickets[11]       SEQUENCE OF Ticket OPTIONAL
}

  The fields in this message are:

  pvno      This field is included in each message, and specifies the
            protocol version number.  This document specifies protocol
            version 5.

  msg-type  This field indicates the type of a protocol message.  It
            will almost always be the same as the application
            identifier associated with a message.  It is included to
            make the identifier more readily accessible to the
            application.  For the KDC-REQ message, this type will be
            KRB_AS_REQ or KRB_TGS_REQ.

  padata    The padata (pre-authentication data) field contains a of
            authentication information which may be needed before
            credentials can be issued or decrypted.  In the case of
            requests for additional tickets (KRB_TGS_REQ), this field
            will include an element with padata-type of PA-TGS-REQ and
            data of an authentication header (ticket-granting ticket
            and authenticator). The checksum in the authenticator
            (which must be collisionproof) is to be computed over the
            KDC-REQ-BODY encoding.  In most requests for initial
            authentication (KRB_AS_REQ) and most replies (KDC-REP), the
            padata field will be left out.

            This field may also contain information needed by certain
            extensions to the Kerberos protocol.  For example, it might
            be used to initially verify the identity of a client before
            any response is returned.  This is accomplished with a
            padata field with padata-type equal to PA-ENC-TIMESTAMP and
            padata-value defined as follows:

  padata-type     ::= PA-ENC-TIMESTAMP
  padata-value    ::= EncryptedData -- PA-ENC-TS-ENC

  PA-ENC-TS-ENC   ::= SEQUENCE {
          patimestamp[0]               KerberosTime, -- client's time
          pausec[1]                    INTEGER OPTIONAL
  }




Kohl & Neuman                                                  [Page 50]

RFC 1510                        Kerberos                  September 1993


            with patimestamp containing the client's time and pausec
            containing the microseconds which may be omitted if a
            client will not generate more than one request per second.
            The ciphertext (padata-value) consists of the PA-ENC-TS-ENC
            sequence, encrypted using the client's secret key.

            The padata field can also contain information needed to
            help the KDC or the client select the key needed for
            generating or decrypting the response.  This form of the
            padata is useful for supporting the use of certain
            "smartcards" with Kerberos.  The details of such extensions
            are beyond the scope of this specification.  See [10] for
            additional uses of this field.

  padata-type The padata-type element of the padata field indicates the
            way that the padata-value element is to be interpreted.
            Negative values of padata-type are reserved for
            unregistered use; non-negative values are used for a
            registered interpretation of the element type.

  req-body  This field is a placeholder delimiting the extent of the
            remaining fields.  If a checksum is to be calculated over
            the request, it is calculated over an encoding of the KDC-
            REQ-BODY sequence which is enclosed within the req-body
            field.

  kdc-options This field appears in the KRB_AS_REQ and KRB_TGS_REQ
            requests to the KDC and indicates the flags that the client
            wants set on the tickets as well as other information that
            is to modify the behavior of the KDC. Where appropriate,
            the name of an option may be the same as the flag that is
            set by that option.  Although in most case, the bit in the
            options field will be the same as that in the flags field,
            this is not guaranteed, so it is not acceptable to simply
            copy the options field to the flags field.  There are
            various checks that must be made before honoring an option
            anyway.

            The kdc_options field is a bit-field, where the selected
            options are indicated by the bit being set (1), and the
            unselected options and reserved fields being reset (0).
            The encoding of the bits is specified in section 5.2.  The
            options are described in more detail above in section 2.
            The meanings of the options are:







Kohl & Neuman                                                  [Page 51]

RFC 1510                        Kerberos                  September 1993


            Bit(s)  Name         Description

            0       RESERVED     Reserved for future expansion of this
                                 field.

            1       FORWARDABLE  The FORWARDABLE option indicates that
                                 the ticket to be issued is to have its
                                 forwardable flag set.  It may only be
                                 set on the initial request, or in a
                                 subsequent request if the ticket-
                                 granting ticket on which it is based
                                 is also forwardable.

            2       FORWARDED    The FORWARDED option is only specified
                                 in a request to the ticket-granting
                                 server and will only be honored if the
                                 ticket-granting ticket in the request
                                 has its FORWARDABLE bit set.  This
                                 option indicates that this is a
                                 request for forwarding. The
                                 address(es) of the host from which the
                                 resulting ticket is to be valid are
                                 included in the addresses field of the
                                 request.


            3       PROXIABLE    The PROXIABLE option indicates that
                                 the ticket to be issued is to have its
                                 proxiable flag set. It may only be set
                                 on the initial request, or in a
                                 subsequent request if the ticket-
                                 granting ticket on which it is based
                                 is also proxiable.

            4       PROXY        The PROXY option indicates that this
                                 is a request for a proxy.  This option
                                 will only be honored if the ticket-
                                 granting ticket in the request has its
                                 PROXIABLE bit set.  The address(es) of
                                 the host from which the resulting
                                 ticket is to be valid are included in
                                 the addresses field of the request.

            5       ALLOW-POSTDATE The ALLOW-POSTDATE option indicates
                                 that the ticket to be issued is to
                                 have its MAY-POSTDATE flag set.  It
                                 may only be set on the initial
                                 request, or in a subsequent request if



Kohl & Neuman                                                  [Page 52]

RFC 1510                        Kerberos                  September 1993


                                 the ticket-granting ticket on which it
                                 is based also has its MAY-POSTDATE
                                 flag set.

            6       POSTDATED    The POSTDATED option indicates that
                                 this is a request for a postdated
                                 ticket.  This option will only be
                                 honored if the ticket-granting ticket
                                 on which it is based has its MAY-
                                 POSTDATE flag set.  The resulting
                                 ticket will also have its INVALID flag
                                 set, and that flag may be reset by a
                                 subsequent request to the KDC after
                                 the starttime in the ticket has been
                                 reached.

            7       UNUSED       This option is presently unused.

            8       RENEWABLE    The RENEWABLE option indicates that
                                 the ticket to be issued is to have its
                                 RENEWABLE flag set.  It may only be
                                 set on the initial request, or when
                                 the ticket-granting ticket on which
                                 the request is based is also
                                 renewable.  If this option is
                                 requested, then the rtime field in the
                                 request contains the desired absolute
                                 expiration time for the ticket.

            9-26    RESERVED     Reserved for future use.

            27      RENEWABLE-OK The RENEWABLE-OK option indicates that
                                 a renewable ticket will be acceptable
                                 if a ticket with the requested life
                                 cannot otherwise be provided.  If a
                                 ticket with the requested life cannot
                                 be provided, then a renewable ticket
                                 may be issued with a renew-till equal
                                 to the the requested endtime.  The
                                 value of the renew-till field may
                                 still be limited by local limits, or
                                 limits selected by the individual
                                 principal or server.

            28      ENC-TKT-IN-SKEY This option is used only by the
                                 ticket-granting service.  The ENC-
                                 TKT-IN-SKEY option indicates that the
                                 ticket for the end server is to be



Kohl & Neuman                                                  [Page 53]

RFC 1510                        Kerberos                  September 1993


                                 encrypted in the session key from the
                                 additional ticket-granting ticket
                                 provided.

            29      RESERVED     Reserved for future use.

            30      RENEW        This option is used only by the
                                 ticket-granting service.  The RENEW
                                 option indicates that the present
                                 request is for a renewal.  The ticket
                                 provided is encrypted in the secret
                                 key for the server on which it is
                                 valid.  This option will only be
                                 honored if the ticket to be renewed
                                 has its RENEWABLE flag set and if the
                                 time in its renew till field has not
                                 passed.  The ticket to be renewed is
                                 passed in the padata field as part of
                                 the authentication header.

            31      VALIDATE     This option is used only by the
                                 ticket-granting service.  The VALIDATE
                                 option indicates that the request is
                                 to validate a postdated ticket.  It
                                 will only be honored if the ticket
                                 presented is postdated, presently has
                                 its INVALID flag set, and would be
                                 otherwise usable at this time.  A
                                 ticket cannot be validated before its
                                 starttime.  The ticket presented for
                                 validation is encrypted in the key of
                                 the server for which it is valid and
                                 is passed in the padata field as part
                                 of the authentication header.

  cname and sname These fields are the same as those described for the
            ticket in section 5.3.1.  sname may only be absent when the
            ENC-TKT-IN-SKEY option is specified.  If absent, the name
            of the server is taken from the name of the client in the
            ticket passed as additional-tickets.

  enc-authorization-data The enc-authorization-data, if present (and it
            can only be present in the TGS_REQ form), is an encoding of
            the desired authorization-data encrypted under the sub-
            session key if present in the Authenticator, or
            alternatively from the session key in the ticket-granting
            ticket, both from the padata field in the KRB_AP_REQ.




Kohl & Neuman                                                  [Page 54]

RFC 1510                        Kerberos                  September 1993


  realm     This field specifies the realm part of the server's
            principal identifier. In the AS exchange, this is also the
            realm part of the client's principal identifier.

  from      This field is included in the KRB_AS_REQ and KRB_TGS_REQ
            ticket requests when the requested ticket is to be
            postdated.  It specifies the desired start time for the
            requested ticket.

  till      This field contains the expiration date requested by the
            client in a ticket request.

  rtime     This field is the requested renew-till time sent from a
            client to the KDC in a ticket request.  It is optional.

  nonce     This field is part of the KDC request and response.  It it
            intended to hold a random number generated by the client.
            If the same number is included in the encrypted response
            from the KDC, it provides evidence that the response is
            fresh and has not been replayed by an attacker.  Nonces
            must never be re-used.  Ideally, it should be gen erated
            randomly, but if the correct time is known, it may suffice
            (Note, however, that if the time is used as the nonce, one
            must make sure that the workstation time is monotonically
            increasing.  If the time is ever reset backwards, there is
            a small, but finite, probability that a nonce will be
            reused.).

  etype     This field specifies the desired encryption algorithm to be
            used in the response.

  addresses This field is included in the initial request for tickets,
            and optionally included in requests for additional tickets
            from the ticket-granting server.  It specifies the
            addresses from which the requested ticket is to be valid.
            Normally it includes the addresses for the client's host.
            If a proxy is requested, this field will contain other
            addresses.  The contents of this field are usually copied
            by the KDC into the caddr field of the resulting ticket.

  additional-tickets Additional tickets may be optionally included in a
            request to the ticket-granting server.  If the ENC-TKT-IN-
            SKEY option has been specified, then the session key from
            the additional ticket will be used in place of the server's
            key to encrypt the new ticket.  If more than one option
            which requires additional tickets has been specified, then
            the additional tickets are used in the order specified by
            the ordering of the options bits (see kdc-options, above).



Kohl & Neuman                                                  [Page 55]

RFC 1510                        Kerberos                  September 1993


  The application code will be either ten (10) or twelve (12) depending
  on whether the request is for an initial ticket (AS-REQ) or for an
  additional ticket (TGS-REQ).

  The optional fields (addresses, authorization-data and additional-
  tickets) are only included if necessary to perform the operation
  specified in the kdc-options field.

  It should be noted that in KRB_TGS_REQ, the protocol version number
  appears twice and two different message types appear: the KRB_TGS_REQ
  message contains these fields as does the authentication header
  (KRB_AP_REQ) that is passed in the padata field.

5.4.2. KRB_KDC_REP definition

  The KRB_KDC_REP message format is used for the reply from the KDC for
  either an initial (AS) request or a subsequent (TGS) request.  There
  is no message type for KRB_KDC_REP.  Instead, the type will be either
  KRB_AS_REP or KRB_TGS_REP.  The key used to encrypt the ciphertext
  part of the reply depends on the message type.  For KRB_AS_REP, the
  ciphertext is encrypted in the client's secret key, and the client's
  key version number is included in the key version number for the
  encrypted data.  For KRB_TGS_REP, the ciphertext is encrypted in the
  sub-session key from the Authenticator, or if absent, the session key
  from the ticket-granting ticket used in the request.  In that case,
  no version number will be present in the EncryptedData sequence.

  The KRB_KDC_REP message contains the following fields:

  AS-REP ::=    [APPLICATION 11] KDC-REP
  TGS-REP ::=   [APPLICATION 13] KDC-REP

  KDC-REP ::=   SEQUENCE {
                pvno[0]                    INTEGER,
                msg-type[1]                INTEGER,
                padata[2]                  SEQUENCE OF PA-DATA OPTIONAL,
                crealm[3]                  Realm,
                cname[4]                   PrincipalName,
                ticket[5]                  Ticket,
                enc-part[6]                EncryptedData
  }

  EncASRepPart ::=    [APPLICATION 25[25]] EncKDCRepPart
  EncTGSRepPart ::=   [APPLICATION 26] EncKDCRepPart

  EncKDCRepPart ::=   SEQUENCE {
              key[0]                       EncryptionKey,
              last-req[1]                  LastReq,



Kohl & Neuman                                                  [Page 56]

RFC 1510                        Kerberos                  September 1993


              nonce[2]                     INTEGER,
              key-expiration[3]            KerberosTime OPTIONAL,
              flags[4]                     TicketFlags,
              authtime[5]                  KerberosTime,
              starttime[6]                 KerberosTime OPTIONAL,
              endtime[7]                   KerberosTime,
              renew-till[8]                KerberosTime OPTIONAL,
              srealm[9]                    Realm,
              sname[10]                    PrincipalName,
              caddr[11]                    HostAddresses OPTIONAL
  }

  NOTE: In EncASRepPart, the application code in the encrypted
        part of a message provides an additional check that
        the message was decrypted properly.

  pvno and msg-type These fields are described above in section 5.4.1.
            msg-type is either KRB_AS_REP or KRB_TGS_REP.

  padata    This field is described in detail in section 5.4.1.  One
            possible use for this field is to encode an alternate
            "mix-in" string to be used with a string-to-key algorithm
            (such as is described in section 6.3.2). This ability is
            useful to ease transitions if a realm name needs to change
            (e.g., when a company is acquired); in such a case all
            existing password-derived entries in the KDC database would
            be flagged as needing a special mix-in string until the
            next password change.

  crealm, cname, srealm and sname These fields are the same as those
            described for the ticket in section 5.3.1.

  ticket    The newly-issued ticket, from section 5.3.1.

  enc-part  This field is a place holder for the ciphertext and related
            information that forms the encrypted part of a message.
            The description of the encrypted part of the message
            follows each appearance of this field.  The encrypted part
            is encoded as described in section 6.1.

  key       This field is the same as described for the ticket in
            section 5.3.1.

  last-req  This field is returned by the KDC and specifies the time(s)
            of the last request by a principal.  Depending on what
            information is available, this might be the last time that
            a request for a ticket-granting ticket was made, or the
            last time that a request based on a ticket-granting ticket



Kohl & Neuman                                                  [Page 57]

RFC 1510                        Kerberos                  September 1993


            was successful.  It also might cover all servers for a
            realm, or just the particular server. Some implementations
            may display this information to the user to aid in
            discovering unauthorized use of one's identity.  It is
            similar in spirit to the last login time displayed when
            logging into timesharing systems.

  nonce     This field is described above in section 5.4.1.

  key-expiration The key-expiration field is part of the response from
            the KDC and specifies the time that the client's secret key
            is due to expire.  The expiration might be the result of
            password aging or an account expiration.  This field will
            usually be left out of the TGS reply since the response to
            the TGS request is encrypted in a session key and no client
            information need be retrieved from the KDC database.  It is
            up to the application client (usually the login program) to
            take appropriate action (such as notifying the user) if the
            expira    tion time is imminent.

  flags, authtime, starttime, endtime, renew-till and caddr These
            fields are duplicates of those found in the encrypted
            portion of the attached ticket (see section 5.3.1),
            provided so the client may verify they match the intended
            request and to assist in proper ticket caching.  If the
            message is of type KRB_TGS_REP, the caddr field will only
            be filled in if the request was for a proxy or forwarded
            ticket, or if the user is substituting a subset of the
            addresses from the ticket granting ticket.  If the client-
            requested addresses are not present or not used, then the
            addresses contained in the ticket will be the same as those
            included in the ticket-granting ticket.

5.5.  Client/Server (CS) message specifications

  This section specifies the format of the messages used for the
  authentication of the client to the application server.

5.5.1. KRB_AP_REQ definition

  The KRB_AP_REQ message contains the Kerberos protocol version number,
  the message type KRB_AP_REQ, an options field to indicate any options
  in use, and the ticket and authenticator themselves.  The KRB_AP_REQ
  message is often referred to as the "authentication header".

  AP-REQ ::=      [APPLICATION 14] SEQUENCE {
                  pvno[0]                       INTEGER,
                  msg-type[1]                   INTEGER,



Kohl & Neuman                                                  [Page 58]

RFC 1510                        Kerberos                  September 1993


                  ap-options[2]                 APOptions,
                  ticket[3]                     Ticket,
                  authenticator[4]              EncryptedData
  }

  APOptions ::=   BIT STRING {
                  reserved(0),
                  use-session-key(1),
                  mutual-required(2)
  }

  pvno and msg-type These fields are described above in section 5.4.1.
            msg-type is KRB_AP_REQ.

  ap-options This field appears in the application request (KRB_AP_REQ)
            and affects the way the request is processed.  It is a
            bit-field, where the selected options are indicated by the
            bit being set (1), and the unselected options and reserved
            fields being reset (0).  The encoding of the bits is
            specified in section 5.2.  The meanings of the options are:

            Bit(s)  Name           Description

            0       RESERVED       Reserved for future expansion of
                                 this field.

            1       USE-SESSION-KEYThe USE-SESSION-KEY option indicates
                                 that the ticket the client is
                                 presenting to a server is encrypted in
                                 the session key from the server's
                                 ticket-granting ticket. When this
                                 option is not specified, the ticket is
                                 encrypted in the server's secret key.

            2       MUTUAL-REQUIREDThe MUTUAL-REQUIRED option tells the
                                 server that the client requires mutual
                                 authentication, and that it must
                                 respond with a KRB_AP_REP message.

            3-31    RESERVED       Reserved for future use.

  ticket    This field is a ticket authenticating the client to the
            server.

  authenticator This contains the authenticator, which includes the
            client's choice of a subkey.  Its encoding is described in
            section 5.3.2.




Kohl & Neuman                                                  [Page 59]

RFC 1510                        Kerberos                  September 1993


5.5.2.  KRB_AP_REP definition

  The KRB_AP_REP message contains the Kerberos protocol version number,
  the message type, and an encrypted timestamp. The message is sent in
  in response to an application request (KRB_AP_REQ) where the mutual
  authentication option has been selected in the ap-options field.

  AP-REP ::=         [APPLICATION 15] SEQUENCE {
             pvno[0]                   INTEGER,
             msg-type[1]               INTEGER,
             enc-part[2]               EncryptedData
  }

  EncAPRepPart ::=   [APPLICATION 27]     SEQUENCE {
             ctime[0]                  KerberosTime,
             cusec[1]                  INTEGER,
             subkey[2]                 EncryptionKey OPTIONAL,
             seq-number[3]             INTEGER OPTIONAL
  }

  NOTE: in EncAPRepPart, the application code in the encrypted part of
  a message provides an additional check that the message was decrypted
  properly.

  The encoded EncAPRepPart is encrypted in the shared session key of
  the ticket.  The optional subkey field can be used in an
  application-arranged negotiation to choose a per association session
  key.

  pvno and msg-type These fields are described above in section 5.4.1.
            msg-type is KRB_AP_REP.

  enc-part  This field is described above in section 5.4.2.

  ctime     This field contains the current time on the client's host.

  cusec     This field contains the microsecond part of the client's
            timestamp.

  subkey    This field contains an encryption key which is to be used
            to protect this specific application session.  See section
            3.2.6 for specifics on how this field is used to negotiate
            a key.  Unless an application specifies otherwise, if this
            field is left out, the sub-session key from the
            authenticator, or if also left out, the session key from
            the ticket will be used.





Kohl & Neuman                                                  [Page 60]

RFC 1510                        Kerberos                  September 1993


5.5.3. Error message reply

  If an error occurs while processing the application request, the
  KRB_ERROR message will be sent in response.  See section 5.9.1 for
  the format of the error message.  The cname and crealm fields may be
  left out if the server cannot determine their appropriate values from
  the corresponding KRB_AP_REQ message.  If the authenticator was
  decipherable, the ctime and cusec fields will contain the values from
  it.

5.6.  KRB_SAFE message specification

  This section specifies the format of a message that can be used by
  either side (client or server) of an application to send a tamper-
  proof message to its peer. It presumes that a session key has
  previously been exchanged (for example, by using the
  KRB_AP_REQ/KRB_AP_REP messages).

5.6.1. KRB_SAFE definition

  The KRB_SAFE message contains user data along with a collision-proof
  checksum keyed with the session key.  The message fields are:

  KRB-SAFE ::=        [APPLICATION 20] SEQUENCE {
              pvno[0]               INTEGER,
              msg-type[1]           INTEGER,
              safe-body[2]          KRB-SAFE-BODY,
              cksum[3]              Checksum
  }

  KRB-SAFE-BODY ::=   SEQUENCE {
              user-data[0]          OCTET STRING,
              timestamp[1]          KerberosTime OPTIONAL,
              usec[2]               INTEGER OPTIONAL,
              seq-number[3]         INTEGER OPTIONAL,
              s-address[4]          HostAddress,
              r-address[5]          HostAddress OPTIONAL
  }

  pvno and msg-type These fields are described above in section 5.4.1.
            msg-type is KRB_SAFE.

  safe-body This field is a placeholder for the body of the KRB-SAFE
            message.  It is to be encoded separately and then have the
            checksum computed over it, for use in the cksum field.

  cksum     This field contains the checksum of the application data.
            Checksum details are described in section 6.4.  The



Kohl & Neuman                                                  [Page 61]

RFC 1510                        Kerberos                  September 1993


            checksum is computed over the encoding of the KRB-SAFE-BODY
            sequence.

  user-data This field is part of the KRB_SAFE and KRB_PRIV messages
            and contain the application specific data that is being
            passed from the sender to the recipient.

  timestamp This field is part of the KRB_SAFE and KRB_PRIV messages.
            Its contents are the current time as known by the sender of
            the message. By checking the timestamp, the recipient of
            the message is able to make sure that it was recently
            generated, and is not a replay.

  usec      This field is part of the KRB_SAFE and KRB_PRIV headers.
            It contains the microsecond part of the timestamp.

  seq-number This field is described above in section 5.3.2.

  s-address This field specifies the address in use by the sender of
            the message.

  r-address This field specifies the address in use by the recipient of
            the message.  It may be omitted for some uses (such as
            broadcast protocols), but the recipient may arbitrarily
            reject such messages.  This field along with s-address can
            be used to help detect messages which have been incorrectly
            or maliciously delivered to the wrong recipient.

5.7.  KRB_PRIV message specification

  This section specifies the format of a message that can be used by
  either side (client or server) of an application to securely and
  privately send a message to its peer.  It presumes that a session key
  has previously been exchanged (for example, by using the
  KRB_AP_REQ/KRB_AP_REP messages).

5.7.1. KRB_PRIV definition

  The KRB_PRIV message contains user data encrypted in the Session Key.
  The message fields are:

  KRB-PRIV ::=         [APPLICATION 21] SEQUENCE {
               pvno[0]                   INTEGER,
               msg-type[1]               INTEGER,
               enc-part[3]               EncryptedData
  }





Kohl & Neuman                                                  [Page 62]

RFC 1510                        Kerberos                  September 1993


  EncKrbPrivPart ::=   [APPLICATION 28] SEQUENCE {
               user-data[0]              OCTET STRING,
               timestamp[1]              KerberosTime OPTIONAL,
               usec[2]                   INTEGER OPTIONAL,
               seq-number[3]             INTEGER OPTIONAL,
               s-address[4]              HostAddress, -- sender's addr
               r-address[5]              HostAddress OPTIONAL
                                                     -- recip's addr
  }

  NOTE: In EncKrbPrivPart, the application code in the encrypted part
  of a message provides an additional check that the message was
  decrypted properly.

  pvno and msg-type These fields are described above in section 5.4.1.
            msg-type is KRB_PRIV.

  enc-part  This field holds an encoding of the EncKrbPrivPart sequence
            encrypted under the session key (If supported by the
            encryption method in use, an initialization vector may be
            passed to the encryption procedure, in order to achieve
            proper cipher chaining.  The initialization vector might
            come from the last block of the ciphertext from the
            previous KRB_PRIV message, but it is the application's
            choice whether or not to use such an initialization vector.
            If left out, the default initialization vector for the
            encryption algorithm will be used.).  This encrypted
            encoding is used for the enc-part field of the KRB-PRIV
            message.  See section 6 for the format of the ciphertext.

  user-data, timestamp, usec, s-address and r-address These fields are
            described above in section 5.6.1.

  seq-number This field is described above in section 5.3.2.

5.8.  KRB_CRED message specification

  This section specifies the format of a message that can be used to
  send Kerberos credentials from one principal to another.  It is
  presented here to encourage a common mechanism to be used by
  applications when forwarding tickets or providing proxies to
  subordinate servers.  It presumes that a session key has already been
  exchanged perhaps by using the KRB_AP_REQ/KRB_AP_REP messages.

5.8.1. KRB_CRED definition

  The KRB_CRED message contains a sequence of tickets to be sent and
  information needed to use the tickets, including the session key from



Kohl & Neuman                                                  [Page 63]

RFC 1510                        Kerberos                  September 1993


  each.  The information needed to use the tickets is encryped under an
  encryption key previously exchanged.  The message fields are:

  KRB-CRED         ::= [APPLICATION 22]   SEQUENCE {
                   pvno[0]                INTEGER,
                   msg-type[1]            INTEGER, -- KRB_CRED
                   tickets[2]             SEQUENCE OF Ticket,
                   enc-part[3]            EncryptedData
  }

  EncKrbCredPart   ::= [APPLICATION 29]   SEQUENCE {
                   ticket-info[0]         SEQUENCE OF KrbCredInfo,
                   nonce[1]               INTEGER OPTIONAL,
                   timestamp[2]           KerberosTime OPTIONAL,
                   usec[3]                INTEGER OPTIONAL,
                   s-address[4]           HostAddress OPTIONAL,
                   r-address[5]           HostAddress OPTIONAL
  }

  KrbCredInfo      ::=                    SEQUENCE {
                   key[0]                 EncryptionKey,
                   prealm[1]              Realm OPTIONAL,
                   pname[2]               PrincipalName OPTIONAL,
                   flags[3]               TicketFlags OPTIONAL,
                   authtime[4]            KerberosTime OPTIONAL,
                   starttime[5]           KerberosTime OPTIONAL,
                   endtime[6]             KerberosTime OPTIONAL
                   renew-till[7]          KerberosTime OPTIONAL,
                   srealm[8]              Realm OPTIONAL,
                   sname[9]               PrincipalName OPTIONAL,
                   caddr[10]              HostAddresses OPTIONAL
  }


  pvno and msg-type These fields are described above in section 5.4.1.
            msg-type is KRB_CRED.

  tickets
              These are the tickets obtained from the KDC specifically
            for use by the intended recipient.  Successive tickets are
            paired with the corresponding KrbCredInfo sequence from the
            enc-part of the KRB-CRED message.

  enc-part  This field holds an encoding of the EncKrbCredPart sequence
            encrypted under the session key shared between the sender
            and the intended recipient.  This encrypted encoding is
            used for the enc-part field of the KRB-CRED message.  See
            section 6 for the format of the ciphertext.



Kohl & Neuman                                                  [Page 64]

RFC 1510                        Kerberos                  September 1993


  nonce     If practical, an application may require the inclusion of a
            nonce generated by the recipient of the message. If the
            same value is included as the nonce in the message, it
            provides evidence that the message is fresh and has not
            been replayed by an attacker.  A nonce must never be re-
            used; it should be generated randomly by the recipient of
            the message and provided to the sender of the mes  sage in
            an application specific manner.

  timestamp and usec These fields specify the time that the KRB-CRED
            message was generated.  The time is used to provide
            assurance that the message is fresh.

  s-address and r-address These fields are described above in section
            5.6.1.  They are used optionally to provide additional
            assurance of the integrity of the KRB-CRED message.

  key       This field exists in the corresponding ticket passed by the
            KRB-CRED message and is used to pass the session key from
            the sender to the intended recipient.  The field's encoding
            is described in section 6.2.

  The following fields are optional.   If present, they can be
  associated with the credentials in the remote ticket file.  If left
  out, then it is assumed that the recipient of the credentials already
  knows their value.

  prealm and pname The name and realm of the delegated principal
            identity.

  flags, authtime,  starttime,  endtime, renew-till,  srealm, sname,
            and caddr These fields contain the values of the
            corresponding fields from the ticket found in the ticket
            field.  Descriptions of the fields are identical to the
            descriptions in the KDC-REP message.

5.9.  Error message specification

  This section specifies the format for the KRB_ERROR message.  The
  fields included in the message are intended to return as much
  information as possible about an error.  It is not expected that all
  the information required by the fields will be available for all
  types of errors.  If the appropriate information is not available
  when the message is composed, the corresponding field will be left
  out of the message.

  Note that since the KRB_ERROR message is not protected by any
  encryption, it is quite possible for an intruder to synthesize or



Kohl & Neuman                                                  [Page 65]

RFC 1510                        Kerberos                  September 1993


  modify such a message.  In particular, this means that the client
  should not use any fields in this message for security-critical
  purposes, such as setting a system clock or generating a fresh
  authenticator.  The message can be useful, however, for advising a
  user on the reason for some failure.

5.9.1. KRB_ERROR definition

  The KRB_ERROR message consists of the following fields:

  KRB-ERROR ::=   [APPLICATION 30] SEQUENCE {
                  pvno[0]               INTEGER,
                  msg-type[1]           INTEGER,
                  ctime[2]              KerberosTime OPTIONAL,
                  cusec[3]              INTEGER OPTIONAL,
                  stime[4]              KerberosTime,
                  susec[5]              INTEGER,
                  error-code[6]         INTEGER,
                  crealm[7]             Realm OPTIONAL,
                  cname[8]              PrincipalName OPTIONAL,
                  realm[9]              Realm, -- Correct realm
                  sname[10]             PrincipalName, -- Correct name
                  e-text[11]            GeneralString OPTIONAL,
                  e-data[12]            OCTET STRING OPTIONAL
  }

  pvno and msg-type These fields are described above in section 5.4.1.
            msg-type is KRB_ERROR.

  ctime     This field is described above in section 5.4.1.

  cusec     This field is described above in section 5.5.2.

  stime     This field contains the current time on the server.  It is
            of type KerberosTime.

  susec     This field contains the microsecond part of the server's
            timestamp.  Its value ranges from 0 to 999. It appears
            along with stime. The two fields are used in conjunction to
            specify a reasonably accurate timestamp.

  error-code This field contains the error code returned by Kerberos or
            the server when a request fails.  To interpret the value of
            this field see the list of error codes in section 8.
            Implementations are encouraged to provide for national
            language support in the display of error messages.

  crealm, cname, srealm and sname These fields are described above in



Kohl & Neuman                                                  [Page 66]

RFC 1510                        Kerberos                  September 1993


            section 5.3.1.

  e-text    This field contains additional text to help explain the
            error code associated with the failed request (for example,
            it might include a principal name which was unknown).

  e-data    This field contains additional data about the error for use
            by the application to help it recover from or handle the
            error.  If the errorcode is KDC_ERR_PREAUTH_REQUIRED, then
            the e-data field will contain an encoding of a sequence of
            padata fields, each corresponding to an acceptable pre-
            authentication method and optionally containing data for
            the method:

     METHOD-DATA ::=    SEQUENCE of PA-DATA

  If the error-code is KRB_AP_ERR_METHOD, then the e-data field will
  contain an encoding of the following sequence:

     METHOD-DATA ::=    SEQUENCE {
                        method-type[0]   INTEGER,
                        method-data[1]   OCTET STRING OPTIONAL
      }

  method-type will indicate the required alternate method; method-data
  will contain any required additional information.

6.  Encryption and Checksum Specifications

  The Kerberos protocols described in this document are designed to use
  stream encryption ciphers, which can be simulated using commonly
  available block encryption ciphers, such as the Data Encryption
  Standard [11], in conjunction with block chaining and checksum
  methods [12].  Encryption is used to prove the identities of the
  network entities participating in message exchanges.  The Key
  Distribution Center for each realm is trusted by all principals
  registered in that realm to store a secret key in confidence.  Proof
  of knowledge of this secret key is used to verify the authenticity of
  a principal.

  The KDC uses the principal's secret key (in the AS exchange) or a
  shared session key (in the TGS exchange) to encrypt responses to
  ticket requests; the ability to obtain the secret key or session key
  implies the knowledge of the appropriate keys and the identity of the
  KDC. The ability of a principal to decrypt the KDC response and
  present a Ticket and a properly formed Authenticator (generated with
  the session key from the KDC response) to a service verifies the
  identity of the principal; likewise the ability of the service to



Kohl & Neuman                                                  [Page 67]

RFC 1510                        Kerberos                  September 1993


  extract the session key from the Ticket and prove its knowledge
  thereof in a response verifies the identity of the service.

  The Kerberos protocols generally assume that the encryption used is
  secure from cryptanalysis; however, in some cases, the order of
  fields in the encrypted portions of messages are arranged to minimize
  the effects of poorly chosen keys.  It is still important to choose
  good keys.  If keys are derived from user-typed passwords, those
  passwords need to be well chosen to make brute force attacks more
  difficult.  Poorly chosen keys still make easy targets for intruders.

  The following sections specify the encryption and checksum mechanisms
  currently defined for Kerberos.  The encodings, chaining, and padding
  requirements for each are described.  For encryption methods, it is
  often desirable to place random information (often referred to as a
  confounder) at the start of the message.  The requirements for a
  confounder are specified with each encryption mechanism.

  Some encryption systems use a block-chaining method to improve the
  the security characteristics of the ciphertext.  However, these
  chaining methods often don't provide an integrity check upon
  decryption.  Such systems (such as DES in CBC mode) must be augmented
  with a checksum of the plaintext which can be verified at decryption
  and used to detect any tampering or damage.  Such checksums should be
  good at detecting burst errors in the input.  If any damage is
  detected, the decryption routine is expected to return an error
  indicating the failure of an integrity check. Each encryption type is
  expected to provide and verify an appropriate checksum. The
  specification of each encryption method sets out its checksum
  requirements.

  Finally, where a key is to be derived from a user's password, an
  algorithm for converting the password to a key of the appropriate
  type is included.  It is desirable for the string to key function to
  be one-way, and for the mapping to be different in different realms.
  This is important because users who are registered in more than one
  realm will often use the same password in each, and it is desirable
  that an attacker compromising the Kerberos server in one realm not
  obtain or derive the user's key in another.

  For a discussion of the integrity characteristics of the candidate
  encryption and checksum methods considered for Kerberos, the the
  reader is referred to [13].

6.1.  Encryption Specifications

  The following ASN.1 definition describes all encrypted messages.  The
  enc-part field which appears in the unencrypted part of messages in



Kohl & Neuman                                                  [Page 68]

RFC 1510                        Kerberos                  September 1993


  section 5 is a sequence consisting of an encryption type, an optional
  key version number, and the ciphertext.

  EncryptedData ::=   SEQUENCE {
                      etype[0]     INTEGER, -- EncryptionType
                      kvno[1]      INTEGER OPTIONAL,
                      cipher[2]    OCTET STRING -- ciphertext
  }

  etype     This field identifies which encryption algorithm was used
            to encipher the cipher.  Detailed specifications for
            selected encryption types appear later in this section.

  kvno      This field contains the version number of the key under
            which data is encrypted.  It is only present in messages
            encrypted under long lasting keys, such as principals'
            secret keys.

  cipher    This field contains the enciphered text, encoded as an
            OCTET STRING.

  The cipher field is generated by applying the specified encryption
  algorithm to data composed of the message and algorithm-specific
  inputs.  Encryption mechanisms defined for use with Kerberos must
  take sufficient measures to guarantee the integrity of the plaintext,
  and we recommend they also take measures to protect against
  precomputed dictionary attacks.  If the encryption algorithm is not
  itself capable of doing so, the protections can often be enhanced by
  adding a checksum and a confounder.

  The suggested format for the data to be encrypted includes a
  confounder, a checksum, the encoded plaintext, and any necessary
  padding.  The msg-seq field contains the part of the protocol message
  described in section 5 which is to be encrypted.  The confounder,
  checksum, and padding are all untagged and untyped, and their length
  is exactly sufficient to hold the appropriate item.  The type and
  length is implicit and specified by the particular encryption type
  being used (etype).  The format for the data to be encrypted is
  described in the following diagram:

        +-----------+----------+-------------+-----+
        |confounder |   check  |   msg-seq   | pad |
        +-----------+----------+-------------+-----+

  The format cannot be described in ASN.1, but for those who prefer an
  ASN.1-like notation:





Kohl & Neuman                                                  [Page 69]

RFC 1510                        Kerberos                  September 1993


CipherText ::=   ENCRYPTED       SEQUENCE {
        confounder[0]   UNTAGGED OCTET STRING(conf_length)     OPTIONAL,
        check[1]        UNTAGGED OCTET STRING(checksum_length) OPTIONAL,
        msg-seq[2]      MsgSequence,
        pad             UNTAGGED OCTET STRING(pad_length) OPTIONAL
}

  In the above specification, UNTAGGED OCTET STRING(length) is the
  notation for an octet string with its tag and length removed.  It is
  not a valid ASN.1 type.  The tag bits and length must be removed from
  the confounder since the purpose of the confounder is so that the
  message starts with random data, but the tag and its length are
  fixed.  For other fields, the length and tag would be redundant if
  they were included because they are specified by the encryption type.

  One generates a random confounder of the appropriate length, placing
  it in confounder; zeroes out check; calculates the appropriate
  checksum over confounder, check, and msg-seq, placing the result in
  check; adds the necessary padding; then encrypts using the specified
  encryption type and the appropriate key.

  Unless otherwise specified, a definition of an encryption algorithm
  that specifies a checksum, a length for the confounder field, or an
  octet boundary for padding uses this ciphertext format (The ordering
  of the fields in the CipherText is important.  Additionally, messages
  encoded in this format must include a length as part of the msg-seq
  field.  This allows the recipient to verify that the message has not
  been truncated.  Without a length, an attacker could use a chosen
  plaintext attack to generate a message which could be truncated,
  while leaving the checksum intact.  Note that if the msg-seq is an
  encoding of an ASN.1 SEQUENCE or OCTET STRING, then the length is
  part of that encoding.). Those fields which are not specified will be
  omitted.

  In the interest of allowing all implementations using a particular
  encryption type to communicate with all others using that type, the
  specification of an encryption type defines any checksum that is
  needed as part of the encryption process.  If an alternative checksum
  is to be used, a new encryption type must be defined.

  Some cryptosystems require additional information beyond the key and
  the data to be encrypted. For example, DES, when used in cipher-
  block-chaining mode, requires an initialization vector.  If required,
  the description for each encryption type must specify the source of
  such additional information.






Kohl & Neuman                                                  [Page 70]

RFC 1510                        Kerberos                  September 1993


6.2.  Encryption Keys

  The sequence below shows the encoding of an encryption key:

         EncryptionKey ::=   SEQUENCE {
                             keytype[0]    INTEGER,
                             keyvalue[1]   OCTET STRING
         }

  keytype   This field specifies the type of encryption key that
            follows in the keyvalue field.  It will almost always
            correspond to the encryption algorithm used to generate the
            EncryptedData, though more than one algorithm may use the
            same type of key (the mapping is many to one).  This might
            happen, for example, if the encryption algorithm uses an
            alternate checksum algorithm for an integrity check, or a
            different chaining mechanism.

  keyvalue  This field contains the key itself, encoded as an octet
            string.

  All negative values for the  encryption key type are reserved for
  local use.  All non-negative values are reserved for officially
  assigned type fields and interpretations.

6.3.  Encryption Systems

6.3.1. The NULL Encryption System (null)

  If no encryption is in use, the encryption system is said to be the
  NULL encryption system.  In the NULL encryption system there is no
  checksum, confounder or padding.  The ciphertext is simply the
  plaintext.  The NULL Key is used by the null encryption system and is
  zero octets in length, with keytype zero (0).

6.3.2. DES in CBC mode with a CRC-32 checksum (des-cbc-crc)

  The des-cbc-crc encryption mode encrypts information under the Data
  Encryption Standard [11] using the cipher block chaining mode [12].
  A CRC-32 checksum (described in ISO 3309 [14]) is applied to the
  confounder and message sequence (msg-seq) and placed in the cksum
  field.  DES blocks are 8 bytes.  As a result, the data to be
  encrypted (the concatenation of confounder, checksum, and message)
  must be padded to an 8 byte boundary before encryption.  The details
  of the encryption of this data are identical to those for the des-
  cbc-md5 encryption mode.

  Note that, since the CRC-32 checksum is not collisionproof, an



Kohl & Neuman                                                  [Page 71]

RFC 1510                        Kerberos                  September 1993


  attacker could use a probabilistic chosenplaintext attack to generate
  a valid message even if a confounder is used [13]. The use of
  collision-proof checksums is recommended for environments where such
  attacks represent a significant threat.  The use of the CRC-32 as the
  checksum for ticket or authenticator is no longer mandated as an
  interoperability requirement for Kerberos Version 5 Specification 1
  (See section 9.1 for specific details).

6.3.3. DES in CBC mode with an MD4 checksum (des-cbc-md4)

  The des-cbc-md4 encryption mode encrypts information under the Data
  Encryption Standard [11] using the cipher block chaining mode [12].
  An MD4 checksum (described in [15]) is applied to the confounder and
  message sequence (msg-seq) and placed in the cksum field.  DES blocks
  are 8 bytes.  As a result, the data to be encrypted (the
  concatenation of confounder, checksum, and message) must be padded to
  an 8 byte boundary before encryption.  The details of the encryption
  of this data are identical to those for the descbc-md5 encryption
  mode.

6.3.4. DES in CBC mode with an MD5 checksum (des-cbc-md5)

  The des-cbc-md5 encryption mode encrypts information under the Data
  Encryption Standard [11] using the cipher block chaining mode [12].
  An MD5 checksum (described in [16]) is applied to the confounder and
  message sequence (msg-seq) and placed in the cksum field.  DES blocks
  are 8 bytes.  As a result, the data to be encrypted (the
  concatenation of confounder, checksum, and message) must be padded to
  an 8 byte boundary before encryption.

  Plaintext and DES ciphtertext are encoded as 8-octet blocks which are
  concatenated to make the 64-bit inputs for the DES algorithms.  The
  first octet supplies the 8 most significant bits (with the octet's
  MSbit used as the DES input block's MSbit, etc.), the second octet
  the next 8 bits, ..., and the eighth octet supplies the 8 least
  significant bits.

  Encryption under DES using cipher block chaining requires an
  additional input in the form of an initialization vector.  Unless
  otherwise specified, zero should be used as the initialization
  vector.  Kerberos' use of DES requires an 8-octet confounder.

  The DES specifications identify some "weak" and "semiweak" keys;
  those keys shall not be used for encrypting messages for use in
  Kerberos.  Additionally, because of the way that keys are derived for
  the encryption of checksums, keys shall not be used that yield "weak"
  or "semi-weak" keys when eXclusive-ORed with the constant
  F0F0F0F0F0F0F0F0.



Kohl & Neuman                                                  [Page 72]

RFC 1510                        Kerberos                  September 1993


  A DES key is 8 octets of data, with keytype one (1).  This consists
  of 56 bits of key, and 8 parity bits (one per octet).  The key is
  encoded as a series of 8 octets written in MSB-first order. The bits
  within the key are also encoded in MSB order.  For example, if the
  encryption key is:
  (B1,B2,...,B7,P1,B8,...,B14,P2,B15,...,B49,P7,B50,...,B56,P8) where
  B1,B2,...,B56 are the key bits in MSB order, and P1,P2,...,P8 are the
  parity bits, the first octet of the key would be B1,B2,...,B7,P1
  (with B1 as the MSbit).  [See the FIPS 81 introduction for
  reference.]

  To generate a DES key from a text string (password), the text string
  normally must have the realm and each component of the principal's
  name appended(In some cases, it may be necessary to use a different
  "mix-in" string for compatibility reasons; see the discussion of
  padata in section 5.4.2.), then padded with ASCII nulls to an 8 byte
  boundary.  This string is then fan-folded and eXclusive-ORed with
  itself to form an 8 byte DES key.  The parity is corrected on the
  key, and it is used to generate a DES CBC checksum on the initial
  string (with the realm and name appended).  Next, parity is corrected
  on the CBC checksum.  If the result matches a "weak" or "semiweak"
  key as described in the DES specification, it is eXclusive-ORed with
  the constant 00000000000000F0.  Finally, the result is returned as
  the key.  Pseudocode follows:

       string_to_key(string,realm,name) {
            odd = 1;
            s = string + realm;
            for(each component in name) {
                 s = s + component;
            }
            tempkey = NULL;
            pad(s); /* with nulls to 8 byte boundary */
            for(8byteblock in s) {
                 if(odd == 0)  {
                     odd = 1;
                     reverse(8byteblock)
                 }
                 else odd = 0;
                 tempkey = tempkey XOR 8byteblock;
            }
            fixparity(tempkey);
            key = DES-CBC-check(s,tempkey);
            fixparity(key);
            if(is_weak_key_key(key))
                 key = key XOR 0xF0;
            return(key);
       }



Kohl & Neuman                                                  [Page 73]

RFC 1510                        Kerberos                  September 1993


6.4.  Checksums

  The following is the ASN.1 definition used for a checksum:

           Checksum ::=   SEQUENCE {
                          cksumtype[0]   INTEGER,
                          checksum[1]    OCTET STRING
           }

  cksumtype This field indicates the algorithm used to generate the
            accompanying checksum.

  checksum  This field contains the checksum itself, encoded
            as an octet string.

  Detailed specification of selected checksum types appear later in
  this section.  Negative values for the checksum type are reserved for
  local use.  All non-negative values are reserved for officially
  assigned type fields and interpretations.

  Checksums used by Kerberos can be classified by two properties:
  whether they are collision-proof, and whether they are keyed.  It is
  infeasible to find two plaintexts which generate the same checksum
  value for a collision-proof checksum.  A key is required to perturb
  or initialize the algorithm in a keyed checksum.  To prevent
  message-stream modification by an active attacker, unkeyed checksums
  should only be used when the checksum and message will be
  subsequently encrypted (e.g., the checksums defined as part of the
  encryption algorithms covered earlier in this section).  Collision-
  proof checksums can be made tamper-proof as well if the checksum
  value is encrypted before inclusion in a message.  In such cases, the
  composition of the checksum and the encryption algorithm must be
  considered a separate checksum algorithm (e.g., RSA-MD5 encrypted
  using DES is a new checksum algorithm of type RSA-MD5-DES).  For most
  keyed checksums, as well as for the encrypted forms of collisionproof
  checksums, Kerberos prepends a confounder before the checksum is
  calculated.

6.4.1. The CRC-32 Checksum (crc32)

  The CRC-32 checksum calculates a checksum based on a cyclic
  redundancy check as described in ISO 3309 [14].  The resulting
  checksum is four (4) octets in length.  The CRC-32 is neither keyed
  nor collision-proof.  The use of this checksum is not recommended.
  An attacker using a probabilistic chosen-plaintext attack as
  described in [13] might be able to generate an alternative message
  that satisfies the checksum.  The use of collision-proof checksums is
  recommended for environments where such attacks represent a



Kohl & Neuman                                                  [Page 74]

RFC 1510                        Kerberos                  September 1993


  significant threat.

6.4.2. The RSA MD4 Checksum (rsa-md4)

  The RSA-MD4 checksum calculates a checksum using the RSA MD4
  algorithm [15].  The algorithm takes as input an input message of
  arbitrary length and produces as output a 128-bit (16 octet)
  checksum.  RSA-MD4 is believed to be collision-proof.

6.4.3. RSA MD4 Cryptographic Checksum Using DES (rsa-md4des)

  The RSA-MD4-DES checksum calculates a keyed collisionproof checksum
  by prepending an 8 octet confounder before the text, applying the RSA
  MD4 checksum algorithm, and encrypting the confounder and the
  checksum using DES in cipher-block-chaining (CBC) mode using a
  variant of the key, where the variant is computed by eXclusive-ORing
  the key with the constant F0F0F0F0F0F0F0F0 (A variant of the key is
  used to limit the use of a key to a particular function, separating
  the functions of generating a checksum from other encryption
  performed using the session key.  The constant F0F0F0F0F0F0F0F0 was
  chosen because it maintains key parity.  The properties of DES
  precluded the use of the complement.  The same constant is used for
  similar purpose in the Message Integrity Check in the Privacy
  Enhanced Mail standard.).  The initialization vector should be zero.
  The resulting checksum is 24 octets long (8 octets of which are
  redundant).  This checksum is tamper-proof and believed to be
  collision-proof.

  The DES specifications identify some "weak keys"; those keys shall
  not be used for generating RSA-MD4 checksums for use in Kerberos.

  The format for the checksum is described in the following diagram:

     +--+--+--+--+--+--+--+--
     |  des-cbc(confounder
     +--+--+--+--+--+--+--+--

                   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
                       rsa-md4(confounder+msg),key=var(key),iv=0)  |
                   +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

  The format cannot be described in ASN.1, but for those who prefer an
  ASN.1-like notation:

  rsa-md4-des-checksum ::=   ENCRYPTED       UNTAGGED SEQUENCE {
                             confounder[0]   UNTAGGED OCTET STRING(8),
                             check[1]        UNTAGGED OCTET STRING(16)
  }



Kohl & Neuman                                                  [Page 75]

RFC 1510                        Kerberos                  September 1993


6.4.4. The RSA MD5 Checksum (rsa-md5)

  The RSA-MD5 checksum calculates a checksum using the RSA MD5
  algorithm [16].  The algorithm takes as input an input message of
  arbitrary length and produces as output a 128-bit (16 octet)
  checksum.  RSA-MD5 is believed to be collision-proof.

6.4.5. RSA MD5 Cryptographic Checksum Using DES (rsa-md5des)

  The RSA-MD5-DES checksum calculates a keyed collisionproof checksum
  by prepending an 8 octet confounder before the text, applying the RSA
  MD5 checksum algorithm, and encrypting the confounder and the
  checksum using DES in cipher-block-chaining (CBC) mode using a
  variant of the key, where the variant is computed by eXclusive-ORing
  the key with the constant F0F0F0F0F0F0F0F0.  The initialization
  vector should be zero.  The resulting checksum is 24 octets long (8
  octets of which are redundant).  This checksum is tamper-proof and
  believed to be collision-proof.

  The DES specifications identify some "weak keys"; those keys shall
  not be used for encrypting RSA-MD5 checksums for use in Kerberos.

  The format for the checksum is described in the following diagram:

     +--+--+--+--+--+--+--+--
     |  des-cbc(confounder
     +--+--+--+--+--+--+--+--

                    +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
                        rsa-md5(confounder+msg),key=var(key),iv=0)  |
                    +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

  The format cannot be described in ASN.1, but for those who prefer an
  ASN.1-like notation:

  rsa-md5-des-checksum ::=   ENCRYPTED       UNTAGGED SEQUENCE {
                             confounder[0]   UNTAGGED OCTET STRING(8),
                             check[1]        UNTAGGED OCTET STRING(16)
  }

6.4.6. DES cipher-block chained checksum (des-mac)

  The DES-MAC checksum is computed by prepending an 8 octet confounder
  to the plaintext, performing a DES CBC-mode encryption on the result
  using the key and an initialization vector of zero, taking the last
  block of the ciphertext, prepending the same confounder and
  encrypting the pair using DES in cipher-block-chaining (CBC) mode
  using a a variant of the key, where the variant is computed by



Kohl & Neuman                                                  [Page 76]

RFC 1510                        Kerberos                  September 1993


  eXclusive-ORing the key with the constant F0F0F0F0F0F0F0F0.  The
  initialization vector should be zero.  The resulting checksum is 128
  bits (16 octets) long, 64 bits of which are redundant. This checksum
  is tamper-proof and collision-proof.

  The format for the checksum is described in the following diagram:

     +--+--+--+--+--+--+--+--
     |   des-cbc(confounder
     +--+--+--+--+--+--+--+--

                    +-----+-----+-----+-----+-----+-----+-----+-----+
                      des-mac(conf+msg,iv=0,key),key=var(key),iv=0) |
                    +-----+-----+-----+-----+-----+-----+-----+-----+

  The format cannot be described in ASN.1, but for those who prefer an
  ASN.1-like notation:

  des-mac-checksum ::=    ENCRYPTED       UNTAGGED SEQUENCE {
                          confounder[0]   UNTAGGED OCTET STRING(8),
                          check[1]        UNTAGGED OCTET STRING(8)
  }

  The DES specifications identify some "weak" and "semiweak" keys;
  those keys shall not be used for generating DES-MAC checksums for use
  in Kerberos, nor shall a key be used whose veriant is "weak" or
  "semi-weak".

6.4.7. RSA MD4 Cryptographic Checksum Using DES alternative
      (rsa-md4-des-k)

  The RSA-MD4-DES-K checksum calculates a keyed collision-proof
  checksum by applying the RSA MD4 checksum algorithm and encrypting
  the results using DES in cipherblock-chaining (CBC) mode using a DES
  key as both key and initialization vector. The resulting checksum is
  16 octets long. This checksum is tamper-proof and believed to be
  collision-proof.  Note that this checksum type is the old method for
  encoding the RSA-MD4-DES checksum and it is no longer recommended.

6.4.8. DES cipher-block chained checksum alternative (desmac-k)

  The DES-MAC-K checksum is computed by performing a DES CBC-mode
  encryption of the plaintext, and using the last block of the
  ciphertext as the checksum value. It is keyed with an encryption key
  and an initialization vector; any uses which do not specify an
  additional initialization vector will use the key as both key and
  initialization vector.  The resulting checksum is 64 bits (8 octets)
  long. This checksum is tamper-proof and collision-proof.  Note that



Kohl & Neuman                                                  [Page 77]

RFC 1510                        Kerberos                  September 1993


  this checksum type is the old method for encoding the DESMAC checksum
  and it is no longer recommended.

  The DES specifications identify some "weak keys"; those keys shall
  not be used for generating DES-MAC checksums for use in Kerberos.

7.  Naming Constraints

7.1.  Realm Names

  Although realm names are encoded as GeneralStrings and although a
  realm can technically select any name it chooses, interoperability
  across realm boundaries requires agreement on how realm names are to
  be assigned, and what information they imply.

  To enforce these conventions, each realm must conform to the
  conventions itself, and it must require that any realms with which
  inter-realm keys are shared also conform to the conventions and
  require the same from its neighbors.

  There are presently four styles of realm names: domain, X500, other,
  and reserved.  Examples of each style follow:

       domain:   host.subdomain.domain (example)
         X500:   C=US/O=OSF (example)
        other:   NAMETYPE:rest/of.name=without-restrictions (example)
     reserved:   reserved, but will not conflict with above

  Domain names must look like domain names: they consist of components
  separated by periods (.) and they contain neither colons (:) nor
  slashes (/).

  X.500 names contain an equal (=) and cannot contain a colon (:)
  before the equal.  The realm names for X.500 names will be string
  representations of the names with components separated by slashes.
  Leading and trailing slashes will not be included.

  Names that fall into the other category must begin with a prefix that
  contains no equal (=) or period (.) and the prefix must be followed
  by a colon (:) and the rest of the name. All prefixes must be
  assigned before they may be used.  Presently none are assigned.

  The reserved category includes strings which do not fall into the
  first three categories.  All names in this category are reserved. It
  is unlikely that names will be assigned to this category unless there
  is a very strong argument for not using the "other" category.

  These rules guarantee that there will be no conflicts between the



Kohl & Neuman                                                  [Page 78]

RFC 1510                        Kerberos                  September 1993


  various name styles.  The following additional constraints apply to
  the assignment of realm names in the domain and X.500 categories: the
  name of a realm for the domain or X.500 formats must either be used
  by the organization owning (to whom it was assigned) an Internet
  domain name or X.500 name, or in the case that no such names are
  registered, authority to use a realm name may be derived from the
  authority of the parent realm.  For example, if there is no domain
  name for E40.MIT.EDU, then the administrator of the MIT.EDU realm can
  authorize the creation of a realm with that name.

  This is acceptable because the organization to which the parent is
  assigned is presumably the organization authorized to assign names to
  its children in the X.500 and domain name systems as well.  If the
  parent assigns a realm name without also registering it in the domain
  name or X.500 hierarchy, it is the parent's responsibility to make
  sure that there will not in the future exists a name identical to the
  realm name of the child unless it is assigned to the same entity as
  the realm name.

7.2.  Principal Names

  As was the case for realm names, conventions are needed to ensure
  that all agree on what information is implied by a principal name.
  The name-type field that is part of the principal name indicates the
  kind of information implied by the name.  The name-type should be
  treated as a hint.  Ignoring the name type, no two names can be the
  same (i.e., at least one of the components, or the realm, must be
  different).  This constraint may be eliminated in the future.  The
  following name types are defined:

     name-type      value   meaning
     NT-UNKNOWN       0     Name type not known
     NT-PRINCIPAL     1     Just the name of the principal as in
                            DCE, or for users
     NT-SRV-INST      2     Service and other unique instance (krbtgt)
     NT-SRV-HST       3     Service with host name as instance
                            (telnet, rcommands)
     NT-SRV-XHST      4     Service with host as remaining components
     NT-UID           5     Unique ID

  When a name implies no information other than its uniqueness at a
  particular time the name type PRINCIPAL should be used.  The
  principal name type should be used for users, and it might also be
  used for a unique server.  If the name is a unique machine generated
  ID that is guaranteed never to be reassigned then the name type of
  UID should be used (note that it is generally a bad idea to reassign
  names of any type since stale entries might remain in access control
  lists).



Kohl & Neuman                                                  [Page 79]

RFC 1510                        Kerberos                  September 1993


  If the first component of a name identifies a service and the
  remaining components identify an instance of the service in a server
  specified manner, then the name type of SRV-INST should be used.  An
  example of this name type is the Kerberos ticket-granting ticket
  which has a first component of krbtgt and a second component
  identifying the realm for which the ticket is valid.

  If instance is a single component following the service name and the
  instance identifies the host on which the server is running, then the
  name type SRV-HST should be used. This type is typically used for
  Internet services such as telnet and the Berkeley R commands.  If the
  separate components of the host name appear as successive components
  following the name of the service, then the name type SRVXHST should
  be used.  This type might be used to identify servers on hosts with
  X.500 names where the slash (/) might otherwise be ambiguous.

  A name type of UNKNOWN should be used when the form of the name is
  not known. When comparing names, a name of type UNKNOWN will match
  principals authenticated with names of any type.  A principal
  authenticated with a name of type UNKNOWN, however, will only match
  other names of type UNKNOWN.

  Names of any type with an initial component of "krbtgt" are reserved
  for the Kerberos ticket granting service.  See section 8.2.3 for the
  form of such names.

7.2.1. Name of server principals

  The principal identifier for a server on a host will generally be
  composed of two parts: (1) the realm of the KDC with which the server
  is registered, and (2) a two-component name of type NT-SRV-HST if the
  host name is an Internet domain name or a multi-component name of
  type NT-SRV-XHST if the name of the host is of a form such as X.500
  that allows slash (/) separators.  The first component of the two- or
  multi-component name will identify the service and the latter
  components will identify the host.  Where the name of the host is not
  case sensitive (for example, with Internet domain names) the name of
  the host must be lower case.  For services such as telnet and the
  Berkeley R commands which run with system privileges, the first
  component will be the string "host" instead of a service specific
  identifier.

8.  Constants and other defined values

8.1.  Host address types

  All negative values for the host address type are reserved for local
  use.  All non-negative values are reserved for officially assigned



Kohl & Neuman                                                  [Page 80]

RFC 1510                        Kerberos                  September 1993


  type fields and interpretations.

  The values of the types for the following addresses are chosen to
  match the defined address family constants in the Berkeley Standard
  Distributions of Unix.  They can be found in <sys/socket.h> with
  symbolic names AF_xxx (where xxx is an abbreviation of the address
  family name).


  Internet addresses

     Internet addresses are 32-bit (4-octet) quantities, encoded in MSB
     order.  The type of internet addresses is two (2).

  CHAOSnet addresses

     CHAOSnet addresses are 16-bit (2-octet) quantities, encoded in MSB
     order.  The type of CHAOSnet addresses is five (5).

  ISO addresses

     ISO addresses are variable-length.  The type of ISO addresses is
     seven (7).

  Xerox Network Services (XNS) addresses

     XNS addresses are 48-bit (6-octet) quantities, encoded in MSB
     order.  The type of XNS addresses is six (6).

  AppleTalk Datagram Delivery Protocol (DDP) addresses

     AppleTalk DDP addresses consist of an 8-bit node number and a 16-
     bit network number.  The first octet of the address is the node
     number; the remaining two octets encode the network number in MSB
     order. The type of AppleTalk DDP addresses is sixteen (16).

  DECnet Phase IV addresses

     DECnet Phase IV addresses are 16-bit addresses, encoded in LSB
     order.  The type of DECnet Phase IV addresses is twelve (12).

8.2.  KDC messages

8.2.1. IP transport

  When contacting a Kerberos server (KDC) for a KRB_KDC_REQ request
  using IP transport, the client shall send a UDP datagram containing
  only an encoding of the request to port 88 (decimal) at the KDC's IP



Kohl & Neuman                                                  [Page 81]

RFC 1510                        Kerberos                  September 1993


  address; the KDC will respond with a reply datagram containing only
  an encoding of the reply message (either a KRB_ERROR or a
  KRB_KDC_REP) to the sending port at the sender's IP address.

8.2.2. OSI transport

  During authentication of an OSI client to and OSI server, the mutual
  authentication of an OSI server to an OSI client, the transfer of
  credentials from an OSI client to an OSI server, or during exchange
  of private or integrity checked messages, Kerberos protocol messages
  may be treated as opaque objects and the type of the authentication
  mechanism will be:

  OBJECT IDENTIFIER ::= {iso (1), org(3), dod(5),internet(1),
                         security(5), kerberosv5(2)}

  Depending on the situation, the opaque object will be an
  authentication header (KRB_AP_REQ), an authentication reply
  (KRB_AP_REP), a safe message (KRB_SAFE), a private message
  (KRB_PRIV), or a credentials message (KRB_CRED).  The opaque data
  contains an application code as specified in the ASN.1 description
  for each message.  The application code may be used by Kerberos to
  determine the message type.

8.2.3. Name of the TGS

  The principal identifier of the ticket-granting service shall be
  composed of three parts: (1) the realm of the KDC issuing the TGS
  ticket (2) a two-part name of type NT-SRVINST, with the first part
  "krbtgt" and the second part the name of the realm which will accept
  the ticket-granting ticket.  For example, a ticket-granting ticket
  issued by the ATHENA.MIT.EDU realm to be used to get tickets from the
  ATHENA.MIT.EDU KDC has a principal identifier of "ATHENA.MIT.EDU"
  (realm), ("krbtgt", "ATHENA.MIT.EDU") (name).  A ticket-granting
  ticket issued by the ATHENA.MIT.EDU realm to be used to get tickets
  from the MIT.EDU realm has a principal identifier of "ATHENA.MIT.EDU"
  (realm), ("krbtgt", "MIT.EDU") (name).

8.3.  Protocol constants and associated values

  The following tables list constants used in the protocol and defines
  their meanings.









Kohl & Neuman                                                  [Page 82]

RFC 1510                        Kerberos                  September 1993


---------------+-----------+----------+----------------+---------------
Encryption type|etype value|block size|minimum pad size|confounder size
---------------+-----------+----------+----------------+---------------
NULL                0            1              0              0
des-cbc-crc         1            8              4              8
des-cbc-md4         2            8              0              8
des-cbc-md5         3            8              0              8

-------------------------------+-------------------+-------------
Checksum type                  |sumtype value      |checksum size
-------------------------------+-------------------+-------------
CRC32                           1                   4
rsa-md4                         2                   16
rsa-md4-des                     3                   24
des-mac                         4                   16
des-mac-k                       5                   8
rsa-md4-des-k                   6                   16
rsa-md5                         7                   16
rsa-md5-des                     8                   24

-------------------------------+-----------------
padata type                    |padata-type value
-------------------------------+-----------------
PA-TGS-REQ                      1
PA-ENC-TIMESTAMP                2
PA-PW-SALT                      3

-------------------------------+-------------
authorization data type        |ad-type value
-------------------------------+-------------
reserved values                 0-63
OSF-DCE                         64
SESAME                          65

-------------------------------+-----------------
alternate authentication type  |method-type value
-------------------------------+-----------------
reserved values                 0-63
ATT-CHALLENGE-RESPONSE          64

-------------------------------+-------------
transited encoding type        |tr-type value
-------------------------------+-------------
DOMAIN-X500-COMPRESS            1
reserved values                 all others






Kohl & Neuman                                                  [Page 83]

RFC 1510                        Kerberos                  September 1993


--------------+-------+-----------------------------------------
Label         |Value  |Meaning or MIT code
--------------+-------+-----------------------------------------

pvno             5     current Kerberos protocol version number

message types

KRB_AS_REQ      10     Request for initial authentication
KRB_AS_REP      11     Response to KRB_AS_REQ request
KRB_TGS_REQ     12     Request for authentication based on TGT
KRB_TGS_REP     13     Response to KRB_TGS_REQ request
KRB_AP_REQ      14     application request to server
KRB_AP_REP      15     Response to KRB_AP_REQ_MUTUAL
KRB_SAFE        20     Safe (checksummed) application message
KRB_PRIV        21     Private (encrypted) application message
KRB_CRED        22     Private (encrypted) message to forward
                      credentials
KRB_ERROR       30     Error response

name types

KRB_NT_UNKNOWN   0   Name type not known
KRB_NT_PRINCIPAL 1   Just the name of the principal as in DCE, or
                    for users
KRB_NT_SRV_INST  2   Service and other unique instance (krbtgt)
KRB_NT_SRV_HST   3   Service with host name as instance (telnet,
                    rcommands)
KRB_NT_SRV_XHST  4   Service with host as remaining components
KRB_NT_UID       5   Unique ID

error codes

KDC_ERR_NONE                   0   No error
KDC_ERR_NAME_EXP               1   Client's entry in database has
                                  expired
KDC_ERR_SERVICE_EXP            2   Server's entry in database has
                                  expired
KDC_ERR_BAD_PVNO               3   Requested protocol version number
                                  not supported
KDC_ERR_C_OLD_MAST_KVNO        4   Client's key encrypted in old
                                  master key
KDC_ERR_S_OLD_MAST_KVNO        5   Server's key encrypted in old
                                  master key
KDC_ERR_C_PRINCIPAL_UNKNOWN    6   Client not found in Kerberos database
KDC_ERR_S_PRINCIPAL_UNKNOWN    7   Server not found in Kerberos database
KDC_ERR_PRINCIPAL_NOT_UNIQUE   8   Multiple principal entries in
                                  database



Kohl & Neuman                                                  [Page 84]

RFC 1510                        Kerberos                  September 1993


KDC_ERR_NULL_KEY               9   The client or server has a null key
KDC_ERR_CANNOT_POSTDATE       10   Ticket not eligible for postdating
KDC_ERR_NEVER_VALID           11   Requested start time is later than
                                  end time
KDC_ERR_POLICY                12   KDC policy rejects request
KDC_ERR_BADOPTION             13   KDC cannot accommodate requested
                                  option
KDC_ERR_ETYPE_NOSUPP          14   KDC has no support for encryption
                                  type
KDC_ERR_SUMTYPE_NOSUPP        15   KDC has no support for checksum type
KDC_ERR_PADATA_TYPE_NOSUPP    16   KDC has no support for padata type
KDC_ERR_TRTYPE_NOSUPP         17   KDC has no support for transited type
KDC_ERR_CLIENT_REVOKED        18   Clients credentials have been revoked
KDC_ERR_SERVICE_REVOKED       19   Credentials for server have been
                                  revoked
KDC_ERR_TGT_REVOKED           20   TGT has been revoked
KDC_ERR_CLIENT_NOTYET         21   Client not yet valid - try again
                                  later
KDC_ERR_SERVICE_NOTYET        22   Server not yet valid - try again
                                  later
KDC_ERR_KEY_EXPIRED           23   Password has expired - change
                                  password to reset
KDC_ERR_PREAUTH_FAILED        24   Pre-authentication information
                                  was invalid
KDC_ERR_PREAUTH_REQUIRED      25   Additional pre-authentication
                                  required*
KRB_AP_ERR_BAD_INTEGRITY      31   Integrity check on decrypted field
                                  failed
KRB_AP_ERR_TKT_EXPIRED        32   Ticket expired
KRB_AP_ERR_TKT_NYV            33   Ticket not yet valid
KRB_AP_ERR_REPEAT             34   Request is a replay
KRB_AP_ERR_NOT_US             35   The ticket isn't for us
KRB_AP_ERR_BADMATCH           36   Ticket and authenticator don't match
KRB_AP_ERR_SKEW               37   Clock skew too great
KRB_AP_ERR_BADADDR            38   Incorrect net address
KRB_AP_ERR_BADVERSION         39   Protocol version mismatch
KRB_AP_ERR_MSG_TYPE           40   Invalid msg type
KRB_AP_ERR_MODIFIED           41   Message stream modified
KRB_AP_ERR_BADORDER           42   Message out of order
KRB_AP_ERR_BADKEYVER          44   Specified version of key is not
                                  available
KRB_AP_ERR_NOKEY              45   Service key not available
KRB_AP_ERR_MUT_FAIL           46   Mutual authentication failed
KRB_AP_ERR_BADDIRECTION       47   Incorrect message direction
KRB_AP_ERR_METHOD             48   Alternative authentication method
                                  required*
KRB_AP_ERR_BADSEQ             49   Incorrect sequence number in message
KRB_AP_ERR_INAPP_CKSUM        50   Inappropriate type of checksum in



Kohl & Neuman                                                  [Page 85]

RFC 1510                        Kerberos                  September 1993


                                  message
KRB_ERR_GENERIC               60   Generic error (description in e-text)
KRB_ERR_FIELD_TOOLONG         61   Field is too long for this
                                  implementation

  *This error carries additional information in the e-data field.  The
  contents of the e-data field for this message is described in section
  5.9.1.

9.  Interoperability requirements

  Version 5 of the Kerberos protocol supports a myriad of options.
  Among these are multiple encryption and checksum types, alternative
  encoding schemes for the transited field, optional mechanisms for
  pre-authentication, the handling of tickets with no addresses,
  options for mutual authentication, user to user authentication,
  support for proxies, forwarding, postdating, and renewing tickets,
  the format of realm names, and the handling of authorization data.

  In order to ensure the interoperability of realms, it is necessary to
  define a minimal configuration which must be supported by all
  implementations.  This minimal configuration is subject to change as
  technology does. For example, if at some later date it is discovered
  that one of the required encryption or checksum algorithms is not
  secure, it will be replaced.

9.1.  Specification 1

  This section defines the first specification of these options.
  Implementations which are configured in this way can be said to
  support Kerberos Version 5 Specification 1 (5.1).

  Encryption and checksum methods

  The following encryption and checksum mechanisms must be supported.
  Implementations may support other mechanisms as well, but the
  additional mechanisms may only be used when communicating with
  principals known to also support them: Encryption: DES-CBC-MD5
  Checksums: CRC-32, DES-MAC, DES-MAC-K, and DES-MD5

  Realm Names

  All implementations must understand hierarchical realms in both the
  Internet Domain and the X.500 style.  When a ticket granting ticket
  for an unknown realm is requested, the KDC must be able to determine
  the names of the intermediate realms between the KDCs realm and the
  requested realm.




Kohl & Neuman                                                  [Page 86]

RFC 1510                        Kerberos                  September 1993


  Transited field encoding

  DOMAIN-X500-COMPRESS (described in section 3.3.3.1) must be
  supported.  Alternative encodings may be supported, but they may be
  used only when that encoding is supported by ALL intermediate realms.

  Pre-authentication methods

  The TGS-REQ method must be supported.  The TGS-REQ method is not used
  on the initial request. The PA-ENC-TIMESTAMP method must be supported
  by clients but whether it is enabled by default may be determined on
  a realm by realm basis. If not used in the initial request and the
  error KDC_ERR_PREAUTH_REQUIRED is returned specifying PA-ENCTIMESTAMP
  as an acceptable method, the client should retry the initial request
  using the PA-ENC-TIMESTAMP preauthentication method. Servers need not
  support the PAENC-TIMESTAMP method, but if not supported the server
  should ignore the presence of PA-ENC-TIMESTAMP pre-authentication in
  a request.

  Mutual authentication

  Mutual authentication (via the KRB_AP_REP message) must be supported.

  Ticket addresses and flags

  All KDC's must pass on tickets that carry no addresses (i.e.,  if a
  TGT contains no addresses, the KDC will return derivative tickets),
  but each realm may set its own policy for issuing such tickets, and
  each application server will set its own policy with respect to
  accepting them. By default, servers should not accept them.

  Proxies and forwarded tickets must be supported.  Individual realms
  and application servers can set their own policy on when such tickets
  will be accepted.

  All implementations must recognize renewable and postdated tickets,
  but need not actually implement them.  If these options are not
  supported, the starttime and endtime in the ticket shall specify a
  ticket's entire useful life.  When a postdated ticket is decoded by a
  server, all implementations shall make the presence of the postdated
  flag visible to the calling server.

  User-to-user authentication

  Support for user to user authentication (via the ENC-TKTIN-SKEY KDC
  option) must be provided by implementations, but individual realms
  may decide as a matter of policy to reject such requests on a per-
  principal or realm-wide basis.



Kohl & Neuman                                                  [Page 87]

RFC 1510                        Kerberos                  September 1993


  Authorization data

  Implementations must pass all authorization data subfields from
  ticket-granting tickets to any derivative tickets unless directed to
  suppress a subfield as part of the definition of that registered
  subfield type (it is never incorrect to pass on a subfield, and no
  registered subfield types presently specify suppression at the KDC).

  Implementations must make the contents of any authorization data
  subfields available to the server when a ticket is used.
  Implementations are not required to allow clients to specify the
  contents of the authorization data fields.

9.2.  Recommended KDC values

  Following is a list of recommended values for a KDC implementation,
  based on the list of suggested configuration constants (see section
  4.4).

  minimum lifetime                5 minutes

  maximum renewable lifetime      1 week

  maximum ticket lifetime         1 day

  empty addresses                 only when suitable restrictions appear
                                  in authorization data

  proxiable, etc.                 Allowed.

10.  Acknowledgments

  Early versions of this document, describing version 4 of the
  protocol, were written by Jennifer Steiner (formerly at Project
  Athena); these drafts provided an excellent starting point for this
  current version 5 specification.  Many people in the Internet
  community have contributed ideas and suggested protocol changes for
  version 5. Notable contributions came from Ted Anderson, Steve
  Bellovin and Michael Merritt [17], Daniel Bernstein, Mike Burrows,
  Donald Davis, Ravi Ganesan, Morrie Gasser, Virgil Gligor, Bill
  Griffeth, Mark Lillibridge, Mark Lomas, Steve Lunt, Piers McMahon,
  Joe Pato, William Sommerfeld, Stuart Stubblebine, Ralph Swick, Ted
  T'so, and Stanley Zanarotti.  Many others commented and helped shape
  this specification into its current form.







Kohl & Neuman                                                  [Page 88]

RFC 1510                        Kerberos                  September 1993


11.  References

  [1]  Miller, S., Neuman, C., Schiller, J., and  J. Saltzer, "Section
       E.2.1: Kerberos  Authentication and Authorization System",
       M.I.T. Project Athena, Cambridge, Massachusetts, December 21,
       1987.

  [2]  Steiner, J., Neuman, C., and J. Schiller, "Kerberos: An
       Authentication Service for Open Network Systems", pp. 191-202 in
       Usenix Conference Proceedings, Dallas, Texas, February, 1988.

  [3]  Needham, R., and M. Schroeder, "Using Encryption for
       Authentication in Large Networks of Computers", Communications
       of the ACM, Vol. 21 (12), pp. 993-999, December 1978.

  [4]  Denning, D., and G. Sacco, "Time stamps in Key Distribution
       Protocols", Communications of the ACM, Vol. 24 (8), pp. 533-536,
       August 1981.

  [5]  Kohl, J., Neuman, C., and T. Ts'o, "The Evolution of the
       Kerberos Authentication Service", in an IEEE Computer Society
       Text soon to be published, June 1992.

  [6]  Davis, D., and R. Swick, "Workstation Services and Kerberos
       Authentication at Project Athena", Technical Memorandum TM-424,
       MIT Laboratory for Computer Science, February 1990.

  [7]  Levine, P., Gretzinger, M, Diaz, J., Sommerfeld, W., and K.
       Raeburn, "Section E.1: Service Management System, M.I.T.
       Project Athena, Cambridge, Mas sachusetts (1987).

  [8]  CCITT, Recommendation X.509: The Directory Authentication
       Framework, December 1988.

  [9]  Neuman, C., "Proxy-Based Authorization and Accounting for
       Distributed Systems," in Proceedings of the 13th International
       Conference on Distributed Computing Systems", Pittsburgh, PA,
       May 1993.

  [10] Pato, J., "Using Pre-Authentication to Avoid Password Guessing
       Attacks", Open Software Foundation DCE Request for Comments 26,
       December 1992.

  [11] National Bureau of Standards, U.S. Department of Commerce, "Data
       Encryption Standard", Federal Information Processing Standards
       Publication 46, Washington, DC (1977).





Kohl & Neuman                                                  [Page 89]

RFC 1510                        Kerberos                  September 1993


  [12] National Bureau of Standards, U.S. Department of Commerce, "DES
       Modes of Operation", Federal Information Processing Standards
       Publication 81, Springfield, VA, December 1980.

  [13] Stubblebine S., and V. Gligor, "On Message Integrity in
       Cryptographic Protocols", in Proceedings of the IEEE Symposium
       on Research in Security and Privacy, Oakland, California, May
       1992.

  [14] International Organization for Standardization, "ISO Information
       Processing Systems - Data Communication High-Level Data Link
       Control Procedure - Frame Structure", IS 3309, October 1984, 3rd
       Edition.

  [15] Rivest, R., "The MD4 Message Digest Algorithm", RFC 1320, MIT
       Laboratory for Computer Science, April 1992.

  [16] Rivest, R., "The MD5 Message Digest Algorithm", RFC 1321, MIT
       Laboratory for Computer Science, April 1992.

  [17] Bellovin S., and M. Merritt, "Limitations of the Kerberos
       Authentication System", Computer Communications Review, Vol.
       20(5), pp. 119-132, October 1990.

12.  Security Considerations

  Security issues are discussed throughout this memo.

13.  Authors' Addresses

  John Kohl
  Digital Equipment Corporation
  110 Spit Brook Road, M/S ZKO3-3/U14
  Nashua, NH  03062

  Phone: 603-881-2481
  EMail: [email protected]


  B. Clifford Neuman
  USC/Information Sciences Institute
  4676 Admiralty Way #1001
  Marina del Rey, CA 90292-6695

  Phone: 310-822-1511
  EMail: [email protected]





Kohl & Neuman                                                  [Page 90]

RFC 1510                        Kerberos                  September 1993


A.  Pseudo-code for protocol processing

  This appendix provides pseudo-code describing how the messages are to
  be constructed and interpreted by clients and servers.

A.1.  KRB_AS_REQ generation
       request.pvno := protocol version; /* pvno = 5 */
       request.msg-type := message type; /* type = KRB_AS_REQ */

       if(pa_enc_timestamp_required) then
               request.padata.padata-type = PA-ENC-TIMESTAMP;
               get system_time;
               padata-body.patimestamp,pausec = system_time;
               encrypt padata-body into request.padata.padata-value
                       using client.key; /* derived from password */
       endif

       body.kdc-options := users's preferences;
       body.cname := user's name;
       body.realm := user's realm;
       body.sname := service's name; /* usually "krbtgt",
                                        "localrealm" */
       if (body.kdc-options.POSTDATED is set) then
               body.from := requested starting time;
       else
               omit body.from;
       endif
       body.till := requested end time;
       if (body.kdc-options.RENEWABLE is set) then
               body.rtime := requested final renewal time;
       endif
       body.nonce := random_nonce();
       body.etype := requested etypes;
       if (user supplied addresses) then
               body.addresses := user's addresses;
       else
               omit body.addresses;
       endif
       omit body.enc-authorization-data;
       request.req-body := body;

       kerberos := lookup(name of local kerberos server (or servers));
       send(packet,kerberos);

       wait(for response);
       if (timed_out) then
               retry or use alternate server;
       endif



Kohl & Neuman                                                  [Page 91]

RFC 1510                        Kerberos                  September 1993


A.2.  KRB_AS_REQ verification and KRB_AS_REP generation
       decode message into req;

       client := lookup(req.cname,req.realm);
       server := lookup(req.sname,req.realm);
       get system_time;
       kdc_time := system_time.seconds;

       if (!client) then
               /* no client in Database */
               error_out(KDC_ERR_C_PRINCIPAL_UNKNOWN);
       endif
       if (!server) then
               /* no server in Database */
               error_out(KDC_ERR_S_PRINCIPAL_UNKNOWN);
       endif

       if(client.pa_enc_timestamp_required and
          pa_enc_timestamp not present) then
               error_out(KDC_ERR_PREAUTH_REQUIRED(PA_ENC_TIMESTAMP));
       endif

       if(pa_enc_timestamp present) then
               decrypt req.padata-value into decrypted_enc_timestamp
                       using client.key;
                       using auth_hdr.authenticator.subkey;
               if (decrypt_error()) then
                       error_out(KRB_AP_ERR_BAD_INTEGRITY);
               if(decrypted_enc_timestamp is not within allowable
                       skew) then error_out(KDC_ERR_PREAUTH_FAILED);
               endif
               if(decrypted_enc_timestamp and usec is replay)
                       error_out(KDC_ERR_PREAUTH_FAILED);
               endif
               add decrypted_enc_timestamp and usec to replay cache;
       endif

       use_etype := first supported etype in req.etypes;

       if (no support for req.etypes) then
               error_out(KDC_ERR_ETYPE_NOSUPP);
       endif

       new_tkt.vno := ticket version; /* = 5 */
       new_tkt.sname := req.sname;
       new_tkt.srealm := req.srealm;
       reset all flags in new_tkt.flags;




Kohl & Neuman                                                  [Page 92]

RFC 1510                        Kerberos                  September 1993


       /* It should be noted that local policy may affect the  */
       /* processing of any of these flags.  For example, some */
       /* realms may refuse to issue renewable tickets         */

       if (req.kdc-options.FORWARDABLE is set) then
               set new_tkt.flags.FORWARDABLE;
       endif
       if (req.kdc-options.PROXIABLE is set) then
               set new_tkt.flags.PROXIABLE;
       endif
       if (req.kdc-options.ALLOW-POSTDATE is set) then
               set new_tkt.flags.ALLOW-POSTDATE;
       endif
       if ((req.kdc-options.RENEW is set) or
           (req.kdc-options.VALIDATE is set) or
           (req.kdc-options.PROXY is set) or
           (req.kdc-options.FORWARDED is set) or
           (req.kdc-options.ENC-TKT-IN-SKEY is set)) then
               error_out(KDC_ERR_BADOPTION);
       endif

       new_tkt.session := random_session_key();
       new_tkt.cname := req.cname;
       new_tkt.crealm := req.crealm;
       new_tkt.transited := empty_transited_field();

       new_tkt.authtime := kdc_time;

       if (req.kdc-options.POSTDATED is set) then
          if (against_postdate_policy(req.from)) then
               error_out(KDC_ERR_POLICY);
          endif
          set new_tkt.flags.INVALID;
          new_tkt.starttime := req.from;
       else
          omit new_tkt.starttime; /* treated as authtime when
                                     omitted */
       endif
       if (req.till = 0) then
               till := infinity;
       else
               till := req.till;
       endif

       new_tkt.endtime := min(till,
                             new_tkt.starttime+client.max_life,
                             new_tkt.starttime+server.max_life,
                             new_tkt.starttime+max_life_for_realm);



Kohl & Neuman                                                  [Page 93]

RFC 1510                        Kerberos                  September 1993


       if ((req.kdc-options.RENEWABLE-OK is set) and
           (new_tkt.endtime < req.till)) then
               /* we set the RENEWABLE option for later processing */
               set req.kdc-options.RENEWABLE;
               req.rtime := req.till;
       endif

       if (req.rtime = 0) then
               rtime := infinity;
       else
               rtime := req.rtime;
       endif

       if (req.kdc-options.RENEWABLE is set) then
               set new_tkt.flags.RENEWABLE;
               new_tkt.renew-till := min(rtime,
               new_tkt.starttime+client.max_rlife,
               new_tkt.starttime+server.max_rlife,
               new_tkt.starttime+max_rlife_for_realm);
       else
               omit new_tkt.renew-till; /* only present if RENEWABLE */
       endif

       if (req.addresses) then
               new_tkt.caddr := req.addresses;
       else
               omit new_tkt.caddr;
       endif

       new_tkt.authorization_data := empty_authorization_data();

       encode to-be-encrypted part of ticket into OCTET STRING;
       new_tkt.enc-part := encrypt OCTET STRING
           using etype_for_key(server.key), server.key, server.p_kvno;


       /* Start processing the response */

       resp.pvno := 5;
       resp.msg-type := KRB_AS_REP;
       resp.cname := req.cname;
       resp.crealm := req.realm;
       resp.ticket := new_tkt;

       resp.key := new_tkt.session;
       resp.last-req := fetch_last_request_info(client);
       resp.nonce := req.nonce;
       resp.key-expiration := client.expiration;



Kohl & Neuman                                                  [Page 94]

RFC 1510                        Kerberos                  September 1993


       resp.flags := new_tkt.flags;

       resp.authtime := new_tkt.authtime;
       resp.starttime := new_tkt.starttime;
       resp.endtime := new_tkt.endtime;

       if (new_tkt.flags.RENEWABLE) then
               resp.renew-till := new_tkt.renew-till;
       endif

       resp.realm := new_tkt.realm;
       resp.sname := new_tkt.sname;

       resp.caddr := new_tkt.caddr;

       encode body of reply into OCTET STRING;

       resp.enc-part := encrypt OCTET STRING
                        using use_etype, client.key, client.p_kvno;
       send(resp);

A.3.  KRB_AS_REP verification
       decode response into resp;

       if (resp.msg-type = KRB_ERROR) then
               if(error = KDC_ERR_PREAUTH_REQUIRED(PA_ENC_TIMESTAMP))
                       then set pa_enc_timestamp_required;
                       goto KRB_AS_REQ;
               endif
               process_error(resp);
               return;
       endif

       /* On error, discard the response, and zero the session key */
       /* from the response immediately */

       key = get_decryption_key(resp.enc-part.kvno, resp.enc-part.etype,
                                resp.padata);
       unencrypted part of resp := decode of decrypt of resp.enc-part
                               using resp.enc-part.etype and key;
       zero(key);

       if (common_as_rep_tgs_rep_checks fail) then
               destroy resp.key;
               return error;
       endif

       if near(resp.princ_exp) then



Kohl & Neuman                                                  [Page 95]

RFC 1510                        Kerberos                  September 1993


               print(warning message);
       endif
       save_for_later(ticket,session,client,server,times,flags);

A.4.  KRB_AS_REP and KRB_TGS_REP common checks
       if (decryption_error() or
           (req.cname != resp.cname) or
           (req.realm != resp.crealm) or
           (req.sname != resp.sname) or
           (req.realm != resp.realm) or
           (req.nonce != resp.nonce) or
           (req.addresses != resp.caddr)) then
               destroy resp.key;
               return KRB_AP_ERR_MODIFIED;
       endif

       /* make sure no flags are set that shouldn't be, and that  */
       /* all that should be are set                              */
       if (!check_flags_for_compatability(req.kdc-options,resp.flags))
               then destroy resp.key;
               return KRB_AP_ERR_MODIFIED;
       endif

       if ((req.from = 0) and
           (resp.starttime is not within allowable skew)) then
               destroy resp.key;
               return KRB_AP_ERR_SKEW;
       endif
       if ((req.from != 0) and (req.from != resp.starttime)) then
               destroy resp.key;
               return KRB_AP_ERR_MODIFIED;
       endif
       if ((req.till != 0) and (resp.endtime > req.till)) then
               destroy resp.key;
               return KRB_AP_ERR_MODIFIED;
       endif

       if ((req.kdc-options.RENEWABLE is set) and
           (req.rtime != 0) and (resp.renew-till > req.rtime)) then
               destroy resp.key;
               return KRB_AP_ERR_MODIFIED;
       endif
       if ((req.kdc-options.RENEWABLE-OK is set) and
           (resp.flags.RENEWABLE) and
           (req.till != 0) and
           (resp.renew-till > req.till)) then
               destroy resp.key;
               return KRB_AP_ERR_MODIFIED;



Kohl & Neuman                                                  [Page 96]

RFC 1510                        Kerberos                  September 1993


       endif

A.5.  KRB_TGS_REQ generation
       /* Note that make_application_request might have to     */
       /* recursivly call this routine to get the appropriate  */
       /* ticket-granting ticket                               */

       request.pvno := protocol version; /* pvno = 5 */
       request.msg-type := message type; /* type = KRB_TGS_REQ */

       body.kdc-options := users's preferences;
       /* If the TGT is not for the realm of the end-server  */
       /* then the sname will be for a TGT for the end-realm */
       /* and the realm of the requested ticket (body.realm) */
       /* will be that of the TGS to which the TGT we are    */
       /* sending applies                                    */
       body.sname := service's name;
       body.realm := service's realm;

       if (body.kdc-options.POSTDATED is set) then
               body.from := requested starting time;
       else
               omit body.from;
       endif
       body.till := requested end time;
       if (body.kdc-options.RENEWABLE is set) then
               body.rtime := requested final renewal time;
       endif
       body.nonce := random_nonce();
       body.etype := requested etypes;
       if (user supplied addresses) then
               body.addresses := user's addresses;
       else
               omit body.addresses;
       endif

       body.enc-authorization-data := user-supplied data;
       if (body.kdc-options.ENC-TKT-IN-SKEY) then
               body.additional-tickets_ticket := second TGT;
       endif

       request.req-body := body;
       check := generate_checksum (req.body,checksumtype);

       request.padata[0].padata-type := PA-TGS-REQ;
       request.padata[0].padata-value := create a KRB_AP_REQ using
                                     the TGT and checksum




Kohl & Neuman                                                  [Page 97]

RFC 1510                        Kerberos                  September 1993


       /* add in any other padata as required/supplied */

       kerberos := lookup(name of local kerberose server (or servers));
       send(packet,kerberos);

       wait(for response);
       if (timed_out) then
               retry or use alternate server;
       endif

A.6.  KRB_TGS_REQ verification and KRB_TGS_REP generation
       /* note that reading the application request requires first
       determining the server for which a ticket was issued, and
       choosing the correct key for decryption.  The name of the
       server appears in the plaintext part of the ticket. */

       if (no KRB_AP_REQ in req.padata) then
               error_out(KDC_ERR_PADATA_TYPE_NOSUPP);
       endif
       verify KRB_AP_REQ in req.padata;

       /* Note that the realm in which the Kerberos server is
       operating is determined by the instance from the
       ticket-granting ticket.  The realm in the ticket-granting
       ticket is the realm under which the ticket granting ticket was
       issued.  It is possible for a single Kerberos server to
       support more than one realm. */

       auth_hdr := KRB_AP_REQ;
       tgt := auth_hdr.ticket;

       if (tgt.sname is not a TGT for local realm and is not
               req.sname) then error_out(KRB_AP_ERR_NOT_US);

       realm := realm_tgt_is_for(tgt);

       decode remainder of request;

       if (auth_hdr.authenticator.cksum is missing) then
               error_out(KRB_AP_ERR_INAPP_CKSUM);
       endif
       if (auth_hdr.authenticator.cksum type is not supported) then
               error_out(KDC_ERR_SUMTYPE_NOSUPP);
       endif
       if (auth_hdr.authenticator.cksum is not both collision-proof
           and keyed)  then
               error_out(KRB_AP_ERR_INAPP_CKSUM);
       endif



Kohl & Neuman                                                  [Page 98]

RFC 1510                        Kerberos                  September 1993


       set computed_checksum := checksum(req);
       if (computed_checksum != auth_hdr.authenticatory.cksum) then
               error_out(KRB_AP_ERR_MODIFIED);
       endif

       server := lookup(req.sname,realm);

       if (!server) then
               if (is_foreign_tgt_name(server)) then
                       server := best_intermediate_tgs(server);
               else
                       /* no server in Database */
                       error_out(KDC_ERR_S_PRINCIPAL_UNKNOWN);
               endif
       endif

       session := generate_random_session_key();


       use_etype := first supported etype in req.etypes;

       if (no support for req.etypes) then
               error_out(KDC_ERR_ETYPE_NOSUPP);
       endif

       new_tkt.vno := ticket version; /* = 5 */
       new_tkt.sname := req.sname;
       new_tkt.srealm := realm;
       reset all flags in new_tkt.flags;

       /* It should be noted that local policy may affect the  */
       /* processing of any of these flags.  For example, some */
       /* realms may refuse to issue renewable tickets         */

       new_tkt.caddr := tgt.caddr;
       resp.caddr := NULL; /* We only include this if they change */
       if (req.kdc-options.FORWARDABLE is set) then
               if (tgt.flags.FORWARDABLE is reset) then
                       error_out(KDC_ERR_BADOPTION);
               endif
               set new_tkt.flags.FORWARDABLE;
       endif
       if (req.kdc-options.FORWARDED is set) then
               if (tgt.flags.FORWARDABLE is reset) then
                       error_out(KDC_ERR_BADOPTION);
               endif
               set new_tkt.flags.FORWARDED;
               new_tkt.caddr := req.addresses;



Kohl & Neuman                                                  [Page 99]

RFC 1510                        Kerberos                  September 1993


               resp.caddr := req.addresses;
       endif
       if (tgt.flags.FORWARDED is set) then
               set new_tkt.flags.FORWARDED;
       endif

       if (req.kdc-options.PROXIABLE is set) then
               if (tgt.flags.PROXIABLE is reset)
                       error_out(KDC_ERR_BADOPTION);
               endif
               set new_tkt.flags.PROXIABLE;
       endif
       if (req.kdc-options.PROXY is set) then
               if (tgt.flags.PROXIABLE is reset) then
                       error_out(KDC_ERR_BADOPTION);
               endif
               set new_tkt.flags.PROXY;
               new_tkt.caddr := req.addresses;
               resp.caddr := req.addresses;
       endif

       if (req.kdc-options.POSTDATE is set) then
               if (tgt.flags.POSTDATE is reset)
                       error_out(KDC_ERR_BADOPTION);
               endif
               set new_tkt.flags.POSTDATE;
       endif
       if (req.kdc-options.POSTDATED is set) then
               if (tgt.flags.POSTDATE is reset) then
                       error_out(KDC_ERR_BADOPTION);
               endif
               set new_tkt.flags.POSTDATED;
               set new_tkt.flags.INVALID;
               if (against_postdate_policy(req.from)) then
                       error_out(KDC_ERR_POLICY);
               endif
               new_tkt.starttime := req.from;
       endif


       if (req.kdc-options.VALIDATE is set) then
               if (tgt.flags.INVALID is reset) then
                       error_out(KDC_ERR_POLICY);
               endif
               if (tgt.starttime > kdc_time) then
                       error_out(KRB_AP_ERR_NYV);
               endif
               if (check_hot_list(tgt)) then



Kohl & Neuman                                                 [Page 100]

RFC 1510                        Kerberos                  September 1993


                       error_out(KRB_AP_ERR_REPEAT);
               endif
               tkt := tgt;
               reset new_tkt.flags.INVALID;
       endif

       if (req.kdc-options.(any flag except ENC-TKT-IN-SKEY, RENEW,
                            and those already processed) is set) then
               error_out(KDC_ERR_BADOPTION);
       endif

       new_tkt.authtime := tgt.authtime;

       if (req.kdc-options.RENEW is set) then
         /* Note that if the endtime has already passed, the ticket */
         /* would have been rejected in the initial authentication  */
         /* stage, so there is no need to check again here          */
               if (tgt.flags.RENEWABLE is reset) then
                       error_out(KDC_ERR_BADOPTION);
               endif
               if (tgt.renew-till >= kdc_time) then
                       error_out(KRB_AP_ERR_TKT_EXPIRED);
               endif
               tkt := tgt;
               new_tkt.starttime := kdc_time;
               old_life := tgt.endttime - tgt.starttime;
               new_tkt.endtime := min(tgt.renew-till,
                                      new_tkt.starttime + old_life);
       else
               new_tkt.starttime := kdc_time;
               if (req.till = 0) then
                       till := infinity;
               else
                       till := req.till;
               endif
               new_tkt.endtime := min(till,
                                  new_tkt.starttime+client.max_life,
                                  new_tkt.starttime+server.max_life,
                                  new_tkt.starttime+max_life_for_realm,
                                  tgt.endtime);

               if ((req.kdc-options.RENEWABLE-OK is set) and
                   (new_tkt.endtime < req.till) and
                   (tgt.flags.RENEWABLE is set) then
                       /* we set the RENEWABLE option for later  */
                       /* processing                             */
                       set req.kdc-options.RENEWABLE;
                       req.rtime := min(req.till, tgt.renew-till);



Kohl & Neuman                                                 [Page 101]

RFC 1510                        Kerberos                  September 1993


               endif
       endif

       if (req.rtime = 0) then
               rtime := infinity;
       else
               rtime := req.rtime;
       endif

       if ((req.kdc-options.RENEWABLE is set) and
           (tgt.flags.RENEWABLE is set)) then
               set new_tkt.flags.RENEWABLE;
               new_tkt.renew-till := min(rtime,
               new_tkt.starttime+client.max_rlife,
               new_tkt.starttime+server.max_rlife,
               new_tkt.starttime+max_rlife_for_realm,
               tgt.renew-till);
       else
               new_tkt.renew-till := OMIT;
                             /* leave the renew-till field out */
       endif
       if (req.enc-authorization-data is present) then
               decrypt req.enc-authorization-data
                       into    decrypted_authorization_data
                       using auth_hdr.authenticator.subkey;
               if (decrypt_error()) then
                       error_out(KRB_AP_ERR_BAD_INTEGRITY);
               endif
       endif
       new_tkt.authorization_data :=
       req.auth_hdr.ticket.authorization_data +
                                decrypted_authorization_data;

       new_tkt.key := session;
       new_tkt.crealm := tgt.crealm;
       new_tkt.cname := req.auth_hdr.ticket.cname;

       if (realm_tgt_is_for(tgt) := tgt.realm) then
               /* tgt issued by local realm */
               new_tkt.transited := tgt.transited;
       else
               /* was issued for this realm by some other realm */
               if (tgt.transited.tr-type not supported) then
                       error_out(KDC_ERR_TRTYPE_NOSUPP);
               endif
               new_tkt.transited
                  := compress_transited(tgt.transited + tgt.realm)
       endif



Kohl & Neuman                                                 [Page 102]

RFC 1510                        Kerberos                  September 1993


       encode encrypted part of new_tkt into OCTET STRING;
       if (req.kdc-options.ENC-TKT-IN-SKEY is set) then
               if (server not specified) then
                       server = req.second_ticket.client;
               endif
               if ((req.second_ticket is not a TGT) or
                   (req.second_ticket.client != server)) then
                       error_out(KDC_ERR_POLICY);
               endif

               new_tkt.enc-part := encrypt OCTET STRING using
                       using etype_for_key(second-ticket.key),
                                                     second-ticket.key;
       else
               new_tkt.enc-part := encrypt OCTET STRING
                       using etype_for_key(server.key), server.key,
                                                     server.p_kvno;
       endif

       resp.pvno := 5;
       resp.msg-type := KRB_TGS_REP;
       resp.crealm := tgt.crealm;
       resp.cname := tgt.cname;
       resp.ticket := new_tkt;

       resp.key := session;
       resp.nonce := req.nonce;
       resp.last-req := fetch_last_request_info(client);
       resp.flags := new_tkt.flags;

       resp.authtime := new_tkt.authtime;
       resp.starttime := new_tkt.starttime;
       resp.endtime := new_tkt.endtime;

       omit resp.key-expiration;

       resp.sname := new_tkt.sname;
       resp.realm := new_tkt.realm;

       if (new_tkt.flags.RENEWABLE) then
               resp.renew-till := new_tkt.renew-till;
       endif


       encode body of reply into OCTET STRING;

       if (req.padata.authenticator.subkey)
               resp.enc-part := encrypt OCTET STRING using use_etype,



Kohl & Neuman                                                 [Page 103]

RFC 1510                        Kerberos                  September 1993


                       req.padata.authenticator.subkey;
       else resp.enc-part := encrypt OCTET STRING
                             using use_etype, tgt.key;

       send(resp);

A.7.  KRB_TGS_REP verification
       decode response into resp;

       if (resp.msg-type = KRB_ERROR) then
               process_error(resp);
               return;
       endif

       /* On error, discard the response, and zero the session key from
       the response immediately */

       if (req.padata.authenticator.subkey)
               unencrypted part of resp :=
                       decode of decrypt of resp.enc-part
                       using resp.enc-part.etype and subkey;
       else unencrypted part of resp :=
                       decode of decrypt of resp.enc-part
                       using resp.enc-part.etype and tgt's session key;
       if (common_as_rep_tgs_rep_checks fail) then
               destroy resp.key;
               return error;
       endif

       check authorization_data as necessary;
       save_for_later(ticket,session,client,server,times,flags);

A.8.  Authenticator generation
       body.authenticator-vno := authenticator vno; /* = 5 */
       body.cname, body.crealm := client name;
       if (supplying checksum) then
               body.cksum := checksum;
       endif
       get system_time;
       body.ctime, body.cusec := system_time;
       if (selecting sub-session key) then
               select sub-session key;
               body.subkey := sub-session key;
       endif
       if (using sequence numbers) then
               select initial sequence number;
               body.seq-number := initial sequence;
       endif



Kohl & Neuman                                                 [Page 104]

RFC 1510                        Kerberos                  September 1993


A.9.  KRB_AP_REQ generation
       obtain ticket and session_key from cache;

       packet.pvno := protocol version; /* 5 */
       packet.msg-type := message type; /* KRB_AP_REQ */

       if (desired(MUTUAL_AUTHENTICATION)) then
               set packet.ap-options.MUTUAL-REQUIRED;
       else
               reset packet.ap-options.MUTUAL-REQUIRED;
       endif
       if (using session key for ticket) then
               set packet.ap-options.USE-SESSION-KEY;
       else
               reset packet.ap-options.USE-SESSION-KEY;
       endif
       packet.ticket := ticket; /* ticket */
       generate authenticator;
       encode authenticator into OCTET STRING;
       encrypt OCTET STRING into packet.authenticator
                            using session_key;

A.10.  KRB_AP_REQ verification
       receive packet;
       if (packet.pvno != 5) then
               either process using other protocol spec
               or error_out(KRB_AP_ERR_BADVERSION);
       endif
       if (packet.msg-type != KRB_AP_REQ) then
               error_out(KRB_AP_ERR_MSG_TYPE);
       endif
       if (packet.ticket.tkt_vno != 5) then
               either process using other protocol spec
               or error_out(KRB_AP_ERR_BADVERSION);
       endif
       if (packet.ap_options.USE-SESSION-KEY is set) then
               retrieve session key from ticket-granting ticket for
                packet.ticket.{sname,srealm,enc-part.etype};
       else
          retrieve service key for
          packet.ticket.{sname,srealm,enc-part.etype,enc-part.skvno};
       endif
       if (no_key_available) then
               if (cannot_find_specified_skvno) then
                       error_out(KRB_AP_ERR_BADKEYVER);
               else
                       error_out(KRB_AP_ERR_NOKEY);
               endif



Kohl & Neuman                                                 [Page 105]

RFC 1510                        Kerberos                  September 1993


       endif
       decrypt packet.ticket.enc-part into decr_ticket
                                      using retrieved key;
       if (decryption_error()) then
               error_out(KRB_AP_ERR_BAD_INTEGRITY);
       endif
       decrypt packet.authenticator into decr_authenticator
               using decr_ticket.key;
       if (decryption_error()) then
               error_out(KRB_AP_ERR_BAD_INTEGRITY);
       endif
       if (decr_authenticator.{cname,crealm} !=
           decr_ticket.{cname,crealm}) then
               error_out(KRB_AP_ERR_BADMATCH);
       endif
       if (decr_ticket.caddr is present) then
               if (sender_address(packet) is not in decr_ticket.caddr)
                       then error_out(KRB_AP_ERR_BADADDR);
               endif
       elseif (application requires addresses) then
               error_out(KRB_AP_ERR_BADADDR);
       endif
       if (not in_clock_skew(decr_authenticator.ctime,
                             decr_authenticator.cusec)) then
               error_out(KRB_AP_ERR_SKEW);
       endif
       if (repeated(decr_authenticator.{ctime,cusec,cname,crealm}))
               then error_out(KRB_AP_ERR_REPEAT);
       endif
       save_identifier(decr_authenticator.{ctime,cusec,cname,crealm});
       get system_time;
       if ((decr_ticket.starttime-system_time > CLOCK_SKEW) or
           (decr_ticket.flags.INVALID is set)) then
               /* it hasn't yet become valid */
               error_out(KRB_AP_ERR_TKT_NYV);
       endif
       if (system_time-decr_ticket.endtime > CLOCK_SKEW) then
               error_out(KRB_AP_ERR_TKT_EXPIRED);
       endif
       /* caller must check decr_ticket.flags for any pertinent */
       /* details */
       return(OK, decr_ticket, packet.ap_options.MUTUAL-REQUIRED);

A.11.  KRB_AP_REP generation
       packet.pvno := protocol version; /* 5 */
       packet.msg-type := message type; /* KRB_AP_REP */
       body.ctime := packet.ctime;
       body.cusec := packet.cusec;



Kohl & Neuman                                                 [Page 106]

RFC 1510                        Kerberos                  September 1993


       if (selecting sub-session key) then
               select sub-session key;
               body.subkey := sub-session key;
       endif
       if (using sequence numbers) then
               select initial sequence number;
               body.seq-number := initial sequence;
       endif

       encode body into OCTET STRING;

       select encryption type;
       encrypt OCTET STRING into packet.enc-part;

A.12.  KRB_AP_REP verification
       receive packet;
       if (packet.pvno != 5) then
               either process using other protocol spec
               or error_out(KRB_AP_ERR_BADVERSION);
       endif
       if (packet.msg-type != KRB_AP_REP) then
               error_out(KRB_AP_ERR_MSG_TYPE);
       endif
       cleartext := decrypt(packet.enc-part)
                    using ticket's session key;
       if (decryption_error()) then
               error_out(KRB_AP_ERR_BAD_INTEGRITY);
       endif
       if (cleartext.ctime != authenticator.ctime) then
               error_out(KRB_AP_ERR_MUT_FAIL);
       endif
       if (cleartext.cusec != authenticator.cusec) then
               error_out(KRB_AP_ERR_MUT_FAIL);
       endif
       if (cleartext.subkey is present) then
               save cleartext.subkey for future use;
       endif
       if (cleartext.seq-number is present) then
               save cleartext.seq-number for future verifications;
       endif
       return(AUTHENTICATION_SUCCEEDED);

A.13.  KRB_SAFE generation
       collect user data in buffer;

       /* assemble packet: */
       packet.pvno := protocol version; /* 5 */
       packet.msg-type := message type; /* KRB_SAFE */



Kohl & Neuman                                                 [Page 107]

RFC 1510                        Kerberos                  September 1993


       body.user-data := buffer; /* DATA */
       if (using timestamp) then
               get system_time;
               body.timestamp, body.usec := system_time;
       endif
       if (using sequence numbers) then
               body.seq-number := sequence number;
       endif
       body.s-address := sender host addresses;
       if (only one recipient) then
               body.r-address := recipient host address;
       endif
       checksum.cksumtype := checksum type;
       compute checksum over body;
       checksum.checksum := checksum value; /* checksum.checksum */
       packet.cksum := checksum;
       packet.safe-body := body;

A.14.  KRB_SAFE verification
       receive packet;
       if (packet.pvno != 5) then
               either process using other protocol spec
               or error_out(KRB_AP_ERR_BADVERSION);
       endif
       if (packet.msg-type != KRB_SAFE) then
               error_out(KRB_AP_ERR_MSG_TYPE);
       endif
       if (packet.checksum.cksumtype is not both collision-proof
                                            and keyed) then
               error_out(KRB_AP_ERR_INAPP_CKSUM);
       endif
       if (safe_priv_common_checks_ok(packet)) then
               set computed_checksum := checksum(packet.body);
               if (computed_checksum != packet.checksum) then
                       error_out(KRB_AP_ERR_MODIFIED);
               endif
               return (packet, PACKET_IS_GENUINE);
       else
               return common_checks_error;
       endif

A.15.  KRB_SAFE and KRB_PRIV common checks
       if (packet.s-address != O/S_sender(packet)) then
           /* O/S report of sender not who claims to have sent it */
           error_out(KRB_AP_ERR_BADADDR);
       endif
       if ((packet.r-address is present) and
           (packet.r-address != local_host_address)) then



Kohl & Neuman                                                 [Page 108]

RFC 1510                        Kerberos                  September 1993


               /* was not sent to proper place */
               error_out(KRB_AP_ERR_BADADDR);
       endif
       if (((packet.timestamp is present) and
            (not in_clock_skew(packet.timestamp,packet.usec))) or
           (packet.timestamp is not present and timestamp expected))
               then error_out(KRB_AP_ERR_SKEW);
       endif
       if (repeated(packet.timestamp,packet.usec,packet.s-address))
               then error_out(KRB_AP_ERR_REPEAT);
       endif
       if (((packet.seq-number is present) and
            ((not in_sequence(packet.seq-number)))) or
           (packet.seq-number is not present and sequence expected))
               then error_out(KRB_AP_ERR_BADORDER);
       endif
       if (packet.timestamp not present and
           packet.seq-number not present) then
               error_out(KRB_AP_ERR_MODIFIED);
       endif

       save_identifier(packet.{timestamp,usec,s-address},
                       sender_principal(packet));

       return PACKET_IS_OK;

A.16.  KRB_PRIV generation
       collect user data in buffer;

       /* assemble packet: */
       packet.pvno := protocol version; /* 5 */
       packet.msg-type := message type; /* KRB_PRIV */

       packet.enc-part.etype := encryption type;

       body.user-data := buffer;
       if (using timestamp) then
               get system_time;
               body.timestamp, body.usec := system_time;
       endif
       if (using sequence numbers) then
               body.seq-number := sequence number;
       endif
       body.s-address := sender host addresses;
       if (only one recipient) then
               body.r-address := recipient host address;
       endif




Kohl & Neuman                                                 [Page 109]

RFC 1510                        Kerberos                  September 1993


       encode body into OCTET STRING;

       select encryption type;
       encrypt OCTET STRING into packet.enc-part.cipher;

A.17.  KRB_PRIV verification
       receive packet;
       if (packet.pvno != 5) then
               either process using other protocol spec
               or error_out(KRB_AP_ERR_BADVERSION);
       endif
       if (packet.msg-type != KRB_PRIV) then
               error_out(KRB_AP_ERR_MSG_TYPE);
       endif

       cleartext := decrypt(packet.enc-part) using negotiated key;
       if (decryption_error()) then
               error_out(KRB_AP_ERR_BAD_INTEGRITY);
       endif

       if (safe_priv_common_checks_ok(cleartext)) then
           return(cleartext.DATA, PACKET_IS_GENUINE_AND_UNMODIFIED);
       else
               return common_checks_error;
       endif

A.18.  KRB_CRED generation
       invoke KRB_TGS; /* obtain tickets to be provided to peer */

       /* assemble packet: */
       packet.pvno := protocol version; /* 5 */
       packet.msg-type := message type; /* KRB_CRED */

       for (tickets[n] in tickets to be forwarded) do
               packet.tickets[n] = tickets[n].ticket;
       done

       packet.enc-part.etype := encryption type;

       for (ticket[n] in tickets to be forwarded) do
               body.ticket-info[n].key = tickets[n].session;
               body.ticket-info[n].prealm = tickets[n].crealm;
               body.ticket-info[n].pname = tickets[n].cname;
               body.ticket-info[n].flags = tickets[n].flags;
               body.ticket-info[n].authtime = tickets[n].authtime;
               body.ticket-info[n].starttime = tickets[n].starttime;
               body.ticket-info[n].endtime = tickets[n].endtime;
               body.ticket-info[n].renew-till = tickets[n].renew-till;



Kohl & Neuman                                                 [Page 110]

RFC 1510                        Kerberos                  September 1993


               body.ticket-info[n].srealm = tickets[n].srealm;
               body.ticket-info[n].sname = tickets[n].sname;
               body.ticket-info[n].caddr = tickets[n].caddr;
       done

       get system_time;
       body.timestamp, body.usec := system_time;

       if (using nonce) then
               body.nonce := nonce;
       endif

       if (using s-address) then
               body.s-address := sender host addresses;
       endif
       if (limited recipients) then
               body.r-address := recipient host address;
       endif

       encode body into OCTET STRING;

       select encryption type;
       encrypt OCTET STRING into packet.enc-part.cipher
       using negotiated encryption key;

A.19.  KRB_CRED verification
       receive packet;
       if (packet.pvno != 5) then
               either process using other protocol spec
               or error_out(KRB_AP_ERR_BADVERSION);
       endif
       if (packet.msg-type != KRB_CRED) then
               error_out(KRB_AP_ERR_MSG_TYPE);
       endif

       cleartext := decrypt(packet.enc-part) using negotiated key;
       if (decryption_error()) then
               error_out(KRB_AP_ERR_BAD_INTEGRITY);
       endif
       if ((packet.r-address is present or required) and
          (packet.s-address != O/S_sender(packet)) then
           /* O/S report of sender not who claims to have sent it */
           error_out(KRB_AP_ERR_BADADDR);
       endif
       if ((packet.r-address is present) and
           (packet.r-address != local_host_address)) then
               /* was not sent to proper place */
               error_out(KRB_AP_ERR_BADADDR);



Kohl & Neuman                                                 [Page 111]

RFC 1510                        Kerberos                  September 1993


       endif
       if (not in_clock_skew(packet.timestamp,packet.usec)) then
               error_out(KRB_AP_ERR_SKEW);
       endif
       if (repeated(packet.timestamp,packet.usec,packet.s-address))
               then error_out(KRB_AP_ERR_REPEAT);
       endif
       if (packet.nonce is required or present) and
          (packet.nonce != expected-nonce) then
               error_out(KRB_AP_ERR_MODIFIED);
       endif

       for (ticket[n] in tickets that were forwarded) do
               save_for_later(ticket[n],key[n],principal[n],
                              server[n],times[n],flags[n]);
       return

A.20.  KRB_ERROR generation

       /* assemble packet: */
       packet.pvno := protocol version; /* 5 */
       packet.msg-type := message type; /* KRB_ERROR */

       get system_time;
       packet.stime, packet.susec := system_time;
       packet.realm, packet.sname := server name;

       if (client time available) then
               packet.ctime, packet.cusec := client_time;
       endif
       packet.error-code := error code;
       if (client name available) then
               packet.cname, packet.crealm := client name;
       endif
       if (error text available) then
               packet.e-text := error text;
       endif
       if (error data available) then
               packet.e-data := error data;
       endif











Kohl & Neuman                                                 [Page 112]