Network Working Group                                  J. Case
         Request for Comments: 1449                 SNMP Research, Inc.
                                                          K. McCloghrie
                                                     Hughes LAN Systems
                                                                M. Rose
                                           Dover Beach Consulting, Inc.
                                                          S. Waldbusser
                                             Carnegie Mellon University
                                                             April 1993


                               Transport Mappings
                              for version 2 of the
                  Simple Network Management Protocol (SNMPv2)


         Status of this Memo

         This RFC specifes an IAB standards track protocol for the
         Internet community, and requests discussion and suggestions
         for improvements.  Please refer to the current edition of the
         "IAB Official Protocol Standards" for the standardization
         state and status of this protocol.  Distribution of this memo
         is unlimited.


         Table of Contents


         1 Introduction ..........................................    2
         1.1 A Note on Terminology ...............................    2
         2 Definitions ...........................................    3
         3 SNMPv2 over UDP .......................................    7
         3.1 Serialization .......................................    7
         3.2 Well-known Values ...................................    7
         4 SNMPv2 over OSI .......................................    8
         4.1 Serialization .......................................    8
         4.2 Well-known Values ...................................    8
         5 SNMPv2 over DDP .......................................    9
         5.1 Serialization .......................................    9
         5.2 Well-known Values ...................................    9
         5.3 Discussion of AppleTalk Addressing ..................    9
         5.3.1 How to Acquire NBP names ..........................   10
         5.3.2 When to Turn NBP names into DDP addresses .........   11
         5.3.3 How to Turn NBP names into DDP addresses ..........   11
         5.3.4 What if NBP is broken .............................   12
         6 SNMPv2 over IPX .......................................   13
         6.1 Serialization .......................................   13
         6.2 Well-known Values ...................................   13
         7 Proxy to SNMPv1 .......................................   14
         7.1 Transport Domain: rfc1157Domain .....................   14
         7.2 Authentication Algorithm: rfc1157noAuth .............   14


         Case, McCloghrie, Rose & Waldbusser                   [Page i]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         8 Serialization using the Basic Encoding Rules ..........   16
         8.1 Usage Example .......................................   17
         9 Acknowledgements ......................................   18
         10 References ...........................................   22
         11 Security Considerations ..............................   24
         12 Authors' Addresses ...................................   24
         13 Security Considerations ..............................   25
         14 Authors' Addresses ...................................   25










































         Case, McCloghrie, Rose & Waldbusser                   [Page 1]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         1.  Introduction

         A network management system contains: several (potentially
         many) nodes, each with a processing entity, termed an agent,
         which has access to management instrumentation; at least one
         management station; and, a management protocol, used to convey
         management information between the agents and management
         stations.  Operations of the protocol are carried out under an
         administrative framework which defines both authentication and
         authorization policies.

         Network management stations execute management applications
         which monitor and control network elements.  Network elements
         are devices such as hosts, routers, terminal servers, etc.,
         which are monitored and controlled through access to their
         management information.

         The management protocol, version 2 of the Simple Network
         Management Protocol [1], may be used over a variety of
         protocol suites.  It is the purpose of this document to define
         how the SNMPv2 maps onto an initial set of transport domains.
         Other mappings may be defined in the future.

         Although several mappings are defined, the mapping onto UDP is
         the preferred mapping.  As such, to provide for the greatest
         level of interoperability, systems which choose to deploy
         other mappings should also provide for proxy service to the
         UDP mapping.


         1.1.  A Note on Terminology

         For the purpose of exposition, the original Internet-standard
         Network Management Framework, as described in RFCs 1155, 1157,
         and 1212, is termed the SNMP version 1 framework (SNMPv1).
         The current framework is termed the SNMP version 2 framework
         (SNMPv2).













         Case, McCloghrie, Rose & Waldbusser                   [Page 2]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         2.  Definitions

         SNMPv2-TM DEFINITIONS ::= BEGIN

         IMPORTS
             snmpDomains, snmpProxys
                 FROM SNMPv2-SMI
             TEXTUAL-CONVENTION
                 FROM SNMPv2-TC;

         -- SNMPv2 over UDP

         snmpUDPDomain  OBJECT IDENTIFIER ::= { snmpDomains 1 }
         -- for a SnmpUDPAddress of length 6:
         --
         -- octets   contents        encoding
         --  1-4     IP-address      network-byte order
         --  5-6     UDP-port        network-byte order
         --
         SnmpUDPAddress ::= TEXTUAL-CONVENTION
             DISPLAY-HINT "1d.1d.1d.1d/2d"
             STATUS       current
             DESCRIPTION
                     "Represents a UDP address."
             SYNTAX       OCTET STRING (SIZE (6))

























         Case, McCloghrie, Rose & Waldbusser                   [Page 3]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         -- SNMPv2 over OSI

         snmpCLNSDomain OBJECT IDENTIFIER ::= { snmpDomains 2 }
         snmpCONSDomain OBJECT IDENTIFIER ::= { snmpDomains 3 }
         -- for a SnmpOSIAddress of length m:
         --
         -- octets   contents            encoding
         --    1     length of NSAP      "n" as an unsigned-integer
         --                                (either 0 or from 3 to 20)
         -- 2..(n+1) NSAP                concrete binary representation
         -- (n+2)..m TSEL                string of (up to 64) octets
         --
         SnmpOSIAddress ::= TEXTUAL-CONVENTION
             DISPLAY-HINT "*1x:/1x:"
             STATUS       current
             DESCRIPTION
                     "Represents an OSI transport-address."
             SYNTAX       OCTET STRING (SIZE (1 | 4..85))
































         Case, McCloghrie, Rose & Waldbusser                   [Page 4]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         -- SNMPv2 over DDP

         snmpDDPDomain  OBJECT IDENTIFIER ::= { snmpDomains 4 }
         -- for a SnmpNBPAddress of length m:
         --
         --    octets      contents         encoding
         --       1        length of object "n" as an unsigned integer
         --     2..(n+1)   object           string of (up to 32) octets
         --      n+2       length of type   "p" as an unsigned integer
         -- (n+3)..(n+2+p) type             string of (up to 32) octets
         --     n+3+p      length of zone   "q" as an unsigned integer
         -- (n+4+p)..m     zone             string of (up to 32) octets
         --
         -- for comparison purposes, strings are case-insensitive
         --
         -- all strings may contain any octet other than 255 (hex ff)
         --
         SnmpNBPAddress ::= TEXTUAL-CONVENTION
             STATUS       current
             DESCRIPTION
                     "Represents an NBP name."
             SYNTAX       OCTET STRING (SIZE (3..99))


         -- SNMPv2 over IPX

         snmpIPXDomain  OBJECT IDENTIFIER ::= { snmpDomains 5 }
         -- for a SnmpIPXAddress of length 12:
         --
         -- octets   contents            encoding
         --  1-4     network-number      network-byte order
         --  5-10    physical-address    network-byte order
         -- 11-12    socket-number       network-byte order
         --
         SnmpIPXAddress ::= TEXTUAL-CONVENTION
             DISPLAY-HINT "4x.1x:1x:1x:1x:1x:1x.2d"
             STATUS       current
             DESCRIPTION
                     "Represents an IPX address."
             SYNTAX       OCTET STRING (SIZE (12))










         Case, McCloghrie, Rose & Waldbusser                   [Page 5]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         -- for proxy to community-based SNMPv1 (RFC 1157)

         rfc1157Proxy   OBJECT IDENTIFIER ::= { snmpProxys 1 }

         -- uses SnmpUDPAddress
         rfc1157Domain  OBJECT IDENTIFIER ::= { rfc1157Proxy 1 }

         -- the community-based noAuth
         rfc1157noAuth  OBJECT IDENTIFIER ::= { rfc1157Proxy 2 }


         END






































         Case, McCloghrie, Rose & Waldbusser                   [Page 6]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         3.  SNMPv2 over UDP

         This is the preferred transport mapping.


         3.1.  Serialization

         Each instance of a message is serialized onto a single UDP[2]
         datagram, using the algorithm specified in Section 8.


         3.2.  Well-known Values

         Although the partyTable gives transport addressing information
         for an SNMPv2 party, it is suggested that administrators
         configure their SNMPv2 entities acting in an agent role to
         listen on UDP port 161.  Further, it is suggested that
         notification sinks be configured to listen on UDP port 162.

         The partyTable also lists the maximum message size which a
         SNMPv2 party is willing to accept.  This value must be at
         least 484 octets.  Implementation of larger values is
         encouraged whenever possible.



























         Case, McCloghrie, Rose & Waldbusser                   [Page 7]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         4.  SNMPv2 over OSI

         This is an optional transport mapping.


         4.1.  Serialization

         Each instance of a message is serialized onto a single TSDU
         [3,4] for the OSI Connectionless-mode Transport Service
         (CLTS), using the algorithm specified in Section 8.


         4.2.  Well-known Values

         Although the partyTable gives transport addressing information
         for an SNMPv2 party, it is suggested that administrators
         configure their SNMPv2 entities acting in an agent role to
         listen on transport selector "snmp-l" (which consists of six
         ASCII characters), when using a CL-mode network service to
         realize the CLTS.  Further, it is suggested that notification
         sinks be configured to listen on transport selector "snmpt-l"
         (which consists of seven ASCII characters) when using a CL-
         mode network service to realize the CLTS.  Similarly, when
         using a CO-mode network service to realize the CLTS, the
         suggested transport selectors are "snmp-o"  and "snmpt-o", for
         agent and notification sink, respectively.

         The partyTable also lists the maximum message size which a
         SNMPv2 party is willing to accept.  This value must be at
         least 484 octets.  Implementation of larger values is
         encouraged whenever possible.



















         Case, McCloghrie, Rose & Waldbusser                   [Page 8]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         5.  SNMPv2 over DDP

         This is an optional transport mapping.


         5.1.  Serialization

         Each instance of a message is serialized onto a single DDP
         datagram [5], using the algorithm specified in Section 8.


         5.2.  Well-known Values

         SNMPv2 messages are sent using DDP protocol type 8.  SNMPv2
         entities acting in an agent role listens on DDP socket number
         8, whilst notification sinks listen on DDP socket number 9.

         Although the partyTable gives transport addressing information
         for an SNMPv2 party, administrators must configure their
         SNMPv2 entities acting in an agent role to use NBP type "SNMP
         Agent" (which consists of ten ASCII characters), whilst
         notification sinks must be configured to use NBP type "SNMP
         Trap Handler" (which consists of seventeen ASCII characters).

         The NBP name for agents and notification sinks should be
         stable - NBP names should not change any more often than the
         IP address of a typical TCP/IP node.  It is suggested that the
         NBP name be stored in some form of stable storage.

         The partyTable also lists the maximum message size which a
         SNMPv2 party is willing to accept.  This value must be at
         least 484 octets.  Implementation of larger values is
         encouraged whenever possible.


         5.3.  Discussion of AppleTalk Addressing

         The AppleTalk protocol suite has certain features not manifest
         in the TCP/IP suite.  AppleTalk's naming strategy and the
         dynamic nature of address assignment can cause problems for
         SNMPv2 entities that wish to manage AppleTalk networks.
         TCP/IP nodes have an associated IP address which distinguishes
         each from the other.  In contrast, AppleTalk nodes generally
         have no such characteristic.  The network-level address, while
         often relatively stable, can change at every reboot (or more





         Case, McCloghrie, Rose & Waldbusser                   [Page 9]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         frequently).

         Thus, when SNMPv2 is mapped over DDP, nodes are identified by
         a "name", rather than by an "address".  Hence, all AppleTalk
         nodes that implement this mapping are required to respond to
         NBP lookups and confirms (e.g., implement the NBP protocol
         stub), which guarantees that a mapping from NBP name to DDP
         address will be possible.

         In determining the SNMP identity to register for an SNMPv2
         entity, it is suggested that the SNMP identity be a name which
         is associated with other network services offered by the
         machine.

         NBP lookups, which are used to map NBP names into DDP
         addresses, can cause large amounts of network traffic as well
         as consume CPU resources.  It is also the case that the
         ability to perform an NBP lookup is sensitive to certain
         network disruptions (such as zone table inconsistencies) which
         would not prevent direct AppleTalk communications between two
         SNMPv2 entities.

         Thus, it is recommended that NBP lookups be used infrequently,
         primarily to create a cache of name-to-address mappings.
         These cached mappings should then be used for any further SNMP
         traffic.  It is recommended that SNMPv2 entities acting in a
         manager role should maintain this cache between reboots.  This
         caching can help minimize network traffic, reduce CPU load on
         the network, and allow for (some amount of) network trouble
         shooting when the basic name-to-address translation mechanism
         is broken.


         5.3.1.  How to Acquire NBP names

         An SNMPv2 entity acting in a manager role may have a pre-
         configured list of names of "known" SNMPv2 entities acting in
         an agent role.  Similarly, an SNMPv2 entity acting in a
         manager role might interact with an operator.  Finally, an
         SNMPv2 entity acting in a manager role might communicate with
         all SNMPv2 entities acting in an agent role in a set of zones
         or networks.








         Case, McCloghrie, Rose & Waldbusser                  [Page 10]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         5.3.2.  When to Turn NBP names into DDP addresses

         When an SNMPv2 entity uses a cache entry to address an SNMP
         packet, it should attempt to confirm the validity mapping, if
         the mapping hasn't been confirmed within the last T1 seconds.
         This cache entry lifetime, T1, has a minimum, default value of
         60 seconds, and should be configurable.

         An SNMPv2 entity acting in a manager role may decide to prime
         its cache of names prior to actually communicating with
         another SNMPv2 entity.  In general, it is expected that such
         an entity may want to keep certain mappings "more current"
         than other mappings, e.g., those nodes which represent the
         network infrastructure (e.g., routers) may be deemed "more
         important".

         Note that an SNMPv2 entity acting in a manager role should not
         prime its entire cache upon initialization - rather, it should
         attempt resolutions over an extended period of time (perhaps
         in some pre-determined or configured priority order).  Each of
         these resolutions might, in fact, be a wildcard lookup in a
         given zone.

         An SNMPv2 entity acting in an agent role must never prime its
         cache.  Such an entity should do NBP lookups (or confirms)
         only when it needs to send an SNMP trap.  When generating a
         response, such an entity does not need to confirm a cache
         entry.


         5.3.3.  How to Turn NBP names into DDP addresses

         If the only piece of information available is the NBP name,
         then an NBP lookup should be performed to turn that name into
         a DDP address.  However, if there is a piece of stale
         information, it can be used as a hint to perform an NBP
         confirm (which sends a unicast to the network address which is
         presumed to be the target of the name lookup) to see if the
         stale information is, in fact, still valid.

         An NBP name to DDP address mapping can also be confirmed
         implicitly using only SNMP transactions.  For example, an
         SNMPv2 entity acting in a manager role issuing a retrieval
         operation could also retrieve the relevant objects from the
         NBP group [6] for the SNMPv2 entity acting in an agent role.





         Case, McCloghrie, Rose & Waldbusser                  [Page 11]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         This information can then be correlated with the source DDP
         address of the response.


         5.3.4.  What if NBP is broken

         Under some circumstances, there may be connectivity between
         two SNMPv2 entities, but the NBP mapping machinery may be
         broken, e.g.,

         o    the NBP FwdReq (forward NBP lookup onto local attached
              network) mechanism might be broken at a router on the
              other entity's network; or,

         o    the NBP BrRq (NBP broadcast request) mechanism might be
              broken at a router on the entity's own network; or,

         o    NBP might be broken on the other entity's node.

         An SNMPv2 entity acting in a manager role which is dedicated
         to AppleTalk management might choose to alleviate some of
         these failures by directly implementing the router portion of
         NBP.  For example, such an entity might already know all the
         zones on the AppleTalk internet and the networks on which each
         zone appears.  Given an NBP lookup which fails, the entity
         could send an NBP FwdReq to the network in which the agent was
         last located.  If that failed, the station could then send an
         NBP LkUp (NBP lookup packet) as a directed (DDP) multicast to
         each network number on that network.  Of the above (single)
         failures, this combined approach will solve the case where
         either the local router's BrRq-to-FwdReq mechanism is broken
         or the remote router's FwdReq-to-LkUp mechanism is broken.


















         Case, McCloghrie, Rose & Waldbusser                  [Page 12]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         6.  SNMPv2 over IPX

         This is an optional transport mapping.


         6.1.  Serialization

         Each instance of a message is serialized onto a single IPX
         datagram [7], using the algorithm specified in Section 8.


         6.2.  Well-known Values

         SNMPv2 messages are sent using IPX packet type 4 (i.e., Packet
         Exchange Packet).

         Although the partyTable gives transport addressing information
         for an SNMPv2 party, it is suggested that administrators
         configure their SNMPv2 entities acting in an agent role to
         listen on IPX socket 36879 (900f hexadecimal).  Further, it is
         suggested that notification sinks be configured to listen on
         IPX socket 36880 (9010 hexadecimal)

         The partyTable also lists the maximum message size which a
         SNMPv2 party is willing to accept.  This value must be at
         least 546 octets.  Implementation of larger values is
         encouraged whenever possible.























         Case, McCloghrie, Rose & Waldbusser                  [Page 13]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         7.  Proxy to SNMPv1

         In order to provide proxy to community-based SNMP [8], some
         definitions are necessary for both transport domains and
         authentication protocols.


         7.1.  Transport Domain: rfc1157Domain

         The transport domain, rfc1157Domain, indicates the transport
         mapping for community-based SNMP messages defined in RFC 1157.
         When a party's transport domain (partyTDomain) is
         rfc1157Domain:

         (1)  the party's transport address (partyTAddress) shall be 6
              octets long, the initial 4 octets containing the IP-
              address in network-byte order, and the last two octets
              containing the UDP port in network-byte order; and,

         (2)  the party's authentication protocol (partyAuthProtocol)
              shall be rfc1157noAuth.

         When a proxy relationship identifies a proxy destination party
         which has rfc1157Domain as its transport domain:

         (1)  the proxy source party (contextSrcPartyIndex) and proxy
              context (contextProxyContext) components of the proxy
              relationship are irrelevant; and,

         (2)  Section 3.1 of [9] specifies the behavior of the proxy
              agent.


         7.2.  Authentication Algorithm: rfc1157noAuth

         A party's authentication protocol (partyAuthProtocol)
         specifies the protocol and mechanism by which the party
         authenticates the integrity and origin of the SNMPv1 or SNMPv2
         PDUs it generates.  When a party's authentication protocol is
         rfc1157noAuth:

         (1)  the party's public authentication key (partyAuthPublic),
              clock (partyAuthClock), and lifetime (partyAuthLifetime)
              are irrelevant; and,






         Case, McCloghrie, Rose & Waldbusser                  [Page 14]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         (2)  the party's private authentication key
              (partySecretsAuthPrivate) shall be used as the 1157
              community for the proxy destination, and shall be at
              least one octet in length.  (No maximum length is
              specified.)

         Note that when setting the party's private authentication key,
         the exclusive-OR semantics specified in [10] still apply.










































         Case, McCloghrie, Rose & Waldbusser                  [Page 15]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         8.  Serialization using the Basic Encoding Rules

         When the Basic Encoding Rules [11] are used for serialization:

         (1)  When encoding the length field, only the definite form is
              used; use of the indefinite form encoding is prohibited.
              Note that when using the definite-long form, it is
              permissible to use more than the minimum number of length
              octets necessary to encode the length field.

         (2)  When encoding the value field, the primitive form shall
              be used for all simple types, i.e., INTEGER, OCTET
              STRING, OBJECT IDENTIFIER, and BIT STRING (either
              IMPLICIT or explicit).  The constructed form of encoding
              shall be used only for structured types, i.e., a SEQUENCE
              or an IMPLICIT SEQUENCE.

         (3)  When a BIT STRING is serialized, all named-bits are
              transferred regardless of their truth-value.  Further, if
              the number of named-bits is not an integral multiple of
              eight, then the fewest number of additional zero-valued
              bits are transferred so that an integral multiple of
              eight bits is transferred.

         These restrictions apply to all aspects of ASN.1 encoding,
         including the message wrappers, protocol data units, and the
         data objects they contain.























         Case, McCloghrie, Rose & Waldbusser                  [Page 16]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         8.1.  Usage Example

         As an example of applying the Basic Encoding Rules, suppose
         one wanted to encode an instance of the GetBulkRequest-PDU
         [1]:

              [5] IMPLICIT SEQUENCE {
                      request-id      1414684022,
                      non-repeaters   1,
                      max-repetitions 2,
                      variable-bindings {
                          { name sysUpTime,
                            value { unspecified NULL } },
                          { name ipNetToMediaPhysAddress,
                            value { unspecified NULL } },
                          { name ipNetToMediaType,
                            value { unspecified NULL } }
                      }
                  }

         Applying the BER, this would be encoded (in hexadecimal) as:

         [5] IMPLICIT SEQUENCE          a5 82 00 39
             INTEGER                    02 04 52 54 5d 76
             INTEGER                    02 01 01
             INTEGER                    02 01 02
             SEQUENCE                   30 2b
                 SEQUENCE               30 0b
                     OBJECT IDENTIFIER  06 07 2b 06 01 02 01 01 03
                     NULL               05 00
                 SEQUENCE               30 0d
                     OBJECT IDENTIFIER  06 09 2b 06 01 02 01 04 16 01 02
                     NULL               05 00
                 SEQUENCE               30 0d
                     OBJECT IDENTIFIER  06 09 2b 06 01 02 01 04 16 01 04
                     NULL               05 00

         Note that the initial SEQUENCE is not encoded using the
         minimum number of length octets.  (The first octet of the
         length, 82, indicates that the length of the content is
         encoded in the next two octets.)









         Case, McCloghrie, Rose & Waldbusser                  [Page 17]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         9.  Acknowledgements

         The UDP-based mapping is based, in part, on RFC 1157.

         The OSI-based mapping is based, in part, on RFC 1283.

         The DDP-based mapping is based, in part, on earlier work by
         Greg Minshall of Novell, Inc., and Mike Ritter of Apple
         Computer, Inc.

         The IPX-based mapping is based, in part, on RFC 1298.

         The section on proxy to community-based SNMP is based on
         earlier work that was based in part on a suggestion by
         Jonathan Biggar of Netlabs, Inc.

         Finally, the comments of the SNMP version 2 working group are
         gratefully acknowledged:

              Beth Adams, Network Management Forum
              Steve Alexander, INTERACTIVE Systems Corporation
              David Arneson, Cabletron Systems
              Toshiya Asaba
              Fred Baker, ACC
              Jim Barnes, Xylogics, Inc.
              Brian Bataille
              Andy Bierman, SynOptics Communications, Inc.
              Uri Blumenthal, IBM Corporation
              Fred Bohle, Interlink
              Jack Brown
              Theodore Brunner, Bellcore
              Stephen F. Bush, GE Information Services
              Jeffrey D. Case, University of Tennessee, Knoxville
              John Chang, IBM Corporation
              Szusin Chen, Sun Microsystems
              Robert Ching
              Chris Chiotasso, Ungermann-Bass
              Bobby A. Clay, NASA/Boeing
              John Cooke, Chipcom
              Tracy Cox, Bellcore
              Juan Cruz, Datability, Inc.
              David Cullerot, Cabletron Systems
              Cathy Cunningham, Microcom
              James R. (Chuck) Davin, Bellcore
              Michael Davis, Clearpoint





         Case, McCloghrie, Rose & Waldbusser                  [Page 18]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


              Mike Davison, FiberCom
              Cynthia DellaTorre, MITRE
              Taso N. Devetzis, Bellcore
              Manual Diaz, DAVID Systems, Inc.
              Jon Dreyer, Sun Microsystems
              David Engel, Optical Data Systems
              Mike Erlinger, Lexcel
              Roger Fajman, NIH
              Daniel Fauvarque, Sun Microsystems
              Karen Frisa, CMU
              Shari Galitzer, MITRE
              Shawn Gallagher, Digital Equipment Corporation
              Richard Graveman, Bellcore
              Maria Greene, Xyplex, Inc.
              Michel Guittet, Apple
              Robert Gutierrez, NASA
              Bill Hagerty, Cabletron Systems
              Gary W. Haney, Martin Marietta Energy Systems
              Patrick Hanil, Nokia Telecommunications
              Matt Hecht, SNMP Research, Inc.
              Edward A. Heiner, Jr., Synernetics Inc.
              Susan E. Hicks, Martin Marietta Energy Systems
              Geral Holzhauer, Apple
              John Hopprich, DAVID Systems, Inc.
              Jeff Hughes, Hewlett-Packard
              Robin Iddon, Axon Networks, Inc.
              David Itusak
              Kevin M. Jackson, Concord Communications, Inc.
              Ole J. Jacobsen, Interop Company
              Ronald Jacoby, Silicon Graphics, Inc.
              Satish Joshi, SynOptics Communications, Inc.
              Frank Kastenholz, FTP Software
              Mark Kepke, Hewlett-Packard
              Ken Key, SNMP Research, Inc.
              Zbiginew Kielczewski, Eicon
              Jongyeoi Kim
              Andrew Knutsen, The Santa Cruz Operation
              Michael L. Kornegay, VisiSoft
              Deirdre C. Kostik, Bellcore
              Cheryl Krupczak, Georgia Tech
              Mark S. Lewis, Telebit
              David Lin
              David Lindemulder, AT&T/NCR
              Ben Lisowski, Sprint
              David Liu, Bell-Northern Research





         Case, McCloghrie, Rose & Waldbusser                  [Page 19]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


              John Lunny, The Wollongong Group
              Robert C. Lushbaugh Martin, Marietta Energy Systems
              Michael Luufer, BBN
              Carl Madison, Star-Tek, Inc.
              Keith McCloghrie, Hughes LAN Systems
              Evan McGinnis, 3Com Corporation
              Bill McKenzie, IBM Corporation
              Donna McMaster, SynOptics Communications, Inc.
              John Medicke, IBM Corporation
              Doug Miller, Telebit
              Dave Minnich, FiberCom
              Mohammad Mirhakkak, MITRE
              Rohit Mital, Protools
              George Mouradian, AT&T Bell Labs
              Patrick Mullaney, Cabletron Systems
              Dan Myers, 3Com Corporation
              Rina Nathaniel, Rad Network Devices Ltd.
              Hien V. Nguyen, Sprint
              Mo Nikain
              Tom Nisbet
              William B. Norton, MERIT
              Steve Onishi, Wellfleet Communications, Inc.
              David T. Perkins, SynOptics Communications, Inc.
              Carl Powell, BBN
              Ilan Raab, SynOptics Communications, Inc.
              Richard Ramons, AT&T
              Venkat D. Rangan, Metric Network Systems, Inc.
              Louise Reingold, Sprint
              Sam Roberts, Farallon Computing, Inc.
              Kary Robertson, Concord Communications, Inc.
              Dan Romascanu, Lannet Data Communications Ltd.
              Marshall T. Rose, Dover Beach Consulting, Inc.
              Shawn A. Routhier, Epilogue Technology Corporation
              Chris Rozman
              Asaf Rubissa, Fibronics
              Jon Saperia, Digital Equipment Corporation
              Michael Sapich
              Mike Scanlon, Interlan
              Sam Schaen, MITRE
              John Seligson, Ultra Network Technologies
              Paul A. Serice, Corporation for Open Systems
              Chris Shaw, Banyan Systems
              Timon Sloane
              Robert Snyder, Cisco Systems
              Joo Young Song





         Case, McCloghrie, Rose & Waldbusser                  [Page 20]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


              Roy Spitier, Sprint
              Einar Stefferud, Network Management Associates
              John Stephens, Cayman Systems, Inc.
              Robert L. Stewart, Xyplex, Inc. (chair)
              Kaj Tesink, Bellcore
              Dean Throop, Data General
              Ahmet Tuncay, France Telecom-CNET
              Maurice Turcotte, Racal Datacom
              Warren Vik, INTERACTIVE Systems Corporation
              Yannis Viniotis
              Steven L. Waldbusser, Carnegie Mellon Universitty
              Timothy M. Walden, ACC
              Alice Wang, Sun Microsystems
              James Watt, Newbridge
              Luanne Waul, Timeplex
              Donald E. Westlake III, Digital Equipment Corporation
              Gerry White
              Bert Wijnen, IBM Corporation
              Peter Wilson, 3Com Corporation
              Steven Wong, Digital Equipment Corporation
              Randy Worzella, IBM Corporation
              Daniel Woycke, MITRE
              Honda Wu
              Jeff Yarnell, Protools
              Chris Young, Cabletron
              Kiho Yum, 3Com Corporation
























         Case, McCloghrie, Rose & Waldbusser                  [Page 21]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         10.  References

         [1]  Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
              "Protocol Operations for version 2 of the Simple Network
              Management Protocol (SNMPv2)", RFC 1448, SNMP Research,
              Inc., Hughes LAN Systems, Dover Beach Consulting, Inc.,
              Carnegie Mellon University, April 1993.

         [2]  Postel, J., "User Datagram Protocol", STD 6, RFC 768,
              USC/Information Sciences Institute, August 1980.

         [3]  Information processing systems - Open Systems
              Interconnection - Transport Service Definition,
              International Organization for Standardization.
              International Standard 8072, (June, 1986).

         [4]  Information processing systems - Open Systems
              Interconnection - Transport Service Definition - Addendum
              1: Connectionless-mode Transmission, International
              Organization for Standardization.  International Standard
              8072/AD 1, (December, 1986).

         [5]  G. Sidhu, R. Andrews, A. Oppenheimer, Inside AppleTalk
              (second edition).  Addison-Wesley, 1990.

         [6]  Waldbusser, S., "AppleTalk Management Information Base",
              RFC 1243, Carnegie Mellon University, July 1991.

         [7]  Network System Technical Interface Overview.  Novell,
              Inc, (June, 1989).

         [8]  Case, J., Fedor, M., Schoffstall, M., Davin, J., "Simple
              Network Management Protocol", STD 15, RFC 1157, SNMP
              Research, Performance Systems International, MIT
              Laboratory for Computer Science, May 1990.

         [9]  Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
              "Coexistence between version 1 and version 2 of the
              Internet-standard Network Management Framework", RFC
              1452, SNMP Research, Inc., Hughes LAN Systems, Dover
              Beach Consulting, Inc., Carnegie Mellon University, April
              1993.

         [10] McCloghrie, K., and Galvin, J., "Party MIB for version 2
              of the Simple Network Management Protocol (SNMPv2)", RFC





         Case, McCloghrie, Rose & Waldbusser                  [Page 22]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


              1447, Hughes LAN Systems, Trusted Information Systems,
              April 1993.

         [11] Information processing systems - Open Systems
              Interconnection - Specification of Basic Encoding Rules
              for Abstract Syntax Notation One (ASN.1), International
              Organization for Standardization.  International Standard
              8825, (December, 1987).










































         Case, McCloghrie, Rose & Waldbusser                  [Page 23]





         RFC 1449        Transport Mappings for SNMPv2       April 1993


         11.  Security Considerations

         Security issues are not discussed in this memo.


         12.  Authors' Addresses

              Jeffrey D. Case
              SNMP Research, Inc.
              3001 Kimberlin Heights Rd.
              Knoxville, TN  37920-9716
              US

              Phone: +1 615 573 1434
              Email: [email protected]


              Keith McCloghrie
              Hughes LAN Systems
              1225 Charleston Road
              Mountain View, CA  94043
              US

              Phone: +1 415 966 7934
              Email: [email protected]


              Marshall T. Rose
              Dover Beach Consulting, Inc.
              420 Whisman Court
              Mountain View, CA  94043-2186
              US

              Phone: +1 415 968 1052
              Email: [email protected]

              Steven Waldbusser
              Carnegie Mellon University
              4910 Forbes Ave
              Pittsburgh, PA  15213
              US

              Phone: +1 412 268 6628
              Email: [email protected]






         Case, McCloghrie, Rose & Waldbusser                  [Page 24]