Network Working Group                                         J. Renwick
Request for Comments: 1374                                  A. Nicholson
                                                    Cray Research, Inc.
                                                           October 1992
                         IP and ARP on HIPPI



Status of this Memo

  This RFC specifies an IAB standards track protocol for the Internet
  community, and requests discussion and suggestions for improvements.
  Please refer to the current edition of the "IAB Official Protocol
  Standards" for the standardization state and status of this protocol.
  Distribution of this memo is unlimited.

Abstract

  The ANSI X3T9.3 committee has drafted a proposal for the
  encapsulation of IEEE 802.2 LLC PDUs and, by implication, IP on
  HIPPI.  Another X3T9.3 draft describes the operation of HIPPI
  physical switches.  X3T9.3 chose to leave HIPPI networking issues
  largely outside the scope of their standards; this document discusses
  methods of using of ANSI standard HIPPI hardware and protocols in the
  context of the Internet, including the use of HIPPI switches as LANs
  and interoperation with other networks.


Table of Contents

     Introduction                                                   2
     Scope                                                          2
     Definitions                                                    3
     Equipment                                                      4
     Protocol                                                       6

        Packet Format                                               6
        48 bit Universal LAN MAC addresses                         10
        I-Field Format                                             11
        Rules For Connections                                      13
        MTU                                                        15

     Camp-on                                                       16
     Address Resolution                                            16

        ARP and RARP Message Format                                17
        ARP Procedure                                              21
        ARP Implementation Methods                                 22



Renwick & Nicholson                                             [Page 1]

RFC 1374                  IP and ARP on HIPPI               October 1992


        ARP Example                                                23
        Discovery of One's Own Switch Address                      25

     Path MTU Discovery                                            27
     Channel Data Rate Discovery                                   27
     Performance                                                   29
     Sharing the Switch                                            31
     Appendix A -- HIPPI Basics                                    31
     Appendix B -- How to Build a Practical HIPPI LAN              37
     References                                                    41
     Security Considerations                                       42
     Authors' Addresses                                            42

Introduction

  The ANSI High-Performance Parallel Interface (HIPPI) is a simplex
  data channel.  Configured in pairs, HIPPI can send and receive data
  simultaneously at nearly 800 megabits per second.  (HIPPI has an
  equally applicable 1600 megabit/second option.) Between 1987 and
  1991, the ANSI X3T9.3 HIPPI working group drafted four documents that
  bear on the use of HIPPI as a network interface.  They cover the
  physical and electrical specification (HIPPI-PH [1]), the framing of
  a stream of octets (HIPPI-FP [2]), encapsulation of IEEE 802.2 LLC
  (HIPPI-LE [3]), and the behavior of a standard physical layer switch
  (HIPPI-SC [4]).  HIPPI-LE also implies the encapsulation of Internet
  Protocol[5].  The reader should be familiar with the ANSI HIPPI
  documents, copies of which are archived at the site
  "nsco.network.com" in the directory "hippi," and may be obtained via
  anonymous FTP until they become published standards.

  HIPPI switches can be used to connect a variety of computers and
  peripheral equipment for many purposes, but the working group stopped
  short of describing their use as Local Area Networks.  This memo
  takes up where the working group left off, using the guiding
  principle that except for length and hardware header, Internet
  datagrams sent on HIPPI should be identical to the same datagrams
  sent on a conventional network, and that any datagram sent on a
  conventional 802 network[6] should be valid on HIPPI.

Scope

  This memo describes the HIPPI interface between a host and a
  crosspoint switch that complies with the HIPPI-SC draft standard.
  Issues that have no impact on host implementations are outside the
  scope of this memo.  Host implementations that comply with this memo
  are believed to be interoperable on a network composed of a single
  HIPPI-SC switch.  They are also interoperable on a simple point-to-
  point, two-way HIPPI connection with no switch between them.  They



Renwick & Nicholson                                             [Page 2]

RFC 1374                  IP and ARP on HIPPI               October 1992


  may as well be interoperable on more complex networks, depending on
  the internals of the switches and how they are interconnected;
  however, these details are implementation dependent and outside the
  scope of this memo.  To the extent that a gateway acts as a host on a
  HIPPI-SC LAN, its behavior is within the scope of this memo.

  Within the scope of this memo are:

  1.  Packet format and header contents, including HIPPI-FP, HIPPI-LE,
      IEEE 802.2 LLC[7], SNAP and ARP

  2.  I-Field contents

  3.  HIPPI switch address resolution, including self discovery

  4.  Rules for the use of connections.

  Outside of the scope are

  1.  Vendor dependent solutions for multicast or third party ARP

  2.  Network configuration and management

  3.  Host internal optimizations

  4.  The interface between a host and an outboard protocol processor.

Definitions

  Conventional
     Used with respect to networks, this refers to Ethernet, FDDI and
     802 LAN types, as distinct from HIPPI-SC LANs.

  Destination
     The HIPPI implementation that receives data from a HIPPI Source.

  Node
     An entity consisting of one HIPPI Source/Destination pair that is
     connected by parallel or serial HIPPI to a HIPPI-SC switch and
     that transmits and receives ARP and IP datagrams.  A node may be
     an Internet host, bridge, router or gateway.  This memo uses the
     term node in place of the usual "host" to indicate that a host
     might be connected to the HIPPI LAN not directly, but through an
     external adaptor that does some of the protocol processing for the
     host.






Renwick & Nicholson                                             [Page 3]

RFC 1374                  IP and ARP on HIPPI               October 1992


  Serial HIPPI
     An implementation of HIPPI in serial fashion on coaxial cable or
     optical fiber, informally standardized by implementor's agreement
     in the Spring of 1991.

  Switch Address
     A value used as the address of a node on a HIPPI-SC network.  It
     is transmitted in the I-field.  HIPPI-SC switches may map Switch
     Addresses to physical port numbers.

  Source
     The HIPPI implementation that generates data to send to a HIPPI
     Destination.

  Universal LAN Address (ULA)
     A 48 bit globally unique address, administered by the IEEE,
     assigned to each node on an Ethernet, FDDI, 802 network or HIPPI-
     SC LAN.

Equipment

  A HIPPI network can be composed of nodes with HIPPI interfaces, HIPPI
  cables or serial links, HIPPI-SC switches, gateways to other networks
  and, possibly, proprietary equipment that multicasts or responds to
  ARP requests on behalf of the real nodes.

  Each HIPPI interconnection between a node and a switch shall consist
  of a pair of HIPPI links, one in each direction.

  If a link between a node and the switch is capable of the 1600
  Megabit/second data rate option (i.e. Cable B installed for 64 bit
  wide operation) in either direction, the node's HIPPI-PH
  implementation shall also be capable of 32 bit operation (Cable B
  data suppressed) and shall be able to select or deselect the 1600Mb/s
  data rate option at the establishment of each new connection.

  The following figure shows a sample HIPPI switch configuration.














Renwick & Nicholson                                             [Page 4]

RFC 1374                  IP and ARP on HIPPI               October 1992


                                                  +-----+
  |                                               | H 4 |
  |                                               +--+--+
  |                   +----+    +----+    +----+     |
  |                   | H1 |    | H2 |    | H3 |   +-++
  |   +--+            +-++-+    +-++-+    +-++-+   |PP|
  +---+H5|              ||        ||        ||     ++++
  |   +--+              ||        ||        ||      ||
  |                 +---++--------++--------++------++----+
  |                 |                                     |    +---+
  |   +----+        |              HIPPI-SC               +----+ARP|
  +---+ G1 +--------+                                     +----+   |
  |   |    +--------+               Switch                |    +---+
  |   +----+        |                                     |
  |                 +---++--------++--------++------++----+
  |   +--+              ||        ||        ||      ||
  +---+H6|              ||                         ++++
  |   +--+            +-++-+                       |PP|
  |                   |    |                       +-++
  |                   | G2 |                         |
  |                   |    |                      +--+--+
  |                   +--+-+                      | H 7 |
  |                      |                        +-----+
                         |
       -----+------------+-------+-----------+-------------+------
            |                    |           |             |
            |                    |           |             |
         +--+--+              +--+--+     +--+--+       +--+--+
         | H 8 |              | H 9 |     | H10 |       | H11 |
         +-----+              +-----+     +-----+       +-----+

  Legend:  ---+---+---+--  =  802 network, Ethernet or FDDI
                       ||  =  Paired HIPPI link
                        H  =  Host computer
                       PP  =  Outboard Protocol Processor
                        G  =  Gateway
                      ARP  =  ARP Agent

                   A possible HIPPI configuration

  A single HIPPI-SC switch has a "non-blocking" characteristic, which
  means there is always a path available from any Source to any
  Destination.  If the network consists of more than one switch, the
  path from a Source to a Destination may include a HIPPI link between
  switches.  If this link is used by more than one Source/Destination
  pair, a "blocking" network is created: one Source may be blocked from
  access to a Destination because another Source is using the link it
  shares.  Strategies for establishing connections may be more



Renwick & Nicholson                                             [Page 5]

RFC 1374                  IP and ARP on HIPPI               October 1992


  complicated on blocking networks than on non-blocking ones.

  This memo ignores blocking issues, assuming that the HIPPI LAN
  consists of one HIPPI-SC switch or, if the network is more complex
  than that, it presents no additional problems that a node must be
  aware of.

Protocol

  Packet Format

  The HIPPI packet format for Internet datagrams shall conform to the
  HIPPI-FP and HIPPI-LE draft standards.  The HIPPI-FP D1_Area shall
  contain the HIPPI-LE header.  The HIPPI-FP D2_Area, when present,
  shall contain one IEEE 802.2 Type 1 LLC Unnumbered Information (UI)
  PDU.  Support of IEEE 802.2 XID, TEST and Type 2 PDUs is not required
  on HIPPI, and Destinations that receive these PDUs may either ignore
  them or respond correctly according to IEEE 802.2 requirements.

  The length of a HIPPI packet, including trailing fill, shall be a
  multiple of eight octets as required by HIPPI-LE.

  +----------+-----------+---------------------+-----------   ------+
  |          |           |                     | IP . . .     0 - 7 |
  | HIPPI-FP | HIPPI-LE  | IEEE 802.2 LLC/SNAP |              octets|
  |(8 octets)|(24 octets)|     (8 octets)      | ARP . . .     fill |
  +----------+-----------+---------------------+-----------   ------+

                       HIPPI Packet Structure


     HIPPI-FP Header

        ULP-id (8 bits) shall contain 4.

        D1_Data_Set_Present (1 bit) shall be set.

        Start_D2_on_Burst_Boundary (1 bit) shall be zero.

        Reserved (11 bits) shall contain zero.

        D1_Area_Size (8 bits) should be sent as 3.  Destinations shall
        accept any value that HIPPI-FP defines as legal: from 3 to 127
        (32 bit HIPPI) or 3 to 255 (64 bit HIPPI).

        D2_Offset (3 bits) may be any value from 0 to 7.

        D2_Size (32 bits) Shall contain the number of octets in the



Renwick & Nicholson                                             [Page 6]

RFC 1374                  IP and ARP on HIPPI               October 1992


        IEEE 802.2 LLC Type 1 PDU, or zero if no PDU is present.  It
        shall not exceed 65,288 (decimal).  This value includes the
        IEEE 802.2 LLC/SNAP header and the IP datagram.  It does not
        include trailing fill octets.  (See "MTU," below.)

        The first octet of the IEEE 802.2 LLC PDU (SSAP) shall be
        located at offset "n" of the packet, where

            n = 8 + (D1_Area_Size*8) + D2_Offset

        as specified in HIPPI-FP.

     HIPPI-LE Header

        FC (3 bits) shall contain zero unless otherwise defined by
        local administration.

        Double_Wide (1 bit) shall contain one if the Destination
        associated with the sending Source supports 64 bit HIPPI
        operation.  Otherwise it shall contain zero.

        Message_Type (4 bits) contains a code identifying the type of
        HIPPI-LE PDU.  Defined values (binary) are:

           0  Data PDU
           1  Address Resolution Request PDU (AR_Request)
           2  Address Resolution Response PDU (AR_Response)
           3  Self Address Resolution Request PDU (AR_S_Request)
           4  Self Address Resolution Response PDU (AR_S_Response)
           5-11 Reserved by the ANSI X3T9.3 committee
           12-15 Locally Assigned

        Destination_Switch_Address is a 24-bit field containing the
        Switch Address of the Destination if known, otherwise zero.  If
        the address comprises less than 24 bits, it shall be right
        justified (occupying the least significant bits) in the field.

        Destination_Address_Type (4 bits) and Source_Address_Type (4
        bits) contain codes identifying the type of addresses in the
        Destination_Switch_Address and Source_Switch_Address fields
        respectively.  Defined values (binary) are:

           0  Unspecified
           1  HIPPI-SC Source Route (24 bits)
           2  HIPPI-SC Address (12 bits)
           3-11 Reserved by the ANSI X3T9.3 committee
           12-15 Locally Assigned




Renwick & Nicholson                                             [Page 7]

RFC 1374                  IP and ARP on HIPPI               October 1992


        Source_Switch_Address is a 24-bit field containing the Switch
        Address of the Source.  If the address comprises less than 24
        bits, it shall be right justified (occupying the least
        significant bits) in the field.

        Reserved (16 bits) shall contain zero.

        Destination_IEEE_Address (48 bits) shall contain the 48 bit
        Universal LAN MAC Address of the Destination if known,
        otherwise zero.

        LE_Locally_Administered (16 bits) shall contain zero unless
        otherwise defined by local administration.

        Source_IEEE_Address (48 bits) shall contain the 48 bit
        Universal LAN MAC Address of the Source if known, otherwise
        zero.

     IEEE 802.2 LLC

        The IEEE 802.2 LLC Header shall begin in the first octet of the
        HIPPI-FP D2_Area.

        SSAP (8 bits) shall contain 170 (decimal).

        DSAP (8 bits) shall contain 170 (decimal).

        CTL (8 bits) shall contain 3 (Unnumbered Information).

     SNAP

        Organization Code (24 bits) shall be zero.

        EtherType (16 bits) shall be set as defined in Assigned Numbers
        [8] (IP = 2048, ARP = 2054, RARP = 32,821).
















Renwick & Nicholson                                             [Page 8]

RFC 1374                  IP and ARP on HIPPI               October 1992


     31    28        23  21          15        10     7         2   0
     +-----+---------+-+-+-----------+---------+-----+---------+-----+
   0 |      04       |1|0|       Reserved      |      03       |  0  |
     +---------------+-+-+---------------------+---------------+-----+
   1 |                             (n+8)                             |
     +-----+-+-------+-----------------------------------------------+
   2 |[LA] |W|M_Type |          Destination_Switch_Address           |
     +-----+-+-------+-----------------------------------------------+
   3 | D_A_T | S_A_T |             Source_Switch_Address             |
     +-------+-------+---------------+-------------------------------+
   4 |            Reserved           |  [Destination_IEEE_Address]   |
     +-------------------------------+                               |
   5 |                                                               |
     +-------------------------------+-------------------------------+
   6 |             [LA]              |     [Source_IEEE_Address]     |
     +-------------------------------+                               |
   7 |                                                               |
     +===============+===============+===============+===============+
   8 |       AA      |      AA       |       03      |       00      |
     +---------------+---------------+---------------+---------------+
   9 |       00      |      00       |         [EtherType]           |
     +---------------+---------------+---------------+---------------+
  10 |Message octet 0|Message octet 1|Message octet 2| . . .         |
     +---------------+---------------+---------------+---            |
     |                            .  .  .
                                                                     |
     |        -------+---------------+---------------+---------------+
     |         . . . |  octet (n-2)  |  octet (n-1)  |     FILL      |
     +---------------+---------------+---------------+---------------+
  N-1|      FILL     |     FILL      |     FILL      |     FILL      |
     +---------------+---------------+---------------+---------------+

                          HIPPI Packet Format

     Words 0-1:  HIPPI-FP Header
     Words 2-7:  D1 Area (HIPPI-LE Header)
     Words 8-9:  D2 Area (IEEE 802.2 LLC/SNAP)
     Words 10-(N-1):  D2 Area (IP or ARP message)
     (n) is the number of octets in the IP or ARP message.
     +====+ denotes the boundary between D1 and D2 areas.
     [LA] fields are zero unless used otherwise locally.
     Abbreviations:  "W"      = Double_Wide field;
                     "M_Type" = Message_Type field;
                     "D_A_T"  = Destination_Address_Type;
                     "S_A_T"  = Source_Address_Type;
     [FILL] octets complete the HIPPI packet to an even
     number of 32 bit words.  The number of fill octets
     is not counted in the data length.



Renwick & Nicholson                                             [Page 9]

RFC 1374                  IP and ARP on HIPPI               October 1992


  IEEE 802.2 Data

     The IEEE 802.2 Data shall follow the EtherType field immediately.
     Fill octets shall be used following the Data as necessary to make
     the number of octets in the packet a multiple of 8.  In accordance
     with HIPPI-FP, the amount of this fill is not included in the
     D2_Size value in the HIPPI-FP Header.

     The order of the octets in the data stream is from higher numbered
     to lower numbered data signal (left to right) within the HIPPI
     word, as specified in HIPPI-FP Clause 7, "Word and byte formats."
     With the 1600 megabit/second data rate option (64 bit) bits 32
     through 63 are on Cable B, so that the four octets on Cable B come
     logically before those on Cable A.  Within each octet, the most
     significant bit is the highest numbered signal.

48 bit Universal LAN MAC Addresses

  IEEE Standard 802.1A specifies the Universal LAN MAC Address.  The
  globally unique part of the 48 bit space is administered by the IEEE.
  Each node on a HIPPI-SC LAN should be assigned a ULA.  Multiple ULAs
  may be used if a node contains more than one IEEE 802.2 LLC protocol
  entity.

  The format of the address within its 48 bit HIPPI-LE fields follows
  IEEE 802.1A canonical bit order and HIPPI-FP bit and byte order:

  31              23              15               7              0
  +-------------------------------+---------------+---------------+
  |      (not used for ULA)       |ULA octet 0|L|G|  ULA octet 1  |
  +---------------+---------------+---------------+---------------+
  |  ULA octet 2  |  ULA octet 3  |  ULA octet 4  |  ULA octet 5  |
  +---------------+---------------+---------------+---------------+

                   Universal LAN MAC Address Format

     L (U/L bit) = 1 for Locally administered addresses, 0 for
     Universal.
     G (I/G bit) = 1 for Group addresses, 0 for Individual.

  The use of ULAs is optional, but encouraged.  Although ULAs are not
  used by HIPPI-SC switches, they are helpful for HIPPI Switch Address
  resolution, and for distinguishing between multiple logical entities
  that may exist within one node.  They may also be used by gateway
  devices that replace HIPPI hardware headers with the MAC headers of
  other LANs.  Carrying the ULAs in the HIPPI header may simplify these
  devices, and it may also help if HIPPI is used as an interface to
  some future HIPPI based LAN that uses ULAs for addressing.



Renwick & Nicholson                                            [Page 10]

RFC 1374                  IP and ARP on HIPPI               October 1992


Recommended HIPPI-FP Options

  HIPPI-FP allows some flexibility in the construction of a HIPPI
  packet, including placement of short bursts, optional fill and offset
  octets between the D1 and D2 areas and fill following the D2 data.
  For efficiency, Sources should limit the use of these options:

  1.  Send the short burst as the last burst of the packet rather than
      the first.

  2.  Do not place fill octets between the HIPPI-LE header and the
      start of the D2_Area.

  3.  Use no more than seven octets after the D2 Data, as needed to
      make the total packet length a multiple of 8 octets.

One HIPPI-FP option is forbidden: setting the Start_D2_on_Burst_Boundary
flag to one.  This places no limitation on the formation of packets into
a series of bursts; a Source may segment the packet in any legal manner
according to HIPPI-FP, including forcing the D2_Area to start on a burst
boundary.  The purpose of the Start_D2_on_Burst_Boundary flag is to help
preserve the segmentation of the packet for some device-control
protocols that use the first burst boundary to separate command and data
areas within the packet.  Requiring this flag to be clear means that
when a packet arrives at the Destination its burst boundaries might not
be exactly as the Source sent them.  This may occur if a HIPPI packet
passes over some other medium in the route between HIPPI LANs.

Notwithstanding these recommendations, each Destination shall accept any
well-formed HIPPI packet within the definitions in HIPPI-FP.

Note that neither HIPPI-FP nor HIPPI-LE limits the number of fill bytes
placed between the end of the IP packet and the end of the HIPPI-PH
packet.  Some source implementations may add fill sufficient to overflow
a destination input buffer.  To avoid interpreting valid packets as
errors, destinations should ignore overflow conditions and verify that
at least the number of bytes indicated by the IP header actually
arrived.

I-Field format

  The I-field bits, as defined in HIPPI-SC, shall be set as follows:

     Locally Administered (bit 31) shall be zero.

     Reserved (bits 30, 29) should be zero.  Destinations shall accept
     any value for these bits.




Renwick & Nicholson                                            [Page 11]

RFC 1374                  IP and ARP on HIPPI               October 1992


     Double wide (bit 28) shall be set when Source Cable B is connected
     and the Source wants a 64 bit connection.  It shall be zero
     otherwise.

     Direction (bit 27) should be sent as zero, however Destinations
     shall accept either zero or one and interpret the Routing Control
     field accordingly, per HIPPI-SC.

     Path Selection (bits 26, 25) shall be 00, 01, or 11 (binary) at
     the Source's option.  00 (source route mode) indicates that the
     I-field bits 23-00 contain a 24 bit source route; 01 or 11
     (logical address mode) indicate that bits 23-00 contain 12 bit
     Source and Destination Addresses.  The value 11 is meaningful when
     more than one route exists from a Source to a Destination; it
     allows the switch to choose the route.  Use of 01 forces the
     switch always to use the same route for the same
     Source/Destination pair.

     Camp-on (bit 24) may be 1 or 0; however, a Source shall not make
     consecutive requests without Camp-on to the same Destination while
     the requests are being rejected.  The purpose of this restriction
     is to prevent a node from circumventing the fair share arbitration
     mechanism of the switch by repeating requests at a very high rate.

     If logical address mode is used:

        Source Address (bits 23-12) is not used.

        Destination Address (bits 11-0) shall contain the Switch
        Address of the Destination.

     If source route mode is used:

        Routing control (bits 23-00) shall contain the route to the
        Destination.

     Note:  the outcome of Switch Address Resolution (see "Address
     Resolution" below) determines whether to use logical address mode
     or source route mode.  If source route mode is used with multiple
     interconnected switches, different sources may use different
     addresses to reach the same destination, and multicast-based
     address resolution may not be possible because a target node may
     not know the route to itself from a given remote source.
     Regardless of this difficulty, it may be possible to use source
     route mode if the network consists of a single switch, or if
     address resolution is supported by an ARP agent that is able to
     deliver correct routes to each node.  The nodes themselves need
     not be concerned with these problems if they use the addressing



Renwick & Nicholson                                            [Page 12]

RFC 1374                  IP and ARP on HIPPI               October 1992


     mode suggested by the value of the Source_Address_Type field in a
     HIPPI-LE Address Resolution Response packet.

Rules For Connections

  The following rules for connection management by Source and
  Destination are intended to insure frequent, fair share access to
  Destinations for which multiple Sources are contending.  If possible,
  nodes should transfer data at full HIPPI speeds and hold connections
  no longer than necessary.

  A source may hold a connection for as long as it takes to send 68
  HIPPI bursts at what ever speed the two connected nodes can achieve
  together.  The number of packets sent in one connection is not
  limited, except that the number of bursts over all the packets should
  not exceed 68.  This is not a recommendation to send as many packets
  as possible per connection; one packet per connection is acceptable.
  The purpose of this limit is to give each Source an fair share of a
  common Destination's bandwidth.  Without a limit, if there is a
  Destination that is constantly in demand by multiple Sources, the
  Source that sends the most data per connection wins the greatest
  share of bandwidth.

  The limit of 68 bursts is not absolute.  An implementation may check
  the burst count after transmission of a packet and end the connection
  if it is greater than or equal to some threshold.  If this is done,
  the threshold should be less than 68 depending on the typical packet
  size, to ensure that the 68 burst limit is not normally exceeded.
  For instance, a Source sending 64K packets would send two per
  connection (130 bursts) if it checked for 68 at the end of each
  packet.  In this situation the Source is required to check for a
  value small enough that it will not send a second packet in the same
  connection.

  Destinations shall accept all packets that arrive during a
  connection, and may discard those that exceed its buffering capacity.
  A Destination shall not abort a connection (deassert CONNECT) simply
  because too many bursts were received; however a Destination may
  abort a connection whose duration has exceeded a time period of the
  Destination's choosing, as long as the Source is allowed ample time
  to transmit its quota of bursts.

  The rules admonish the node to do certain things as fast as it can,
  however there is no absolute measure of compliance.  Nodes that
  cannot transfer data at full HIPPI speeds can still interoperate but
  the faster the implementation, the better the performance of the
  network will be.




Renwick & Nicholson                                            [Page 13]

RFC 1374                  IP and ARP on HIPPI               October 1992


  Assuming that bursts flow at the maximum rate, the most important
  factor in network throughput is the connection switching time,
  measured from the deassertion of REQUEST by the Source at the end of
  one connection to its first assertion of BURST after the
  establishment of the new connection.  Implementations should keep
  this time as short as possible.  For a guideline, assuming parallel
  HIPPI and a single HIPPI-SC switch, ten microseconds permits nearly
  full HIPPI throughput with full-sized packets, and at 60 microseconds
  the available throughput is reduced by about 10%.  (See
  "Performance," below.)

  All HIPPI electrical signaling shall comply with HIPPI-PH.  In every
  case, the following rules go beyond what HIPPI-PH requires.

  Rules for the Source

     1.  Do not assert REQUEST until a packet is ready to send.

     2.  Transmit bursts as quickly as READYs permit.  Except for the
         required HIPPI Source Wait states, there should be no delay in
         the assertion of BURST whenever the Source's READY counter is
         nonzero.

     3.  Make a best effort to ensure that connection durations do not
         exceed 68 bursts.

     4.  Deassert REQUEST immediately when no packet is available for
         immediate transmission or the last packet of the connection
         has been sent.

  Rules for the Destination

     1.  Reject all connections if unable to receive packets.  This
         frees the requesting Source to connect to other Destinations
         with a minimum of delay.  Inability to receive packets is not
         a transient condition, but is the state of the Destination
         when its network interface is not initialized.

     2.  A HIPPI node should be prepared to efficiently accept
         connections and process incoming data packets.  While this may
         be best achieved by not asserting connect unless 68 bursts
         worth of buffers is available, it may be possible to meet this
         requirement with fewer buffers.  This may be due to a priori
         agreement between nodes on packet sizes, the speed of the
         interface to move buffers, or other implementation dependent
         considerations.





Renwick & Nicholson                                            [Page 14]

RFC 1374                  IP and ARP on HIPPI               October 1992


     3.  Accept a connection immediately when buffers are available.
         The Destination should never delay the acceptance of a
         connection unnecessarily.

     4.  Once initialized, a Destination may reject connection requests
         only for one of the following reasons:

         1.  The I-field was received with incorrect parity.

         2.  The I-field contents are invalid, e.g. the "W" bit set
             when the Destination does not support the 1600 megabit
             data rate option, the "Locally Administered" bit is set,
             the Source is not permitted to send to this Destination,
             etc.

         Transient conditions within the Destination, such as temporary
         buffer shortages, must never cause rejected connections.

     5.  Ignore aborted connection sequences.  Sources may time out and
         abandon attempts to connect; therefore aborted connection
         sequences are normal events.

  MTU

     Maximum Transmission Unit (MTU) is defined as the length of the IP
     packet, including IP header, but not including any overhead below
     IP.  Conventional LANs have MTU sizes determined by physical layer
     specification.  MTUs may be required simply because the chosen
     medium won't work with larger packets, or they may serve to limit
     the amount of time a node must wait for an opportunity to send a
     packet.

     HIPPI has no inherent limit on packet size.  The HIPPI-FP header
     contains a 32 bit D2_Size field that, while it may limit packets
     to about 4 gigabytes, imposes no practical limit for networking
     purposes.  Even so, a HIPPI-SC switch used as a LAN needs an MTU
     so that Destination buffer sizes can be determined.

     The MTU for HIPPI-SC LANs is 65280 (decimal) octets.

     This value was selected because it allows the IP packet to fit in
     one 64K octet buffer with up to 256 octets of overhead.  The
     overhead is 40 octets at the present time; there are 216 octets of
     room for expansion.







Renwick & Nicholson                                            [Page 15]

RFC 1374                  IP and ARP on HIPPI               October 1992


        HIPPI-FP Header                  8 octets
        HIPPI-LE Header                 24 octets
        IEEE 802.2 LLC/SNAP Headers      8 octets
        Maximum IP packet size (MTU) 65280 octets
                                     ------------
                          Total      65320 octets (64K - 216)


Camp-on

  When several Sources contend for a single Destination, the Camp-on
  feature allows the HIPPI-SC switch to arbitrate and ensure that all
  Sources have fair access.  (HIPPI-SC does not specify the method of
  arbitration.)  Without Camp-on, the contending Sources would simply
  have to retry the connection repeatedly until it was accepted, and
  the fastest Source would usually win.  To guarantee fair share
  arbitration, Sources are prohibited from making repeated requests to
  the same Destination without Camp-on in such a way as to defeat the
  arbitration.

  There is another important reason to use Camp-on: when a connection
  without Camp-on is rejected, the Source cannot determine whether the
  rejection came from the requested Destination or from the switch.
  The Source also cannot tell the reason for the rejection, which could
  be either that the Destination was off line or not cabled, or the I-
  field was erroneous or had incorrect parity.  Sources should not
  treat a rejection of a request without Camp-on as an error.  Camp-on
  prevents rejection due to the temporary busy case; with one
  exception, rejection of a Camp-on request indicates an error
  condition, and an error event can be recorded.  The exception occurs
  when a 64 bit connection is attempted to a Destination that does not
  have Cable B connected, resulting in a reject.  This case is covered
  in "Channel Data Rate Discovery," below.

Address Resolution

  The Internet Address Resolution Protocol (ARP) is defined in RFC 826
  [9].  Ethernet, FDDI and 802 networks use ARP to discover another
  host's ULA knowing the Internet address.  Reverse ARP [10] is used to
  discover the Internet address, knowing the ULA.  ARP can be used in
  the conventional way on HIPPI-SC LANs equipped with a multicast
  capability or third party ARP agent.

  HIPPI-LE defines similar lower-level address resolution between ULAs
  and switches.  HIPPI-LE adds a self-address resolution mechanism not
  defined for Internet ARP, which allows a node to discover its own
  switch address dynamically.




Renwick & Nicholson                                            [Page 16]

RFC 1374                  IP and ARP on HIPPI               October 1992


  ARP for the purpose of discovering ULAs is not necessary for the
  operation of a HIPPI-SC LAN, but it serves as the vehicle for
  discovery of HIPPI-SC Switch Addresses, without which the HIPPI-SC
  LAN cannot function.  In other words, at the same time a node is
  using ARP to map another node's IP address to its ULA, it is also
  mapping the ULA to the 12 bit HIPPI Switch Address, from which it
  will construct the I-field value for sending messages to that node.
  This additional level of hardware addressing uses the address fields
  in the HIPPI-LE header.

  In the following discussion, the terms "requester" and "target" are
  used to identify the node requesting address resolution and the node
  whose address it wishes to discover, respectively.  In third party
  ARP (see "ARP Implementation Methods," below) the source of a reply
  is an ARP agent node, not the target node.

  ARP and RARP Message Format

     The HIPPI ARP/RARP protocol uses the same packet format as ARP for
     Ethernet.  ARP packets shall be transmitted with a hardware type
     code of 1 (as for Ethernet).  Furthermore, ARP packets shall be
     accepted if received with hardware type codes of either 1 or 6
     (IEEE 802 networks).

     ar$hrd (16 bits) shall contain 1.

     ar$pro (16 bits) shall contain the IP protocol code 2048
     (decimal).

     ar$hln (8 bits) shall contain 6.

     ar$pln (8 bits) shall contain 4.

     ar$op  (16 bits) shall contain 1 for requests, 2 for responses.

     ar$sha (48 bits) in requests shall contain the requester's ULA.
     In replies it shall contain the target node's ULA.

     ar$spa (32 bits) in requests shall contain the requester's IP
     address if known, otherwise zero.  In replies it shall contain the
     target node's IP address.

     ar$tha (48 bits) in requests shall contain the target's ULA if
     known, otherwise zero.  In replies it shall contain the
     requester's ULA.

     ar$tpa (32 bits) in requests shall contain the target's IP address
     if known, otherwise zero.  In replies it shall contain the



Renwick & Nicholson                                            [Page 17]

RFC 1374                  IP and ARP on HIPPI               October 1992


     requester's IP address.

     The format of the six octets of the ULA shall be the same as
     required in the HIPPI-LE header (see "48 bit Universal LAN MAC
     Addresses" above), except for the alignment of the Source ULA with
     respect to the 32 bit HIPPI word, which is different between ARP
     and HIPPI-LE.  No bit reversal is necessary as is required with
     FDDI [11].

     31    28        23  21          15        10     7         2   0
     +-----+---------+-+-+-----------+---------+-----+---------+-----+
   0 |      04       |1|0|         000         |      03       |  0  |
     +---------------+-+-+---------------------+---------------+-----+
   1 |                              36                               |
     +-----+-+-------+-----------------------+-----------------------+
   2 |[LA] |W|   1   |          000          |   Target Switch Addr  |
     +-----+-+-------+-----------------------+-----------------------+
   3 |   2   |   2   |          000          |Requester's Switch Addr|
     +---------------+---------------+-------+-----------------------+
   4 |             00 00             |                               |
     +-------------------------------+                               |
   5 |                           Target ULA                          |
     +-------------------------------+-------------------------------+
   6 |             [LA]              |                               |
     +-------------------------------+                               |
   7 |                        Requester's ULA                        |
     +===============+===============+===============+===============+
   8 |       AA      |      AA       |       03      |       00      |
     +---------------+---------------+---------------+---------------+
   9 |       00      |      00       |        EtherType (2054)       |
     +---------------+---------------+-------------------------------+
  10 |            hrd (1)            |           pro (2048)          |
     +---------------+---------------+-------------------------------+
  11 |    hln (6)    |    pln (4)    |            op (1)             |
     +---------------+---------------+-------------------------------+
  12 |                 Requester's ULA octets 0 - 3                  |
     +-------------------------------+-------------------------------+
  13 | Requester's ULA octets 4 - 5  | Requester's IP Address upper  |
     +-------------------------------+-------------------------------+
  14 | Requester's IP Address lower  |    Target ULA octets 0 - 1    |
     +-------------------------------+-------------------------------+
  15 |                   Target ULA octets 2 - 5                     |
     +---------------------------------------------------------------+
  16 |                       Target IP Address                       |
     +---------------------------------------------------------------+

               HIPPI ARP/RARP Request (logical address mode)




Renwick & Nicholson                                            [Page 18]

RFC 1374                  IP and ARP on HIPPI               October 1992


  All ARP requests shall be sent with the I-field bit 28 set to zero,
  i.e. requesting a 32 bit connection.

  Unless another convention is locally defined for ARP requests, the
  I-field Path Selection bits may be set to binary 01 or 11 (logical
  address mode), and Destination Address field set to the HIPPI-SC
  address reserved for traffic conventionally directed to the IEEE
  802.1[12] broadcast address (which HIPPI-SC defines as FE0, hex).

  Reply packets shall be sent with I-field Path Selection and Routing
  Control fields set according to the Source_Address_Type and
  Source_Switch_Address fields in the request.

  In the HIPPI-LE header of ARP/RARP requests and replies the following
  fields shall be set:

  Double-Wide should be 1 if the HIPPI Destination at the sending node
  can accept 64 bit HIPPI connections.

  Message_Type shall contain an address resolution type code as defined
  in HIPPI-LE.  It shall be set appropriately to the value of the ARP
  operation code (ar$op) in piggybacked ARP messages:

        +-----------------------+-----------------------+
        |       ARP ar$op       | HIPPI-LE Message_Type |
        +=======================+=======================+
        |ARP Request (1)        |AR_Request (1)         |
        |ARP Reply (2)          |AR_Response (2)        |
        +-----------------------+-----------------------+
        |Reverse ARP Request (3)|AR_Request (1)         |
        |Reverse ARP Reply (4)  |AR_Response (2)        |
        +-----------------------+-----------------------+

  There is no ARP message corresponding to HIPPI-LE self address
  discovery; these packets are sent without ULP data.

  Destination_Switch_Address in requests shall be the Switch Address of
  the target node if known, otherwise zero.  In replies it shall be the
  requesting node's Switch Address

  Destination_Address_Type shall be 1 if the Destination_Switch_Address
  is a source route, 2 if it is a 12 bit address.

  Source_Address_Type shall be 1 if the Source_Switch_Address is a
  source route, 2 if it is a 12 bit address.

  Source_Switch_Address in requests shall be the Switch Address of the
  requesting node if known, otherwise zero.  In replies it shall be the



Renwick & Nicholson                                            [Page 19]

RFC 1374                  IP and ARP on HIPPI               October 1992


  target node's Switch Address.

  Destination_IEEE_Address shall be the same as the ar$tha field in the
  ARP message.

  Source_IEEE_Address shall be the same as the ar$sha field in the ARP
  message.

     31    28        23  21          15        10     7         2   0
     +-----+---------+-+-+-----------+---------+-----+---------+-----+
   0 |      04       |1|0|         000         |      03       |  0  |
     +---------------+-+-+---------------------+---------------+-----+
   1 |                              36                               |
     +-----+-+-------+-----------------------+-----------------------+
   2 |[LA] |W|   2   |          000          |Requester's Switch Addr|
     +-----+-+-------+-----------------------+-----------------------+
   3 |   2   |   2   |          000          | Target Switch Address |
     +---------------+---------------+-------+-----------------------+
   4 |             00 00             |                               |
     +-------------------------------+                               |
   5 |                        Requester's ULA                        |
     +-------------------------------+-------------------------------+
   6 |             [LA]              |                               |
     +-------------------------------+                               |
   7 |                           Target ULA                          |
     +===============+===============+===============+===============+
   8 |       AA      |      AA       |       03      |       00      |
     +---------------+---------------+---------------+---------------+
   9 |       00      |      00       |        EtherType (2054)       |
     +---------------+---------------+-------------------------------+
  10 |            hrd (1)            |           pro (2048)          |
     +---------------+---------------+-------------------------------+
  11 |    hln (6)    |    pln (4)    |            op (2)             |
     +---------------+---------------+-------------------------------+
  12 |                    Target ULA octets 0 - 3                    |
     +-------------------------------+-------------------------------+
  13 |    Target ULA octets 4 - 5    |    Target IP Address upper    |
     +-------------------------------+-------------------------------+
  14 |    Target IP Address lower    | Requester's ULA octets 0 - 1  |
     +-------------------------------+-------------------------------+
  15 |                 Requester's ULA octets 2 - 5                  |
     +---------------------------------------------------------------+
  16 |                    Requester's IP Address                     |
     +---------------------------------------------------------------+

                    HIPPI ARP/RARP Reply (logical address mode)





Renwick & Nicholson                                            [Page 20]

RFC 1374                  IP and ARP on HIPPI               October 1992


ARP procedure

  The combined HIPPI-LE/ARP packet contains six addresses, three each
  for the requester and the target:

     Requester's IP Address          (ARP)
     Requester's ULA                 (ARP and HIPPI-LE)
     Requester's Switch Address      (HIPPI-LE)

     Target's IP Address             (ARP)
     Target's ULA                    (ARP and HIPPI-LE)
     Target's Switch Address         (HIPPI-LE)

  Internet ARP concerns the IP Address and ULA; HIPPI-LE address
  resolution concerns the ULA and Switch Address.  Thus the ULA appears
  in both parts of the packet.

  Successful ARP results in tables in each node that map remote nodes'
  IP addresses to ULAs and ULAs to Switch Addresses, so that when an
  application requests a connection to a remote node by its IP address,
  both the remote ULA and Switch Address can be determined, a correct
  HIPPI-LE header can be built, and a connection to the node can be
  established using the correct Switch Address in the I-field.  Any
  recipient of an ARP request or reply may use information in the
  packet to augment its tables, even if it is neither the target node
  nor the requester.

  Note that the use of ULAs with HIPPI is not required.  In both the
  HIPPI-LE header and the Internet ARP message, the fields that contain
  ULAs should be set to zero when the ULA is not known.  Address
  resolution consists of two separate protocols, HIPPI-LE address
  resolution and Internet ARP, neither of which can function
  independently without ULAs.  However HIPPI Switch Address resolution
  can work without ULAs if the two protocols are piggybacked and
  treated as one operation in which Internet addresses are mapped
  directly to switch addresses.  With the exception of the optional
  self-address resolution request, which has no analogous Internet
  protocol, HIPPI-LE address resolution and Internet ARP messages
  should be sent together as a single HIPPI packet.

  If ULAs are used, the HIPPI-LE address resolution request can be sent
  without a piggybacked 802.2 LLC PDU, so it is possible to map ULAs to
  HIPPI Switch Addresses without using ARP.  Nodes shall accept both
  piggybacked and non-piggybacked forms of HIPPI-LE address resolution
  messages.

  The recipient of an address resolution request, having first updated
  its address mapping tables with any new information it can find in



Renwick & Nicholson                                            [Page 21]

RFC 1374                  IP and ARP on HIPPI               October 1992


  the request, checks to see if it is the target node.  If it is, it
  generates a reply by filling in the unknown target address fields
  according to the HIPPI-LE message type and the ARP operation code,
  and swapping the four pairs of source/target address fields.  Then it
  connects to the requesting node with the Source Switch Address from
  the request, and sends the reply packet.

  A node is the target of an address resolution request if the request
  contains one of the following:

  1.  the node's ULA in the Destination_IEEE_Address field of a HIPPI-
      LE AR_Request message

  2.  the node's IP address in the target protocol address field
      (ar$tpa) of a piggybacked Internet ARP message

  If two target fields are known but are not mapped together in the
  recipient's address mapping tables, it may do one of three things:

  1.  treat the request as having two targets, and send correct replies
      for both to the requester.

  2.  assume its own tables are invalid and ignore the request.

  3.  assume one of the "known" target fields is correct and respond as
      if the other had been unknown.

  The best choice depends on which fields conflict and the nature of
  the implementation.  Choice 3 is probably best for ordinary nodes,
  but third party ARP agents may have reason to use one of the other
  two.  Future experience may shed light on this.

ARP Implementation Methods

  The requirements for nodes to handle address resolution messages
  depend on the means by which address resolution is implemented on the
  LAN.

  In conventional networks ARP is a distributed function. ARP requests
  are broadcast; each host may update its address mappings with any ARP
  request or reply it sees, and responds to ARP requests that contain
  its own address in the target protocol address field.  HIPPI-SC
  switches are not required to provide multicast service, although some
  do.  Even if the switches do not multicast, one or more nodes can act
  as multicast servers, receiving packets sent to the HIPPI-SC
  broadcast address and repeating them to each other node in turn.
  Either way, if multicast exists on a HIPPI-SC LAN, ARP can be a
  distributed function.  In this situation each node is required to



Renwick & Nicholson                                            [Page 22]

RFC 1374                  IP and ARP on HIPPI               October 1992


  respond correctly to address resolution requests for which it is the
  target.

  Third party ARP is a second method that does not depend on multicast.
  The switches can map the HIPPI ARP multicast address to a node that
  acts as an ARP agent, replying to ARP requests on behalf of the real
  target nodes.  Ordinary nodes never receive ARP requests or generate
  replies and never have the opportunity to update mapping tables based
  on ARP requests from other nodes, as usually happens on conventional
  networks.  Each node must request any address information it needs,
  but never has to process ARP information it doesn't need.  Under
  third party ARP a node should not receive address resolution
  requests, and each node that is not an ARP agent should ignore those
  that it does receive.

  As a third possibility, one can omit the implementation of ARP
  entirely, choosing instead to build address mapping tables in each
  node from information available to a network administrator.  Such a
  technique is implementation dependent and outside the scope of this
  memo.  It may be helpful in prototype networks without multicast
  where no ARP agent is yet implemented.  In this case, nodes are not
  required to respond to address resolution requests, but must accept
  any they may receive.

ARP Example

  Assume a HIPPI-SC switch is installed with two nodes, X and Y,
  connected.  Each node has a unique Switch Address.  Both nodes have
  access to the host data base (e.g. /etc/hosts) in which the network
  administrator has configured the network and given the two nodes IP
  addresses.  There is an ARP agent connected to a switch port that is
  mapped to the address FE0 (hex).  The ARP agent contains no mappings
  of any IP, IEEE or Switch addresses.  Both nodes know their own ULAs
  and Switch Addresses.  They want to talk to each other; each knows
  the other's IP address (from the host data base) but neither knows
  the other's ULA or Switch Address.  Node X starts:

  1.  Node X connects to FE0 and sends a piggyback ARP Request
      requesting addresses for Y:

          HIPPI-LE Message_Type is 1, AR_Request
          HIPPI-LE Destination_Switch_Address = 0
          HIPPI-LE Source_Switch_Address = X's Switch Address
          HIPPI-LE Destination_IEEE_Address = 0
          HIPPI-LE Source_IEEE_Address = X's ULA
          ARP ar$op = 1 (request)
          ARP ar$sha = X's ULA
          ARP ar$spa = X's IP Address



Renwick & Nicholson                                            [Page 23]

RFC 1374                  IP and ARP on HIPPI               October 1992


          ARP ar$tha = 0
          ARP ar$tpa = Y's IP Address

  2.  The ARP agent receives the ARP request and adds an entry for X to
      its address mapping table.  It does not know about Y, so it does
      not generate a reply.

  3.  Node X waits for a reply.  It may set a timer to retransmit the
      request periodically, but its requests will be ignored until node
      Y sends an ARP request.

  4.  Node Y connects to FE0 and sends an ARP request requesting
      addresses for X:

          HIPPI-LE Message_Type is 1, AR_Request
          HIPPI-LE Destination_Switch_Address = 0
          HIPPI-LE Source_Switch_Address = Y's Switch Address
          HIPPI-LE Destination_IEEE_Address = 0
          HIPPI-LE Source_IEEE_Address = Y's ULA
          ARP ar$op = 1 (request)
          ARP ar$sha = Y's ULA
          ARP ar$spa = Y's IP Address
          ARP ar$tha = 0
          ARP ar$tpa = X's IP Address

  5.  The ARP agent receives Y's request and adds an entry for Y to its
      address mapping table.  It knows about the target node, X, so it
      connects to Y (using the Source_Switch_Address given in the
      request) and sends an ARP Reply:

          HIPPI-LE Message_Type is 2, AR_Reply
          HIPPI-LE Destination_Switch_Address = Y's Switch Address
          HIPPI-LE Source_Switch_Address = X's Switch Address
          HIPPI-LE Destination_IEEE_Address = Y's ULA
          HIPPI-LE Source_IEEE_Address = X's ULA
          ARP ar$op = 2 (reply)
          ARP ar$sha = X's ULA
          ARP ar$spa = X's IP Address
          ARP ar$tha = Y's ULA
          ARP ar$tpa = Y's IP Address

  6.  Node Y receives the ARP reply and builds its address mapping
      table entry for Node X.

  7.  Node Y connects to node X and transmits an IP packet with the
      following information in the HIPPI-LE header:

          HIPPI-LE Message_Type is 0, AR_Data



Renwick & Nicholson                                            [Page 24]

RFC 1374                  IP and ARP on HIPPI               October 1992


          HIPPI-LE Destination_Switch_Address = X's Switch Address
          HIPPI-LE Source_Switch_Address = Y's Switch Address
          HIPPI-LE Destination_IEEE_Address = X's ULA
          HIPPI-LE Source_IEEE_Address = Y's ULA

  8.  Node X receives the IP packet.  Since the ARP agent now knows
      about node Y, node X can retransmit its ARP request (repeating
      step 1) and receive an ARP reply:

          HIPPI-LE Message_Type is 2, AR_Reply
          HIPPI-LE Destination_Switch_Address = X's Switch Address
          HIPPI-LE Source_Switch_Address = Y's Switch Address
          HIPPI-LE Destination_IEEE_Address = X's ULA
          HIPPI-LE Source_IEEE_Address = Y's ULA
          ARP ar$op = 2 (reply)
          ARP ar$sha = Y's ULA
          ARP ar$spa = Y's IP Address
          ARP ar$tha = X's ULA
          ARP ar$tpa = X's IP Address

  Address resolution is now complete for both nodes.

  If there had been a multicast facility instead of the ARP agent in
  the configuration, the target nodes themselves would have received
  the requests and responded to them in the same way the ARP agent did.

Discovery of One's Own Switch Address

  The ARP example above assumed that each node had prior knowledge of
  its own switch address.  This may be manually configured, by means
  that are outside the scope of this memo, when each node is connected
  to the switch.  If a multicast capability exists, the node may
  discover its own address automatically when it starts up, using a
  protocol defined in HIPPI-LE.

  In the self-address discovery protocol, a node connects to a
  multicast address and sends a HIPPI-LE message containing its own
  ULA.  It receives a multicast copy of its own message, and learns its
  own switch address from the destination address field of the received
  I-field.

  HIPPI-LE self address resolution uses the same HIPPI-LE message
  format described in "ARP and RARP Message Format," above, with the
  AR_S_Request and AR_S_Response message type codes and no piggybacked
  ULP data.  The HIPPI-LE header contents for the request are:

      Message_Type is 3, AR_S_Request
      Destination_Address_Type = 0 (undefined)



Renwick & Nicholson                                            [Page 25]

RFC 1374                  IP and ARP on HIPPI               October 1992


      Destination_Switch_Address = 0 (unknown)
      Source_Address_Type = 0 (undefined)
      Source_Switch_Address = 0 (unknown)
      Destination_IEEE_Address = my ULA
      Source_IEEE_Address = my ULA

  There is no D2 data; the packet contains only the HIPPI-FP header and
  D1_Area containing the HIPPI-LE header.

  The node that wants to discover its address connects to the multicast
  address for this purpose (hex FE0 in HIPPI-SC) and transmits the
  request packet.  What happens next depends on the particular network:

  With multicast:

     The node receives its own request and can learn its own switch
     address from the I-field it receives.  This is the only time a
     node should use an address from a received I-field.

  With an ARP agent:

     The node may receive an AR_S_Response message with its own ULA in
     the Destination_IEEE_Address field and its own switch address in
     the Destination_Switch_Address field.  This address may be
     different from the address contained in the I-field, and should be
     used instead.

  The ARP agent response alternative requires that the agent have prior
  knowledge of the node's location and ULA through some process not
  specified by this memo.  The node may receive both its request and
  the agent's response if both an ARP agent and multicast are active.
  In this case the address it learns from the I-field is later replaced
  by the address given by the ARP agent in the response.  Agents may
  assign new addresses to nodes and inform them by sending unsolicited
  AR_S_Response messages.  Any node whose switch address is updated in
  this way should invalidate the switch addresses it has saved for
  other nodes, and use ARP to rediscover them.

  If the node reacts correctly to either the multicast request or
  agent-generated response, it can discover its address without having
  to know whether or not an ARP agent is active.  The full procedure
  is:

  1.  Transmit the AR_S_Request







Renwick & Nicholson                                            [Page 26]

RFC 1374                  IP and ARP on HIPPI               October 1992


  2.  When a connection arrives, accept it and save the I-field for
      later analysis.

  3.  Receive the message and look at the HIPPI-LE header.  If the
      message is Message Type AR_S_Request, analyze the I-field to
      discover the node's own switch address.  HIPPI-SC I-field formats
      suggest the following:

         if bit 25 == 1
                 Address type is HIPPI-SC logical address.
                 if bit 27 == 1
                         take address from bits 23-12
                 else
                         take address from bits 11-00
                 endif
         else
                 Address is unusable (source route)
         endif

      This is a one-time operation.  Once the node knows an address for
      itself, it should not take any new address from a received I-
      field.

  4.  If a message of type AR_S_Response arrives and the
      Destination_IEEE_Address field contains the node's own ULA, take
      the new switch address from the Destination_Switch_Address field
      and its type from the Destination_Address_Type field.

  5.  The node should invalidate its ARP tables when an AR_S_Response
      changes its own switch address, to force retransmission of ARP
      requests containing its new address to all the remote nodes with
      which it communicates.


Path MTU Discovery

  RFC 1191 [13] describes the method of determining MTU restrictions on
  an arbitrary network path between two hosts.  HIPPI nodes may use
  this method without modification to discover restrictions on paths
  between HIPPI-SC LANs and other networks.  Gateways between HIPPI-SC
  LANs and other types of networks should implement RFC 1191.

Channel Data Rate Discovery

  HIPPI exists in two data rate options (800 megabit/second and 1600
  megabit/second).  The higher data rate is achieved by making the
  HIPPI 64 bits parallel instead of 32, using an extra cable containing
  32 additional data bits and four parity bits.  HIPPI-SC switches can



Renwick & Nicholson                                            [Page 27]

RFC 1374                  IP and ARP on HIPPI               October 1992


  be designed to attach to both.  Source and Destination HIPPI
  implementations can be designed to operate at either rate, selectable
  at the time a connection is established.  The "W" bit (bit 28) of the
  I-field controls the width of the connection through the switch.
  Sources with both cables A and B attached to the switch may set the
  "W" bit to request a 1600 megabit/second connection.  If the
  requested destination also has both cables attached, the switch can
  connect Source to Destination on both cables.  If the requested
  Destination has only Cable A, the switch rejects the request.
  Sixty-four bit Sources can connect to 32 bit Destinations by
  requesting with the "W" bit clear and not using Cable B.  Sixty-four
  bit Destinations must examine the "W" bit in the received I-field and
  use or ignore Cable B accordingly.  Note that both INTERCONNECT
  signals stay active while a 64 bit HIPPI is used in 32 bit mode.

  The following table summarizes the possible combinations, the
  switch's action for each, and the width of the resulting connection.

                                    Destination
                     +-------------------+-------------------+
                     |        32         |        64         |
          +----+-----+-------------------+-------------------+
          |    | W=0 |     Accept 32     |     Accept 32     |
          | 32 +-----+-------------------+-------------------+
          |    | W=1 |        N/A        |        N/A        |
  Source  +----+-----+-------------------+-------------------+
          |    | W=0 |     Accept 32     |     Accept 32     |
          | 64 +-----+-------------------+-------------------+
          |    | W=1 |      Reject       |     Accept 64     |
          +----+-----+-------------------+-------------------+

                     HIPPI Connection Combinations

  If the path between a 64 bit Source and a 64 bit Destination includes
  more than one switch, and the route between switches uses a link that
  is only 32 bits wide, the switch rejects 64 bit connection requests
  as if the Destination did not have 64 bit capability.

  In a mixed LAN of 32 bit and 64 bit HIPPIs, a 64 bit Source needs to
  know the data rates available at each Destination and on the path to
  it.  This can be known a priori by manual configuration, or it can be
  discovered dynamically.  The only reliable method of discovery is
  simply to attempt a 64 bit connection with Camp-on.  As long as 64
  bit connections succeed, the Source knows the Destination and path
  are double width.  If a 64 bit connection is rejected, the Source
  tries to connect for 32 bits.  If the 32 bit connection succeeds, the
  Source assumes that the Destination or path is not capable of double
  width operation, and uses only 32 bit requests after that.  If the 32



Renwick & Nicholson                                            [Page 28]

RFC 1374                  IP and ARP on HIPPI               October 1992


  bit request is rejected, the Source assumes that the Destination or
  path is down and makes no determination of its capability.

  The Double_Wide bit in the HIPPI-LE header, if nonzero, gives the
  node that receives it a hint that the 64 bit connection attempt may
  be worthwhile when sending on the return path.

  Note that Camp-on must be used at least in the 64 bit attempt,
  because it removes some ambiguity from the meaning of rejects.  If
  the request is made with the "W" bit and no Camp-on, a reject could
  mean either that the Destination has no Cable B or that it is simply
  busy, and no conclusion can be drawn as to its status for 64 bit
  connections.

Performance

  The HIPPI connection rules are designed to permit best utilization of
  the available HIPPI throughput under the constraint that each
  Destination must be made available frequently to receive packets from
  different Sources.  This discipline asks both Sources and
  Destinations to minimize connection setup overhead to deliver high
  performance.  Low connection setup times are easily achieved by
  hardware implementations, but overhead may be too high if software is
  required to execute between the initial request of a connection and
  the beginning of data transfer.  Hardware implementations in which
  connection setup and data transfer proceed from a single software
  action are very desirable.

  HIPPI connections are controlled by HIPPI Sources; a Destination,
  being unable to initiate a disconnect without the possibility of data
  loss, is a slave to the Source once it has accepted a connection.
  Optimizations of connection strategy are therefore the province of
  the HIPPI Source, and several optimizations are permitted.

  If the rate of available message traffic is less than the available
  HIPPI throughput and Destinations are seldom busy when a connection
  is requested, connection optimizations do not pay off and the
  simplest strategy of waiting indefinitely for each connection to be
  made and sending messages strictly in the order queued cannot be
  improved upon.  However if some nodes are slow, or network
  applications can send or receive messages at a higher aggregate rate
  than the available HIPPI bandwidth, Sources may frequently encounter
  a busy Destination.  In these cases, certain host output queuing
  strategies may enhance channel utilization.  Sources may maintain
  separate output queues for different HIPPI Destinations, and abandon
  one Destination in favor of another if a connection attempt without
  Camp-on is rejected or a connection request with Camp-on is not
  accepted within a predetermined interval.  Such a strategy results in



Renwick & Nicholson                                            [Page 29]

RFC 1374                  IP and ARP on HIPPI               October 1992


  aborted connection sequences (defined in HIPPI-PH:  REQUEST is
  deasserted before any data is sent).  Destinations must treat these
  as normal events, perhaps counting them but otherwise ignoring them.

  Two components of connection setup time are out of the control of
  both Source and Destination.  One is the time required for the switch
  to connect Source to Destination, currently less than four
  microseconds in the largest commercially available (32 port) switch.
  The second component is the round trip propagation time of the
  REQUEST and CONNECT signals, negligible on a standard 25 meter copper
  HIPPI cable, but contributing a total of about 10 microseconds per
  kilometer on fiber optic links.  HIPPI-SC LANs spanning more than a
  few kilometers will have reduced throughput.  Limited span networks
  with buffered gateways or bridges between them may perform better
  than long serial HIPPI links.

  A Source is required to drop its connection after the transmission of
  68 HIPPI bursts.  This number was chosen to allow the transmission of
  one maximum sized packet or a reasonable number of smaller sized
  packets.  The following table lists some possibilities, with
  calculated maximum burst and throughput rates in millions (10**6) of
  bytes per second:

                    Maximum HIPPI Throughput Rates

       Number  Number  Hold  Burst  ------Max throughput MB/sec-------
  User   of      of    Time  Rate    Connection Setup Overhead (usec)
  Data Packets Bursts (usec) MB/sec  10    30    60    90   120   150
  ---- ------- ------ ------ ------ ----  ----  ----  ----  ----  ----
  63K     1      64    654    98.7  97.2  94.4  90.4  86.8  83.4  80.3
  32K     2      66    665    98.6  97.1  94.3  90.4  86.8  83.5  80.4
  16K     4      68    667    98.3  96.8  94.1  90.2  86.6  83.3  80.2
   8K     7      63    587    97.8  96.1  93.0  88.7  84.8  81.2  77.8
   4K    13      65    551    96.7  95.0  91.7  87.2  83.1  79.4  76.0
   2K    22      66    476    94.6  92.7  89.0  84.0  79.6  75.6  72.0
   1K    34      68    384    90.8  88.5  84.2  78.5  73.5  75.8  65.3

  These calculations are based 259 40 ns clock periods to transmit a
  full burst and 23 clock periods for a short burst.  (HIPPI-PH
  specifies three clock periods of overhead per burst.) A packet of "n"
  kilobytes of user data consists of "n" full bursts and one short
  burst equal in length to the number of bytes in the HIPPI, LLC, IP
  and TCP headers.  "Hold Time" is the minimum connection duration
  needed to send the packets.  "Burst Rate" is the effective transfer
  rate for the duration of the connection, not counting connection
  switching time.  Throughput rates are in megabytes/second, accounting
  for connection switching times of 10, 30, 60, 90, 120 and 150
  microseconds.  These calculations ignore any limit on the rate at



Renwick & Nicholson                                            [Page 30]

RFC 1374                  IP and ARP on HIPPI               October 1992


  which a Source or Destination can process small packets; such limits
  may further reduce the available throughput if small packets are
  used.

Sharing the Switch

  Network interconnection is only one potential application of HIPPI
  and HIPPI-SC switches.  While network applications need very frequent
  transient connections, other applications may favor longer term or
  even permanent connections between Source and Destination.  Since the
  switch can serve each Source or Destination with hardware paths
  totally separate from every other, it is quite feasible to use the
  same switch to support LAN interconnects and computer/peripheral
  applications simultaneously.

  Switch sharing is no problem when unlike applications do not share a
  HIPPI cable on any path.  However if a host must use a single input
  or output cable for network as well as other kinds of traffic, or if
  a link between switches must be shared, care must be taken to ensure
  that all applications are compatible with the connection discipline
  described in this memo.  Applications that hold connections too long
  on links shared with network traffic may cause loss of network
  packets or serious degradation of network service.


Appendix A -- HIPPI Basics

  This section is included as an aid to readers who are not completely
  familiar with the HIPPI standards.

  HIPPI-PH describes a parallel copper data channel between a Source
  and a Destination.  HIPPI transmits data in one direction only, so
  that two sets are required for bidirectional flow.  The following
  figure shows a simple point-to-point link between two computer
  systems:
















Renwick & Nicholson                                            [Page 31]

RFC 1374                  IP and ARP on HIPPI               October 1992


  +----------+                                        +----------+
  |          |                                        |          |
  |          +--------+                      +--------+          |
  |          | HIPPI  |        Cable         | HIPPI  |          |
  |          |        +--------------------->|        |          |
  |          | Source |                      | Dest.  |          |
  |  System  +--------+                      +--------+  System  |
  |    X     +--------+                      +--------+    Y     |
  |          | HIPPI  |        Cable         | HIPPI  |          |
  |          |        |<---------------------+        |          |
  |          | Dest.  |                      | Source |          |
  |          +--------+                      +--------+          |
  |          |                                        |          |
  +----------+                                        +----------+

                     A Simple HIPPI Duplex Link

  Parallel copper cables may be up to 25 meters in length.

  In this document, all HIPPI connections are assumed to be paired
  HIPPI channels.

  HIPPI-PH has a single optional feature: it can use a single cable in
  each direction for a 32 bit parallel channel with a maximum data rate
  of 800 megabit/second, or two cables for 64 bits and 1600
  megabit/second.  Cable A carries bits 0-31 and is used in both modes;
  Cable B carries bits 32-63 and is use only with the 1600
  megabit/second data rate option.

  HIPPI Signal Hierarchy

     HIPPI has the following hardware signals:

     Source to Destination

        INTERCONNECT A
        INTERCONNECT B (64 bit only)
        CLOCK (25 MHz)
        REQUEST
        PACKET
        BURST
        DATA (32 or 64 signals)
        PARITY (4 or 8 signals)

     Destination to Source

        INTERCONNECT A
        INTERCONNECT B (64 bit only)



Renwick & Nicholson                                            [Page 32]

RFC 1374                  IP and ARP on HIPPI               October 1992


        CONNECT
        READY

     The INTERCONNECT lines carry DC voltages that indicate that the
     cable is connected and that the remote interface has power.
     INTERCONNECT is not used for signaling.

     The CLOCK signal is a continuous 25 MHz (40 ns period) square
     wave.  All Source-to-Destination signals are synchronized to the
     clock.

     The REQUEST and CONNECT lines are used to establish logical
     connections.  A connection is always initiated by a Source as it
     asserts REQUEST.  At the same time it puts 32 bits of data on DATA
     lines 0-31, called the I-field.  The Destination samples the DATA
     lines and can complete a connection by asserting CONNECT.  Packets
     can be transmitted only while both REQUEST and CONNECT are
     asserted.

     A Destination can also reject a connection by asserting CONNECT
     for only a short interval between 4 and 16 HIPPI clock periods
     (160-640 nanoseconds).  The Source knows a connection has been
     accepted when CONNECT is asserted for more than 16 clocks or it
     receives a READY pulse.

     Either Source or Destination can terminate a connection by
     deasserting REQUEST or CONNECT, respectively.  Normally
     connections are terminated by the Source after its last Packet has
     been sent.  A Destination cannot terminate a connection without
     potential loss of data.





















Renwick & Nicholson                                            [Page 33]

RFC 1374                  IP and ARP on HIPPI               October 1992


               +------+-------------------------+------+
               | Idle |        Connected        | Idle | . . .
               +------+-------------------------+------+
                    /                           \
                   /                             \
                  /                               \
                 /                                 \
                /                                   \
               +-------+ +-------+ +-------+ +-------+
               |I-field| |Packet | |Packet | |Packet |
               +-------+ +-------+ +-------+ +-------+
                        /         \
                       /           \
                      /             \
                     /               \
                    /                 \
                   /                   \
                  /                     \
                 +-----+ +-----+   +-----+
                 |Burst| |Burst|...|Burst|
                 +-----+ +-----+   +-----+

                  HIPPI Logical Framing Hierarchy

     The Source asserts PACKET for the duration of a Packet
     transmission, deasserting it to indicate the end of a Packet.  A
     sequence of Bursts comprise a Packet.  To send a burst, a Source
     asserts the BURST signal for 256 clock periods, during which it
     places 256 words of data on the DATA lines.  The first or last
     Burst of a Packet may be less than 256 clock periods, allowing the
     transmission of any integral number of 32 or 64 bit words in a
     Packet.

     The READY signal is a pulse four or more clock periods long.  Each
     pulse signals the Source that the Destination can receive one
     Burst.  The Destination need not wait for a burst before sending
     another READY if it has burst buffers available; up to 63
     unanswered READYs may be sent, allowing HIPPI to operate at full
     speed over distances of many kilometers.  If a Source must wait
     for flow control, it inserts idle periods between Bursts.











Renwick & Nicholson                                            [Page 34]

RFC 1374                  IP and ARP on HIPPI               October 1992


               +------------------------------------------------+
     REQUEST---+                                                +----
                     +--------------------------------------------+
     CONNECT---------+                                            +--
                        +---------------------------------------+
     PACKET-------------+                                       +----

                      +-+   +-+   +-+   +-+   +-+   +-+   +-+   +-+
     READY------------+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +--

                        +-------+ +-------+ +-------+ +-----+
     BURST--------------+       +-+       +-+       +-+     +--------

     DATA------I-field----DATA------DATA------DATA-----DATA----------

                       HIPPI Signal Timing Diagram

  Serial HIPPI

     There is no ANSI standard for HIPPI other than the parallel copper
     cable version.  However an implementors' agreement exists,
     specifying a serial protocol to extend HIPPI signals on optical
     fiber or coaxial copper cable.  Serial links may be used
     interchangeably with parallel links to overcome HIPPI distance
     limitations; they are transparent to the Source and Destination,
     except for the possibility of longer propagation delays.

  I-Field and Switch Control

     The REQUEST, CONNECT and I-field features of HIPPI-PH were
     designed for the control of switches as described in HIPPI-SC.  A
     switch is a hub with a number of input and output HIPPI ports.
     HIPPI Sources are cabled to switch input ports, and switch output
     ports are cabled to HIPPI Destinations.  When a HIPPI Source
     requests a connection, the switch interprets the I-field to select
     an output port and electrically connects the HIPPI Source to the
     HIPPI Destination on that port.  Once connected, the switch does
     not interact with the HIPPIs in any way until REQUEST or CONNECT
     is deasserted, at which time it breaks the physical connection and
     deasserts its output signals to both sides.  Some existing switch
     implementations can switch connections in less than one
     microsecond.  There is the potential for as many simultaneous
     connections, each transferring data at HIPPI speeds, as there are
     input or output ports on the switch.  A switch offers much greater
     total throughput capacity than broadcast or ring media.






Renwick & Nicholson                                            [Page 35]

RFC 1374                  IP and ARP on HIPPI               October 1992


     31    28  26    23                      11                     0
     +-+---+-+-+---+-+-----------------------+-----------------------+
     |L|   |W|D|PS |C|    Source Address     |  Destination Address  |
     +-+---+-+-+---+-+-----------------------+-----------------------+

                 HIPPI-SC I-field Format (Logical Address Mode)

          L  = Locally defined (1 => entire I-field is locally defined)
          W  = Width (1 => 64 bit connection)
          D  = Direction (1 => swap Source and Destination Address)
          PS = Path Selection (01 => Logical Address Mode)
          C  = Camp-on (1 => wait until Destination is free)

     HIPPI-SC defines I-field formats for two different addressing
     modes.  The first, called Source Routing, encodes a string of port
     numbers in the lower 24 bits.  This string specifies a route over
     a number of switches.  A Destination's address may differ from one
     Source to another if multiple switches are used.

     The second format, called Logical Address Mode, defines two 12 bit
     fields, Source Address and Destination Address.  A Destination's
     12 bit Switch Address is the same for all Sources.  Switches
     commonly have address lookup tables to map 12 bit logical
     addresses to physical ports.  This mode is used for networking.

     Control fields in the I-field are:


     L  The "Locally Defined" bit, when set, indicates that the I-field
        is not in the standard format.  The meaning of bits 30-0 are
        locally defined.

     W  The Width bit, when set, requests a 64 bit connection through
        the switch.  It is meaningless if Cable B is not installed at
        the Source.  If W is set and either the Source or the requested
        Destination has no Cable B to the switch, the switch rejects
        the connection.  Otherwise the switch connects both Cable A and
        Cable B if W is set, or Cable A only if W is clear.  This
        feature is useful if both Source and Destination
        implementations can selectively disable or enable Cable B on
        each new connection.

     D  The Direction bit, when set, reverses the sense of the Source
        Address and Destination Address fields.  In other words, D=1
        means that the Source Address is in bits 0-11 and the
        Destination Address is in bits 12-23.  This bit was defined to
        give devices a simple way to route return messages.  It is not
        useful for LAN operations.



Renwick & Nicholson                                            [Page 36]

RFC 1374                  IP and ARP on HIPPI               October 1992


     PS The Path Selection field determines whether the I-field
        contains Source Route or Address information, and in Logical
        Address mode, whether the switch may select from multiple
        possible routes to the destination.  The value "01" selects
        Logical Address mode and fixed routes.

     C  The Camp-on bit requests the switch not to reject the
        connection if the selected Destination is busy (connected to
        another Source) but wait and make the connection when the
        Destination is free.


Appendix B -- How to Build a Practical HIPPI LAN

  "IP and ARP on HIPPI" describes the network host's view of a HIPPI
  local area network without providing much information on the
  architecture of the network itself.  Here we describe a network
  constructed from available HIPPI components, having the following
  characteristics:

  1.  A tree structure with a central HIPPI-SC compliant hub and
      optional satellite switches

  2.  Each satellite is connected to the hub by just one bidirectional
      HIPPI link.

  3.  Serial HIPPI or transparent fiber optic HIPPI extender devices
      may be used in any link.

  4.  Some satellites may be a particular switch product which is not
      HIPPI-SC compliant.

  5.  Host systems are attached either directly to the hub or to
      satellites, by single bidirectional links in which both HIPPI
      cables go to the same numbered switch port.

  6.  A server system is attached to the hub.  It provides multicast
      and ARP services.

  7.  All options of the Internet Draft are supported.  Hosts may use
      any form of address resolution: manual configuration, ARP with
      multicast, or ARP with a server.

  Switch Address Management

     Switch addresses use a flat address space.  The 12-bit address is
     subdivided into 6 bits of switch number and 6 bits of port number.




Renwick & Nicholson                                            [Page 37]

RFC 1374                  IP and ARP on HIPPI               October 1992


     11                       5                     0
     +-----------------------+-----------------------+
     |     Switch Number     |      Port Number      |
     +-----------------------+-----------------------+

                Logical Address Construction

     Switches may be numbered arbitrarily.  A given host's address
     consists of the number of the switch it is directly attached to
     and the physical port number on that switch to which its input
     channel is attached.

     In the singly-connected tree structure, there is exactly one path
     between any pair of hosts.  Since each satellite must be connected
     directly to the hub, the maximum length of this path is three
     hops, and the minimum length is one.  Each HIPPI-SC compliant
     switch is programmed to map each of the host switch addresses to
     the appropriate output port: either the port to which the host is
     directly attached or a port that is linked to another switch in
     the path to it.

  Special Treatment of Nonstandard Switches

     There is one commercially available switch that was designed
     before the drafting of HIPPI-SC and is not fully compliant.  It is
     in common use, so it is worth making some special provisions to
     allow its use in a HIPPI LAN.  This switch supports only the
     Source Route mode of addressing with a four bit right shift that
     can be disabled by a hardware switch on each input port.
     Addresses cannot be mapped.  The switch does not support the "W,"
     "D," or "PS" fields of the I-field; it ignores their contents.
     Use of this switch as a satellite will require a slight deviation
     from normal I-field usage by the hosts that are directly attached
     to it.  Hosts attached to standard switches are not affected.

     For a destination connected to a non compliant satellite, the
     satellite uses only the least significant four bits of the I-field
     as the address.  Since the address contains the destination's
     physical port number in the least significant bits, its port will
     be selected.  Nonstandard switches should be set to disable I-
     field shifting at the input from the hub, so that the destination
     host will see its correct switch address in the I-field when
     performing self-address discovery.  I-field shifting must be
     enabled on the satellite for each input port to which a host is
     attached.

     Hosts attached to nonstandard satellites must deviate from the
     normal I-field usage when connecting to hosts on another switch.



Renwick & Nicholson                                            [Page 38]

RFC 1374                  IP and ARP on HIPPI               October 1992


     It is suggested that all host implementations have this capability
     as long as the nonstandard switches remain in use.  The host must
     know, by some manual configuration method, that it is connected to
     a nonstandard switch, and it must have its "link port" number;
     that is, the number of the port on the satellite that is connected
     to the hub.

     The normal I-field format for a 32-bit connection, per the
     Internet Draft, is this:

     31        26    23                      11                     0
     +---------+---+-+-----------------------+-----------------------+
     |0 0 0 0 0|x 1|C|        Unused         |  Destination Address  |
     +---------+---+-+-----------------------+-----------------------+

     The special I-field format is:

     31        26  24                15                     4 3     0
     +---------+---+-+---------------+-----------------------+-------+
     |0 0 0 0 0|x 1|C|    Unused     |  Destination Address  | Link  |
     +---------+---+-+---------------+-----------------------+-------+

     This I-field is altered by shifting the lower 24 bits left by four
     and adding the link port number.  Camp-on is optional, and the PS
     field is set to 01 or 11 (the host's option) as if the switch
     supported logical address mode.  All other I-field bits are set to
     zero.  When the host requests a connection with this I-field, the
     switch selects a connection through the link port to the hub, and
     shifts the lower 24 bits of the I-field right by four bits.  The
     link port number is discarded and the I-field passed through to
     the hub is a proper HIPPI-SC I-field selecting logical address
     mode.

     A host on a nonstandard satellite may use the special I-field
     format for all connection requests.  If connecting to another host
     on the same satellite, this will cause the connection to take an
     unnecessarily long path through the hub and back.  If an
     optimization is desired, the host can be given additional
     information to allow it to use the standard I-field format when
     connecting to another host on the same switch.  This information
     could consist of a list of the other hosts on the same switch, or
     the details of address formation, along with the switch number of
     the local satellite, which would allow the host to analyze the
     switch address to determine whether or not the destination is on
     the local switch.  This optimization is fairly complicated and may
     not always be worthwhile.





Renwick & Nicholson                                            [Page 39]

RFC 1374                  IP and ARP on HIPPI               October 1992


  Server Algorithm

     Different host implementations may take any of three approaches to
     address resolution:

     1.  Manual configuration, no ARP

     2.  Send ARP requests but expect a server to reply on its behalf

     3.  Send ARP requests and expect to receive them via multicast.

     If the network includes a server that is capable of both multicast
     and ARP service, and that knows the services expected by each
     host, all can coexist on the same net.

     The HIPPI-SC compliant switches are programmed to route the
     HIPPI-SC "broadcast" address FE0 (hex) to the server's port.  It
     is initially given the following information by a human network
     administrator:

     1.  The list of all addresses eligible to be used by network hosts

     2.  The list of addresses that should not receive multicast
         messages (a subset of list 1).  This is also the list of all
         hosts that either do manual configuration or expect a server
         to answer ARP requests.

     3.  The list of addresses of hosts that do manual configuration
         and do not send ARP requests (a subset of list 2) with the IP
         address corresponding to each one.

     The server maintains an address resolution cache that it
     initializes from list 3 (the manually configured hosts).  It will
     add to its cache as other hosts send ARP requests.

     When the server receives a message sent to the broadcast address
     FE0, it

     1.  Repeats the message to all addresses in list 1 but not in list
         2

     2.  If the message is a HIPPI-LE AR_Request with a piggybacked ARP
         Request, update the cache with information about the sender.

     3.  If the message is a HIPPI-LE AR_Request with a piggybacked ARP
         Request, the target system has an entry in the cache and the
         target is in list 2, respond to the ARP request.




Renwick & Nicholson                                            [Page 40]

RFC 1374                  IP and ARP on HIPPI               October 1992


     Server Optimizations

        1.  The server could be given a topological map of the hub and
            satellites from which it could construct list 1.

        2.  If all the hosts in list 2 ignore ARP messages as required
            in the Internet Draft, list 2 may be eliminated and the
            server can respond to all ARP requests (redundant replies
            may be sent).


  Sharing Switch Hardware With Other Devices

     Some host channels and peripheral devices that are connected to
     the switches may use protocols other than IP, and not participate
     in the LAN.  Since connections in a switch are independent, these
     applications can share switch hardware with no effect on LAN
     operation.  To ensure success:

        The server's lists of addresses should not include addresses
        for ports that are not used by LAN links or hosts.

        If non-LAN applications use paths between switches, separate
        links should be installed for them so that they do not use the
        same inter-switch links the LAN does.

References


[1]  ANSI X3.183-1991, High-Performance Parallel Interface - Mechanical,
    Electrical and Signalling Protocol Specification (HIPPI-PH).

[2]  ANSI X3.210-199X, High-Performance Parallel Interface - Framing
    Protocol (HIPPI-FP).

[3]  ANSI X3.218-199X, High-Performance Parallel Interface -
    Encapsulation of IEEE 802.2 (IEEE Std 802.2) Logical Link Control
    Protocol Data Units (802.2 Link Encapsulation) (HIPPI-LE).

[4]  ANSI X3.222-199X, High-Performance Parallel Interface - Physical
    Switch Control (HIPPI-SC).

[5]  Postel, J., "Internet Protocol", RFC 791, USC/Information Sciences
    Institute, September 1981.







Renwick & Nicholson                                            [Page 41]

RFC 1374                  IP and ARP on HIPPI               October 1992


[6]  Postel, J., and Reynolds, J., "A Standard for the Transmission of
    IP Datagrams over IEEE 802 Networks", RFC 1042, USC/Information
    Sciences Institute, February 1988.

[7]  IEEE, "IEEE Standards for Local Area Networks: Logical Link
    Control", IEEE, New York, New York, 1985.

[8]  Reynolds, J.K., and Postel, J., "Assigned Numbers", RFC 1340,
    USC/Information Sciences Institute, July 1992.

[9]  Plummer, D., "An Ethernet Address Resolution Protocol - or -
    Converting Network Protocol Addresses to 48.bit Ethernet Address
    for Transmission on Ethernet Hardware", RFC 826, MIT, November
    1982.

[10] Finlayson, R., Mann, T., Mogul, J., and  Theimer, M., "A Reverse
    Address Resolution Protocol", RFC 903, Stanford University, June
    1984.

[11] Katz, D., "A Proposed Standard for the Transmission of IP Datagrams
    over FDDI Networks", RFC 1188, Merit/NSFNET, October, 1990.

[12] IEEE, "Draft Standard P802.1A--Overview and Architecture", 1989.

[13] Mogul, J.C., and Deering, S.E., "Path MTU discovery", RFC 1191,
    Stanford University, November, 1990.


Security Considerations

  Security issues are not discussed in this memo.

Authors' Addresses

  John K. Renwick
  Cray Research, Inc.
  655F Lone Oak Drive
  Eagan, MN 55121

  Phone: (612) 683-5573

  Mailing List: (none)
  EMail: [email protected]








Renwick & Nicholson                                            [Page 42]

RFC 1374                  IP and ARP on HIPPI               October 1992


  Andy Nicholson
  Cray Research, Inc.
  655F Lone Oak Drive
  Eagan, MN 55121

  Phone: (612) 683-5473

  Mailing List: (none)
  EMail: [email protected]










































Renwick & Nicholson                                            [Page 43]