Network Working Group                                         W. Simpson
Request for Comments: 1331                                    Daydreamer
Obsoletes: RFCs 1171, 1172                                      May 1992



                  The Point-to-Point Protocol (PPP)
                               for the
               Transmission of Multi-protocol Datagrams
                      over Point-to-Point Links


Status of this Memo

  This RFC specifies an IAB standards track protocol for the Internet
  community, and requests discussion and suggestions for improvements.
  Please refer to the current edition of the "IAB Official Protocol
  Standards" for the standardization state and status of this protocol.
  Distribution of this memo is unlimited.

Abstract

  The Point-to-Point Protocol (PPP) provides a method for transmitting
  datagrams over serial point-to-point links.  PPP is comprised of
  three main components:

     1. A method for encapsulating datagrams over serial links.

     2. A Link Control Protocol (LCP) for establishing, configuring,
        and testing the data-link connection.

     3. A family of Network Control Protocols (NCPs) for establishing
        and configuring different network-layer protocols.

  This document defines the PPP encapsulation scheme, together with the
  PPP Link Control Protocol (LCP), an extensible option negotiation
  protocol which is able to negotiate a rich assortment of
  configuration parameters and provides additional management
  functions.

  This RFC is a product of the Point-to-Point Protocol Working Group of
  the Internet Engineering Task Force (IETF).  Comments on this memo
  should be submitted to the [email protected] mailing list.








Simpson                                                         [Page i]

RFC 1331                Point-to-Point Protocol                 May 1992


Table of Contents


    1.     Introduction ..........................................    1
       1.1       Specification of Requirements ...................    3
       1.2       Terminology .....................................    3

    2.     Physical Layer Requirements ...........................    4

    3.     The Data Link Layer ...................................    5
       3.1       Frame Format ....................................    6

    4.     PPP Link Operation ....................................   10
       4.1       Overview ........................................   10
       4.2       Phase Diagram ...................................   10
       4.3       Link Dead (physical-layer not ready) ............   10
       4.4       Link Establishment Phase ........................   11
       4.5       Authentication Phase ............................   11
       4.6       Network-Layer Protocol Phase ....................   12
       4.7       Link Termination Phase ..........................   12

    5.     The Option Negotiation Automaton ......................   14
       5.1       State Diagram ...................................   15
       5.2       State Transition Table ..........................   16
       5.3       States ..........................................   18
       5.4       Events ..........................................   20
       5.5       Actions .........................................   24
       5.6       Loop Avoidance ..................................   26
       5.7       Counters and Timers .............................   27

    6.     LCP Packet Formats ....................................   28
       6.1       Configure-Request ...............................   30
       6.2       Configure-Ack ...................................   31
       6.3       Configure-Nak ...................................   32
       6.4       Configure-Reject ................................   33
       6.5       Terminate-Request and Terminate-Ack .............   35
       6.6       Code-Reject .....................................   36
       6.7       Protocol-Reject .................................   38
       6.8       Echo-Request and Echo-Reply .....................   39
       6.9       Discard-Request .................................   40

    7.     LCP Configuration Options .............................   42
       7.1       Format ..........................................   43
       7.2       Maximum-Receive-Unit ............................   44
       7.3       Async-Control-Character-Map .....................   45
       7.4       Authentication-Protocol .........................   47
       7.5       Quality-Protocol ................................   49
       7.6       Magic-Number ....................................   51



Simpson                                                        [Page ii]

RFC 1331                Point-to-Point Protocol                 May 1992


       7.7       Protocol-Field-Compression ......................   54
       7.8       Address-and-Control-Field-Compression ...........   56

    APPENDICES ...................................................   58

    A.     Asynchronous HDLC .....................................   58

    B.     Fast Frame Check Sequence (FCS) Implementation ........   61
       B.1       FCS Computation Method ..........................   61
       B.2       Fast FCS table generator ........................   63

    C.     LCP Recommended Options ...............................   64

    SECURITY CONSIDERATIONS ......................................   65

    REFERENCES ...................................................   65

    ACKNOWLEDGEMENTS .............................................   66

    CHAIR'S ADDRESS ..............................................   66

    AUTHOR'S ADDRESS .............................................   66





























Simpson                                                       [Page iii]

RFC 1331                Point-to-Point Protocol                 May 1992


1.  Introduction

  Motivation

     In the last few years, the Internet has seen explosive growth in
     the number of hosts supporting TCP/IP.  The vast majority of these
     hosts are connected to Local Area Networks (LANs) of various
     types, Ethernet being the most common.  Most of the other hosts
     are connected through Wide Area Networks (WANs) such as X.25 style
     Public Data Networks (PDNs).  Relatively few of these hosts are
     connected with simple point-to-point (i.e., serial) links.  Yet,
     point-to-point links are among the oldest methods of data
     communications and almost every host supports point-to-point
     connections.  For example, asynchronous RS-232-C [1] interfaces
     are essentially ubiquitous.

  Encapsulation

     One reason for the small number of point-to-point IP links is the
     lack of a standard encapsulation protocol.  There are plenty of
     non-standard (and at least one de facto standard) encapsulation
     protocols available, but there is not one which has been agreed
     upon as an Internet Standard.  By contrast, standard encapsulation
     schemes do exist for the transmission of datagrams over most
     popular LANs.

     PPP provides an encapsulation protocol over both bit-oriented
     synchronous links and asynchronous links with 8 bits of data and
     no parity.  These links MUST be full-duplex, but MAY be either
     dedicated or circuit-switched.  PPP uses HDLC as a basis for the
     encapsulation.

     PPP has been carefully designed to retain compatibility with most
     commonly used supporting hardware.  In addition, an escape
     mechanism is specified to allow control data such as XON/XOFF to
     be transmitted transparently over the link, and to remove spurious
     control data which may be injected into the link by intervening
     hardware and software.

     The PPP encapsulation also provides for multiplexing of different
     network-layer protocols simultaneously over the same link.  It is
     intended that PPP provide a common solution for easy connection of
     a wide variety of hosts, bridges and routers.

     Some protocols expect error free transmission, and either provide
     error detection only on a conditional basis, or do not provide it
     at all.  PPP uses the HDLC Frame Check Sequence for error
     detection.  This is commonly available in hardware



Simpson                                                         [Page 1]

RFC 1331                Point-to-Point Protocol                 May 1992


     implementations, and a software implementation is provided.

     By default, only 8 additional octets are necessary to form the
     encapsulation.  In environments where bandwidth is at a premium,
     the encapsulation may be shortened to as few as 2 octets.  To
     support high speed hardware implementations, PPP provides that the
     default encapsulation header and information fields fall on 32-bit
     boundaries, and allows the trailer to be padded to an arbitrary
     boundary.

  Link Control Protocol

     More importantly, the Point-to-Point Protocol defines more than
     just an encapsulation scheme.  In order to be sufficiently
     versatile to be portable to a wide variety of environments, PPP
     provides a Link Control Protocol (LCP).  The LCP is used to
     automatically agree upon the encapsulation format options, handle
     varying limits on sizes of packets, authenticate the identity of
     its peer on the link, determine when a link is functioning
     properly and when it is defunct, detect a looped-back link and
     other common misconfiguration errors, and terminate the link.

  Network Control Protocols

     Point-to-Point links tend to exacerbate many problems with the
     current family of network protocols.  For instance, assignment and
     management of IP addresses, which is a problem even in LAN
     environments, is especially difficult over circuit-switched
     point-to-point links (such as dial-up modem servers).  These
     problems are handled by a family of Network Control Protocols
     (NCPs), which each manage the specific needs required by their
     respective network-layer protocols.  These NCPs are defined in
     other documents.

  Configuration

     It is intended that PPP be easy to configure.  By design, the
     standard defaults should handle all common configurations.  The
     implementor may specify improvements to the default configuration,
     which are automatically communicated to the peer without operator
     intervention.  Finally, the operator may explicitly configure
     options for the link which enable the link to operate in
     environments where it would otherwise be impossible.

     This self-configuration is implemented through an extensible
     option negotiation mechanism, wherein each end of the link
     describes to the other its capabilities and requirements.
     Although the option negotiation mechanism described in this



Simpson                                                         [Page 2]

RFC 1331                Point-to-Point Protocol                 May 1992


     document is specified in terms of the Link Control Protocol (LCP),
     the same facilities may be used by the Internet Protocol Control
     Protocol (IPCP) and others in the family of NCPs.

1.1.  Specification of Requirements

  In this document, several words are used to signify the requirements
  of the specification.  These words are often capitalized.

  MUST

     This word, or the adjective "required", means that the definition
     is an absolute requirement of the specification.

  MUST NOT

     This phrase means that the definition is an absolute prohibition
     of the specification.

  SHOULD

     This word, or the adjective "recommended", means that there may
     exist valid reasons in particular circumstances to ignore this
     item, but the full implications should be understood and carefully
     weighed before choosing a different course.

  MAY

     This word, or the adjective "optional", means that this item is
     one of an allowed set of alternatives.  An implementation which
     does not include this option MUST be prepared to interoperate with
     another implementation which does include the option.

1.2.  Terminology

  This document frequently uses the following terms:

  peer

     The other end of the point-to-point link.

  silently discard

     This means the implementation discards the packet without further
     processing.  The implementation SHOULD provide the capability of
     logging the error, including the contents of the silently
     discarded packet, and SHOULD record the event in a statistics
     counter.



Simpson                                                         [Page 3]

RFC 1331                Point-to-Point Protocol                 May 1992


2.  Physical Layer Requirements

  The Point-to-Point Protocol is capable of operating across any
  DTE/DCE interface (e.g., EIA RS-232-C, EIA RS-422, EIA RS-423 and
  CCITT V.35).  The only absolute requirement imposed by PPP is the
  provision of a full-duplex circuit, either dedicated or circuit-
  switched, which can operate in either an asynchronous (start/stop) or
  synchronous bit-serial mode, transparent to PPP Data Link Layer
  frames.  PPP does not impose any restrictions regarding transmission
  rate, other than those imposed by the particular DTE/DCE interface in
  use.

  PPP does not require any particular synchronous encoding, such as FM,
  NRZ, or NRZI.

  Implementation Note:

     NRZ is currently most widely available, and on that basis is
     recommended as a default.  When configuration of the encoding is
     allowed, NRZI is recommended as an alternative, because of its
     relative immunity to signal inversion configuration errors.

  PPP does not require the use of modem control signals, such as
  Request To Send (RTS), Clear To Send (CTS), Data Carrier Detect
  (DCD), and Data Terminal Ready (DTR).

  Implementation Note:

     When available, using such signals can allow greater functionality
     and performance.  In particular, such signals SHOULD be used to
     signal the Up and Down events in the Option Negotiation Automaton
     (described below).



















Simpson                                                         [Page 4]

RFC 1331                Point-to-Point Protocol                 May 1992


3.  The Data Link Layer

  The Point-to-Point Protocol uses the principles, terminology, and
  frame structure of the International Organization For
  Standardization's (ISO) High-level Data Link Control (HDLC)
  procedures (ISO 3309-1979 [2]), as modified by ISO 3309:1984/PDAD1
  "Addendum 1: Start/stop transmission" [5].  ISO 3309-1979 specifies
  the HDLC frame structure for use in synchronous environments.  ISO
  3309:1984/PDAD1 specifies proposed modifications to ISO 3309-1979 to
  allow its use in asynchronous environments.

  The PPP control procedures use the definitions and Control field
  encodings standardized in ISO 4335-1979 [3] and ISO 4335-
  1979/Addendum 1-1979 [4].  The PPP frame structure is also consistent
  with CCITT Recommendation X.25 LAPB [6], since that too is based on
  HDLC.

  The purpose of this memo is not to document what is already
  standardized in ISO 3309.  We assume that the reader is already
  familiar with HDLC, or has access to a copy of [2] or [6].  Instead,
  this paper attempts to give a concise summary and point out specific
  options and features used by PPP.  Since "Addendum 1: Start/stop
  transmission", is not yet standardized and widely available, it is
  summarized in Appendix A.

  To remain consistent with standard Internet practice, and avoid
  confusion for people used to reading RFCs, all binary numbers in the
  following descriptions are in Most Significant Bit to Least
  Significant Bit order, reading from left to right, unless otherwise
  indicated.  Note that this is contrary to standard ISO and CCITT
  practice which orders bits as transmitted (i.e., network bit order).
  Keep this in mind when comparing this document with the international
  standards documents.


















Simpson                                                         [Page 5]

RFC 1331                Point-to-Point Protocol                 May 1992


3.1.  Frame Format

  A summary of the standard PPP frame structure is shown below.  This
  figure does not include start/stop bits (for asynchronous links), nor
  any bits or octets inserted for transparency.  The fields are
  transmitted from left to right.

          +----------+----------+----------+----------+------------
          |   Flag   | Address  | Control  | Protocol | Information
          | 01111110 | 11111111 | 00000011 | 16 bits  |      *
          +----------+----------+----------+----------+------------
                  ---+----------+----------+-----------------
                     |   FCS    |   Flag   | Inter-frame Fill
                     | 16 bits  | 01111110 | or next Address
                  ---+----------+----------+-----------------

  Inter-frame Time Fill

  For asynchronous links, inter-frame time fill SHOULD be accomplished
  in the same manner as inter-octet time fill, by transmitting
  continuous "1" bits (mark-hold state).

  For synchronous links, the Flag Sequence SHOULD be transmitted during
  inter-frame time fill.  There is no provision for inter-octet time
  fill.

  Implementation Note:

     Mark idle (continuous ones) SHOULD NOT be used for idle
     synchronous inter-frame time fill.  However, certain types of
     circuit-switched links require the use of mark idle, particularly
     those that calculate accounting based on bit activity.  When mark
     idle is used on a synchronous link, the implementation MUST ensure
     at least 15 consecutive "1" bits between Flags, and that the Flag
     Sequence is generated at the beginning and end of a frame.

Flag Sequence

  The Flag Sequence is a single octet and indicates the beginning or
  end of a frame.  The Flag Sequence consists of the binary sequence
  01111110 (hexadecimal 0x7e).

  The Flag is a frame separator.  Only one Flag is required between two
  frames.  Two consecutive Flags constitute an empty frame, which is
  ignored.






Simpson                                                         [Page 6]

RFC 1331                Point-to-Point Protocol                 May 1992


  Implementation Note:

     The "shared zero mode" Flag Sequence "011111101111110" SHOULD NOT
     be used.  When not avoidable, such an implementation MUST ensure
     that the first Flag Sequence detected (the end of the frame) is
     promptly communicated to the link layer.

Address Field

  The Address field is a single octet and contains the binary sequence
  11111111 (hexadecimal 0xff), the All-Stations address.  PPP does not
  assign individual station addresses.  The All-Stations address MUST
  always be recognized and received.  The use of other address lengths
  and values may be defined at a later time, or by prior agreement.
  Frames with unrecognized Addresses SHOULD be silently discarded, and
  reported through the normal network management facility.

Control Field

  The Control field is a single octet and contains the binary sequence
  00000011 (hexadecimal 0x03), the Unnumbered Information (UI) command
  with the P/F bit set to zero.  Frames with other Control field values
  SHOULD be silently discarded.

Protocol Field

  The Protocol field is two octets and its value identifies the
  protocol encapsulated in the Information field of the frame.

  This Protocol field is defined by PPP and is not a field defined by
  HDLC.  However, the Protocol field is consistent with the ISO 3309
  extension mechanism for Address fields.  All Protocols MUST be odd;
  the least significant bit of the least significant octet MUST equal
  "1".  Also, all Protocols MUST be assigned such that the least
  significant bit of the most significant octet equals "0".  Frames
  received which don't comply with these rules MUST be considered as
  having an unrecognized Protocol, and handled as specified by the LCP.
  The Protocol field is transmitted and received most significant octet
  first.

  Protocol field values in the "0---" to "3---" range identify the
  network-layer protocol of specific datagrams, and values in the "8--
  -" to "b---" range identify datagrams belonging to the associated
  Network Control Protocols (NCPs), if any.

  Protocol field values in the "4---" to "7---" range are used for
  protocols with low volume traffic which have no associated NCP.
  Protocol field values in the "c---" to "f---" range identify



Simpson                                                         [Page 7]

RFC 1331                Point-to-Point Protocol                 May 1992


  datagrams as link-layer Control Protocols (such as LCP).

  The most up-to-date values of the Protocol field are specified in the
  most recent "Assigned Numbers" RFC [11].  Current values are assigned
  as follows:

     Value (in hex)  Protocol Name

     0001 to 001f    reserved (transparency inefficient)
     0021            Internet Protocol
     0023            OSI Network Layer
     0025            Xerox NS IDP
     0027            DECnet Phase IV
     0029            Appletalk
     002b            Novell IPX
     002d            Van Jacobson Compressed TCP/IP
     002f            Van Jacobson Uncompressed TCP/IP
     0031            Bridging PDU
     0033            Stream Protocol (ST-II)
     0035            Banyan Vines
     0037            reserved (until 1993)
     00ff            reserved (compression inefficient)

     0201            802.1d Hello Packets
     0231            Luxcom
     0233            Sigma Network Systems

     8021            Internet Protocol Control Protocol
     8023            OSI Network Layer Control Protocol
     8025            Xerox NS IDP Control Protocol
     8027            DECnet Phase IV Control Protocol
     8029            Appletalk Control Protocol
     802b            Novell IPX Control Protocol
     802d            Reserved
     802f            Reserved
     8031            Bridging NCP
     8033            Stream Protocol Control Protocol
     8035            Banyan Vines Control Protocol

     c021            Link Control Protocol
     c023            Password Authentication Protocol
     c025            Link Quality Report
     c223            Challenge Handshake Authentication Protocol

  Developers of new protocols MUST obtain a number from the Internet
  Assigned Numbers Authority (IANA), at [email protected].





Simpson                                                         [Page 8]

RFC 1331                Point-to-Point Protocol                 May 1992


Information Field

  The Information field is zero or more octets.  The Information field
  contains the datagram for the protocol specified in the Protocol
  field.  The end of the Information field is found by locating the
  closing Flag Sequence and allowing two octets for the Frame Check
  Sequence field.  The default maximum length of the Information field
  is 1500 octets.  By negotiation, consenting PPP implementations may
  use other values for the maximum Information field length.

  On transmission, the Information field may be padded with an
  arbitrary number of octets up to the maximum length.  It is the
  responsibility of each protocol to disambiguate padding octets from
  real information.

Frame Check Sequence (FCS) Field

  The Frame Check Sequence field is normally 16 bits (two octets).  The
  use of other FCS lengths may be defined at a later time, or by prior
  agreement.

  The FCS field is calculated over all bits of the Address, Control,
  Protocol and Information fields not including any start and stop bits
  (asynchronous) and any bits (synchronous) or octets (asynchronous)
  inserted for transparency.  This does not include the Flag Sequences
  or the FCS field itself.  The FCS is transmitted with the coefficient
  of the highest term first.

     Note: When octets are received which are flagged in the Async-
     Control-Character-Map, they are discarded before calculating the
     FCS.  See the description in Appendix A.

  For more information on the specification of the FCS, see ISO 3309
  [2] or CCITT X.25 [6].

     Note: A fast, table-driven implementation of the 16-bit FCS
     algorithm is shown in Appendix B.  This implementation is based on
     [7], [8], and [9].

Modifications to the Basic Frame Format

  The Link Control Protocol can negotiate modifications to the standard
  PPP frame structure.  However, modified frames will always be clearly
  distinguishable from standard frames.







Simpson                                                         [Page 9]

RFC 1331                Point-to-Point Protocol                 May 1992


4.  PPP Link Operation

4.1.  Overview

  In order to establish communications over a point-to-point link, each
  end of the PPP link must first send LCP packets to configure and test
  the data link.  After the link has been established, the peer may be
  authenticated.  Then, PPP must send NCP packets to choose and
  configure one or more network-layer protocols.  Once each of the
  chosen network-layer protocols has been configured, datagrams from
  each network-layer protocol can be sent over the link.

  The link will remain configured for communications until explicit LCP
  or NCP packets close the link down, or until some external event
  occurs (an inactivity timer expires or network administrator
  intervention).

4.2.  Phase Diagram

  In the process of configuring, maintaining and terminating the
  point-to-point link, the PPP link goes through several distinct
  phases:

  +------+        +-----------+           +--------------+
  |      | UP     |           | OPENED    |              | SUCCESS/NONE
  | Dead |------->| Establish |---------->| Authenticate |--+
  |      |        |           |           |              |  |
  +------+        +-----------+           +--------------+  |
     ^          FAIL |                   FAIL |             |
     +<--------------+             +----------+             |
     |                             |                        |
     |            +-----------+    |           +---------+  |
     |       DOWN |           |    |   CLOSING |         |  |
     +------------| Terminate |<---+<----------| Network |<-+
                  |           |                |         |
                  +-----------+                +---------+

4.3.  Link Dead (physical-layer not ready)

  The link necessarily begins and ends with this phase.  When an
  external event (such as carrier detection or network administrator
  configuration) indicates that the physical-layer is ready to be used,
  PPP will proceed to the Link Establishment phase.

  During this phase, the LCP automaton (described below) will be in the
  Initial or Starting states.  The transition to the Link Establishment
  phase will signal an Up event to the automaton.




Simpson                                                        [Page 10]

RFC 1331                Point-to-Point Protocol                 May 1992


  Implementation Note:

     Typically, a link will return to this phase automatically after
     the disconnection of a modem.  In the case of a hard-wired line,
     this phase may be extremely short -- merely long enough to detect
     the presence of the device.

4.4.  Link Establishment Phase

  The Link Control Protocol (LCP) is used to establish the connection
  through an exchange of Configure packets.  This exchange is complete,
  and the LCP Opened state entered, once a Configure-Ack packet
  (described below) has been both sent and received.  Any non-LCP
  packets received during this phase MUST be silently discarded.

  All Configuration Options are assumed to be at default values unless
  altered by the configuration exchange.  See the section on LCP
  Configuration Options for further discussion.

  It is important to note that only Configuration Options which are
  independent of particular network-layer protocols are configured by
  LCP.  Configuration of individual network-layer protocols is handled
  by separate Network Control Protocols (NCPs) during the Network-Layer
  Protocol phase.

4.5.  Authentication Phase

  On some links it may be desirable to require a peer to authenticate
  itself before allowing network-layer protocol packets to be
  exchanged.

  By default, authentication is not necessary.  If an implementation
  requires that the peer authenticate with some specific authentication
  protocol, then it MUST negotiate the use of that authentication
  protocol during Link Establishment phase.

  Authentication SHOULD take place as soon as possible after link
  establishment.  However, link quality determination MAY occur
  concurrently.  An implementation MUST NOT allow the exchange of link
  quality determination packets to delay authentication indefinitely.

  Advancement from the Authentication phase to the Network-Layer
  Protocol phase MUST NOT occur until the peer is successfully
  authenticated using the negotiated authentication protocol.  In the
  event of failure to authenticate, PPP SHOULD proceed instead to the
  Link Termination phase.





Simpson                                                        [Page 11]

RFC 1331                Point-to-Point Protocol                 May 1992


4.6.  Network-Layer Protocol Phase

  Once PPP has finished the previous phases, each network-layer
  protocol (such as IP) MUST be separately configured by the
  appropriate Network Control Protocol (NCP).

  Each NCP may be Opened and Closed at any time.

  Implementation Note:

     Because an implementation may initially use a significant amount
     of time for link quality determination, implementations SHOULD
     avoid fixed timeouts when waiting for their peers to configure a
     NCP.

  After a NCP has reached the Opened state, PPP will carry the
  corresponding network-layer protocol packets.  Any network-layer
  protocol packets received when the corresponding NCP is not in the
  Opened state SHOULD be silently discarded.

  During this phase, link traffic consists of any possible combinations
  of LCP, NCP, and network-layer protocol packets.  Any NCP or
  network-layer protocol packets received during any other phase SHOULD
  be silently discarded.

  Implementation Note:

     There is an exception to the preceding paragraphs, due to the
     availability of the LCP Protocol-Reject (described below).  While
     LCP is in the Opened state, any protocol packet which is
     unsupported by the implementation MUST be returned in a Protocol-
     Reject.  Only supported protocols are silently discarded.

4.7.  Link Termination Phase

  PPP may terminate the link at any time.  This will usually be done at
  the request of a human user, but might happen because of a physical
  event such as the loss of carrier, authentication failure, link
  quality failure, or the expiration of an idle-period timer.

  LCP is used to close the link through an exchange of Terminate
  packets.  When the link is closing, PPP informs the network-layer
  protocols so that they may take appropriate action.

  After the exchange of Terminate packets, the implementation SHOULD
  signal the physical-layer to disconnect in order to enforce the
  termination of the link, particularly in the case of an
  authentication failure.  The sender of the Terminate-Request SHOULD



Simpson                                                        [Page 12]

RFC 1331                Point-to-Point Protocol                 May 1992


  disconnect after receiving a Terminate-Ack, or after the Restart
  counter expires.  The receiver of a Terminate-Request SHOULD wait for
  the peer to disconnect, and MUST NOT disconnect until at least one
  Restart time has passed after sending a Terminate-Ack.  PPP SHOULD
  proceed to the Link Dead phase.

  Implementation Note:

     The closing of the link by LCP is sufficient.  There is no need
     for each NCP to send a flurry of Terminate packets.  Conversely,
     the fact that a NCP has Closed is not sufficient reason to cause
     the termination of the PPP link, even if that NCP was the only
     currently NCP in the Opened state.






































Simpson                                                        [Page 13]

RFC 1331                Point-to-Point Protocol                 May 1992


5.  The Option Negotiation Automaton

  The finite-state automaton is defined by events, actions and state
  transitions.  Events include reception of external commands such as
  Open and Close, expiration of the Restart timer, and reception of
  packets from a peer.  Actions include the starting of the Restart
  timer and transmission of packets to the peer.

  Some types of packets -- Configure-Naks and Configure-Rejects, or
  Code-Rejects and Protocol-Rejects, or Echo-Requests, Echo-Replies and
  Discard-Requests -- are not differentiated in the automaton
  descriptions.  As will be described later, these packets do indeed
  serve different functions.  However, they always cause the same
  transitions.

  Events                                   Actions

  Up   = lower layer is Up                 tlu = This-Layer-Up
  Down = lower layer is Down               tld = This-Layer-Down
  Open = administrative Open               tls = This-Layer-Start
  Close= administrative Close              tlf = This-Layer-Finished

  TO+  = Timeout with counter > 0          irc = initialize restart
                                                 counter
  TO-  = Timeout with counter expired      zrc = zero restart counter

  RCR+ = Receive-Configure-Request (Good)  scr = Send-Configure-Request
  RCR- = Receive-Configure-Request (Bad)
  RCA  = Receive-Configure-Ack             sca = Send-Configure-Ack
  RCN  = Receive-Configure-Nak/Rej         scn = Send-Configure-Nak/Rej

  RTR  = Receive-Terminate-Request         str = Send-Terminate-Request
  RTA  = Receive-Terminate-Ack             sta = Send-Terminate-Ack

  RUC  = Receive-Unknown-Code              scj = Send-Code-Reject
  RXJ+ = Receive-Code-Reject (permitted)
      or Receive-Protocol-Reject
  RXJ- = Receive-Code-Reject (catastrophic)
      or Receive-Protocol-Reject
  RXR  = Receive-Echo-Request              ser = Send-Echo-Reply
      or Receive-Echo-Reply
      or Receive-Discard-Request
                                            -  = illegal action








Simpson                                                        [Page 14]

RFC 1331                Point-to-Point Protocol                 May 1992


5.1.  State Diagram

  The simplified state diagram which follows describes the sequence of
  events for reaching agreement on Configuration Options (opening the
  PPP link) and for later termination of the link.

     This diagram is not a complete representation of the automaton.
     Implementation MUST be done by consulting the actual state
     transition table.

  Events are in upper case.  Actions are in lower case.  For these
  purposes, the state machine is initially in the Closed state.  Once
  the Opened state has been reached, both ends of the link have met the
  requirement of having both sent and received a Configure-Ack packet.

                 RCR                    TO+
               +--sta-->+             +------->+
               |        |             |        |
         +-------+      |   RTA +-------+      | Close +-------+
         |       |<-----+<------|       |<-str-+<------|       |
         |Closed |              |Closing|              |Opened |
         |       | Open         |       |              |       |
         |       |------+       |       |              |       |
         +-------+      |       +-------+              +-------+
                        |                                ^
                        |                                |
                        |         +-sca----------------->+
                        |         |                      ^
                RCN,TO+ V    RCR+ |     RCR-         RCA |    RCN,TO+
               +------->+         |   +------->+         |   +--scr-->+
               |        |         |   |        |         |   |        |
         +-------+      |   TO+ +-------+      |       +-------+      |
         |       |<-scr-+<------|       |<-scn-+       |       |<-----+
         | Req-  |              | Ack-  |              | Ack-  |
         | Sent  | RCA          | Rcvd  |              | Sent  |
  +-scn->|       |------------->|       |       +-sca->|       |
  |      +-------+              +-------+       |      +-------+
  |   RCR- |   | RCR+                           |   RCR+ |   | RCR-
  |        |   +------------------------------->+<-------+   |
  |        |                                                 |
  +<-------+<------------------------------------------------+










Simpson                                                        [Page 15]

RFC 1331                Point-to-Point Protocol                 May 1992


5.2.  State Transition Table

  The complete state transition table follows.  States are indicated
  horizontally, and events are read vertically.  State transitions and
  actions are represented in the form action/new-state.  Multiple
  actions are separated by commas, and may continue on succeeding lines
  as space requires.  The state may be followed by a letter, which
  indicates an explanatory footnote.

  Rationale:

     In previous versions of this table, a simplified non-deterministic
     finite-state automaton was used, with considerable detailed
     information specified in the semantics.  This lead to
     interoperability problems from differing interpretations.

     This table functions similarly to the previous versions, with the
     up/down flags expanded to explicit states, and the active/passive
     paradigm eliminated.  It is believed that this table interoperates
     with previous versions better than those versions themselves.

     | State
     |    0         1         2         3         4         5
Events| Initial   Starting  Closed    Stopped   Closing   Stopping
------+-----------------------------------------------------------
Up   |    2     irc,scr/6     -         -         -         -
Down |    -         -         0       tls/1       0         1
Open |  tls/1       1     irc,scr/6     3r        5r        5r
Close|    0         0         2         2         4         4
     |
 TO+ |    -         -         -         -       str/4     str/5
 TO- |    -         -         -         -       tlf/2     tlf/3
     |
RCR+ |    -         -       sta/2 irc,scr,sca/8   4         5
RCR- |    -         -       sta/2 irc,scr,scn/6   4         5
RCA  |    -         -       sta/2     sta/3       4         5
RCN  |    -         -       sta/2     sta/3       4         5
     |
RTR  |    -         -       sta/2     sta/3     sta/4     sta/5
RTA  |    -         -         2         3       tlf/2     tlf/3
     |
RUC  |    -         -       scj/2     scj/3     scj/4     scj/5
RXJ+ |    -         -         2         3         4         5
RXJ- |    -         -       tlf/2     tlf/3     tlf/2     tlf/3
     |
RXR  |    -         -         2         3         4         5





Simpson                                                        [Page 16]

RFC 1331                Point-to-Point Protocol                 May 1992


     | State
     |    6         7         8           9
Events| Req-Sent  Ack-Rcvd  Ack-Sent    Opened
------+-----------------------------------------
Up   |    -         -         -           -
Down |    1         1         1         tld/1
Open |    6         7         8           9r
Close|irc,str/4 irc,str/4 irc,str/4 tld,irc,str/4
     |
 TO+ |  scr/6     scr/6     scr/8         -
 TO- |  tlf/3p    tlf/3p    tlf/3p        -
     |
RCR+ |  sca/8   sca,tlu/9   sca/8   tld,scr,sca/8
RCR- |  scn/6     scn/7     scn/6   tld,scr,scn/6
RCA  |  irc/7     scr/6x  irc,tlu/9   tld,scr/6x
RCN  |irc,scr/6   scr/6x  irc,scr/8   tld,scr/6x
     |
RTR  |  sta/6     sta/6     sta/6   tld,zrc,sta/5
RTA  |    6         6         8       tld,scr/6
     |
RUC  |  scj/6     scj/7     scj/8   tld,scj,scr/6
RXJ+ |    6         6         8           9
RXJ- |  tlf/3     tlf/3     tlf/3   tld,irc,str/5
     |
RXR  |    6         7         8         ser/9

  The states in which the Restart timer is running are identifiable by
  the presence of TO events.  Only the Send-Configure-Request, Send-
  Terminate-Request and Zero-Restart-Counter actions start or re-start
  the Restart timer.  The Restart timer SHOULD be stopped when
  transitioning from any state where the timer is running to a state
  where the timer is not running.


  [p]   Passive option; see Stopped state discussion.

  [r]   Restart option; see Open event discussion.

  [x]   Crossed connection; see RCA event discussion.












Simpson                                                        [Page 17]

RFC 1331                Point-to-Point Protocol                 May 1992


5.3.  States

  Following is a more detailed description of each automaton state.

  Initial

     In the Initial state, the lower layer is unavailable (Down), and
     no Open has occurred.  The Restart timer is not running in the
     Initial state.

  Starting

     The Starting state is the Open counterpart to the Initial state.
     An administrative Open has been initiated, but the lower layer is
     still unavailable (Down).  The Restart timer is not running in the
     Starting state.

     When the lower layer becomes available (Up), a Configure-Request
     is sent.

  Closed

     In the Closed state, the link is available (Up), but no Open has
     occurred.  The Restart timer is not running in the Closed state.

     Upon reception of Configure-Request packets, a Terminate-Ack is
     sent.  Terminate-Acks are silently discarded to avoid creating a
     loop.

  Stopped

     The Stopped state is the Open counterpart to the Closed state.  It
     is entered when the automaton is waiting for a Down event after
     the This-Layer-Finished action, or after sending a Terminate-Ack.
     The Restart timer is not running in the Stopped state.

     Upon reception of Configure-Request packets, an appropriate
     response is sent.  Upon reception of other packets, a Terminate-
     Ack is sent.  Terminate-Acks are silently discarded to avoid
     creating a loop.

     Rationale:

        The Stopped state is a junction state for link termination,
        link configuration failure, and other automaton failure modes.
        These potentially separate states have been combined.

        There is a race condition between the Down event response (from



Simpson                                                        [Page 18]

RFC 1331                Point-to-Point Protocol                 May 1992


        the This-Layer-Finished action) and the Receive-Configure-
        Request event.  When a Configure-Request arrives before the
        Down event, the Down event will supercede by returning the
        automaton to the Starting state.  This prevents attack by
        repetition.

     Implementation Option:

        After the peer fails to respond to Configure-Requests, an
        implementation MAY wait passively for the peer to send
        Configure-Requests.  In this case, the This-Layer-Finished
        action is not used for the TO- event in states Req-Sent, Ack-
        Rcvd and Ack-Sent.

        This option is useful for dedicated circuits, or circuits which
        have no status signals available, but SHOULD NOT be used for
        switched circuits.

  Closing

     In the Closing state, an attempt is made to terminate the
     connection.  A Terminate-Request has been sent and the Restart
     timer is running, but a Terminate-Ack has not yet been received.

     Upon reception of a Terminate-Ack, the Closed state is entered.
     Upon the expiration of the Restart timer, a new Terminate-Request
     is transmitted and the Restart timer is restarted.  After the
     Restart timer has expired Max-Terminate times, this action may be
     skipped, and the Closed state may be entered.

  Stopping

     The Stopping state is the Open counterpart to the Closing state.
     A Terminate-Request has been sent and the Restart timer is
     running, but a Terminate-Ack has not yet been received.

     Rationale:

        The Stopping state provides a well defined opportunity to
        terminate a link before allowing new traffic.  After the link
        has terminated, a new configuration may occur via the Stopped
        or Starting states.

  Request-Sent

     In the Request-Sent state an attempt is made to configure the
     connection.  A Configure-Request has been sent and the Restart
     timer is running, but a Configure-Ack has not yet been received



Simpson                                                        [Page 19]

RFC 1331                Point-to-Point Protocol                 May 1992


     nor has one been sent.

  Ack-Received

     In the Ack-Received state, a Configure-Request has been sent and a
     Configure-Ack has been received.  The Restart timer is still
     running since a Configure-Ack has not yet been sent.

  Ack-Sent

     In the Ack-Sent state, a Configure-Request and a Configure-Ack
     have both been sent but a Configure-Ack has not yet been received.
     The Restart timer is always running in the Ack-Sent state.

  Opened

     In the Opened state, a Configure-Ack has been both sent and
     received.  The Restart timer is not running in the Opened state.

     When entering the Opened state, the implementation SHOULD signal
     the upper layers that it is now Up.  Conversely, when leaving the
     Opened state, the implementation SHOULD signal the upper layers
     that it is now Down.

5.4.  Events

  Transitions and actions in the automaton are caused by events.

  Up

     The Up event occurs when a lower layer indicates that it is ready
     to carry packets.  Typically, this event is used to signal LCP
     that the link is entering Link Establishment phase, or used to
     signal a NCP that the link is entering Network-Layer Protocol
     phase.

  Down

     The Down event occurs when a lower layer indicates that it is no
     longer ready to carry packets.  Typically, this event is used to
     signal LCP that the link is entering Link Dead phase, or used to
     signal a NCP that the link is leaving Network-Layer Protocol
     phase.

  Open

     The Open event indicates that the link is administratively
     available for traffic; that is, the network administrator (human



Simpson                                                        [Page 20]

RFC 1331                Point-to-Point Protocol                 May 1992


     or program) has indicated that the link is allowed to be Opened.
     When this event occurs, and the link is not in the Opened state,
     the automaton attempts to send configuration packets to the peer.

     If the automaton is not able to begin configuration (the lower
     layer is Down, or a previous Close event has not completed), the
     establishment of the link is automatically delayed.

     When a Terminate-Request is received, or other events occur which
     cause the link to become unavailable, the automaton will progress
     to a state where the link is ready to re-open.  No additional
     administrative intervention should be necessary.

     Implementation Note:

        Experience has shown that users will execute an additional Open
        command when they want to renegotiate the link.  Since this is
        not the meaning of the Open event, it is suggested that when an
        Open user command is executed in the Opened, Closing, Stopping,
        or Stopped states, the implementation issue a Down event,
        immediately followed by an Up event.  This will cause the
        renegotiation of the link, without any harmful side effects.

  Close

     The Close event indicates that the link is not available for
     traffic; that is, the network administrator (human or program) has
     indicated that the link is not allowed to be Opened.  When this
     event occurs, and the link is not in the Closed state, the
     automaton attempts to terminate the connection.  Futher attempts
     to re-configure the link are denied until a new Open event occurs.

  Timeout (TO+,TO-)

     This event indicates the expiration of the Restart timer.  The
     Restart timer is used to time responses to Configure-Request and
     Terminate-Request packets.

     The TO+ event indicates that the Restart counter continues to be
     greater than zero, which triggers the corresponding Configure-
     Request or Terminate-Request packet to be retransmitted.

     The TO- event indicates that the Restart counter is not greater
     than zero, and no more packets need to be retransmitted.

  Receive-Configure-Request (RCR+,RCR-)

     This event occurs when a Configure-Request packet is received from



Simpson                                                        [Page 21]

RFC 1331                Point-to-Point Protocol                 May 1992


     the peer.  The Configure-Request packet indicates the desire to
     open a connection and may specify Configuration Options.  The
     Configure-Request packet is more fully described in a later
     section.

     The RCR+ event indicates that the Configure-Request was
     acceptable, and triggers the transmission of a corresponding
     Configure-Ack.

     The RCR- event indicates that the Configure-Request was
     unacceptable, and triggers the transmission of a corresponding
     Configure-Nak or Configure-Reject.

     Implementation Note:

        These events may occur on a connection which is already in the
        Opened state.  The implementation MUST be prepared to
        immediately renegotiate the Configuration Options.

  Receive-Configure-Ack (RCA)

     The Receive-Configure-Ack event occurs when a valid Configure-Ack
     packet is received from the peer.  The Configure-Ack packet is a
     positive response to a Configure-Request packet.  An out of
     sequence or otherwise invalid packet is silently discarded.

     Implementation Note:

        Since the correct packet has already been received before
        reaching the Ack-Rcvd or Opened states, it is extremely
        unlikely that another such packet will arrive.  As specified,
        all invalid Ack/Nak/Rej packets are silently discarded, and do
        not affect the transitions of the automaton.

        However, it is not impossible that a correctly formed packet
        will arrive through a coincidentally-timed cross-connection.
        It is more likely to be the result of an implementation error.
        At the very least, this occurance should be logged.

  Receive-Configure-Nak/Rej (RCN)

     This event occurs when a valid Configure-Nak or Configure-Reject
     packet is received from the peer.  The Configure-Nak and
     Configure-Reject packets are negative responses to a Configure-
     Request packet.  An out of sequence or otherwise invalid packet is
     silently discarded.





Simpson                                                        [Page 22]

RFC 1331                Point-to-Point Protocol                 May 1992


     Implementation Note:

        Although the Configure-Nak and Configure-Reject cause the same
        state transition in the automaton, these packets have
        significantly different effects on the Configuration Options
        sent in the resulting Configure-Request packet.

  Receive-Terminate-Request (RTR)

     The Receive-Terminate-Request event occurs when a Terminate-
     Request packet is received.  The Terminate-Request packet
     indicates the desire of the peer to close the connection.

     Implementation Note:

        This event is not identical to the Close event (see above), and
        does not override the Open commands of the local network
        administrator.  The implementation MUST be prepared to receive
        a new Configure-Request without network administrator
        intervention.

  Receive-Terminate-Ack (RTA)

     The Receive-Terminate-Ack event occurs when a Terminate-Ack packet
     is received from the peer.  The Terminate-Ack packet is usually a
     response to a Terminate-Request packet.  The Terminate-Ack packet
     may also indicate that the peer is in Closed or Stopped states,
     and serves to re-synchronize the link configuration.

  Receive-Unknown-Code (RUC)

     The Receive-Unknown-Code event occurs when an un-interpretable
     packet is received from the peer.  A Code-Reject packet is sent in
     response.

  Receive-Code-Reject, Receive-Protocol-Reject (RXJ+,RXJ-)

     This event occurs when a Code-Reject or a Protocol-Reject packet
     is received from the peer.

     The RXJ+ event arises when the rejected value is acceptable, such
     as a Code-Reject of an extended code, or a Protocol-Reject of a
     NCP.  These are within the scope of normal operation.  The
     implementation MUST stop sending the offending packet type.

     The RXJ- event arises when the rejected value is catastrophic,
     such as a Code-Reject of Configure-Request, or a Protocol-Reject
     of LCP!  This event communicates an unrecoverable error that



Simpson                                                        [Page 23]

RFC 1331                Point-to-Point Protocol                 May 1992


     terminates the connection.

  Receive-Echo-Request, Receive-Echo-Reply, Receive-Discard-Request
  (RXR)

     This event occurs when an Echo-Request, Echo-Reply or Discard-
     Request packet is received from the peer.  The Echo-Reply packet
     is a response to a Echo-Request packet.  There is no reply to an
     Echo-Reply or Discard-Request packet.

5.5.  Actions

  Actions in the automaton are caused by events and typically indicate
  the transmission of packets and/or the starting or stopping of the
  Restart timer.

  Illegal-Event (-)

     This indicates an event that SHOULD NOT occur.  The implementation
     probably has an internal error.

  This-Layer-Up (tlu)

     This action indicates to the upper layers that the automaton is
     entering the Opened state.

     Typically, this action MAY be used by the LCP to signal the Up
     event to a NCP, Authentication Protocol, or Link Quality Protocol,
     or MAY be used by a NCP to indicate that the link is available for
     its traffic.

  This-Layer-Down (tld)

     This action indicates to the upper layers that the automaton is
     leaving the Opened state.

     Typically, this action MAY be used by the LCP to signal the Down
     event to a NCP, Authentication Protocol, or Link Quality Protocol,
     or MAY be used by a NCP to indicate that the link is no longer
     available for its traffic.

  This-Layer-Start (tls)

     This action indicates to the lower layers that the automaton is
     entering the Starting state, and the lower layer is needed for the
     link.  The lower layer SHOULD respond with an Up event when the
     lower layer is available.




Simpson                                                        [Page 24]

RFC 1331                Point-to-Point Protocol                 May 1992


     This action is highly implementation dependent.

  This-Layer-Finished (tlf)

     This action indicates to the lower layers that the automaton is
     entering the Stopped or Closed states, and the lower layer is no
     longer needed for the link.  The lower layer SHOULD respond with a
     Down event when the lower layer has terminated.

     Typically, this action MAY be used by the LCP to advance to the
     Link Dead phase, or MAY be used by a NCP to indicate to the LCP
     that the link may terminate when there are no other NCPs open.

     This action is highly implementation dependent.

  Initialize-Restart-Counter (irc)

     This action sets the Restart counter to the appropriate value
     (Max-Terminate or Max-Configure).  The counter is decremented for
     each transmission, including the first.

  Zero-Restart-Counter (zrc)

     This action sets the Restart counter to zero.

     Implementation Note:

        This action enables the FSA to pause before proceeding to the
        desired final state.  In addition to zeroing the Restart
        counter, the implementation MUST set the timeout period to an
        appropriate value.

  Send-Configure-Request (scr)

     The Send-Configure-Request action transmits a Configure-Request
     packet.  This indicates the desire to open a connection with a
     specified set of Configuration Options.  The Restart timer is
     started when the Configure-Request packet is transmitted, to guard
     against packet loss.  The Restart counter is decremented each time
     a Configure-Request is sent.

  Send-Configure-Ack (sca)

     The Send-Configure-Ack action transmits a Configure-Ack packet.
     This acknowledges the reception of a Configure-Request packet with
     an acceptable set of Configuration Options.





Simpson                                                        [Page 25]

RFC 1331                Point-to-Point Protocol                 May 1992


  Send-Configure-Nak (scn)

     The Send-Configure-Nak action transmits a Configure-Nak or
     Configure-Reject packet, as appropriate.  This negative response
     reports the reception of a Configure-Request packet with an
     unacceptable set of Configuration Options.  Configure-Nak packets
     are used to refuse a Configuration Option value, and to suggest a
     new, acceptable value.  Configure-Reject packets are used to
     refuse all negotiation about a Configuration Option, typically
     because it is not recognized or implemented.  The use of
     Configure-Nak versus Configure-Reject is more fully described in
     the section on LCP Packet Formats.

  Send-Terminate-Request (str)

     The Send-Terminate-Request action transmits a Terminate-Request
     packet.  This indicates the desire to close a connection.  The
     Restart timer is started when the Terminate-Request packet is
     transmitted, to guard against packet loss.  The Restart counter is
     decremented each time a Terminate-Request is sent.

  Send-Terminate-Ack (sta)

     The Send-Terminate-Ack action transmits a Terminate-Ack packet.
     This acknowledges the reception of a Terminate-Request packet or
     otherwise serves to synchronize the state machines.

  Send-Code-Reject (scj)

     The Send-Code-Reject action transmits a Code-Reject packet.  This
     indicates the reception of an unknown type of packet.

  Send-Echo-Reply (ser)

     The Send-Echo-Reply action transmits an Echo-Reply packet.  This
     acknowledges the reception of an Echo-Request packet.

5.6.  Loop Avoidance

  The protocol makes a reasonable attempt at avoiding Configuration
  Option negotiation loops.  However, the protocol does NOT guarantee
  that loops will not happen.  As with any negotiation, it is possible
  to configure two PPP implementations with conflicting policies that
  will never converge.  It is also possible to configure policies which
  do converge, but which take significant time to do so.  Implementors
  should keep this in mind and should implement loop detection
  mechanisms or higher level timeouts.




Simpson                                                        [Page 26]

RFC 1331                Point-to-Point Protocol                 May 1992


5.7.  Counters and Timers

Restart Timer

  There is one special timer used by the automaton.  The Restart timer
  is used to time transmissions of Configure-Request and Terminate-
  Request packets.  Expiration of the Restart timer causes a Timeout
  event, and retransmission of the corresponding Configure-Request or
  Terminate-Request packet.  The Restart timer MUST be configurable,
  but MAY default to three (3) seconds.

  Implementation Note:

     The Restart timer SHOULD be based on the speed of the link.  The
     default value is designed for low speed (19,200 bps or less), high
     switching latency links (typical telephone lines).  Higher speed
     links, or links with low switching latency, SHOULD have
     correspondingly faster retransmission times.

Max-Terminate

  There is one required restart counter for Terminate-Requests.  Max-
  Terminate indicates the number of Terminate-Request packets sent
  without receiving a Terminate-Ack before assuming that the peer is
  unable to respond.  Max-Terminate MUST be configurable, but should
  default to two (2) transmissions.

Max-Configure

  A similar counter is recommended for Configure-Requests.  Max-
  Configure indicates the number of Configure-Request packets sent
  without receiving a valid Configure-Ack, Configure-Nak or Configure-
  Reject before assuming that the peer is unable to respond.  Max-
  Configure MUST be configurable, but should default to ten (10)
  transmissions.

Max-Failure

  A related counter is recommended for Configure-Nak.  Max-Failure
  indicates the number of Configure-Nak packets sent without sending a
  Configure-Ack before assuming that configuration is not converging.
  Any further Configure-Nak packets are converted to Configure-Reject
  packets.  Max-Failure MUST be configurable, but should default to ten
  (10) transmissions.







Simpson                                                        [Page 27]

RFC 1331                Point-to-Point Protocol                 May 1992


6.  LCP Packet Formats

  There are three classes of LCP packets:

     1. Link Configuration packets used to establish and configure a
        link (Configure-Request, Configure-Ack, Configure-Nak and
        Configure-Reject).

     2. Link Termination packets used to terminate a link (Terminate-
        Request and Terminate-Ack).

     3. Link Maintenance packets used to manage and debug a link
        (Code-Reject, Protocol-Reject, Echo-Request, Echo-Reply, and
        Discard-Request).

  This document describes Version 1 of the Link Control Protocol.  In
  the interest of simplicity, there is no version field in the LCP
  packet.  If a new version of LCP is necessary in the future, the
  intention is that a new Data Link Layer Protocol field value will be
  used to differentiate Version 1 LCP from all other versions.  A
  correctly functioning Version 1 LCP implementation will always
  respond to unknown Protocols (including other versions) with an
  easily recognizable Version 1 packet, thus providing a deterministic
  fallback mechanism for implementations of other versions.

  Regardless of which Configuration Options are enabled, all LCP Link
  Configuration, Link Termination, and Code-Reject packets (codes 1
  through 7) are always sent in the full, standard form, as if no
  Configuration Options were enabled.  This ensures that LCP
  Configure-Request packets are always recognizable even when one end
  of the link mistakenly believes the link to be open.

  Exactly one Link Control Protocol packet is encapsulated in the
  Information field of PPP Data Link Layer frames where the Protocol
  field indicates type hex c021 (Link Control Protocol).

  A summary of the Link Control Protocol packet format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+





Simpson                                                        [Page 28]

RFC 1331                Point-to-Point Protocol                 May 1992


  Code

     The Code field is one octet and identifies the kind of LCP packet.
     When a packet is received with an invalid Code field, a Code-
     Reject packet is transmitted.

     The most up-to-date values of the LCP Code field are specified in
     the most recent "Assigned Numbers" RFC [11].  Current values are
     assigned as follows:

        1       Configure-Request
        2       Configure-Ack
        3       Configure-Nak
        4       Configure-Reject
        5       Terminate-Request
        6       Terminate-Ack
        7       Code-Reject
        8       Protocol-Reject
        9       Echo-Request
        10      Echo-Reply
        11      Discard-Request
        12      RESERVED

  Identifier

     The Identifier field is one octet and aids in matching requests
     and replies.  When a packet is received with an invalid Identifier
     field, the packet is silently discarded.

  Length

     The Length field is two octets and indicates the length of the LCP
     packet including the Code, Identifier, Length and Data fields.
     Octets outside the range of the Length field should be treated as
     Data Link Layer padding and should be ignored on reception.  When
     a packet is received with an invalid Length field, the packet is
     silently discarded.

  Data

     The Data field is zero or more octets as indicated by the Length
     field.  The format of the Data field is determined by the Code
     field.








Simpson                                                        [Page 29]

RFC 1331                Point-to-Point Protocol                 May 1992


6.1.  Configure-Request

  Description

     A LCP implementation wishing to open a connection MUST transmit a
     LCP packet with the Code field set to 1 (Configure-Request) and
     the Options field filled with any desired changes to the default
     link Configuration Options.

     Upon reception of a Configure-Request, an appropriate reply MUST
     be transmitted.

  A summary of the Configure-Request packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Options ...
  +-+-+-+-+

  Code

     1 for Configure-Request.

  Identifier

     The Identifier field SHOULD be changed on each transmission.  On
     reception, the Identifier field should be copied into the
     Identifier field of the appropriate reply packet.

  Options

     The options field is variable in length and contains the list of
     zero or more Configuration Options that the sender desires to
     negotiate.  All Configuration Options are always negotiated
     simultaneously.  The format of Configuration Options is further
     described in a later section.











Simpson                                                        [Page 30]

RFC 1331                Point-to-Point Protocol                 May 1992


6.2.  Configure-Ack

  Description

     If every Configuration Option received in a Configure-Request is
     both recognizable and acceptable, then a LCP implementation should
     transmit a LCP packet with the Code field set to 2 (Configure-
     Ack), the Identifier field copied from the received Configure-
     Request, and the Options field copied from the received
     Configure-Request.  The acknowledged Configuration Options MUST
     NOT be reordered or modified in any way.

     On reception of a Configure-Ack, the Identifier field must match
     that of the last transmitted Configure-Request.  Additionally, the
     Configuration Options in a Configure-Ack must exactly match those
     of the last transmitted Configure-Request.  Invalid packets are
     silently discarded.

  A summary of the Configure-Ack packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Options ...
  +-+-+-+-+

  Code

     2 for Configure-Ack.

  Identifier

     The Identifier field is a copy of the Identifier field of the
     Configure-Request which caused this Configure-Ack.

  Options

     The Options field is variable in length and contains the list of
     zero or more Configuration Options that the sender is
     acknowledging.  All Configuration Options are always acknowledged
     simultaneously.







Simpson                                                        [Page 31]

RFC 1331                Point-to-Point Protocol                 May 1992


6.3.  Configure-Nak

  Description

     If every element of the received Configuration Options is
     recognizable but some are not acceptable, then a LCP
     implementation should transmit a LCP packet with the Code field
     set to 3 (Configure-Nak), the Identifier field copied from the
     received Configure-Request, and the Options field filled with only
     the unacceptable Configuration Options from the Configure-Request.
     All acceptable Configuration Options are filtered out of the
     Configure-Nak, but otherwise the Configuration Options from the
     Configure-Request MUST NOT be reordered.

     Each of the Nak'd Configuration Options MUST be modified to a
     value acceptable to the Configure-Nak sender.  Options which have
     no value fields (boolean options) use the Configure-Reject reply
     instead.

     Finally, an implementation may be configured to request the
     negotiation of a specific option.  If that option is not listed,
     then that option may be appended to the list of Nak'd
     Configuration Options in order to request the peer to list that
     option in its next Configure-Request packet.  Any value fields for
     the option MUST indicate values acceptable to the Configure-Nak
     sender.

     On reception of a Configure-Nak, the Identifier field must match
     that of the last transmitted Configure-Request.  Invalid packets
     are silently discarded.

     Reception of a valid Configure-Nak indicates that a new
     Configure-Request MAY be sent with the Configuration Options
     modified as specified in the Configure-Nak.

     Some Configuration Options have a variable length.  Since the
     Nak'd Option has been modified by the peer, the implementation
     MUST be able to handle an Option length which is different from
     the original Configure-Request.












Simpson                                                        [Page 32]

RFC 1331                Point-to-Point Protocol                 May 1992


  A summary of the Configure-Nak packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Options ...
  +-+-+-+-+

  Code

     3 for Configure-Nak.

  Identifier

     The Identifier field is a copy of the Identifier field of the
     Configure-Request which caused this Configure-Nak.

  Options

     The Options field is variable in length and contains the list of
     zero or more Configuration Options that the sender is Nak'ing.
     All Configuration Options are always Nak'd simultaneously.


6.4.  Configure-Reject

  Description

     If some Configuration Options received in a Configure-Request are
     not recognizable or are not acceptable for negotiation (as
     configured by a network administrator), then a LCP implementation
     should transmit a LCP packet with the Code field set to 4
     (Configure-Reject), the Identifier field copied from the received
     Configure-Request, and the Options field filled with only the
     unacceptable Configuration Options from the Configure-Request.
     All recognizable and negotiable Configuration Options are filtered
     out of the Configure-Reject, but otherwise the Configuration
     Options MUST NOT be reordered or modified in any way.

     On reception of a Configure-Reject, the Identifier field must
     match that of the last transmitted Configure-Request.
     Additionally, the Configuration Options in a Configure-Reject must
     be a proper subset of those in the last transmitted Configure-
     Request.  Invalid packets are silently discarded.




Simpson                                                        [Page 33]

RFC 1331                Point-to-Point Protocol                 May 1992


     Reception of a valid Configure-Reject indicates that a new
     Configure-Request SHOULD be sent which does not include any of the
     Configuration Options listed in the Configure-Reject.

  A summary of the Configure-Reject packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Options ...
  +-+-+-+-+

  Code

     4 for Configure-Reject.

  Identifier

     The Identifier field is a copy of the Identifier field of the
     Configure-Request which caused this Configure-Reject.

  Options

     The Options field is variable in length and contains the list of
     zero or more Configuration Options that the sender is rejecting.
     All Configuration Options are always rejected simultaneously.






















Simpson                                                        [Page 34]

RFC 1331                Point-to-Point Protocol                 May 1992


6.5.  Terminate-Request and Terminate-Ack

  Description

     LCP includes Terminate-Request and Terminate-Ack Codes in order to
     provide a mechanism for closing a connection.

     A LCP implementation wishing to close a connection should transmit
     a LCP packet with the Code field set to 5 (Terminate-Request) and
     the Data field filled with any desired data.  Terminate-Request
     packets should continue to be sent until Terminate-Ack is
     received, the lower layer indicates that it has gone down, or a
     sufficiently large number have been transmitted such that the peer
     is down with reasonable certainty.

     Upon reception of a Terminate-Request, a LCP packet MUST be
     transmitted with the Code field set to 6 (Terminate-Ack), the
     Identifier field copied from the Terminate-Request packet, and the
     Data field filled with any desired data.

     Reception of an unelicited Terminate-Ack indicates that the peer
     is in the Closed or Stopped states, or is otherwise in need of
     re-negotiation.

  A summary of the Terminate-Request and Terminate-Ack packet formats
  is shown below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+

  Code

     5 for Terminate-Request;

     6 for Terminate-Ack.

  Identifier

     The Identifier field is one octet and aids in matching requests
     and replies.






Simpson                                                        [Page 35]

RFC 1331                Point-to-Point Protocol                 May 1992


  Data

     The Data field is zero or more octets and contains uninterpreted
     data for use by the sender.  The data may consist of any binary
     value and may be of any length from zero to the peer's established
     maximum Information field length minus four.


6.6.  Code-Reject

  Description

     Reception of a LCP packet with an unknown Code indicates that one
     of the communicating LCP implementations is faulty or incomplete.
     This error MUST be reported back to the sender of the unknown Code
     by transmitting a LCP packet with the Code field set to 7 (Code-
     Reject), and the inducing packet copied to the Rejected-
     Information field.

     Upon reception of a Code-Reject, the implementation SHOULD report
     the error, since it is unlikely that the situation can be
     rectified automatically.

  A summary of the Code-Reject packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Rejected-Packet ...
  +-+-+-+-+-+-+-+-+

  Code

     7 for Code-Reject.

  Identifier

     The Identifier field is one octet and is for use by the
     transmitter.

  Rejected-Information

     The Rejected-Information field contains a copy of the LCP packet
     which is being rejected.  It begins with the Information field,
     and does not include any PPP Data Link Layer headers nor the FCS.



Simpson                                                        [Page 36]

RFC 1331                Point-to-Point Protocol                 May 1992


     The Rejected-Information MUST be truncated to comply with the
     peer's established maximum Information field length.

















































Simpson                                                        [Page 37]

RFC 1331                Point-to-Point Protocol                 May 1992


6.7.  Protocol-Reject

  Description

     Reception of a PPP frame with an unknown Data Link Layer Protocol
     indicates that the peer is attempting to use a protocol which is
     unsupported.  This usually occurs when the peer attempts to
     configure a new protocol.  If the LCP state machine is in the
     Opened state, then this error MUST be reported back to the peer by
     transmitting a LCP packet with the Code field set to 8 (Protocol-
     Reject), the Rejected-Protocol field set to the received Protocol,
     and the inducing packet copied to the Rejected-Information field.

     Upon reception of a Protocol-Reject, a LCP implementation SHOULD
     stop transmitting frames of the indicated protocol.

     Protocol-Reject packets may only be sent in the LCP Opened state.
     Protocol-Reject packets received in any state other than the LCP
     Opened state SHOULD be silently discarded.

  A summary of the Protocol-Reject packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Rejected-Protocol       |      Rejected-Information ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Code

     8 for Protocol-Reject.

  Identifier

     The Identifier field is one octet and is for use by the
     transmitter.

  Rejected-Protocol

     The Rejected-Protocol field is two octets and contains the
     Protocol of the Data Link Layer frame which is being rejected.

  Rejected-Information

     The Rejected-Information field contains a copy from the frame



Simpson                                                        [Page 38]

RFC 1331                Point-to-Point Protocol                 May 1992


     which is being rejected.  It begins with the Information field,
     and does not include any PPP Data Link Layer headers nor the FCS.
     The Rejected-Information MUST be truncated to comply with the
     peer's established maximum Information field length.


6.8.  Echo-Request and Echo-Reply

  Description

     LCP includes Echo-Request and Echo-Reply Codes in order to provide
     a Data Link Layer loopback mechanism for use in exercising both
     directions of the link.  This is useful as an aid in debugging,
     link quality determination, performance testing, and for numerous
     other functions.

     An Echo-Request sender transmits a LCP packet with the Code field
     set to 9 (Echo-Request), the Identifier field set, the local
     Magic-Number inserted, and the Data field filled with any desired
     data, up to but not exceeding the peer's established maximum
     Information field length minus eight.

     Upon reception of an Echo-Request, a LCP packet MUST be
     transmitted with the Code field set to 10 (Echo-Reply), the
     Identifier field copied from the received Echo-Request, the local
     Magic-Number inserted, and the Data field copied from the Echo-
     Request, truncating as necessary to avoid exceeding the peer's
     established maximum Information field length.

     Echo-Request and Echo-Reply packets may only be sent in the LCP
     Opened state.  Echo-Request and Echo-Reply packets received in any
     state other than the LCP Opened state SHOULD be silently
     discarded.

  A summary of the Echo-Request and Echo-Reply packet formats is shown
  below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Magic-Number                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+





Simpson                                                        [Page 39]

RFC 1331                Point-to-Point Protocol                 May 1992


  Code

     9 for Echo-Request;

     10 for Echo-Reply.

  Identifier

     The Identifier field is one octet and aids in matching Echo-
     Requests and Echo-Replies.

  Magic-Number

     The Magic-Number field is four octets and aids in detecting links
     which are in the looped-back condition.  Unless modified by a
     Configuration Option, the Magic-Number MUST be transmitted as zero
     and MUST be ignored on reception.  See the Magic-Number
     Configuration Option for further explanation.

  Data

     The Data field is zero or more octets and contains uninterpreted
     data for use by the sender.  The data may consist of any binary
     value and may be of any length from zero to the peer's established
     maximum Information field length minus eight.


6.9.  Discard-Request

  Description

     LCP includes a Discard-Request Code in order to provide a Data
     Link Layer data sink mechanism for use in exercising the local to
     remote direction of the link.  This is useful as an aid in
     debugging, performance testing, and for numerous other functions.

     A discard sender transmits a LCP packet with the Code field set to
     11 (Discard-Request) the Identifier field set, the local Magic-
     Number inserted, and the Data field filled with any desired data,
     up to but not exceeding the peer's established maximum Information
     field length minus eight.

     A discard receiver MUST simply throw away an Discard-Request that
     it receives.

     Discard-Request packets may only be sent in the LCP Opened state.





Simpson                                                        [Page 40]

RFC 1331                Point-to-Point Protocol                 May 1992


  A summary of the Discard-Request packet formats is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Magic-Number                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+

  Code

     11 for Discard-Request.

  Identifier

     The Identifier field is one octet and is for use by the Discard-
     Request transmitter.

  Magic-Number

     The Magic-Number field is four octets and aids in detecting links
     which are in the looped-back condition.  Unless modified by a
     configuration option, the Magic-Number MUST be transmitted as zero
     and MUST be ignored on reception.  See the Magic-Number
     Configuration Option for further explanation.

  Data

     The Data field is zero or more octets and contains uninterpreted
     data for use by the sender.  The data may consist of any binary
     value and may be of any length from zero to the peer's established
     maximum Information field length minus four.















Simpson                                                        [Page 41]

RFC 1331                Point-to-Point Protocol                 May 1992


7.  LCP Configuration Options

  LCP Configuration Options allow modifications to the standard
  characteristics of a point-to-point link to be negotiated.
  Negotiable modifications include such things as the maximum receive
  unit, async control character mapping, the link authentication
  method, etc.  If a Configuration Option is not included in a
  Configure-Request packet, the default value for that Configuration
  Option is assumed.

  The end of the list of Configuration Options is indicated by the
  length of the LCP packet.

  Unless otherwise specified, each Configuration Option is not listed
  more than once in a Configuration Options list.  Some Configuration
  Options MAY be listed more than once.  The effect of this is
  Configuration Option specific and is specified by each such
  Configuration Option.

  Also unless otherwise specified, all Configuration Options apply in a
  half-duplex fashion.  When negotiated, they apply to only one
  direction of the link, typically in the receive direction when
  interpreted from the point of view of the Configure-Request sender.




























Simpson                                                        [Page 42]

RFC 1331                Point-to-Point Protocol                 May 1992


7.1.  Format

  A summary of the Configuration Option format is shown below.  The
  fields are transmitted from left to right.

   0                   1
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |    Data ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     The Type field is one octet and indicates the type of
     Configuration Option.  The most up-to-date values of the LCP
     Option Type field are specified in the most recent "Assigned
     Numbers" RFC [11].  Current values are assigned as follows:

        1       Maximum-Receive-Unit
        2       Async-Control-Character-Map
        3       Authentication-Protocol
        4       Quality-Protocol
        5       Magic-Number
        6       RESERVED
        7       Protocol-Field-Compression
        8       Address-and-Control-Field-Compression

  Length

     The Length field is one octet and indicates the length of this
     Configuration Option including the Type, Length and Data fields.
     If a negotiable Configuration Option is received in a Configure-
     Request but with an invalid Length, a Configure-Nak SHOULD be
     transmitted which includes the desired Configuration Option with
     an appropriate Length and Data.

  Data

     The Data field is zero or more octets and indicates the value or
     other information for this Configuration Option.  The format and
     length of the Data field is determined by the Type and Length
     fields.









Simpson                                                        [Page 43]

RFC 1331                Point-to-Point Protocol                 May 1992


7.2.  Maximum-Receive-Unit

  Description

     This Configuration Option may be sent to inform the peer that the
     implementation can receive larger frames, or to request that the
     peer send smaller frames.  If smaller frames are requested, an
     implementation MUST still be able to receive 1500 octet frames in
     case link synchronization is lost.

  A summary of the Maximum-Receive-Unit Configuration Option format is
  shown below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |      Maximum-Receive-Unit     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     1

  Length

     4

  Maximum-Receive-Unit

     The Maximum-Receive-Unit field is two octets and indicates the new
     maximum receive unit.  The Maximum-Receive-Unit covers only the
     Data Link Layer Information field.  It does not include the
     header, padding, FCS, nor any transparency bits or bytes.

  Default

     1500














Simpson                                                        [Page 44]

RFC 1331                Point-to-Point Protocol                 May 1992


7.3.  Async-Control-Character-Map

  Description

     This Configuration Option provides a way to negotiate the use of
     control character mapping on asynchronous links.  By default, PPP
     maps all control characters into an appropriate two character
     sequence.  However, it is rarely necessary to map all control
     characters and often it is unnecessary to map any characters.  A
     PPP implementation may use this Configuration Option to inform the
     peer which control characters must remain mapped and which control
     characters need not remain mapped when the peer sends them.  The
     peer may still send these control characters in mapped format if
     it is necessary because of constraints at the peer.

     There may be some use of synchronous-to-asynchronous converters
     (some built into modems) in Point-to-Point links resulting in a
     synchronous PPP implementation on one end of a link and an
     asynchronous implementation on the other.  It is the
     responsibility of the converter to do all mapping conversions
     during operation.  To enable this functionality, synchronous PPP
     implementations MUST always accept a Async-Control-Character-Map
     Configuration Option (it MUST always respond to an LCP Configure-
     Request specifying this Configuration Option with an LCP
     Configure-Ack).  However, acceptance of this Configuration Option
     does not imply that the synchronous implementation will do any
     character mapping, since synchronous PPP uses bit-stuffing rather
     than character-stuffing.  Instead, all such character mapping will
     be performed by the asynchronous-to-synchronous converter.

  A summary of the Async-Control-Character-Map Configuration Option
  format is shown below.  The fields are transmitted from left to
  right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |  Async-Control-Character-Map
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            ACCM (cont)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     2






Simpson                                                        [Page 45]

RFC 1331                Point-to-Point Protocol                 May 1992


  Length

     6

  Async-Control-Character-Map

     The Async-Control-Character-Map field is four octets and indicates
     the new async control character map.  The map is encoded in big-
     endian fashion where each numbered bit corresponds to the ASCII
     control character of the same value.  If the bit is cleared to
     zero, then that ASCII control character need not be mapped.  If
     the bit is set to one, then that ASCII control character must
     remain mapped.  E.g., if bit 19 is set to zero, then the ASCII
     control character 19 (DC3, Control-S) may be sent in the clear.

        Note: The bit ordering of the map is as described in section
        3.1, Most Significant Bit to Least Significant Bit.  The least
        significant bit of the least significant octet (the final octet
        transmitted) is numbered bit 0, and would map to the ASCII
        control character NUL.

  Default

     All ones (0xffffffff).



























Simpson                                                        [Page 46]

RFC 1331                Point-to-Point Protocol                 May 1992


7.4.  Authentication-Protocol

  Description

     On some links it may be desirable to require a peer to
     authenticate itself before allowing network-layer protocol packets
     to be exchanged.  This Configuration Option provides a way to
     negotiate the use of a specific authentication protocol.  By
     default, authentication is not necessary.

     An implementation SHOULD NOT include multiple Authentication-
     Protocol Configuration Options in its Configure-Request packets.
     Instead, it SHOULD attempt to configure the most desirable
     protocol first.  If that protocol is Rejected, then the
     implementation could attempt the next most desirable protocol in
     the next Configure-Request.

     An implementation receiving a Configure-Request specifying
     Authentication-Protocols MAY choose at most one of the negotiable
     authentication protocols and MUST send a Configure-Reject
     including the other specified authentication protocols.  The
     implementation MAY reject all of the proposed authentication
     protocols.

     If an implementation sends a Configure-Ack with this Configuration
     Option, then it is agreeing to authenticate with the specified
     protocol.  An implementation receiving a Configure-Ack with this
     Configuration Option SHOULD expect the peer to authenticate with
     the acknowledged protocol.

     There is no requirement that authentication be full duplex or that
     the same protocol be used in both directions.  It is perfectly
     acceptable for different protocols to be used in each direction.
     This will, of course, depend on the specific protocols negotiated.

  A summary of the Authentication-Protocol Configuration Option format
  is shown below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |     Authentication-Protocol   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+






Simpson                                                        [Page 47]

RFC 1331                Point-to-Point Protocol                 May 1992


  Type

     3

  Length

     >= 4

  Authentication-Protocol

     The Authentication-Protocol field is two octets and indicates the
     authentication protocol desired.  Values for this field are always
     the same as the PPP Data Link Layer Protocol field values for that
     same authentication protocol.

     The most up-to-date values of the Authentication-Protocol field
     are specified in the most recent "Assigned Numbers" RFC [11].
     Current values are assigned as follows:

        Value (in hex)          Protocol

        c023                    Password Authentication Protocol
        c223                    Challenge Handshake Authentication
                                Protocol

  Data

     The Data field is zero or more octets and contains additional data
     as determined by the particular protocol.

Default

  No authentication protocol necessary.


















Simpson                                                        [Page 48]

RFC 1331                Point-to-Point Protocol                 May 1992


7.5.  Quality-Protocol

  Description

     On some links it may be desirable to determine when, and how
     often, the link is dropping data.  This process is called link
     quality monitoring.

     This Configuration Option provides a way to negotiate the use of a
     specific protocol for link quality monitoring.  By default, link
     quality monitoring is disabled.

     There is no requirement that quality monitoring be full duplex or
     that the same protocol be used in both directions.  It is
     perfectly acceptable for different protocols to be used in each
     direction.  This will, of course, depend on the specific protocols
     negotiated.

  A summary of the Quality-Protocol Configuration Option format is
  shown below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |        Quality-Protocol       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+

  Type

     4

  Length

     >= 4

  Quality-Protocol

     The Quality-Protocol field is two octets and indicates the link
     quality monitoring protocol desired.  Values for this field are
     always the same as the PPP Data Link Layer Protocol field values
     for that same monitoring protocol.

     The most up-to-date values of the Quality-Protocol field are
     specified in the most recent "Assigned Numbers" RFC [11].  Current
     values are assigned as follows:




Simpson                                                        [Page 49]

RFC 1331                Point-to-Point Protocol                 May 1992


        Value (in hex)          Protocol

        c025                    Link Quality Report

  Data

     The Data field is zero or more octets and contains additional data
     as determined by the particular protocol.

  Default

     None







































Simpson                                                        [Page 50]

RFC 1331                Point-to-Point Protocol                 May 1992


7.6.  Magic-Number

  Description

     This Configuration Option provides a way to detect looped-back
     links and other Data Link Layer anomalies.  This Configuration
     Option MAY be required by some other Configuration Options such as
     the Monitoring-Protocol Configuration Option.

     Before this Configuration Option is requested, an implementation
     must choose its Magic-Number.  It is recommended that the Magic-
     Number be chosen in the most random manner possible in order to
     guarantee with very high probability that an implementation will
     arrive at a unique number.  A good way to choose a unique random
     number is to start with an unique seed.  Suggested sources of
     uniqueness include machine serial numbers, other network hardware
     addresses, time-of-day clocks, etc.  Particularly good random
     number seeds are precise measurements of the inter-arrival time of
     physical events such as packet reception on other connected
     networks, server response time, or the typing rate of a human
     user.  It is also suggested that as many sources as possible be
     used simultaneously.

     When a Configure-Request is received with a Magic-Number
     Configuration Option, the received Magic-Number is compared with
     the Magic-Number of the last Configure-Request sent to the peer.
     If the two Magic-Numbers are different, then the link is not
     looped-back, and the Magic-Number should be acknowledged.  If the
     two Magic-Numbers are equal, then it is possible, but not certain,
     that the link is looped-back and that this Configure-Request is
     actually the one last sent.  To determine this, a Configure-Nak
     should be sent specifying a different Magic-Number value.  A new
     Configure-Request should not be sent to the peer until normal
     processing would cause it to be sent (i.e., until a Configure-Nak
     is received or the Restart timer runs out).

     Reception of a Configure-Nak with a Magic-Number different from
     that of the last Configure-Nak sent to the peer proves that a link
     is not looped-back, and indicates a unique Magic-Number.  If the
     Magic-Number is equal to the one sent in the last Configure-Nak,
     the possibility of a looped-back link is increased, and a new
     Magic-Number should be chosen.  In either case, a new Configure-
     Request should be sent with the new Magic-Number.

     If the link is indeed looped-back, this sequence (transmit
     Configure-Request, receive Configure-Request, transmit Configure-
     Nak, receive Configure-Nak) will repeat over and over again.  If
     the link is not looped-back, this sequence might occur a few



Simpson                                                        [Page 51]

RFC 1331                Point-to-Point Protocol                 May 1992


     times, but it is extremely unlikely to occur repeatedly.  More
     likely, the Magic-Numbers chosen at either end will quickly
     diverge, terminating the sequence.  The following table shows the
     probability of collisions assuming that both ends of the link
     select Magic-Numbers with a perfectly uniform distribution:

        Number of Collisions        Probability
        --------------------   ---------------------
                1              1/2**32    = 2.3 E-10
                2              1/2**32**2 = 5.4 E-20
                3              1/2**32**3 = 1.3 E-29

     Good sources of uniqueness or randomness are required for this
     divergence to occur.  If a good source of uniqueness cannot be
     found, it is recommended that this Configuration Option not be
     enabled; Configure-Requests with the option SHOULD NOT be
     transmitted and any Magic-Number Configuration Options which the
     peer sends SHOULD be either acknowledged or rejected.  In this
     case, loop-backs cannot be reliably detected by the
     implementation, although they may still be detectable by the peer.

     If an implementation does transmit a Configure-Request with a
     Magic-Number Configuration Option, then it MUST NOT respond with a
     Configure-Reject if its peer also transmits a Configure-Request
     with a Magic-Number Configuration Option.  That is, if an
     implementation desires to use Magic Numbers, then it MUST also
     allow its peer to do so.  If an implementation does receive a
     Configure-Reject in response to a Configure-Request, it can only
     mean that the link is not looped-back, and that its peer will not
     be using Magic-Numbers.  In this case, an implementation should
     act as if the negotiation had been successful (as if it had
     instead received a Configure-Ack).

     The Magic-Number also may be used to detect looped-back links
     during normal operation as well as during Configuration Option
     negotiation.  All LCP Echo-Request, Echo-Reply, and Discard-
     Request packets have a Magic-Number field which MUST normally be
     zero, and MUST normally be ignored on reception.  If Magic-Number
     has been successfully negotiated, an implementation MUST transmit
     these packets with the Magic-Number field set to its negotiated
     Magic-Number.

     The Magic-Number field of these packets SHOULD be inspected on
     reception.  All received Magic-Number fields MUST be equal to
     either zero or the peer's unique Magic-Number, depending on
     whether or not the peer negotiated one.

     Reception of a Magic-Number field equal to the negotiated local



Simpson                                                        [Page 52]

RFC 1331                Point-to-Point Protocol                 May 1992


     Magic-Number indicates a looped-back link.  Reception of a Magic-
     Number other than the negotiated local Magic-Number or the peer's
     negotiated Magic-Number, or zero if the peer didn't negotiate one,
     indicates a link which has been (mis)configured for communications
     with a different peer.

     Procedures for recovery from either case are unspecified and may
     vary from implementation to implementation.  A somewhat
     pessimistic procedure is to assume a LCP Down event.  A further
     Open event will begin the process of re-establishing the link,
     which can't complete until the loop-back condition is terminated
     and Magic-Numbers are successfully negotiated.  A more optimistic
     procedure (in the case of a loop-back) is to begin transmitting
     LCP Echo-Request packets until an appropriate Echo-Reply is
     received, indicating a termination of the loop-back condition.

  A summary of the Magic-Number Configuration Option format is shown
  below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |          Magic-Number
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        Magic-Number (cont)       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     5

  Length

     6

  Magic-Number

     The Magic-Number field is four octets and indicates a number which
     is very likely to be unique to one end of the link.  A Magic-
     Number of zero is illegal and MUST always be Nak'd, if it is not
     Rejected outright.

  Default

     None.






Simpson                                                        [Page 53]

RFC 1331                Point-to-Point Protocol                 May 1992


7.7.  Protocol-Field-Compression

  Description

     This Configuration Option provides a way to negotiate the
     compression of the Data Link Layer Protocol field.  By default,
     all implementations MUST transmit standard PPP frames with two
     octet Protocol fields.  However, PPP Protocol field numbers are
     chosen such that some values may be compressed into a single octet
     form which is clearly distinguishable from the two octet form.
     This Configuration Option is sent to inform the peer that the
     implementation can receive such single octet Protocol fields.
     Compressed Protocol fields MUST NOT be transmitted unless this
     Configuration Option has been negotiated.

     As previously mentioned, the Protocol field uses an extension
     mechanism consistent with the ISO 3309 extension mechanism for the
     Address field; the Least Significant Bit (LSB) of each octet is
     used to indicate extension of the Protocol field.  A binary "0" as
     the LSB indicates that the Protocol field continues with the
     following octet.  The presence of a binary "1" as the LSB marks
     the last octet of the Protocol field.  Notice that any number of
     "0" octets may be prepended to the field, and will still indicate
     the same value (consider the two representations for 3, 00000011
     and 00000000 00000011).

     In the interest of simplicity, the standard PPP frame uses this
     fact and always sends Protocol fields with a two octet
     representation.  Protocol field values less than 256 (decimal) are
     prepended with a single zero octet even though transmission of
     this, the zero and most significant octet, is unnecessary.

     However, when using low speed links, it is desirable to conserve
     bandwidth by sending as little redundant data as possible.  The
     Protocol Compression Configuration Option allows a trade-off
     between implementation simplicity and bandwidth efficiency.  If
     successfully negotiated, the ISO 3309 extension mechanism may be
     used to compress the Protocol field to one octet instead of two.
     The large majority of frames are compressible since data protocols
     are typically assigned with Protocol field values less than 256.

     In addition, PPP implementations must continue to be robust and
     MUST accept PPP frames with either double-octet or single-octet
     Protocol fields, and MUST NOT distinguish between them.

     The Protocol field is never compressed when sending any LCP
     packet.  This rule guarantees unambiguous recognition of LCP
     packets.



Simpson                                                        [Page 54]

RFC 1331                Point-to-Point Protocol                 May 1992


     When a Protocol field is compressed, the Data Link Layer FCS field
     is calculated on the compressed frame, not the original
     uncompressed frame.

  A summary of the Protocol-Field-Compression Configuration Option
  format is shown below.  The fields are transmitted from left to
  right.

   0                   1
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     7

  Length

     2

  Default

     Disabled.


























Simpson                                                        [Page 55]

RFC 1331                Point-to-Point Protocol                 May 1992


7.8.  Address-and-Control-Field-Compression

  Description

     This Configuration Option provides a way to negotiate the
     compression of the Data Link Layer Address and Control fields.  By
     default, all implementations MUST transmit frames with Address and
     Control fields and MUST use the hexadecimal values 0xff and 0x03
     respectively.  Since these fields have constant values, they are
     easily compressed.  This Configuration Option is sent to inform
     the peer that the implementation can receive compressed Address
     and Control fields.

     Compressed Address and Control fields are formed by simply
     omitting them.  By definition the first octet of a two octet
     Protocol field will never be 0xff, and the Protocol field value
     0x00ff is not allowed (reserved) to avoid ambiguity.

     On reception, the Address and Control fields are decompressed by
     examining the first two octets.  If they contain the values 0xff
     and 0x03, they are assumed to be the Address and Control fields.
     If not, it is assumed that the fields were compressed and were not
     transmitted.

     If a compressed frame is received when Address-and-Control-Field-
     Compression has not been negotiated, the implementation MAY
     silently discard the frame.

     The Address and Control fields MUST NOT be compressed when sending
     any LCP packet.  This rule guarantees unambiguous recognition of
     LCP packets.

     When the Address and Control fields are compressed, the Data Link
     Layer FCS field is calculated on the compressed frame, not the
     original uncompressed frame.

  A summary of the Address-and-Control-Field-Compression configuration
  option format is shown below.  The fields are transmitted from left
  to right.

   0                   1
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Simpson                                                        [Page 56]

RFC 1331                Point-to-Point Protocol                 May 1992


  Type

     8

  Length

     2

  Default

     Not compressed.








































Simpson                                                        [Page 57]

RFC 1331                Point-to-Point Protocol                 May 1992


A.  Asynchronous HDLC

  This appendix summarizes the modifications to ISO 3309-1979 proposed
  in ISO 3309:1984/PDAD1, as applied in the Point-to-Point Protocol.
  These modifications allow HDLC to be used with 8-bit asynchronous
  links.

  Transmission Considerations

     All octets are transmitted with one start bit, eight bits of data,
     and one stop bit.  There is no provision in either PPP or ISO
     3309:1984/PDAD1 for seven bit asynchronous links.

  Flag Sequence

     The Flag Sequence is a single octet and indicates the beginning or
     end of a frame.  The Flag Sequence consists of the binary sequence
     01111110 (hexadecimal 0x7e).

  Transparency

     On asynchronous links, a character stuffing procedure is used.
     The Control Escape octet is defined as binary 01111101
     (hexadecimal 0x7d) where the bit positions are numbered 87654321
     (not 76543210, BEWARE).

     After FCS computation, the transmitter examines the entire frame
     between the two Flag Sequences.  Each Flag Sequence, Control
     Escape octet and octet with value less than hexadecimal 0x20 which
     is flagged in the Remote Async-Control-Character-Map is replaced
     by a two octet sequence consisting of the Control Escape octet and
     the original octet with bit 6 complemented (i.e., exclusive-or'd
     with hexadecimal 0x20).

     Prior to FCS computation, the receiver examines the entire frame
     between the two Flag Sequences.  Each octet with value less than
     hexadecimal 0x20 is checked.  If it is flagged in the Local
     Async-Control-Character-Map, it is simply removed (it may have
     been inserted by intervening data communications equipment).  For
     each Control Escape octet, that octet is also removed, but bit 6
     of the following octet is complemented.  A Control Escape octet
     immediately preceding the closing Flag Sequence indicates an
     invalid frame.

        Note: The inclusion of all octets less than hexadecimal 0x20
        allows all ASCII control characters [10] excluding DEL (Delete)
        to be transparently communicated through almost all known data
        communications equipment.



Simpson                                                        [Page 58]

RFC 1331                Point-to-Point Protocol                 May 1992


     The transmitter may also send octets with value in the range 0x40
     through 0xff (except 0x5e) in Control Escape format.  Since these
     octet values are not negotiable, this does not solve the problem
     of receivers which cannot handle all non-control characters.
     Also, since the technique does not affect the 8th bit, this does
     not solve problems for communications links that can send only 7-
     bit characters.

     A few examples may make this more clear.  Packet data is
     transmitted on the link as follows:

        0x7e is encoded as 0x7d, 0x5e.
        0x7d is encoded as 0x7d, 0x5d.
        0x01 is encoded as 0x7d, 0x21.

     Some modems with software flow control may intercept outgoing DC1
     and DC3 ignoring the 8th (parity) bit.  This data would be
     transmitted on the link as follows:

        0x11 is encoded as 0x7d, 0x31.
        0x13 is encoded as 0x7d, 0x33.
        0x91 is encoded as 0x7d, 0xb1.
        0x93 is encoded as 0x7d, 0xb3.

  Aborting a Transmission

     On asynchronous links, frames may be aborted by transmitting a "0"
     stop bit where a "1" bit is expected (framing error) or by
     transmitting a Control Escape octet followed immediately by a
     closing Flag Sequence.

  Time Fill

     On asynchronous links, inter-octet and inter-frame time fill MUST
     be accomplished by transmitting continuous "1" bits (mark-hold
     state).

        Note: On asynchronous links, inter-frame time fill can be
        viewed as extended inter-octet time fill.  Doing so can save
        one octet for every frame, decreasing delay and increasing
        bandwidth.  This is possible since a Flag Sequence may serve as
        both a frame close and a frame begin.  After having received
        any frame, an idle receiver will always be in a frame begin
        state.

        Robust transmitters should avoid using this trick over-
        zealously since the price for decreased delay is decreased
        reliability.  Noisy links may cause the receiver to receive



Simpson                                                        [Page 59]

RFC 1331                Point-to-Point Protocol                 May 1992


        garbage characters and interpret them as part of an incoming
        frame.  If the transmitter does not transmit a new opening Flag
        Sequence before sending the next frame, then that frame will be
        appended to the noise characters causing an invalid frame (with
        high reliability).  Transmitters should avoid this by
        transmitting an open Flag Sequence whenever "appreciable time"
        has elapsed since the prior closing Flag Sequence.  It is
        suggested that implementations will achieve the best results by
        always sending an opening Flag Sequence if the new frame is not
        back-to-back with the last.  The maximum value for "appreciable
        time" is likely to be no greater than the typing rate of a slow
        to average typist, say 1 second.







































Simpson                                                        [Page 60]

RFC 1331                Point-to-Point Protocol                 May 1992


B.  Fast Frame Check Sequence (FCS) Implementation

B.1.  FCS Computation Method

  The following code provides a table lookup computation for
  calculating the Frame Check Sequence as data arrives at the
  interface.  This implementation is based on [7], [8], and [9].  The
  table is created by the code in section B.2.

  /*
   * u16 represents an unsigned 16-bit number.  Adjust the typedef for
   * your hardware.
   */
  typedef unsigned short u16;


  /*
   * FCS lookup table as calculated by the table generator in section
   * B.2.
   */
  static u16 fcstab[256] = {
     0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
     0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
     0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
     0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
     0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
     0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
     0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
     0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
     0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
     0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
     0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
     0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
     0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
     0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
     0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
     0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
     0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
     0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
     0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
     0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
     0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
     0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
     0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
     0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
     0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
     0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
     0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,



Simpson                                                        [Page 61]

RFC 1331                Point-to-Point Protocol                 May 1992


     0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
     0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
     0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
     0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
     0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
  };

  #define PPPINITFCS      0xffff  /* Initial FCS value */
  #define PPPGOODFCS      0xf0b8  /* Good final FCS value */

  /*
   * Calculate a new fcs given the current fcs and the new data.
   */
  u16 pppfcs(fcs, cp, len)
      register u16 fcs;
      register unsigned char *cp;
      register int len;
  {
      ASSERT(sizeof (u16) == 2);
      ASSERT(((u16) -1) > 0);
      while (len--)
          fcs = (fcs >> 8) ^ fcstab[(fcs ^ *cp++) & 0xff];

      return (fcs);
  }


























Simpson                                                        [Page 62]

RFC 1331                Point-to-Point Protocol                 May 1992


B.2.  Fast FCS table generator

  The following code creates the lookup table used to calculate the
  FCS.

  /*
   * Generate a FCS table for the HDLC FCS.
   *
   * Drew D. Perkins at Carnegie Mellon University.
   *
   * Code liberally borrowed from Mohsen Banan and D. Hugh Redelmeier.
   */

  /*
   * The HDLC polynomial: x**0 + x**5 + x**12 + x**16 (0x8408).
   */
  #define P       0x8408


  main()
  {
      register unsigned int b, v;
      register int i;

      printf("typedef unsigned short u16;\n");
      printf("static u16 fcstab[256] = {");
      for (b = 0; ; ) {
          if (b % 8 == 0)
              printf("\n");

          v = b;
          for (i = 8; i--; )
              v = v & 1 ? (v >> 1) ^ P : v >> 1;

          printf("0x%04x", v & 0xFFFF);
          if (++b == 256)
              break;
          printf(",");
      }
      printf("\n};\n");
  }










Simpson                                                        [Page 63]

RFC 1331                Point-to-Point Protocol                 May 1992


C.  LCP Recommended Options

  The following Configurations Options are recommended:

     SYNC LINES

     Magic Number
     Link Quality Monitoring
     No Address and Control Field Compression
     No Protocol Field Compression


     ASYNC LINES

     Async Control Character Map
     Magic Number
     Address and Control Field Compression
     Protocol Field Compression

































Simpson                                                        [Page 64]

RFC 1331                Point-to-Point Protocol                 May 1992


Security Considerations

  Security issues are briefly discussed in sections concerning the
  Authentication Phase, and the Authentication-Protocol Configuration
  Option.  Further discussion is planned in a separate document
  entitled PPP Authentication Protocols.

References

  [1]   Electronic Industries Association, EIA Standard RS-232-C,
        "Interface Between Data Terminal Equipment and Data
        Communications Equipment Employing Serial Binary Data
        Interchange", August 1969.

  [2]   International Organization For Standardization, ISO Standard
        3309-1979, "Data communication - High-level data link control
        procedures - Frame structure", 1979.

  [3]   International Organization For Standardization, ISO Standard
        4335-1979, "Data communication - High-level data link control
        procedures - Elements of procedures", 1979.

  [4]   International Organization For Standardization, ISO Standard
        4335-1979/Addendum 1, "Data communication - High-level data
        link control procedures - Elements of procedures - Addendum 1",
        1979.

  [5]   International Organization For Standardization, Proposed Draft
        International Standard ISO 3309:1983/PDAD1, "Information
        processing systems - Data communication - High-level data link
        control procedures - Frame structure - Addendum 1: Start/stop
        transmission", 1984.

  [6]   International Telecommunication Union, CCITT Recommendation
        X.25, "Interface Between Data Terminal Equipment (DTE) and Data
        Circuit Terminating Equipment (DCE) for Terminals Operating in
        the Packet Mode on Public Data Networks", CCITT Red Book,
        Volume VIII, Fascicle VIII.3, Rec. X.25., October 1984.

  [7]   Perez, "Byte-wise CRC Calculations", IEEE Micro, June, 1983.

  [8]   Morse, G., "Calculating CRC's by Bits and Bytes", Byte,
        September 1986.

  [9]   LeVan, J., "A Fast CRC", Byte, November 1987.

  [10]  American National Standards Institute, ANSI X3.4-1977,
        "American National Standard Code for Information Interchange",



Simpson                                                        [Page 65]

RFC 1331                Point-to-Point Protocol                 May 1992


        1977.

  [11]  Reynolds, J., and J. Postel, "Assigned Numbers", RFC 1060,
        USC/Information Sciences Institute, March 1990.

Acknowledgments

  Much of the text in this document is taken from the WG Requirements
  (unpublished), and RFCs 1171 & 1172, by Drew Perkins of Carnegie
  Mellon University, and by Russ Hobby of the University of California
  at Davis.

  Many people spent significant time helping to develop the Point-to-
  Point Protocol.  The complete list of people is too numerous to list,
  but the following people deserve special thanks: Rick Adams (UUNET),
  Ken Adelman (TGV), Fred Baker (ACC), Mike Ballard (Telebit), Craig
  Fox (NSC), Karl Fox (Morning Star Technologies), Phill Gross (NRI),
  former WG chair Russ Hobby (UC Davis), David Kaufman (Proteon),
  former WG chair Steve Knowles (FTP Software), John LoVerso
  (Xylogics), Bill Melohn (Sun Microsystems), Mike Patton (MIT), former
  WG chair Drew Perkins (CMU), Greg Satz (cisco systems) and Asher
  Waldfogel (Wellfleet).

Chair's Address

  The working group can be contacted via the current chair:

     Brian Lloyd
     Lloyd & Associates
     3420 Sudbury Road
     Cameron Park, California 95682

     Phone: (916) 676-1147

     EMail: [email protected]


Author's Address

  Questions about this memo can also be directed to:

     William Allen Simpson
     Daydreamer
     Computer Systems Consulting Services
     P O Box 6205
     East Lansing, MI  48826-6025

     EMail: [email protected]



Simpson                                                        [Page 66]