Network Working Group                                           P. Kuehn
Request for Comments: 1329                                      May 1992


      Thoughts on Address Resolution for Dual MAC FDDI Networks

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard.  Distribution of this memo is
  unlimited.

1. Abstract

  In this document an idea is submitted how IP and ARP can be used on
  inhomogeneous FDDI networks (FDDI networks with single MAC and dual
  MAC stations) by introducing a new protocol layer in the protocol
  suite of the dual MAC stations.  Thus two dual MAC stations are able
  to do a load splitting across the two rings and use the double
  bandwidth of 200 Mbits/s as single MAC stations.  The new layer is an
  extension of layer 3.  For the user, the higher layer protocols, IP
  and ARP the property "dual MAC" is transparent.  No modification is
  required in the protocol suite of single MAC stations and transparent
  bridges.

2. Acknowledgements

  This paper is a result of a diploma thesis prepared at the Technical
  University of Munich, Lehrstuhl fuer Kommunikationsnetze, in co-
  operation with the Siemens Nixdorf AG.  The author would like to
  thank Jrg Eberspher and Bernhard Edmaier from the university, Andreas
  Thimmel and Jens Horstmeier from the SNI AG at Augsburg for the
  helpful comments and discussions.

3. Conventions

  Primary MAC, P-MAC           MAC, placed on the primary ring
  Secondary MAC, S-MAC         MAC, placed on the secondary ring
  Inhomogeneous ring           configuration of a dual FDDI ring with
                               single MAC and dual MAC stations

  DMARP                        Dual MAC Address Resolution Protocol

4. Assumptions

  When a dual FDDI ring wraps, both MACs in a dual MAC station are
  assumed to remain connected to the ring.  ANSI is just investigating
  whether the Configuration Management in the Station Management of a



Kuehn                                                           [Page 1]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


  FDDI station can be modified to allow this.  According to the FDDI
  SMT standard [1], different addresses are required for all MACs on
  the primary and the secondary ring.

  In this paper, the MAC in a single MAC station is assumed to reside
  on the primary ring.  The application of single MAC stations which
  have their MAC attached to the secondary ring is not precluded, but
  therefor additional connectivity between the two rings is required.
  These configurations are beyond the scope of this document.

5. The Application of Transparent Bridges

  Transparent bridges can provide links to other 802 LANs or further
  inhomogeneous FDDI rings.  The connection between two inhomogeneous
  FDDI rings can be realized by one or two transparent bridges. When
  two transparent bridges are used, one transparent bridge links the
  primary rings, the other the secondary rings.  If two secondary rings
  are connected by a transparent bridge, a path of transparent bridges
  must exist between the two primary rings.  No transparent bridges are
  allowed between the primary and the secondary ring.

6. Protocol Layers in Single MAC Stations

  The new protocol layer, named load sharing layer, is drafted to be
  introduced only in dual MAC stations.  In single MAC stations, IP and
  ARP are working on top of the Subnetwork Access Protocol (SNAP) 04]
  and the Logical Link Control protocol (802.2 LLC) [3].  LLC type 1 is
  used because connectionless services are investigated only.























Kuehn                                                           [Page 2]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


     +--------------------------+
     |   IP                     |
     +--------------------------+
     +--------------------------+
     |   ARP                    |
     +--------------------------+
      |             |
      | ARP frames  | IP frames
      |             |
     +--------------------------+
     |   SNAP                   |
     +--------------------------+
     +--------------------------+
     |   LLC                    |
     +--------------------------+
     +--------------------------++-------+
     |   FDDI-MAC               || F     |
     +--------------------------+| D  S  |
     +--------------------------+| D  M  |
     |   FDDI PHY and PMD       || I  T  |
     +--------------------------++-------+

  For the ARP layer, the following model is assumed:
  +-------------------------------------------------------X-----------+
  |  - ARP entity -                                       |           |
  |                                                       | IP frames |
  | +----------------+   +----------------+ read          |           |
  | | Cache          |   |                | entries +-------------+   |
  | | Administration |->-|  Address Cache |------>--| Address     |   |
  | +----------------+   |                |         | Conversion  |   |
  |     |                +----------------+         | Unit        |   |
  |     | ARP frames                                +-------------+   |
  |     |                                               / |           |
  |     | ___________ <- ARP requests _________________/  | IP frames |
  |     |/                                                |           |
  +-----X-------------------------------------------------X-----------+

  The Address Conversion Unit handles the actual conversion of IP
  addresses to hardware addresses.  For this purpose, it uses the
  information in the ARP cache.  The cache administration communicates
  with other ARP entities by ARP and creates, deletes and renews the
  entries in the cache.

7. Protocol Layers in Dual MAC Stations

  The load sharing layer provides the same interface to ARP as SNAP
  does.  To exchange information about addresses and reachability, the
  load sharing entities in dual MAC stations communicate with the Dual



Kuehn                                                           [Page 3]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


  MAC Address Resolution Protocol (DMARP).  For the transmission of
  DMARP frames the SNAP SAP of LLC is used, as for IP and ARP, too.
  The Organizationally Unique Identifier (OUI) in the SNAP header is
  set to zero (24 bit), the EtherType field (16 bit) contains a new
  number indicating DMARP, which is not defined yet.

  +---------------------------------------------------------+
  |                         IP                              |
  +---------------------------------------------------------+
  +---------------------------------------------------------+
  |                         ARP                             |
  +---------------------------------------------------------+
            | ARP frames                 | IP frames
  +---------------------------------------------------------+
  |                 Load Sharing Layer                      |
  +---------------------------------------------------------+
   |        |        |          |        |        |
   | ARP    | DMARP  | IP       | ARP    | DMARP  | IP
   | frames | frames | frames   | frames | frames | frames
   |        |        |          |        |        |
  +-------------------------+  +----------------------------+
  |   SNAP 1                |  |    SNAP 2                  |
  +-------------------------+  +----------------------------+
  +-------------------------+  +----------------------------+
  |   LLC 1                 |  |    LLC 2                   |
  +-------------------------+  +----------------------------+
  +-------------------------+  +----------------------------++-------+
  |   Primary MAC           |  |    Secondary MAC           || F     |
  +-------------------------+  +----------------------------+| D  S  |
  +---------------------------------------------------------+| D  M  |
  |                  FDDI PHY and PMD                       || I  T  |
  +---------------------------------------------------------++-------+

8. Running Inhomogeneous FDDI Rings

8.1. Exchange of Primary MAC Addresses between Stations

  IP and higher layer protocols only use the network independent IP
  addresses.  The ARP entity takes upon the conversion of an IP address
  to the appropriate hardware address.  To make the property dual MAC"
  transparent, ARP may only know the addresses of MACs on the primary
  ring. Therefore, the load sharing entity always delivers ARP frames
  to SNAP 1 for transmission.  By this way, communication with ARP is
  done over the primary ring in normal state.  A secondary MAC can
  receive an ARP frame when the dual ring is wrapped and the
  destination hardware address is a multicast or broadcast address.
  These frames will be discarded because they were received twice.




Kuehn                                                           [Page 4]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


  By this way, the associations of IP addresses to primary MAC
  addresses for the single MAC and dual MAC stations are stored in the
  ARP cache.  The ARP cache contains no secondary MAC addresses.

8.2. Exchange of Secondary MAC Addresses between Dual MAC Stations

  The load sharing layer needs to know the secondary MAC addresses of
  the other dual MAC stations.  The DMARP is used to get these
  addresses.  Whenever the load sharing entity delivers an ARP frame to
  SNAP 1, a DMARP reply frame will be sent on the secondary ring,
  containing the stations primary and secondary MAC address. The
  destination hardware address in this DMARP frame is the broadcast MAC
  address, the EtherType field in the SNAP header identifies DMARP.
  The IP destination address is copied from the ARP frame.  If the ARP
  frame that was transmitted parallel to the DMARP reply was a request,
  an ARP reply frame will be sent back to the sending station by the
  ARP entity in the receiving station. When the load sharing layer in
  the receiving station delivers this ARP reply frame to SNAP 1, it
  sends a DMARP reply frame on the secondary ring.

  By this way, DMARP exchanges the additionally required secondary MAC
  addresses between the dual MAC stations.  This is done parallel to
  the exchange of the ARP frames.

8.3. Communication of Dual MAC Stations on Different Dual FDDI Rings

  If two inhomogeneous dual FDDI rings are connected by one transparent
  bridge, dual MAC stations placed on different dual FDDI rings cannot
  perform a load sharing.  If both dual FDDI rings remain in normal
  state, no DMARP reply frames get from one secondary ring to the other
  secondary ring.  A dual MAC station realizes another dual MAC station
  placed on the other dual ring as a single MAC station, because it
  only receives ARP frames from it.  If one of the dual rings is
  wrapped, a DMARP reply frame can get on the primary ring of the other
  dual ring.  A target station on the unwrapped ring receives this
  DMARP frame by the primary MAC and the load sharing entity stores the
  contained addresses in an entry in the address cache.  This entry is
  marked with a control bit, named the OR-bit Other ring bit").  No
  load sharing will be done with a station related to an entry with the
  OR-bit set.

  If both dual FDDI rings are wrapped, the MACs of all stations reside
  on one ring.  Now, dual MAC stations placed on different dual rings
  can communicate with DMARP.  If a DMARP reply frame is received by
  the primary MAC and no entry exists for the sending station, a new
  entry with OR-Bit set will be created.  Otherwise, the OR-bit will be
  set in the existing entry.  If a DMARP reply frame is received by the
  secondary MAC and an entry with OR-bit set already exists for the



Kuehn                                                           [Page 5]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


  sending station, the bit will not be reset.

  This mechanism provides that no load sharing will be done between
  Dual MAC stations on different dual rings if the dual rings are
  linked with one transparent bridge.  An additional DMARP error frame
  is used to provide against errors when a DMARP reply frame gets lost
  on the ring.

8.4. Timeout of Entries Marked with OR-Bit Set

  If a FDDI ring is wrapped, the DMARP reply frames are received by the
  primary and secondary MACs of the target dual MAC stations.  In that
  case, the entries for dual MAC stations on the same dual ring are
  also marked with the OR-bit, although the load sharing is possible
  between these stations.

  When an OR-bit in an entry is set for the first time, a timer entity
  is started. If the timer entity runs out, a DMARP request frame is
  sent over SNAP 2 to the secondary MAC of the associated target)
  station.  Then the entry will be discarded.

  If the request cannot be received by the target station because the
  network configuration has changed, there is no entry in the address
  cache for this station any more and no load sharing is computed.  If
  the target station receives the DMARP request frame, it sends back a
  DMARP reply frame.

8.5. Problems with the Application of Large FDDI Networks

  With an increasing number of dual FDDI rings, each one linked
  together by two transparent bridges, the probability increases, that
  one of these inhomogeneous dual FDDI rings is wrapped in the moment
  when two dual MAC stations exchange ARP frames and DMARP replies.

  If two dual MAC stations are communicating for the first time, the
  probability decreases that a load sharing is really computed after
  the exchange of DMARP replies, although this would be possible
  according to the network configuration.  It relies upon the fact,
  that DMARP replies get to the primary ring over the wrapped dual ring
  and only entries marked with the OR-bit set are created. To solve
  this problem further expedients are invented:

  At first, entries in the address cache can be marked read-only by the
  setting of the R-bit.  In dual MAC stations, entries can be written
  manually for other dual MAC stations that are frequently talked to or
  that have a special importance.  The control bits of these entries
  cannot be changed by DMARP.




Kuehn                                                           [Page 6]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


  Next, additional control bits are introduced.  One of these bits is
  the Hold-bit (H-bit). When two dual MAC stations exchange ARP frames
  and DMARP replies to create entries in their address caches, one
  station starts sending a DMARP reply, first.  According to the
  network state, it sends an additional DMARP error frame, a moment
  later.  Within a maximum period of time (see "Configuring the Timer
  Parameters"), all frames arrive at the neighbour station and are
  received by the primary and/or secondary MAC.  If the OR-bit was not
  set for an entry within this period of time, it is clear, that no
  further DMARP frames will be received, which result in setting the
  OR-bit.  For such an entry the H-bit is set.  As the reception of
  reply and error frames is not sufficient for setting the OR-bit when
  the H-bit is set, the load sharing is assumed to be sure.  The
  correctness of the H-bit will be verified in relatively long time
  periods by queries (query and hold frames) at the station associated.

  For two communicating stations there exists a possibility to get
  information from a third station.  Always, when the OR-bit is set for
  an entry in a dual MAC station, a search frame is transmitted by the
  secondary MAC, containing the own primary MAC address and the primary
  MAC address of the counter station.  If a third station can compute a
  sure load sharing with both stations (the H-bit is set for the
  associated entries), the stations can perform a load sharing between
  them, too.  The third station informs these stations by sending found
  frames to them.

8.6. Multicast and Broadcast Addresses in IP Frames

  If the destination hardware address of an IP frame is a multicast or
  broadcast hardware address, the frame is always delivered to SNAP 1
  and sent on the primary ring, because one of the addressed stations
  could be a single MAC station.  IP frames which are delivered to the
  load sharing entity by SNAP 2 are discarded by the load sharing
  entity.  Thus, the duplication of these frames can be prevented.

9. Internal Structure

  One load Sharing entity exists in the load sharing layer.  This load
  sharing entity consists of the address cache, the cache
  administration and the multiplexer.











Kuehn                                                           [Page 7]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


  to ARP                                                     to ARP
  +----X----------------------------------------------------X--------+
  |    |                                                   | IP      |
  |    | ARP frames                            read        | frames  |
  |    |                                       entries     |         |
  | +----------------------------+   +---------+       +----------+  |
  | | Cache Administration       |->-| Address |---->--|  Multi-  |  |
  | +----------------------------|->-| Cache   |       |  plexer  |  |
  |  |        |        |        |    +---------+       |          |  |
  |  |        |        |        |                      +----------+  |
  |  | ARP    | DMARP  | ARP    | DMARP                |        |    |
  |  | frames | frames | frames | frames            IP |     IP |    |
  |  |        |        |        |               frames | frames |    |
  |  |        |        |        |                      |        |    |
  +--X--------X--------X--------X-----------------------X--------X---+
  to SNAP 1         to SNAP 2                    to SNAP 1   to SNAP 2

9.1. The Address Cache

  In the address cache, the associations of primary MAC addresses to
  secondary MAC addresses are stored for other dual MAC stations on the
  network.  There are no entries for single MAC stations.

  Because the OR- and the LS-bit (see table) always have inverted
  values, one of the bits is redundant.  Afterwards the examination of
  an entry state gets easier by the introduction of both bits, they are
  defined together.  The ARP is able to support other protocol address
  formats than the IP format.  To support this ARP property by DMARP,
  the protocol type number as used in the ARP frames is stored in every
  entry of the address cache.  So, a dual MAC station is able to
  communicate with another station with DMARP, even if the other
  station does not use IP.  The numbers used in DMARP frames and the
  address cache for the protocol type and the address length are taken
  over from ARP.

  name               length     comment
  --------------------------------------------------------------------

  P-MAC address      48 bit     Address of the primary MAC
                                in an other dual MAC station

  S-MAC address      48 bit     Address of the secondary MAC
                                in that station

  LS-bit             1 bit      A load sharing can be performed
                                with that station
                                ("Load sharing bit")




Kuehn                                                           [Page 8]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


  OR-bit             1 bit      No load sharing may be done
                                with that station
                                ("Other ring bit")

  H-bit              1 bit      The load sharing with that
                                station is trusty.
                                ("Hold bit")

  Q-bit              1 bit      A query frame was sent to that
                                station, no hold frame was
                                received yet ("Query bit")

  R-bit              1 bit      This entry cannot be changed by
                                DMARP ("Read-only bit")

  V-bit              1 bit      The entry is valid
                                ("Valid bit")

  subscript          32 bit     Unique number, identifying this
                                entry

  protocol type      16 bit     Number of the protocol type
                                that was last used in that
                                station

9.2. The Multiplexer

  The multiplexer deals with multiplexing the IP frames upon the two
  FDDI rings.  Broadcast and multicast frames are always sent on the
  primary ring.  Otherwise, the contents of the address cache and a load
  sharing criteria are used to decide on which of the rings an IP frame
  has to be transmitted.  If there is no entry for the primary MAC
  address of the destination station in the cache, the IP frame is
  transmitted on the primary ring.  If there is an entry for the
  destination station and the LS-bit is set, a load sharing can be done
  with this station.  Later on a load sharing criteria, which is beyond
  the scope of this document, decides, which one of the rings is used
  for transmission.  An example for a load sharing criteria is the
  length of the transmit queues in the MACs.  The multiplexer requires an
  abstract function only, which returns the appropriate ring for the
  transmission of an actual IP frame.

  Additionally, the multiplexer filters the received IP frames:
  multicast or broadcast frames received from the secondary MAC are
  discarded.






Kuehn                                                           [Page 9]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


9.3. The Cache Administration

  The cache administration creates and deletes the entries in the
  address cache.  For this purpose, it communicates with other load
  sharing entities in other dual MAC stations with the DMARP.  The
  cache administration handles the delivery of ARP frames to the ARP
  and the SNAP entity in the station, respectively.

  The cache administration needs three timers for the communication with
  the DMARP, which have to be supported by the system environment.  Each
  of these timers must support a timer entity for each entry in the
  address cache, whereby a single one is running at a time.

  Supported timer services:

     TIMER_request(time, name, subscript)
     TIMER_response(name, subscript)
     TIMER_cancel(name, subscript):

  A timer entity is started by the service TIMER_request and cancelled
  by the TIMER_cancel service request. The TIMER_response service
  indicates that a timer entity has run out.  The parameter name is the
  name of a timer: OR-Entry-Timer, Hold-Timer, or Query-Timer.  Each
  entry in the address cache is uniquely identified by a number
  subscript).  This number is also the number of an associated timer
  entity.  How to dispose these numbers is a question of
  implementation.  The parameter time determines the time period when
  the timer runs out.  This parameter has the value OR-set-timeout for
  the OR-Entry-Timer, Hold-time for the Hold-Timer and Query-time for
  the Query-Timer.

9.4. Configuring the Timer Parameters

  The OR-set-timeout parameter for the OR-Entry-Timer

     The period of time, determined by this parameter, should be
     essentially longer than the maximum time for a frame to travel
     around the entire network.  The expression entire network means
     the network which is constituted by the subnetworks linked
     together with transparent bridges.  When entries with OR-bit set
     are created continuously for a dual MAC station by the timeout
     mechanism, this parameter determines the periods of time between
     the consecutive requests that are sent to this station.  If the
     state of the dual FDDI ring changes and an entry with LS-bit set
     could be created, this parameter additionally determines the
     maximum time until the new entry is created.  (If an entry could
     not be created by transmission of search frames.)  Therefore, the
     OR-set-timeout parameter should be set to some 10 seconds.



Kuehn                                                          [Page 10]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


  The Hold-time parameter for the Hold-Timer

     The period of time, determined by this parameter, should as well
     be essentially longer than the maximum time for a frame to travel
     around the entire network.  When two stations communicate for the
     first time, they exchange ARP frames and DMARP replies.  The
     Hold-time parameter determines the period of time until the load
     sharing is assumed to be accomplished after the setting of the
     LS-bit.  In this period of time, the frames mentioned above must
     have reached its destination.  If an entry would be marked with
     the H-bit incorrectly, the time until it gets corrected will be
     relatively long (Query time).  Proposed dimension: several
     minutes.

  The Query-time parameter for the Query-Timer

     When an entry is marked with LS- and H-bit it is assumed, that
     load sharing can be performed with the associated station.  To
     allow the correction of a wrong value of the H-bit, the
     correctness of the H-bit is tested in periods of time, determined
     by the parameter Query-time.  It is tested whether a frame is
     received, which was sent by the secondary MAC to the secondary MAC
     address of the target station.  (The target station acknowledges
     the reception of the query frame by a hold frame.)  To limit the
     traffic caused by the query and hold frames, the parameter Query-
     time should be set to several minutes.

9.5. Format of DMARP Frames

  fieldname            length            comment
  --------------------------------------------------------------------

  hardware type        16 bit            1 = "ethernet"

  protocol type        16 bit            2048D = "Internet
                                         Protocol"

  length of hardware   8 bit             Value in octets,
  addresses                              6 for 48 bit MAC addresses

  length of protocol   8 bit             Value in octets,
  addresses                              4 for Internet addresses

  operation            16 bit            1: "reply"
                                         2: "request"
                                         3: "error"
                                         4: "search"
                                         5: "found"



Kuehn                                                          [Page 11]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


                                         6: "query"
                                         7: "hold"

  1. hardware address  ... octets

  2. hardware address  ... octets

  protocol address     ... octets
  sender

  protocol address     ... octets
  receiver

  --------------------------------------------------------------------

  The value for the field "protocol type" is the same as in ARP frames.

9.6. Contents of DMARP Frames

  In the following tables of DMARP frames, the fields containing the
  length and type of protocol and hardware addresses are omitted.

  Format:

  +-------------------------------------------------------------+
  | Operation | 1. hardware | 2. hardware | protocol | protocol |
  |           | address     |    address  | address  | address  |
  |           |             |             | sender   | receiver |
  +-------------------------------------------------------------+

  Operation = 1 (reply), 2 (request), 3 (error):
  +-----------------------------------------------------------------+
  | Operation | P-MAC address | S-MAC address | protocol | protocol |
  |           | sender        | sender        | address  | address  |
  |           |               |               | sender   | receiver |
  +-----------------------------------------------------------------+

  +-------------------------------------------------------------------+
  | Operation=4 | P-MAC        | P-MAC address | protocol | broadcast |
  | (search)    | address      | counter-      | address  | protocol  |
  |             | sender       | station       | sender   | address   |
  +-------------------------------------------------------------------+

  +-------------------------------------------------------------------+
  | Operation=5 | P-MAC        | S-MAC address | protocol | broadcast |
  | (found)     | address      | counter-      | address  | protocol  |
  |             | sender       | station       | sender   | address   |
  +-------------------------------------------------------------------+



Kuehn                                                          [Page 12]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


  +-------------------------------------------------------------------+
  | Operation=6 | S-MAC        | P-MAC address | protocol | broadcast |
  | (query)     | address      | counter-      | address  | protocol  |
  |             | sender       | station       | sender   | address   |
  +-------------------------------------------------------------------+

  +-------------------------------------------------------------------+
  | Operation=7 | P-MAC address | S-MAC address | protocol | protocol |
  | (hold)      | sender        | sender        | address  | address  |
  |             |               |               | sender   | receiver |
  +-------------------------------------------------------------------+

  Apart from the error frames all frames are sent on the secondary
  ring.  The reply, error and search frames are addressed to the
  broadcast hardware address.  The request, found, query and hold
  frames are addressed to an individual secondary MAC address.

10. Formal Description

  The following description is written in ESTELLE.

10.1. Global Constants, Variables and Types

default individual queue;

timescale ...;

type

PDU_type        = ... ; (* format of a Protocol Data Unit:
                            String of variable length               *)
HW_addr_type    = ... ; (* format of a 48 bit MAC address           *)
PR_addr_type    = ... ; (* General: format of a protocol address
                           in an ARP or DMARP frame                 *)
IP_addr_type    = ... ; (* General: format of an IP address         *)
QoS_type        = ... ; (* General: format of a Quality-of-
                            -Service statement                      *)
timer_name_type = ... ; (* Type for the name of a system timer      *)

flag = (reset,set);

var

(*
 The values of these variables are set in the initialization part or
 by external management functions.
*)




Kuehn                                                          [Page 13]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


My_P_MAC_addr      : HW_addr_type; (* Address of the MAC, placed on
                                     the primary ring               *)
My_S_MAC_addr      : HW_addr_type; (* Address of the MAC, placed on
                                     the secondary ring             *)
My_IP_address      : IP_addr_type; (* IP address of this station     *)
Broadcast_HW_addr  : HW_addr_type; (* Broadcast MAC address (48 bit) *)
Broadcast_IP_addr  : IP_addr_type; (* Broadcast IP address           *)
dmarp_QoS          : QoS_type;     (* Quality_of_Service-statement
                                     for DMARP frames               *)

ethernet         : integer; (* Type statement in DMARP frames        *)
ip               : integer; (* Number for IP as protocol type        *)
fddi_addr_length : integer; (* Length of a MAC address in octetts    *)
ip_addr_length   : integer; (* Length of a IP address in octetts     *)

OR_set_timeout   : integer; (* Parameter for the OR-Entry-Timer      *)
Query_time       : integer; (* Parameter for the Hold-Timer          *)
Hold_time        : integer; (* Parameter for the Query-Timer         *)

10.2. Channels

  channel SAPchn(User,Provider);
  by User :
   UNITDATA_request
   (
     Source_addr  : HW_addr_type;
     Dest_addr    : HW_addr_type;
     QoS          : QoS_type;
     PDU          : PDU_type;
   )
  by Provider :
   UNITDATA_indication
   (
     Source_addr  : HW_addr_type;
     Dest_addr    : HW_addr_type;
     QoS          : QoS_type;
     PDU          : PDU_type;
   )

  channel System_Access_Point_chn(User,Provider);
  by User:
   TIMER_request(Time       : integer;
                 Timer_id   : timer_name_type;
                 subscript  : integer);

   TIMER_cancel(Timer_id    : timer_name_type;
                subscript   : integer);




Kuehn                                                          [Page 14]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


  by Provider:
   TIMER_response(Timer_id  : timer_name_type;
                  subscript : integer);


10.3. The Module Header and Interaction Points

  module LS_module systemprocess;
   ip LS_ARPSAP     : SAPchn(Provider);
      LS_IPSAP      : SAPchn(Provider);
      SNAP1_ARPSAP  : SAPchn(User);
      SNAP1_LSSAP   : SAPchn(User);
      SNAP1_IPSAP   : SAPchn(User);
      SNAP2_ARPSAP  : SAPchn(User);
      SNAP2_LSSAP   : SAPchn(User);
      SNAP2_IPSAP   : SAPchn(User);
      LS_System_Access_Point : System_Access_Point_chn(User);
  end;

10.4. The Modulebody of the Load Sharing Entity

  body LS_body for LS_module;

  module multiplexer_module process;
   ip LS_IPSAP    : SAPchn(Provider);
      SNAP1_IPSAP : SAPchn(User);
      SNAP2_IPSAP : SAPchn(User);
  end;

  module cache_administration_module process;
   ip LS_ARPSAP    : SAPchn(Provider);
      SNAP1_ARPSAP : SAPchn(User);
      SNAP1_LSSAP  : SAPchn(User);
      SNAP2_ARPSAP : SAPchn(User);
      SNAP2_LSSAP  : SAPchn(User);
      LS_System_Access_Point : System_Access_Point_chn(User);
  end;

  body cache_administration_body for cache_administration_module;
    (* defined later *)
  end;

  body multiplexer_body for multiplexer_module;
    (* defined later *)
  end;

  modvar
   cache_administration : cache_administration_module;



Kuehn                                                          [Page 15]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


   multiplexer          : multiplexer_module;

  initialize
  begin
   ethernet         := 1;
   ip               := 2048;
   fddi_addr_length := 6;
   ip_addr_length   := 4;
   init cache_administration      with cache_administration_body;
   init multiplexer               with multiplexer_body;
   attach LS_IPSAP                to multiplexer.LS_IPSAP;
   attach SNAP1_IPSAP             to multiplexer.SNAP1_IPSAP;
   attach SNAP2_IPSAP             to multiplexer.SNAP2_IPSAP;
   attach LS_ARPSAP               to cache_administration.LS_ARPSAP;
   attach SNAP1_ARPSAP            to cache_administration.SNAP1_ARPSAP;
   attach SNAP1_LSSAP             to cache_administration.SNAP1_LSSAP;
   attach SNAP2_ARPSAP            to cache_administration.SNAP2_ARPSAP;
   attach SNAP2_LSSAP             to cache_administration.SNAP2_LSSAP;
   attach LS_System_Access_Point  to cache_administration.
                                      LS_System_Access_Point;
  end; end;

10.5. The Modulebody for the Multiplexer

body multiplexer_body for multiplexer_module;

type
 Type_of_addr_type = (individual, multi, broad);
 ring_type         = (primary, secondary);

var
 act_S_MAC_addr : HW_addr_type;

function determ_addrtype(HW_addr: HW_addr_type): Type_of_addr_type;
primitive;
(*
 Returns the type of a hardware address.
 (Individual, multicast or broadcast address)
*)

function get_cacheentry(prtype: integer; P_MAC_addr: HW_addr_type;
var S_MAC_addr : HW_addr_type): boolean;
primitive;
(*
Returns the associated secondary MAC address for a given primary MAC
address and protocol type. If an entry exists, the value TRUE is
returned.
*)



Kuehn                                                          [Page 16]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


function ls_criteria : ring_type;
(*
Returns the ring on which the actual frame should be transmitted.
*)
primitive;

trans

when LS_IPSAP.UNITDATA_request(Source_addr,Dest_addr,QoS,PDU) begin
if determ_addrtype(Dest_addr) <> individual then
output SNAP1_IPSAP.UNITDATA_request(Source_addr,Dest_addr,QoS,PDU);
else begin
 if get_cacheentry(ip,Dest_addr,act_S_MAC_addr) and
  (ls_criteria=secondary) then
 output SNAP2_IPSAP.UNITDATA_request(My_S_MAC_addr,
  act_S_MAC_addr,QoS,PDU);
 else
 output SNAP1_IPSAP.UNITDATA_request(Source_addr,Dest_addr,QoS,PDU);
end;
end;

when SNAP1_IPSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU)
begin
output LS_IPSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU);
end;

when SNAP2_IPSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU)
begin
if determ_addrtype(Dest_addr) = individual then begin
 Dest_addr := My_P_MAC_addr;
 output LS_IPSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU);
end;
end;

10.6. The Modulebody for the Cache Administration

body cache_administration_body for cache_administration_module;

type
arp_pdu_type = record
 hwtype        : integer;
 prtype        : integer;
 HW_length     : integer;
 PR_length     : integer;
 operation     : (request,reply);
 HW_sender     : HW_addr_type;
 PR_sender     : PR_addr_type;
 HW_receiver   : HW_addr_type;



Kuehn                                                          [Page 17]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


 PR_receiver   : PR_addr_type;
end;

dmarp_operation_type = (request,reply,error,search,found,query,hold);

dmarp_pdu_type = record
 hwtype        : integer;
 prtype        : integer;
 HW_length     : integer;
 PR_length     : integer;
 operation     : dmarpoperation_type;
 HW_1          : HW_addr_type;
 HW_2          : HW_addr_type;
 PR_sender     : PR_addr_type;
 PR_receiver   : PR_addr_type;
end;

var
arp_pdu        : arp_pdu_type;
dmarp_pdu      : dmarp_pdu_type;
send_pdu       : dmarp_pdu_type;
act_P_MAC_addr : HW_addr_type;

function my_pr_address(prtype : integer ; praddr : PR_addr_type):
boolean;
(*
Returns TRUE, if praddr is my station address, the protocol type is
prtype. (2048d for the Internet protocol)
*)
primitive;

function get_my_pr_addr(prtype : integer) : PR_addr_type;
(*
Returns my station address, the protocol has the number prtype.
*)

function extract_arp_pdu(PDU : PDU_type) : arp_pdu_type;
(*
Returns the data contained in an ARP PDU as a record.
*)
primitive;

function extract_dmarp_pdu(PDU : PDU_type) : dmarp_pdu_type;
(*
Returns the data contained in an DMARP PDU as a record.
*)
primitive;




Kuehn                                                          [Page 18]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


function assemble_dmarp_pdu(dmarp_pdu : dmarp_pdu_type): PDU;
(*
Returns a DMARP PDU from the data in the record.
*)
primitive;

procedure create_entry(prtype: integer; P_MAC_addr: HW_addr_type;
S_MAC_addr: HW_addr_type; LS_Bit: flag; OR_Bit: flag;
H_Bit: flag; Q_Bit: flag; R_Bit: flag; V_Bit: flag);
(*
Creates a new entry in the address cache, if no entry with the given
primary MAC address or R-bit set to one exists. The protocol type has
the number prtype. The control bits are set as given in the parameters,
the LS-bit is set last.
*)
primitive;

function search_entry(prtype : integer; P_MAC_addr : HW_addr_type):
boolean;
(*
Returns TRUE if an entry with the primary MAC address P_MAC_addr and
the given protocol type was found in the address cache.
*)
primitive;

procedure update_entry(prtype: integer; P_MAC_addr: HW_addr_type;
S_MAC_addr: HW_addr_type);
(*
Searches an entry with the given primary MAC address P_MAC_address and
updates the secondary MAC address in the entry if the R-bit is set to
zero.
*)
primitive;

procedure reset_LS_bit(prtype: integer; P_MAC_addr : HW_addr_type);
(*
Searches an entry with the given primary MAC address P_MAC_address and
resets the LS-bit if the R-bit is reset.
*)
primitive;

procedure set_Q_bit(prtype: integer; P_MAC_addr : HW_addr_type);
(*
Searches an entry with the given primary MAC address P_MAC_address and
sets the Q-bit if the R-bit is reset.
*)
primitive;




Kuehn                                                          [Page 19]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


function H_bit_set(prtype: integer; P_MAC_addr : HW_addr_type):
boolean;
(*
Returns TRUE if an entry exists with H-bit set to one and the given
P-MAC address.
*)
primitive;

function OR_bit_set(prtype: integer; P_MAC_addr : HW_addr_type):
boolean;
(*
Returns TRUE if an entry exists with OR-bit set to one and the given
P-MAC address.
*)
primitive;

function LS_bit_set(prtype: integer; P_MAC_addr : HW_addr_type):
boolean;
(*
Returns TRUE if an entry exists with LS-bit set to one and the given
P-MAC address.
*)
primitive;

function Q_bit_set(prtype: integer; P_MAC_addr : HW_addr_type):
boolean;
(*
Returns TRUE if an entry exists with Q-bit set to one and the given
P-MAC address.
*)
primitive;

function get_subscript(prtype: integer; P_MAC_addr : HW_addr_type):
integer;
(*
Returns the subscipt number of an entry with the given primary MAC
address.
*)
primitive;

function get_broadcast_addr(prtype : integer): PR_addr_type;
(*
Returns the broadcast protocol address for the given protocol type.
*)

function get_P_MAC_addr(subscript : integer) : HW_addr_type;
(*
Returns the primary MAC address of the entry with the given subscript



Kuehn                                                          [Page 20]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


number.
*)
primitive;

function get_S_MAC_addr(prtype: integer; P_MAC_addr: HW_addr_type):
HW_addr_type;
(*
Returns the secondary MAC address of the station with the given primary
MAC address.
*)
primitive;

procedure delete_entry(subscript : integer);
(*
Deletes the entry with the given subscript number if the R-bit is
reset.
*)
primitive;

function get_pr_type(subscript : integer) : integer;
(*
Returns the protocol type for the entry with the given subscript
number.
*)
primitive;

function get_pr_length(prtype : integer) : integer;
(*
Returns the length of a protocol address.
*)
primitive;


trans

when LS_ARPSAP.UNITDATA_request(Source_addr,Dest_addr,QoS,PDU)
begin
arp_pdu := extract_arp_pdu(PDU);
output SNAP1_ARPSAP.UNITDATA_request(Source_addr,Dest_addr,QoS,PDU);
dmarp_pdu.hwtype               := ethernet;
dmarp_pdu.prtype               := arp_pdu.prtype;
dmarp_pdu.HW_length            := fddi_addr_length;
dmarp_pdu.PR_length            := arp_pdu.PR_length;
dmarp_pdu.operation            := reply;
dmarp_pdu.HW_1                 := My_P_MAC_addr;
dmarp_pdu.HW_2                 := My_S_MAC_addr;
dmarp_pdu.PR_sender            := arp_pdu.PR_sender;
dmarp_pdu.PR_receiver          := arp_pdu.PR_receiver;



Kuehn                                                          [Page 21]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


PDU := assemble_dmarp_pdu(dmarp_pdu);
output SNAP2_LSSAP.UNITDATA_request(My_S_MAC_addr,Broadcast_HW_addr,
 dmarp_QoS,PDU);
end;


when SNAP1_ARPSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU)
begin
output LS_ARPSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU);
end;

when SNAP2_ARPSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU)
begin end;

when SNAP1_LSSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU)
begin
dmarp_pdu := extract_dmarp_pdu(PDU);
if ((dmarp_pdu.operation = error) or (dmarp_pdu.operation = reply))
then begin
 if my_pr_address(dmarp_pdu.prtype,dmarp_pdu.PR_receiver) then begin
  if not H_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) then begin
   if not OR_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) then begin
    if LS_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) then begin
     output LS_System_Access_point.TIMER_cancel(
      "Hold_Timer",get_subscript(dmarp_pdu.prtype,dmarp_pdu.HW_1));
     create_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1,dmarp_pdu.HW_2,
      reset,set,reset,reset,reset,set);
    end;
    output LS_System_Access_point.TIMER_request(
     OR_set_timeout,"OR_Entry_Timer",
     get_subscript(dmarp_pdu.prtype,dmarp_pdu.HW_1));
    send_pdu.hwtype    := ethernet;
    send_pdu.prtype    := dmarp_pdu.prtype;
    send_pdu.HW_length := fddi_addr_length;
    send_pdu.PR_length := dmarp_pdu.PR_length;
    send_pdu.operation := search;
    send_pdu.HW_1      := My_P_MAC_addr;
    send_pdu.HW_2      := dmarp_pdu.HW_1;
    send_pdu.PR_sender := get_my_pr_addr(dmarp_pdu.prtype);
    send_pdu.PR_receiver := get_broadcast_addr(dmarp_pdu.prtype);
    PDU := assemble_dmarp_pdu(dmarp_pdu);
    output SNAP2_LSSAP.UNITDATA_request(
     My_S_MAC_addr,Broadcast_HW_addr,dmarp_QoS,PDU);
   end else begin
    if dmarp_pdu.operation=error then
    update_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1,dmarp_pdu.HW_2);
   end;
  end else begin



Kuehn                                                          [Page 22]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


   if dmarp_pdu.operation = error then
   update_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1,dmarp_pdu.HW_2);
  end;
 end else begin
  if my_pr_address(dmarp_pdu.prtype,dmarp_pdu.PR_sender) and
   (dmarp_pdu.operation = reply) then begin
   dmarp_pdu.operation := error;
   PDU := assemble_dmarp_pdu(dmarp_pdu);
   output SNAP1_LSSAP.UNITDATA_request(
    My_P_MAC_addr,Broadcast_HW_addr,dmarp_QoS,PDU);
  end else begin
   if dmarp_pdu.operation=error and
    search_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1) then
   update_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1,dmarp_pdu.HW_2);
end; end; end; end;


when SNAP2_LSSAP.UNITDATA_indication(Source_addr,Dest_addr,QoS,PDU)
begin
dmarp_pdu := extract_dmarp_pdu(PDU);
if (dmarp_pdu.operation = found) and
 my_pr_address(dmarp_pdu.prtype,dmarp_pdu.PR_receiver) then begin
 if not H_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) then begin
  if OR_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) then begin
   output LS_System_Access_Point.
    TIMER_cancel("OR_Entry_Timer",
    get_subscript(dmarp_pdu.prtype,dmarp_pdu.HW_1));
  end;
  if LS_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) then begin
   output LS_System_Access_Point.
    TIMER_cancel("Hold_Timer",
    get_subscript(dmarp_pdu.prtype,dmarp_pdu.HW_1));
  end;
  create_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1,dmarp_pdu.HW_2,
   set,reset,set,reset,reset,set);
  output LS_System_Access_Point.TIMER_request(Query_time,"Query_Timer",
   get_subscript(dmarp_pdu.prtype,dmarp_pdu.HW_1));
 end;
end else begin
 if (dmarp_pdu.operation = reply) or
  (dmarp_pdu.operation = request) then begin
  if search_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1) then
   update_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1,dmarp_pdu.HW_2);
 end;
 if (dmarp_pdu.operation=request) and
  my_pr_address(dmarp_pdu.prtype,dmarp_pdu.PR_receiver) then begin
  send_pdu.hwtype      := dmarp_pdu.hwtype;
  send_pdu.prtype      := dmarp_pdu.prtype;



Kuehn                                                          [Page 23]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


  send_pdu.HW_length   := fddi_addr_length;
  send_pdu.PR_length   := dmarp_pdu.PR_length;
  send_pdu.operation   := reply;
  send_pdu.HW_1        := My_P_MAC_addr;
  send_pdu.HW_2        := My_S_MAC_addr;
  send_pdu.PR_sender   := get_my_pr_addr(dmarp_pdu.prtype);
  send_pdu.PR_receiver := dmarp_pdu.PR_sender;
  PDU := assemble_dmarp_pdu(dmarp_pdu);
  output SNAP2_LSSAP.UNITDATA_request(
   My_S_MAC_addr,Broadcast_HW_addr,dmarp_QoS,PDU);
 end else begin
  if my_pr_address(dmarp_pdu.prtype,dmarp_pdu.pr_receiver) then begin
   case dmarp_pdu.operation of
    reply: begin
     if not ( OR_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) or
      LS_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) )then begin
      create_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1,dmarp_pdu.HW_2,
       set,reset,reset,reset,reset,set);
      output LS_System_Access_Point.TIMER_request(Hold_time,
       "Hold_Timer",get_subscript(dmarp_pdu.prtype,dmarp_pdu.HW_1));
     end;
    end;

    error: begin
     if not ( OR_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) or
      H_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) ) then begin
      if LS_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) then
      output LS_System_access_point.TIMER_cancel(
       "Hold_Timer",get_subscript(dmarp_pdu.prtype,dmarp_pdu.HW_1));
      create_entry(dmarp_pdu.prtype,dmarp_pdu.HW_1,dmarp_pdu.HW_2,
       reset,set,reset,reset,reset,set);
      output LS_System_access_point.TIMER_request(
       OR_set_timeout,"OR_Entry_Timer",
       get_subscript(dmarp_pdu.prtype,dmarp_pdu.HW_1));
      send_pdu.hwtype          := ethernet;
      send_pdu.prtype          := dmarp_pdu.prtype;
      send_pdu.HW_length       := fddi_addr_length;
      send_pdu.PR_length       := dmarp_pdu.PR_length;
      send_pdu.operation       := search;
      send_pdu.HW_1            := My_P_MAC_addr;
      send_pdu.HW_2            := dmarp_pdu.HW_1;
      send_pdu.PR_sender       := get_my_pr_addr(dmarp_pdu.prtype);
      send_pdu.PR_receiver     := get_broadcast_addr(dmarp_pdu.prtype);
      PDU := assemble_dmarp_pdu(dmarp_pdu);
      output SNAP2_LSSAP.UNITDATA_request(
       My_S_MAC_addr,Broadcast_HW_addr,dmarp_QoS,PDU);
     end;
    end;



Kuehn                                                          [Page 24]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


    search: begin
     if not (dmarp_pdu.HW_1=My_P_MAC_addr or
      dmarp_pdu.HW_2=My_P_MAC_addr) then begin
      if H_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) and
       H_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_2) then begin
       send_pdu.hwtype      := ethernet;
       send_pdu.prtype      := dmarp_pdu.prtype;
       send_pdu.HW_length   := fddi_addr_length;
       send_pdu.PR_length   := dmarp_pdu.PR_length;
       send_pdu.operation   := found;
       send_pdu.HW_1        := dmarp_pdu.HW_2;
       send_pdu.HW_2        := get_S_MAC_addr(dmarp_pdu.prtype,
                                dmarp_pdu.HW_2);
       send_pdu.PR_sender   := get_my_pr_addr(dmarp_pdu.prtype);
       send_pdu.PR_receiver := get_broadcast_addr(dmarp_pdu.prtype);
       PDU := assemble_dmarp_pdu(send_pdu);
       output SNAP2_LSSAP.UNITDATA_request(My_S_MAC_addr,
        get_S_MAC_addr(dmarp_pdu.prtype,dmarp_pdu.HW_1),dmarp_QoS,PDU);
       send_pdu.HW_1 := dmarp_pdu.HW_1;
       send_pdu.HW_2 := get_S_MAC_addr(dmarp_pdu.prtype,
        dmarp_pdu.HW_1);
       PDU := assemble_dmarp_pdu(send_pdu);
       output SNAP2_LSSAP.UNITDATA_request(My_S_MAC_addr,
        get_S_MAC_addr(dmarp_pdu.prtype,dmarp_pdu.HW_2),dmarp_QoS,PDU);
      end;
     end;
    end;


    Query: begin
     if dmarp_pdu.HW_2 = My_P_MAC_addr then begin
      send_pdu.hwtype          := ethernet;
      send_pdu.prtype          := dmarp_pdu.prtype;
      send_pdu.HW_length       := dmarp_pdu.HW_length;
      send_pdu.PR_length       := dmarp_pdu.PR_length;
      send_pdu.operation       := hold;
      send_pdu.HW_1            := My_P_MAC_addr;
      send_pdu.HW_2            := My_S_MAC_addr;
      send_pdu.PR_sender       := get_my_pr_addr(dmarp_pdu.prtype);
      send_pdu.PR_receiver     := dmarp_pdu.PR_sender;
      PDU := assemble_dmarp_pdu(send_pdu);
      output SNAP2_LSSAP.UNITDATA_request(
       My_S_MAC_addr,dmarp_pdu.HW_1,dmarp_QoS,PDU);
     end;
    end;
    Hold: begin
     if H_bit_set(dmarp_pdu.prtype,dmarp_pdu.HW_1) then
     reset_Q_bit(dmarp_pdu.prtype,dmarp_pdu.HW_1);



Kuehn                                                          [Page 25]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


    end;
   end;
  end;
 end;
end;
end;


when LS_System_Access_Point.TIMER_response(Timer_name,subscript) begin
case Timer_name of
"OR_Entry_Timer": begin
 act_P_MAC_addr := get_P_MAC_addr(subscript);
 if OR_bit_set(get_pr_type(subscript),act_P_MAC_addr) then begin
  send_pdu.hwtype      := ethernet;
  send_pdu.prtype      := get_pr_type(subscript);
  send_pdu.HW_length   := fddi_addr_length;
  send_pdu.PR_length   := get_pr_length(send_pdu.prtype);
  send_pdu.operation   := request;
  send_pdu.HW_1        := My_P_MAC_addr;
  send_pdu.HW_2        := My_S_MAC_addr;
  send_pdu.PR_sender   := get_my_pr_addr(send_pdu.prtype);
  send_pdu.PR_receiver := get_broadcast_addr(send_pdu.prtype);
  PDU := assemble_dmarp_pdu(send_pdu);
  output SNAP2_LSSAP.UNITDATA_request(
   My_S_MAC_addr,get_S_MAC_addr(send_pdu.prtype,act_P_MAC_addr),
   dmarp_QoS,PDU);
  delete_entry(subscript);
 end;
end;
"Hold_Timer": begin
 act_P_MAC_addr := get_P_MAC_addr(subscript);
 if (not H_bit_set(get_pr_type(subscript),act_P_MAC_addr)) and
  LS_bit_set(get_pr_type(subscript),act_P_MAC_addr) then begin
  set_H_bit(get_pr_type(subscript),act_P_MAC_addr);
  output LS_System_Access_point.TIMER_request(
   Query_time,"Query_Timer",subscript);
 end;
end;
"Query_Timer": begin
 act_P_MAC_addr       := get_P_MAC_addr(subscript);
 send_pdu.hwtype      := ethernet;
 send_pdu.prtype      := get_pr_type(subscript);
 send_pdu.HW_length   := fddi_addr_length;
 send_pdu.PR_length   := get_pr_length(send_pdu.prtype);
 send_pdu.PR_sender   := get_my_pr_addr(send_pdu.prtype);
 send_pdu.PR_receiver := get_broadcast_addr(send_pdu.prtype);
 if Q_bit_set(get_pr_type(subscript),act_P_MAC_addr) then begin
  send_pdu.HW_1      := My_P_MAC_addr;



Kuehn                                                          [Page 26]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


  send_pdu.HW_2      := My_S_MAC_addr;
  send_pdu.operation := request;
  PDU := assemble_dmarp_pdu(send_pdu);
  output SNAP2_LSSAP.UNITDATA_request(
   My_S_MAC_addr,get_S_MAC_addr(send_pdu.prtype,act_P_MAC_addr),
   dmarp_QoS,PDU);
  delete_entry(subscript);
 end else begin
  send_pdu.HW_1      := My_S_MAC_addr;
  send_pdu.HW_2      := get_P_MAC_addr(subscript);
  send_pdu.operation := query;
  PDU := assemble_dmarp_pdu(send_pdu);
  output SNAP2_LSSAP.UNITDATA_request(
   My_S_MAC_addr,get_S_MAC_addr(send_pdu.prtype,send_pdu.HW_2),
   dmarp_QoS,PDU);
  set_Q_bit(send_pdu.prtype,send_pdu.HW_2);
end; end; end; end; end; (* body *)

11. Summary

  The introduction of the load sharing layer in the protocol layering
  of the dual MAC stations allows the application of IP and ARP on
  inhomogeneous FDDI rings. The protocol suite of single MAC stations
  needs no modification.

  By the load sharing layer, the property "dual MAC" is transparent for
  ARP, IP and the higher layer protocols.

  In dual MAC stations, any load sharing criteria may be implemented in
  the multiplexer of the load sharing entity.  The conversion of
  addresses, the exchange of address and reachability information
  between dual MAC stations and the proper transmission of multicast
  and broadcast frames is taken upon by the load sharing entity.

12. References

   [1] ANSI, "FDDI Station Management (SMT)", ANSI
       X3T9/90-X3T9.5/84-49 Rev 6.2, May 1990.

   [2] ANSI, "FDDI Media Access Control (MAC-2)",
       X3T9/90-X3T9.5/88-139 Rev 3.2, June 1990.

   [3] ISO, "Information processing systems- Local area networks-
       Part 2: Logical link control", ISO 8802-2:1989, August 1989.

   [4] IEEE, "Draft Standard P802.1A Overview and Architecture",
       P802.1A/D9-89/74, September 1989.




Kuehn                                                          [Page 27]

RFC 1329     Address Resolution for Dual MAC FDDI Networks      May 1992


   [5] Plummer, C., "An Ethernet Address Resolution Protocol --or--
       Converting Network Protocol Addresses to 48.bit Ethernet
       Address for Transmission on Ethernet Hardware", RFC 826, MIT,
       November 1982.

   [6] Reynolds, J., and Postel, J., "Assigned Numbers", RFC 1060,
       USC/Information Sciences Institute, March 1990.

   [7] Postel, J., "Internet Protocol", RFC 791, USC/Information
       Sciences Institute, September 1981.

   [8] Katz, D., "A Proposed Standard for the Transmission of IP
       Datagrams over FDDI Networks", RFC 1188, Merit/NSFNET,
       October 1990.

   [9] Internet Engineering Task Force, Braden, R., Editor,
       "Requirements for Internet Hosts -- Communication Layers",
       RFC 1122, IETF, October 1989.

  [10] Katz, D., "The Use of Connectionless Network Layer Protocols
       over FDDI Networks", Merit/NSFNET, 1990.

13.  Security Considerations

  Security issues are not discussed in this memo.

14. Author's Address

  Peter Kuehn
  Raiffeisenstrasse 9b
  8933 Untermeitingen
  Germany

  Phone: .. 82 32 / 7 46 02
  EMail: [email protected]
















Kuehn                                                          [Page 28]