Network Working Group                                       S. Armstrong
Request for Comments: 1301                                         Xerox
                                                              A. Freier
                                                                  Apple
                                                            K. Marzullo
                                                                Cornell
                                                          February 1992


                     Multicast Transport Protocol

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard.  Distribution of this memo is
  unlimited.

Summary

  This memo describes a protocol for reliable transport that utilizes
  the multicast capability of applicable lower layer networking
  architectures.  The transport definition permits an arbitrary number
  of transport providers to perform realtime collaborations without
  requiring networking clients (aka, applications) to possess detailed
  knowledge of the population or geographical dispersion of the
  participating members.  It is not network architectural specific, but
  does implicitly require some form of multicasting (or broadcasting)
  at the data link level, as well as some means of communicating that
  capability up through the layers to the transport.

  Keywords: reliable transport, multicast, broadcast, collaboration,
  networking.

Table of Contents

          1. Introduction                                     2
          2. Protocol description                             3
          2.1 Definition of terms                             3
          2.2 Packet format                                   6
          2.2.1. Protocol version                             7
          2.2.2. Packet type and modifier                     7
          2.2.3. Subchannel                                   9
          2.2.4. Source connection identifier                 9
          2.2.5. Destination connection identifier           10
          2.2.6. Message acceptance                          10
          2.2.7. Heartbeat                                   12
          2.2.8. Window                                      12
          2.2.9. Retention                                   12



Armstrong, Freier & Marzullo                                    [Page 1]

RFC 1301              Multicast Transport Protocol         February 1992


          2.3 Transport addresses                            12
          2.3.1. Unknown transport address                   12
          2.3.2. Web's multicast address                     13
          2.3.3. Member addresses                            13
          3. Protocol behavior                               13
          3.1. Establishing a transport                      13
          3.1.1. Join request                                14
          3.1.2. Join confirm/deny                           16
          3.2 Maintaining data consistency                   17
          3.2.1. Transmit tokens                             17
          3.2.2. Data transmission                           20
          3.2.3. Empty packets                               23
          3.2.4. Missed data                                 26
          3.2.5. Retrying operations                         26
          3.2.6. Retransmission                              27
          3.2.7. Duplicate suppression                       29
          3.2.8. Banishment                                  29
          3.3 Terminating the transport                      29
          3.3.1. Voluntary quits                             30
          3.3.2. Master quit                                 30
          3.3.3. Banishment                                  30
          3.4 Transport parameters                           30
          3.4.1. Quality of service                          30
          3.4.2. Selecting parameter values                  31
          3.4.3. Caching member information                  33
          A. Appendix: MTP as an Internet Protocol transport 34
          A.1 Internet Protocol multicast addressing         34
          A.2 Encapsulation                                  35
          A.3 Fields of the bridge protocol                  35
          A.4 Relationship to other Internet Transports      36
          References                                         36
          Footnotes                                          37
          Security Considerations                            37
          Authors' Addresses                                 38

1.      Introduction

  This document describes a flow controlled, atomic multicasting
  transport protocol (MTP).  The purpose of this document is to present
  sufficient information to implement the protocol.

  The MTP design has been influenced by the large body of the
  networking and distributed systems literature and technology that has
  been introduced during the last decade and a half.  Representative
  sources include [Xer81], [BSTM79] and [Pos81] for transport design,
  and [Bog83] and [DIX82] for general concepts of broadcast and
  multicast.  [CLZ87] influenced MTP's retransmission mechanisms, and
  [Fre84] influenced the transport timings. MTP over IP uses mechanisms



Armstrong, Freier & Marzullo                                    [Page 2]

RFC 1301              Multicast Transport Protocol         February 1992


  described in [Dee89].  MTP's ordering and agreement protocols were
  influenced by work done in [CM87], [JB89] and [Cri88].  Finally, a
  description of MTP's philosophy and its motivation can be found in
  [AFM91].

2.      Protocol description

  MTP is a transport in that it is a client of the network layer (as
  defined by the OSI networking model) [1].  MTP provides reliable
  delivery of client data between one or more communicating processes,
  as well as a predefined principal process. The collection of
  processes is called a web.

  In addition to transporting data reliably and efficiently, MTP
  provides the synchronization necessary for web members to agree on
  the order of receipt of all messages and can agree on the delivery of
  the message even in the face of partitions.  This ordering and
  agreement protocol uses serialized tokens granted by the master to
  producers.

  The processes may have any one of three levels of capability. One
  member must be the master. The master instantiates and controls the
  behavior of the web, including its membership and performance. Non
  master members may be either producer/consumers or pure consumers.
  The former class of member is permitted to transmit user data to the
  entire membership (and expected to logically hear itself), while the
  latter is prohibited from transmitting user data.

  MTP is a negative acknowledgement protocol, exploiting the highly
  reliable delivery of the local area and wide area network
  technologies of today. Successful delivery of data is accepted by
  consuming stations silently rather than having the successful
  delivery noted to the producing process, thus reducing the amount of
  reverse traffic required to maintain synchronization.

2.1     Definition of terms

  The following terms are used throughout this document. They are
  defined here to eliminate ambiguity.

  consumer    A consumer is a transport that is capable only of
              receiving user data. It may transmit control packets,
              such as negative acknowledgements, but may never transmit
              any requests for the transmit token or any form of data
              or empty messages.

  heartbeat   A heartbeat is an interval of time, nominally measured in
              milliseconds. It is a key parameter in the transport's



Armstrong, Freier & Marzullo                                    [Page 3]

RFC 1301              Multicast Transport Protocol         February 1992


              state and can be adapted to the requirements of the
              transport's client to provide the desired quality of
              service.

  master      The master is the principal member of the web. The master
              capability is a superset of a producer member.  The
              master is mainly responsible for giving out transmit
              tokens to members who wish to send data, and overseeing
              the web's membership and operational parameters.

  member      A web member is any process that has been permitted to
              join the web (by the master) as well as the master
              itself.

  membership  Every member is classified as to its intentions for
  class       joining the web. Membership classes are defined to be
              consumer, producer and master. Each successive class is a
              formal superset of the previous.

  message     An MTP message is a concatenation of the user data
              portions of a series of data packets with the last packet
              in the series carrying an end of message indication. A
              message may contain any number of bytes of user data,
              including zero.

  NSAP        The network service access point. This is the network
              address, or the node address of the machine, where a
              service is available.

  producer    Producer is a class of membership that is a formal
              superset of a consumer. A producer is permitted (and
              expected) to transmit client data as well as consume data
              transmitted by other producers.

  retention   Retention is one of the three fundamental parameters that
              make up the transport's state (along with heartbeat and
              window). Retention is a number of heartbeats, and though
              applied in several different circumstances, is primarily
              used as the number of heartbeats a producing client must
              maintain buffered data should it need to be
              retransmitted.

  token       In order to transmit, a producer must first be in
              possesion of a token. Tokens are granted only by the
              master and include the message sequence number.
              Consequently, they are fundamental in the operation of
              the ordering and agreement protocol used by MTP.




Armstrong, Freier & Marzullo                                    [Page 4]

RFC 1301              Multicast Transport Protocol         February 1992


  TSAP        The transport service access point. This is the address
              that uniquely defines particular instantiation of a
              service. TSAPs are formed by logically concatenating the
              node's NSAP with a transport identifier (and perhaps a
              packet/protocol type).

  user data   User data is the client information carried in MTP data
              packets and treated as uninterpreted octets by the
              transport. The end of message and subchannel indicators
              are also be treated as user data.

  web         A collection of processes collaborating on the solution
              of a single problem.

  window      The window is one of the fundamental elements of the
              transport's state that can be controlled to affect the
              quality of service being provided to the client. It
              represents the number of user data carrying packets that
              may be multicast into the web during a heartbeat by a
              single member.































Armstrong, Freier & Marzullo                                    [Page 5]

RFC 1301              Multicast Transport Protocol         February 1992


2.2     Packet format

  An MTP packet consists of a transport protocol header followed by a
  variable amount of data. The protocol header, shown in Figure 1, is
  part of every packet. The remainder of the packet is either user data
  (packet type = data) or additional transport specific information.
  The fields in the header are statically defined as n-bit wide
  quantities. There are no undefined fields or fields that may at any
  time have undefined values.  Reserved fields, if they exist, must
  always have a value of zero.

   0           7 8           15 16         23 24         31
  ----------------------------------------------------------    -----
  |  protocol    |    packet   |    type     |    client   |      |
  |  version     |    type     |    modifier |    channel  |      |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              source connection identifier              |      |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              destination connection identifier         |
  ---------------------------------------------------------- transport
  |                                                        |    header
  |              message acceptance criteria               |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              heartbeat                                 |      |
  ----------------------------------------------------------      |
  |                            |                           |      |
  |        window              |        retention          |      |
  ----------------------------------------------------------    -----
  |                                                        |      |
  |                                                        |      |
  |                                                        |      |
  |                   (data content and format             |
  |                   dependent on packet type             |    data
  |                   and modifier)                        |    fields
  |                                                        |
  |                                                        |      |
  |                                                        |      |
  |                                                        |      |
  ----------------------------------------------------------    -----

                       Figure 1. MTP packet format







Armstrong, Freier & Marzullo                                    [Page 6]

RFC 1301              Multicast Transport Protocol         February 1992


2.2.1.  Protocol version

  The first 8 bits of the packet are the protocol version number. This
  document describes version 1 of the Multicast Transport Protocol and
  thus the version field has a value of 0x01.

2.2.2.  Packet type and modifier

  The second byte of the header is the packet type and the following
  byte contains the packet type modifier. Typical control message
  exchanges are in a request/response pair. The modifier field
  simplifies the construction of responses by permitting reuse of the
  incoming message with minimal modification. The following table gives
  the packet type field values along with their modifiers. The
  modifiers are valid only in the context of the type. In the prose of
  the definitions and later in the document, the syntax for referring
  to one of the entries described in the following table will be
  type[modifier]. For example, a reference to data[eow] would be a
  packet of type data with an end of window modifier.

  type       modifier     description

  data(0)    data(0)      The packet is one that contains user
                          information. Only the process possessing a
                          transmit token is permitted to send data
                          unless specifically requested to retransmit
                          previously transmitted data. All packets of
                          type data are multicast to the entire web.

             eow(1)       A data packet with the eow (end of window)
                          modifier set indicates that the transmitter
                          intends to send no more packets in this
                          heartbeat either because it has sent as many
                          as permitted given the window parameter or
                          simply has no more data to send during the
                          current heartbeat. This is not client
                          information but rather a hint to be used by
                          transport providers to synchronize the
                          computation and transmission of naks.

             eom(2)       Data[eom] marks the end of the message to the
                          consumers, and the surrendering of the
                          transmit token to the master. And like a
                          data[eow] a data[eom] packet implies the end
                          of window.

  nak(1)     request(0)   A nak[request] packet is a consumer
                          requesting a retransmission of one or more



Armstrong, Freier & Marzullo                                    [Page 7]

RFC 1301              Multicast Transport Protocol         February 1992


                          data packets. The data field contains an
                          ordered list of packet sequence numbers that
                          are being requested. Naks of any form are
                          always unicast.

             deny(1)      A nak[deny] message indicates that the
                          producer source of the nak[deny]) cannot
                          retransmit one or more of the packets
                          requested. The process receiving the
                          nak[deny] must report the failure to its
                          client.

  empty(2)   dally(0)     An empty[dally] packet is multicast to
                          maintain synchronization when no client data
                          is available.

             cancel(1)    If a producer finds itself in possession of a
                          transmit token and has no data to send, it
                          may cancel the token[request] by multicasting
                          an empty[cancel] message.

             hibernate(2) If the master possesses all of the web's
                          transmit tokens and all outstanding messages
                          have been accepted or rejected, the master
                          may transmit empty[hibernate] packets at a
                          rate significantly slower than indicated by
                          the web's value of heartbeat.

  join(3)    request(0)   A join[request] packet is sent by a process
                          wishing to join a web to the web's unknown
                          TSAP (see section 2.2.5).

             confirm(1)   The join[confirm] packet is the master's
                          confirmation of the destination's request to
                          join the web. It will be unicast by the
                          master (and only the master) to the station
                          that sent the join[request].

             deny(2)      A join[deny] packet indicates permission to
                          join the web was denied. It may only be
                          transmitted by the master and will be unicast
                          to the member that sent the join[request].

  quit(4)    request(0)   A quit[request] may be unicast to the master
                          by any member of the web at any time to
                          indicate the sending process wishes to
                          withdraw from the web. Any member may unicast
                          a quit to another member requesting that the



Armstrong, Freier & Marzullo                                    [Page 8]

RFC 1301              Multicast Transport Protocol         February 1992


                          destination member quit the web due to
                          intolerable behavior.  The master may
                          multicast a quit[request] requiring that the
                          entire web disband. The request will be
                          multicast at regular heartbeat intervals
                          until there are no responses to retention
                          requests.

             confirm(1)   The quit[confirm] packet is the indication
                          that a quit[request] has been observed and
                          appropriate local action has been taken.
                          Quit[confirm] are always unicast.

  token(5)   request(0)   A token[request] is a producing member
                          requesting a transmit token from the master.
                          Such packets are unicast to the master.

             confirm(1)   The token[confirm] packet is sent by the
                          master to assign the transmit token to a
                          member that has requested it. token[confirm]
                          will be unicast to the member being granted
                          the token.

  isMember(6) request(0)  An isMember[request] is soliciting
                          verification that the target member is a
                          recognized member of the web. All forms of
                          the isMember packet are unicast to a specific
                          member.

             confirm(1)   IsMember[confirm] packets are positive
                          responses to isMember[requests].

             deny(2)      If the member receiving the isMember[request]
                          cannot confirm the target's membership in the
                          web, it responds with a isMember[deny].

2.2.3.  Subchannel

  The fourth byte of the transport header contains the client's
  subchannel value. The default value of the subchannel field is zero.
  Semantics of the subchannel value are defined by the transport client
  and therefore are only applicable to packets of type data. All other
  packet types must have a subchannel value of zero.

2.2.4.  Source connection identifier

  The source connection identifier field is a 32 bit field containing a
  transmitting system unique value assigned at the time the transport



Armstrong, Freier & Marzullo                                    [Page 9]

RFC 1301              Multicast Transport Protocol         February 1992


  is created. The field is used in identifying the particular transport
  instantiation and is a component of the TSAP. Every packet
  transmitted by the transport must have this field set.

2.2.5.  Destination connection identifier

  The destination connection identifier is the 32 bit identifier of the
  target transport. From the point of view of a process sending a
  packet, there are three types of destination connection identifiers.
  First, there is the unknown connection identifier (0x00000000). The
  unknown value is used only as the destination connection identifier
  in the join[request] packet.

  Second, there is the multicast connection identifier gleaned from the
  join[confirm] message sent by the master. The multicast connection
  identifier is used in conjunction with the multicast NSAP to form the
  destination TSAP of all packets multicast to the entire web [2].

  The last class of connection identifier is a unicast identifier and
  is used to form the destination TSAP when unicasting packets to
  individual members. Every member of the web has associated with it a
  unicast connection identifier that is used to form its own unicast
  TSAP.

2.2.6.  Message acceptance

  MTP ensures that all processes agree on which messages are accepted
  and in what order they are accepted. The master controls this aspect
  of the protocol by controlling allocation of transmit tokens and
  setting the status of messages. Once a token for a message has been
  assigned (see section 3.2.1) the master sets the status of that
  message according to the following rules [AFM91]:

   If the master has seen the entire message (i.e., has seen the
   data[eom] and all intervening data packets), the status is accepted.

   If the master has not seen the entire message but believes the
   message sender is still operational and connected to the master (as
   determined by the master), the status is pending.

   If the master has not seen the entire message and believes the
   sender to have failed or partitioned away, the status is rejected.

  Message status is carried in the message acceptance record (see
  Figure 2) of every packet, and processes learn the status of earlier
  messages by processing this information.

  The acceptance criteria is a multiple part record that carries the



Armstrong, Freier & Marzullo                                   [Page 10]

RFC 1301              Multicast Transport Protocol         February 1992


  rules of agreement to determine the message acceptance. The most
  significant 8 bits is a flag that, if not zero, indicates
  synchronization is required.  The field may vary on a per message
  basis as directed by producing transport's client. The default is
  that no synchronization is required.

  The second part of the record is a 12 element vector that represents
  the status of the last 12 messages transmitted into the web.

      0          7 8          15 16          23 24         31
     ---------------------------------------------------------
     |            |                                          |
     |  synchro   |         tri-state bitmask[12]            |
     ---------------------------------------------------------
     |      message             |      packet sequence       |
     |      sequence number     |      number                |
     ---------------------------------------------------------

                    Figure 2. Message acceptance record

  Each element of the array is two bits in length and may have one of
  three values: accepted(0), pending(1) or rejected(2). Initially, the
  bit mask is set to all zeros. When the token for message m is
  transmitted, the first (left-most) element of the vector represents
  the the state of message m - 1, the second element of the vector is
  the status of message m - 2, and so forth. Therefore the status of
  the last 12 messages are visible, the status of older messages are
  lost, logically by shifting the elements out of the vector. Only the
  master is permitted to set the status of messages. The master is not
  permitted to shift a status of pending beyond the end of the vector.
  If that situation arises, the master must instead not confirm any
  token[request] until the oldest message can be marked as either
  rejected or accepted.

  Message sequence numbers are 16 bit unsigned values. The field is
  initialized to zero by the master when the transport is initialized,
  and incremented by one after each token is granted. Only the master
  is permitted to change the value of the message sequence number. Once
  granted, that message sequence number is consumed and the state of
  the message must eventually become either accepted or rejected. No
  transmit tokens may be granted if the assignment of a message
  sequence number that would cause a value of pending to be shifted
  beyond the end of the status vector.

  Packet sequence numbers are unsigned 16 bit numbers assigned by the
  producing process on a per message basis. Packet sequence numbers
  start at a value of zero for each new message and are incremented by
  one (consumed) for each data packet making up the message. Consumers



Armstrong, Freier & Marzullo                                   [Page 11]

RFC 1301              Multicast Transport Protocol         February 1992


  detecting missing packet sequence numbers must send a nak[request] to
  the appropriate producer to recover the missed data.

  Control packets always contain the message acceptance criteria with a
  synchronization flag set to zero (0x00), the highest message sequence
  number observed and a packet sequence number one greater than
  previously observed. Control packets do not consume any sequence
  numbers.  Since control messages are not reliably delivered, the
  acceptance criteria should only be checked to see if they fall within
  the proper range of message numbers, relative to the current message
  number of the receiving station.  The range of acceptable sequence
  numbers should be m-11 to m-13, inclusive, where m is the current
  message number.

2.2.7.  Heartbeat

  Heartbeat is an unsigned 32 bit field that has the units of
  milliseconds. The value of heartbeat is shared by all members of the
  web. By definition at least one packet (either data, empty or quit
  from the master) will be multicast into the web within every
  heartbeat period.

2.2.8.  Window

  The allocation window (or simply window) is a 16 bit unsigned field
  that indicates the maximum number of data packets that can be
  multicasted by a member in a single heartbeat. It is the sum of the
  retransmitted and new data packets.

2.2.9.  Retention

  The retention field is a 16 bit unsigned value that is the number of
  heartbeats for which a producer must retain transmitted client data
  and state for the purpose of retransmission.

2.3     Transport addresses

  Associated with each transport are logically three transport service
  access points (TSAP), logically formed by the concatenation of a
  network service access point (NSAP) and a transport connection
  identifier. These TSAPs are the unknown TSAP, the web's multicast
  TSAP and each individual member's TSAP.

2.3.1.  Unknown transport address

  Stations that are just joining must use the multicast NSAP associated
  with the transport, but are not yet aware of either the web's
  multicast TSAP the master process' TSAP. Therefore, joining stations



Armstrong, Freier & Marzullo                                   [Page 12]

RFC 1301              Multicast Transport Protocol         February 1992


  fabricate a temporary TSAP (referred to as a unknown TSAP) by using a
  connection identifier reserved to mean unknown (0x00000000). The
  join[confirm] message will be sourced from the master's TSAP and will
  include the multicast transport connection identifier in the data
  field. Those values must be extracted from the join[confirm] and
  remembered by the joining process.

2.3.2.  Web's multicast address

  The multicast TSAP is formed by logically concatenating the multicast
  NSAP associated with the transport creation and the transport
  connection identifier returned in the data field of the join[confirm]
  packet. If more than one network is involved in the web, then the
  multicast transport address becomes a list, one for each network
  represented.  This list is supplied in the data field of
  token[confirm] packets.

  The multicast TSAP is used as the target for all messages that are
  destined to the entire web, such as data and empty. The master's
  decision to abandon the transport (quit) is also sent to the
  multicast transport address.

2.3.3.  Member addresses

  The member TSAP is formed by using the process' unicast NSAP
  concatenated with a locally generated unique connection identifier.
  That TSAP must be the source of every packet transmitted by the
  process, regardless of its destination, for the lifetime of the
  transport.

  Packets unicast to specific members must contain the appropriate
  TSAP.  For producers and consumers this is not difficult. The only
  TSAPs of interest are the master and the station(s) currently
  transmitting data.

3.      Protocol behavior

  This section defines the expectations of the protocol implementation.
  These expectations should not be considered guidelines or hints, but
  rather part the protocol.

3.1     Establishing a transport

  Before any rendezvous can be affected, a process must first acquire
  an NSAP that will be the service access point for the instantiation
  [3].  The process that first establishes at that NSAP is referred to
  as the master of the web. The decision as to what process acts as the
  master must be made a priori in order to guarantee unambiguous



Armstrong, Freier & Marzullo                                   [Page 13]

RFC 1301              Multicast Transport Protocol         February 1992


  creation in the face of network partitions. The process should make a
  robust effort to verify that the NSAP being used is not already in
  service. It may do so by repeatedly sending join[requests] to the
  web's unknown TSAP. If there is no response to repeated transmissions
  the process may be relatively confident that the NSAP is not in use
  and proceed with the creation of the web. If not, the creation must
  be aborted and the situation reported to its client.

3.1.1.  Join request

  Additional members may join the web at any time after the
  establishment of the master by the joining process sending a
  join[request] to the unknown TSAP. The joining process should have
  already assigned a unique connection identifier to its transport
  instantiation that will be used in the source TSAP of the
  join[request]. The join[request] must contain zeros in all of the
  acceptance fields. The heartbeat, window and retention parameters are
  filled in as requested by the transport provider's client. The data
  of the message must contain the type, class and quality of service
  parameters that the client has requested.


  field               class       definition

  membership class    master(0)   There can be only a single web
                                  master, and that member has all
                                  privileges of a producer class member
                                  plus those acquitted only to the
                                  master.

                      producer(1) A process that has producer class
                                  membership wishes to transmit data
                                  into the web as well as consume.

                      consumer(2) A consumer process is a read only
                                  process. It will send naks in order
                                  to reliably receive data but will
                                  never ask for or be permitted to take
                                  possession of a transmit token.

  transport class     reliable(0) Specifies a reliable transport, i.e.,
                                  one that will generate and process
                                  naks.  The implication is that the
                                  data will be reliably delivered or
                                  the failure will be detected and
                                  reported to the client.

                      unreliable(1)   The transport supports best



Armstrong, Freier & Marzullo                                   [Page 14]

RFC 1301              Multicast Transport Protocol         February 1992


                                  effort delivery. Such a transport may
                                  still fail if the error rates are too
                                  high, but tolerable loss or
                                  corruption of data will be permitted
                                  [4].

  transport type      NxN(0)      The transport will accept multiple
                                  processes with producing capability.

                      1xN(1)      A 1xN transport permits only a single
                                  producer whose identity was
                                  established a priori.

  The client's desire for minimum throughput (expressed in kilobytes
  per second) is the lowest value that will be accepted. That
  throughput is calculated using the heartbeat and window parameters of
  the transport, and the maximum data unit size, not by measuring
  actual traffic. Any member that suggests a combination of those
  parameters that result in an unacceptable throughput will be ignored
  or asked to withdraw from the web.

  A joining client may also suggest a maximum data unit size. This
  field is expressed as a number of bytes that can be included in a
  data packet as client data.

  If no response is received in a single heartbeat, the join[request]
  should be retransmitted using the same source TSAP so the master can
  detect the difference between a new process and a retransmission of a
  join[request].






















Armstrong, Freier & Marzullo                                   [Page 15]

RFC 1301              Multicast Transport Protocol         February 1992


3.1.2.  Join confirm/deny

  Only the master of the web will respond to join[request]. The
  response may either permit the entry of the new process or deny it.
  The request to join may be denied because the new member is
  specifying service parameters that are in conflict with those
  established by the master.  If the join is confirmed the
  join[confirm] will be unicast by the master with a data field that
  contains the web's current operating parameters. If those parameters
  are unacceptable to the joining process it may decide to withdraw
  from the web. Otherwise the parameters must be accepted as the
  current operating values.

   0           7 8           15 16         23 24         31
  ----------------------------------------------------------    -----
  |  protocol    |    packet   |    type     |    client   |      |
  |  version     |    type     |    modifier |    channel  |      |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              source connection identifier              |      |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              destination connection identifier         |
  ---------------------------------------------------------- transport
  |                                                        |    header
  |              message acceptance criteria               |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              heartbeat                                 |      |
  ----------------------------------------------------------      |
  |                            |                           |      |
  |        window              |        retention          |      |
  ----------------------------------------------------------    -----
  |  member     |   transport  |  transport  |             |      |
  |  class      |   class      |  type       |  reserved   |      |
  ----------------------------------------------------------
  |        minimum             |     maximum data          |    data
  |        throughput          |     unit size             |
  ----------------------------------------------------------      |
  |                  multicast connection                  |      |
  |                  identifier                            |      |
  ----------------------------------------------------------    -----

                          Figure 3. join packet

  The join[confirm] will also contain the multicast connection
  identifier.  This must be used to form the TSAP that will be the
  destination for all multicast messages for the transport. The source



Armstrong, Freier & Marzullo                                   [Page 16]

RFC 1301              Multicast Transport Protocol         February 1992


  of the join[confirm] message will be the master's TSAP and must be
  recorded by the member for later use.

  The master must be in possession of all the transmit tokens when it
  sends a join[confirm]. Requiring the master to have the transmit
  tokens insures that the joining member will enter the web and observe
  only complete messages. It also permits a notification of the
  master's client of the join so that application state may be
  automatically sent to the newly joining member. The newly joined
  member may be on a network not previously represented in the web's
  membership, thus requiring a new multicast TSAP be added to the
  existing list. The entire list will be conveyed in the data field of
  all subsequent token[confirm] messages (described later).

3.2     Maintaining data consistency

  The transport is responsible for maintaining the consistency of the
  data submitted for delivery by producing clients. The actual client
  data, while representing the bulk of the information that flows
  through the web, is accompanied by significant amounts of protocol
  state information. In addition to the state information piggybacked
  with the client data, there is a minimum amount of protocol packets
  that are purely for use by the transport, invisible to the transport
  client.

3.2.1.  Transmit tokens

  Before any process may transmit client data or state it must first
  possess a transmit token. It may acquire the token by transmitting a
  token[request] to the master. Requests should be unicast to the
  master's TSAP and should be retransmitted at intervals approximately
  equal to the heartbeat. Since it is the central source for a transmit
  token, the master may apply some fairness algorithms to the passing
  of permission to transmit. At a minimum the requests should be queued
  in a first in, first out order. Duplicate requests from a single
  member should be ignored, keeping instead the first unhonored
  request. When appropriate, the master will send a member with a
  request pending a token[confirm].  The data field of the response
  contains all the multicast TSAPs that are represented in the current
  web at that point in time.

  If the master detects no data or heartbeat messages being transmitted
  into the web it will assume the token is lost, presumably because the
  member holding the token has failed or has become partitioned away
  from the master. In such cases, the master may attempt to confirm the
  state of the process (perhaps by sending isMember[request]). If the
  member does not respond it is removed from the active members of the
  web, the message is marked as rejected, the token is assumed by the



Armstrong, Freier & Marzullo                                   [Page 17]

RFC 1301              Multicast Transport Protocol         February 1992


  master.

  Figure 4 shows a timing diagram of a token pass. Increasing time is
  towards the bottom of the figure. In this figure, process A has a
  token, and process B requests a token when there are no free tokens.

                          A    master    B
   "A" multicasts data    |             |  "B" requests
                          |\     |      |  transmit token
                          | \    |     /|
                          |  \   |    / |
                          |   \  |   /  |
   "A" multicasts data    |    \ |  /   |  "B" retransmits
   w/eom set              |\    \| /    |  token request
                          | \    \V    /|
                          |  \   |\   / |
                          |   \  | V /  |
                          |    \ |  /   |
                          |     \| /    |
                          |      \V     |
                          |      |\     |
                          |      | V    |
                          |      |\     |  Master assigns
                          |      | \    |  token to "B"
                          |      |  \   |
                          |      |   \  |
                          |      |    \ |
                          |      |     V|
                          |      |      |
                          |      |     /|  "B" multicasts
                          |      |    / |  data
                          |      |   /  |
                          |      |  /   |
                          |      | /    |
                          |      |/     |
                          |      /      |
                          |     /|      |
                          |    V |      |
                          |      |      |

                    Figure 4. Acquiring the token

  Token packets, like other control packets, do not consume sequence
  numbers. Hence, the master must be able to use another mechanism to
  determine whether multiple token[request] from a single member are
  actually requests for a separate token, or are a retransmission of a
  token[request].  To carry out this obligation, the master and the
  members must have an implicit understanding of each other's state.



Armstrong, Freier & Marzullo                                   [Page 18]

RFC 1301              Multicast Transport Protocol         February 1992


   0           7 8           15 16         23 24         31
  ----------------------------------------------------------    -----
  |  protocol    |    packet   |    type     |    client   |      |
  |  version     |    type     |    modifier |    channel  |      |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              source connection identifier              |      |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              destination connection identifier         |
  ---------------------------------------------------------- transport
  |                                                        |    header
  |              message acceptance criteria               |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              heartbeat                                 |      |
  ----------------------------------------------------------      |
  |                            |                           |      |
  |        window              |        retention          |      |
  ----------------------------------------------------------    -----
  |                                                        |      |
  |                                                        |      |
  |                   TSAPs of all networks                |
  |                   represented in the web               |    data
  |                   membership                           |
  |                                                        |      |
  |                                                        |      |
  ----------------------------------------------------------    -----

                         Figure 5. token packet

  Assume that the token, as viewed by the master, has three states:

  idle        The token is not currently assigned. Specifically the
              message number that it defines is not represented in the
              current message acceptance vector.

  pending     The token has been assigned by the master via a
              token[confirm] packet, but the master has not yet seen
              any data packets to indicate that the from the producing
              member received the notification.

  busy        The token has been assigned and the master has seen data
              packets carrying the assigned message number. The message
              comprised by those packets is still represented in the
              message acceptance vector.

  Furthermore, a token that is not idle also has associated with its



Armstrong, Freier & Marzullo                                   [Page 19]

RFC 1301              Multicast Transport Protocol         February 1992


  state the TSAP of the process that owns (or owned) the token.

  Based on this state, the master will respond to any process that has
  a token in pending state with a reassignment of that token. This is
  based on the assumption that the original token[confirm] was not
  received by the requesting process. The only other possibility is
  that the process did receive the token and transmitted data packets
  using that token, but the master did not see them. But data messages
  are by design multi-packet messages, padded with empty packets if
  necessary. The possibility of the master missing all of the packets
  of a message is considered less than the possibility of the
  requesting process missing a single token[confirm] packet.

  The process requesting tokens must consider the actions of the master
  and what prompted them. In most cases the assumptions made by the
  master will be correct. However, there are two ambiguous situations.
  There is the situation that the master is most directly addressing,
  not knowing whether the requesting process has failed to observe the
  token[confirm] or the master has failed to see data packets
  transmitted by the producing process. There is also the possibility
  that the requesting process timed out too quickly and the
  retransmission of the token[request] passed the token[confirm] in the
  night. In any case the producing process may find itself in
  possession of a token for which it has no need. These can be
  dismissed by sending an empty[cancel] packet.

  Another possibility is that the requesting process has actually made
  use of the assigned token and is requesting another token. Unless the
  master has observed data using the token, the master will still
  consider the token pending. Therefore, a process that receives a
  duplicate token[confirm] should interpret it as a nak and retransmit
  any data packets previously sent using the token's message sequence
  number.

3.2.2.  Data transmission

  Data is provided by the transport client in the form of uninterpreted
  bytes. The bytes are encapsulated in packets immediately following
  the protocol's fixed overhead fields. The packet may have any number
  of data bytes between zero and the maximum number of bytes of a
  network protocol packet minus the network overhead and the fixed
  transport overhead.  Every packet that consumes a sequence number
  must contain either client data or client state transitions such as
  the end of message indicator or a subchannel transition.

  Packets are transmitted in bursts of packets called windows. The
  protocol guarantees that no more than the current value of window
  data packets will be transmitted by a single process during a



Armstrong, Freier & Marzullo                                   [Page 20]

RFC 1301              Multicast Transport Protocol         February 1992


  heartbeat.  Every packet transmitted always contains the latest
  heartbeat, window and retention information. If full packets are
  unavailable [5], empty[dally] messages should be transmitted instead.
  The only packets that will be transmitted containing less than
  maximum capacity will be data[eom] or those containing client
  subchannel transitions.













































Armstrong, Freier & Marzullo                                   [Page 21]

RFC 1301              Multicast Transport Protocol         February 1992


           -----     |      |
             |       |\     |
             |       | \    |
                     |\ \   |
         heartbeat   | \ \  |
                     |\ \ \ |
             |       | \ \ V|  data(n)
             |       |  \ \ |
           -----     |   \ V|  data(n+1)
                     |\   \ |
                     | \   V|  data(n+w-1) w/eow
                     |\ \   |
                     | \ \  |
                     |\ \ \ |
                     | \ \ V|  data(n+w)
                     |  \ \ |
           -----     |   \ V|  data(n+w+1)
                     |\   \ |
                     | \   V|  data(n+2w-1) w/eow
  w = window = 3     |  \   |
  r = retention = 2  |   \  |
                     |    \ |
                     |     V|  empty(n+2w)
                     |      |
           -----     |      |
                     |\     |
                     | \    |
                     |  \   |
                     |   \  |
                     |    \ |
                     |     V|  data(n+2w) w/eom
                     |      |    Packets n..n+w-1 are released,
           -----     |      |    token is surrendered.
                     |      |
                     |      |
                     |      |
                     |      |
                     |      |
                     |      |
                     |      |
           -----     |      |    Packets n+w..n+2w-1 are released.


                   Figure 6. Normal data transmission

  Figure 6 shows a timing diagram of a process transmitting into a web
  (without any complicating naks). Increasing time is towards the
  bottom of the figure. The transmitting process is obligated to



Armstrong, Freier & Marzullo                                   [Page 22]

RFC 1301              Multicast Transport Protocol         February 1992


  retransmit requested packets for at least retention heartbeat
  intervals after their first transmission.

   0           7 8           15 16         23 24         31
  ----------------------------------------------------------    -----
  |  protocol    |    packet   |    type     |    client   |      |
  |  version     |    type     |    modifier |    channel  |      |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              source connection identifier              |      |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              destination connection identifier         |
  ---------------------------------------------------------- transport
  |                                                        |    header
  |              message acceptance criteria               |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              heartbeat                                 |      |
  ----------------------------------------------------------      |
  |                            |                           |      |
  |        window              |        retention          |      |
  ----------------------------------------------------------    -----
  |                                                        |      |
  |                   uninterpreted data                   |
  |                                                        |    data
  |                                                        |
  |                                                        |      |
  ----------------------------------------------------------    -----

                          Figure 7. data packet

3.2.3.  Empty packets

  An empty packet is a control packet multicast into the web at regular
  intervals by a producer possessing a transmit token when no client
  data is available. Empty packets are sent to maintain synchronization
  and to advertise the maximum sequence number of the producer. It
  provides the opportunity for consuming processes to detect and
  request retransmission of missed data as well as identifying the
  owner of a transmit token.










Armstrong, Freier & Marzullo                                   [Page 23]

RFC 1301              Multicast Transport Protocol         February 1992


   0           7 8           15 16         23 24         31
  ----------------------------------------------------------    -----
  |  protocol    |    packet   |    type     |    client   |      |
  |  version     |    type     |    modifier |    channel  |      |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              source connection identifier              |      |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              destination connection identifier         |
  ---------------------------------------------------------- transport
  |                                                        |    header
  |              message acceptance criteria               |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              heartbeat                                 |      |
  ----------------------------------------------------------      |
  |                            |                           |      |
  |        window              |        retention          |      |
  ----------------------------------------------------------    -----

                         Figure 8. empty packet

  There are two situations where the empty[dally] packet is used. The
  first is when there is insufficient data for a full packet presented
  by the client during a heartbeat. Partial packets should not be
  transmitted unless there is a client transition to be conveyed, yet
  something must be transmitted during a heartbeat or the master may
  think the process owning a transmit token has failed. Empty[dally] is
  used instead of a data packet until the client provides additional
  data to fill a packet or indicates a state transition such as an end
  of message or subchannel transition.

  The second situation where empty[dally] is used is after the
  transmission of short messages. Each message should consist of
  multiple packets in order to enhance the possibility that consumers
  will observe at least one packet of a message and therefore be able
  to identify the producer. The transport parameter retention has
  approximately the correct properties for that insurance. Therefore, a
  message must consist of at least retention packets. If the client
  data does not require that many packets, empty[dally] packets must be
  appended. A process that has no transmittable data and is in
  possession of a transmit token must send an empty[cancel].
  Transmissions of empty[cancel] packets pass the ownership of the
  transmit token back to the master. When the master observes the
  control packet, it will mark the referenced to message as rejected so
  that other consumers do not believe the message lost and attempt to
  recover.



Armstrong, Freier & Marzullo                                   [Page 24]

RFC 1301              Multicast Transport Protocol         February 1992


  During periods of no activity (i.e., after all messages have been
  either accepted or rejected and there are no outstanding transmit
  tokens) the master may enter hibernation mode by transmitting
  empty[hibernate] packets. In that mode the master will increase the
  value of the transport parameter heartbeat in order to reduce network
  traffic. Such packets are used to indicate that the packet's
  heartbeat field should not be used for resource computation by those
  processes that observe it.











































Armstrong, Freier & Marzullo                                   [Page 25]

RFC 1301              Multicast Transport Protocol         February 1992


3.2.4.  Missed data

  The most common method of detecting data loss will be the reception
  of a data or a heartbeat message that has a sequence number greater
  than expected from that producer. The second most common method will
  be a message fragment (missing the end of message) and seeing no more
  data or empty packets from the producer of the fragment for more than
  a single heartbeat. In any case the consumer process directs a
  negative acknowledgment (nak) to the producer of the incomplete
  message. The data field of the nak message contains a list of
  ascending sequence number pairs the consumer needs to recover the
  missed data.

   0           7 8           15 16         23 24         31
  ----------------------------------------------------------    -----
  |  protocol    |    packet   |    type     |    client   |      |
  |  version     |    type     |    modifier |    channel  |      |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              source connection identifier              |      |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              destination connection identifier         |
  ---------------------------------------------------------- transport
  |                                                        |    header
  |              message acceptance criteria               |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              heartbeat                                 |      |
  ----------------------------------------------------------      |
  |                            |                           |      |
  |        window              |        retention          |      |
  ----------------------------------------------------------    -----
  |                            |                           |      |
  |  message sequence (low)    |  packet sequence (low)    |
  ----------------------------------------------------------    data
  |                            |                           |
  |  message sequence (high)   |  packet sequence (high)   |      |
  ----------------------------------------------------------    -----

                          Figure 9. nak packet

3.2.5.  Retrying operations

  Operations must be retried in order to assure that a single packet
  loss does not cause transport failure. In general the right numbers
  to do that with exist in the transport. The proper interval between
  retries is the transport's time constant or heartbeat. The proper



Armstrong, Freier & Marzullo                                   [Page 26]

RFC 1301              Multicast Transport Protocol         February 1992


  number of retries is retention.

  Operations that are retriable (and represented by their respective
  message types) are join, nak, token, isMember and quit. Another
  application for the heartbeat and retention is when transmitting
  empty messages. Empty[dally] messages are transmitted any time data
  is not available but the data[eom] has not yet been sent. Any process
  not observing data or empty for more than retention heartbeat
  intervals will assume to have failed or partitioned away and the
  transport will be abandoned.

3.2.6.  Retransmission

  If the producer receives a nak[request] from a consumer process
  requesting the retransmission of a packet that is no longer
  available, the producer must send a nak[deny] to the source of the
  request. If that puts the consumer in a failed state, the consumer
  will initiate the withdrawal from the web. If a producer receives a
  nak[request] from a consumer requesting the retransmission of one or
  more packets, those packets will be multicast to the entire web [6].
  All will contain the original client information (such as subchannel
  and end of message state) and message and packet sequence number.
  However, the retransmitted packets must contain updated protocol
  parameter information (heartbeat, window and retention).
  Retransmitted packets are subject to the same constraints regarding
  heartbeat and window as original transmissions. Therefore the
  producer's retransmissions consume a portion of the allocation window
  allowing less new data to be transmitted in a single heartbeat.
  Retransmitted packets have priority over (i.e., should be transmitted
  before) new data packets.





















Armstrong, Freier & Marzullo                                   [Page 27]

RFC 1301              Multicast Transport Protocol         February 1992


           -----     |       |     retransmission count = rx=0
             |       |\     |
             |       | \    |
             |       |\ \   |
             |       | \ \  |
             |       |\ \ \ |
             |       | \ \ V|  data(n)
             |       |  \ \ |
                     |   \ *|  data(n+1)
         heartbeat   |    \ |
                     |     V|  data(n+w-1-rx) w/eow       rx=0
             |       |      |
             |       |     /|  nak(n') of n+1
             |       |    / |
             |       |   /  |
             |       |  /   |
             |       | /    |
             |       |V     |
           -----     |      |
                     |\     |
                     | \    |
                     |\ \   |
                     | \ \  |
                     |\ \ \ |
  w = window = 3     | \ \ *|  retransmission(n+1)        rx=1
  r = retention = 1  |  \ \ |
                     |   \ V|  data(n+w)
                     |    \ |
                     |     V|  data(n+2w-1-rx) w/eow      rx=1
                     |      |
                     |     /|  nak(n') of n+1
                     |    / |
           -----     |   /  |
                     |\ /   |
                     | /    |
                     |V \   |
                     |\  \  |
                     | \  \ |
                     |\ \  V|  data(n+2w-rx)              rx=1
                     | \ \  |    Packets n..n+w-1-0 can be released.
                     |  \ \ |
                     |   \ V|  nak deny(n+1)              rx=2
                     |    \ |
                     |     V|  data(n+3w-1-rx) w/eom      rx=2
                     |      |
          -----      |      |    Packets n+w..n+2w-1-1 are released.

                 Figure 10. naks and retransmission



Armstrong, Freier & Marzullo                                   [Page 28]

RFC 1301              Multicast Transport Protocol         February 1992


3.2.7.  Duplicate suppression

  The consumer must be prepared to ignore duplicate packets received.
  They will invariably be the result of the producer's retransmission
  in response to another consumer's nak.

3.2.8.  Banishment

  If at any time a process detects another in violation of the protocol
  it may ask the offending process to withdraw from the web by
  unicasting to it a quit[request] that has the target field set to the
  value of the offender's TSAP. Any member that exhibits a detectable
  and recoverable protocol violation and still responds willingly to
  the quit[request] will be noted as having truly correct social
  behavior.

   0           7 8           15 16         23 24         31
  ----------------------------------------------------------    -----
  |  protocol    |    packet   |    type     |    client   |      |
  |  version     |    type     |    modifier |    channel  |      |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              source connection identifier              |      |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              destination connection identifier         |
  ---------------------------------------------------------- transport
  |                                                        |    header
  |              message acceptance criteria               |
  ----------------------------------------------------------      |
  |                                                        |      |
  |              heartbeat                                 |      |
  ----------------------------------------------------------      |
  |                            |                           |      |
  |        window              |        retention          |      |
  ----------------------------------------------------------    -----
  |                                                        |
  |              target TSAP                               |
  |                                                        |
  ----------------------------------------------------------

                         Figure 11. quit packet

3.3     Terminating the transport

  Transport termination is an advisory process that may be initiated by
  any member of the web. No process should intentionally quit the web
  while it has retransmittable data buffered. Stations should make



Armstrong, Freier & Marzullo                                   [Page 29]

RFC 1301              Multicast Transport Protocol         February 1992


  every reasonable attempt advise the master of their intentions to
  withdraw, as their departure may collapse the topology of the web and
  eliminate the need to carry multicast messages across network
  boundaries.

3.3.1.  Voluntary quits

  Voluntary quit[requests] are unicast to the master's TSAP. When the
  master receives a quit from a member of the web, it responds with a
  quit[confirm] packet. At that time the member will be formally
  removed from the web. The request should be retransmitted at
  heartbeat intervals until the confirmation is received from the
  master or as many times as the web's value of retention.

3.3.2.  Master quit

  If the master initiates the transport termination it effects all
  members of the web. The master will retain all transmit tokens and
  refuse to assign them. Once the tokens are acquired, the master will
  multicast a quit[request] to the entire web. That request should be
  acknowledged by every active member. When the master receives no
  confirmations for retention transmissions, it may assume every member
  has terminated its transport and then may follow suit.

3.3.3.  Banishment

  If the master receives any message other than a join[request] from a
  member that it does not recognize, it should transmit a quit[request]
  with that process as a target. This covers cases where the consumer
  did not see the termination reply and retransmitted its original quit
  request, as well as unannounced and rejected consumers.

3.4     Transport parameters

  The following section provides guidelines and rationale for selecting
  reasonable transport quality of service parameters. It also describes
  some of the reasoning behind the ranges of values presented.

3.4.1.  Quality of service

  Active members of the web may suggest changes in the transport's
  quality of service parameters during the lifetime of the transport.
  Producers in general adjust the transport's parameters to encourage a
  higher level of throughput. Since consumers are responsible for
  certifying reliable delivery, it is expected that they will provide
  the force encouraging more reliability and stability. Both are trying
  to optimize the quality of service. The negotiation that took place
  when members joined the web included the clients' desires with



Armstrong, Freier & Marzullo                                   [Page 30]

RFC 1301              Multicast Transport Protocol         February 1992


  regards to the worst case behavior that will be tolerated. If a
  member cannot maintain the negotiated lower bound, it may asked to
  withdraw from the web. That process will be sent a unicast message
  (quit[request]) indicating that it should retire. There are
  essentially three parameters maintained by the transport that reflect
  the client's quality of service requirements: heartbeat, window and
  retention. These three parameters can be adapted by the transport to
  reflect the capability of the members, the type of application being
  supported and the network topology. When members join the web, they
  suggest values for the quality of service parameters to the master.
  If the parameters are acceptable, the master will respond with the
  web's current operating values. During the lifetime of the web, it is
  expected that the parameters be modified by its members, though they
  may never result in a quality of service less than the lower bounds
  established by the joining procedure. Producers may try to improve
  performance by reducing the heartbeat interval and increasing the
  window size. This will have the effect of increasing the resources
  committed to the transport at any time. In order to keep the
  resources under control, the producer may also reduce the retention.

  Consumers must rely on their clients to consume the data occupying
  the resources of the transport. To do so the consumer transport
  implementation must monitor the level of committed resources to
  insure that it does not exceed its capabilities. Since MTP is a NAK
  based protocol, the consumer is required to tell the producer if a
  change in parameters is required. The new information must be
  delivered to the producer(s) before the consumer's resource situation
  becomes critical in order to avoid missing data.

  For more stable operation, consumers would try to extend the
  heartbeat interval and reduce the window. To a certain degree, they
  could also attempt to reduce the value of retention in order to
  reduce the amount of resources required to support the transport.
  However, that requires a more stringent real-time capability.

3.4.2.  Selecting parameter values

  The value of heartbeat is approximately the transport time constant.
  Assuming that the transport can be modelled as a closed loop system
  function, reaction to feedback into the transport should settle out
  in three time constants. In a transport that is constrained to a
  single network, the dominant cause of processing delay of the
  transport will most likely be page fault resolution time.

  For example, using a one MIP processor on a ethernet and an industry
  standard disk, the worst case page fault resolution requiring two
  seeks (one to write out a dirty page, another to swap in the new
  page) and an average seek time of 40 milliseconds, page fault



Armstrong, Freier & Marzullo                                   [Page 31]

RFC 1301              Multicast Transport Protocol         February 1992


  resolution should be less than 80 milliseconds. Allowing for some
  additional overhead and scheduling delays, two times the worst case
  page fault resolution time would appear to be the minimum suitable
  transport time constant one could expect. So,

          Heartbeat (minimum) = 160 - 200 milliseconds.

  The transmit time for a full (ethernet) packet is approximately 1.2
  milliseconds. Processing time should be less than 3 milliseconds
  (ignoring possible overlapped processing). Assuming disk access (with
  no faulting) is equivalent, and the total time per packet is the sum
  of the parts, or 8.4 milliseconds. Therefore, the theoretical maximum
  value would be approximately 17 packets per heartbeat. The transport
  should be capable of approximately 120 packets per second, or 19.2
  packets per heartbeat.

          Window (maximum) = 17 - 20 packets per heartbeat.

  The (theoretical) throughput with these parameters in effect is 180
  kilobytes per second.

  Reducing retention may introduce instability because the consumers
  will have less opportunity to react to missing data. Data can be
  missed for a variety of reasons. If constrained to the local net the
  data lost due to data link corruption should be in the neighborhood
  of one packet in every 50,000 (bit error rate of approximately 10-9).
  Telephony links (between routers, for instance) exhibit similar
  characteristics. Several orders of magnitude more packets are lost at
  receiving processes, including packet switch routers, than over the
  physical links. The losses are usually a result of congestion and
  resource starvation at lower layers due to the processing of (nearly)
  back to back packets. The incidental packet loss of this type is
  virtually unavoidable. One can only require that a receiving process
  be capable of receiving some number of back to back packets
  successfully, and that number must be at least greater then the value
  of window. And beyond that the probability of success can be made as
  close to unity as required by providing the receiver the opportunity
  to observe the data multiple times.

  The receiving process must detect packet loss. The simplest method is
  to notice gaps in the received message/packet sequence numbers. Such
  detection should be done after receiving an end of window or other
  state transition indication. As such, the naks cannot be transmitted,
  let alone received, until the following heartbeat. In order to not
  have any single packet loss cause transport failure, the naks should
  have the opportunity to be transmitted at least twice.

  When the loss is detected, the nak must be transmitted and should be



Armstrong, Freier & Marzullo                                   [Page 32]

RFC 1301              Multicast Transport Protocol         February 1992


  received at the producing process in less than two heartbeats after
  the data it references was transmitted. Again, it is the detection
  time that dominates, not the transmission of the nak.

          Retention (minimum) = 3.

  The resources committed to a producing transport using the above
  assumptions are buffers sufficient for 80 packets of 1500 bytes each.
  Each buffer will be committed for 600 - 800 milliseconds.

  Transports that span multiple networks have unique problems. One such
  problem is that if a router drops a packet, all the processes on the
  remote network may attempt to send a nak[request] at the same time.
  That is not likely to enhance the router's quality of service.
  Furthermore, it is obvious that any one nak[request] will suffice to
  prompt the producer to retransmit the desired packet. To reduce the
  number of nak[requests] in this situation, the following scheme might
  be employed.

  First, extend the value of retention to a minimum value of N. Then
  use a randomizing function that returns a value between zero and N -
  2, choose how many heartbeat intervals to dally before sending the
  nak[request], thus spreading out the transmissions over time. In
  order for the method to be meaningful, the minimum value of retention
  must be adjusted.

          Retention (minimum) = 5 (for internet cases)

3.4.3.  Caching member information

  In order to reduce transport member interaction and to enhance
  performance, a certain amount of caching should be employed by
  producing members. These caches may be filled by gleaning information
  from reliable sources such as multicast data or, when all else fails,
  from responses solicited from the web's master by use of the
  isMember[request]. IsMember[request] requests are unicast to a member
  that is believed to have an accurate state of the web, at least to
  the degree that it can answer the question posed. The destination of
  such a message is usually the master. But in cases where a process
  (such as the master) wants to verify that a process believes itself
  to be valid, it can assign the target TSAP and the destination to be
  the same. It is assumed that every process can verify itself.

  If the member receiving the isMember[request] can confirm the
  target's active membership status in the web, it responds with a
  unicast isMember[confirm]. The data field contains the credibility
  value of the confirmation, that is the time (in milliseconds) since
  the information was confirmed from a reliable source.



Armstrong, Freier & Marzullo                                   [Page 33]

RFC 1301              Multicast Transport Protocol         February 1992


  Caches are risky as the information stored in them can become stale.
  Consequently, with only a few exceptions, the entries should be aged,
  and when sufficiently old, discarded. Ideally they may be renewed by
  the same gleanable sources alluded to in the previous paragraph. If
  not, they are simply discarded and refilled when needed.

  Web membership may be gleaned from any packet that does not have a
  value of unknown as the destination connection identifier. A
  producing transport may extract the TSAP from such packets and either
  create or refresh local caches. Then, if in the process of
  transmitting and NAK is received from one of the members whose
  identity is cached, no explicit request will be needed to verify the
  source's membership.

  The explicit source of membership information is the master.
  Information can be requested by using the isMember message.
  Information gathered in that manner should be treated the same as
  gleaned information with respect to aging.

  The aging is a function of the transport's time constant, or
  heartbeat, and the retention. Information about a producing member
  must be cached at least as long as that producer has incomplete
  messages. It may be cached longer. The namespace for both sequence
  numbers and connection identifiers is intentionally long to insure
  that reuse of those namespaces will not likely collide.

A.      Appendix: MTP as an Internet Protocol transport

  MTP is a transport layer protocol, designed to be layered on top of a
  number of different network layer protocols.  Such a protocol must
  provide certain facilities that MTP expects.  In particular, the
  underlying network level protocol must provide "ports" or "sockets"
  to facilitate addressing of processes within a machine, and a
  mechanism for multicast addressing of datagrams.  These two
  addressing facilities are also used to formulate the NSAP for MTP on
  IP.

A.1     Internet Protocol multicast addressing

  MTP on Internet Protocol uses the Internet Protocol multicast
  mechanisms defined in RFC 1112, "Host Extensions for IP
  Multicasting".  MTP requires "Level 2" conformance described in that
  paper, for hosts which need to both send and receive multicast
  packets, both on the local net and on an internet. MTP on Internet
  Protocol uses the permanent host group address 224.0.1.9.






Armstrong, Freier & Marzullo                                   [Page 34]

RFC 1301              Multicast Transport Protocol         February 1992


A.2     Encapsulation

  The Internet Protocol does not provide a port mechanism - ports are
  defined at the transport level instead.  In order to encapsulate MTP
  packet within Internet Protocol packets, a simple convergence or
  "bridge" protocol must be defined to run on top of Internet Protocol,
  which will provide MTP with the mechanism needed to deliver packets
  to the proper processes.  We will call this protocol the
  "MTP/Internet Protocol Bridge Protocol", or just "Bridge".  The
  protocol header is encapsulated the Internet Protocol data - the
  protocol field of the Internet Protocol packet carries the value
  indicating this packet is an MTP packet (92 decimal).  The MTP packet
  itself is encapsulated in the Bridge data. Figure A.1 shows the
  positions of the fields within the MTP packet while table A.1 defines
  the contents of those fields.

A.3  Fields of the bridge protocol

      0           7 8           15 16         23 24         31
     ----------------------------------------------------------
     |                            |                           |
     |     destination port       |     source port           |
     ----------------------------------------------------------
     |                            |                           |
     |     length                 |     checksum              |
     ----------------------------------------------------------
     |                                                        |
     |                      client data                       |
     ----------------------------------------------------------

              Figure A.1 MTP bridge protocol header fields

  destination port The port to which the packet is destined or sinked.

  source port The port from which the packet originates or is sourced.

  length      The length in octets of the bridged packet, including
              header and all data (the MTP packet).  The minimum value
              in this field is 8, the maximum is 65535.  The length
              does not include any padding bytes that were used to
              compute the checksum.  Note that though this field allows
              for very long packets, most networks have significantly
              shorter maximum frame sizes - the allowable and optimal
              packet size must be determined by means beyond the scope
              of this specification.

  checksum    The 16 bit one's compliment of the one's compliment sum
              of the entire bridge protocol header and data, padded



Armstrong, Freier & Marzullo                                   [Page 35]

RFC 1301              Multicast Transport Protocol         February 1992


              with a zero octet (if necessary) to make multiple 16 bit
              quanities. A computed checksum of all zeros should be
              changed to all ones.  The checksum field is optional -
              all zeros in the field indicate that checksums are not in
              use.

  data        The data field is the field that carries the actual
              transport data. A single MTP packet will be carried the
              data field of each bridge packet.

A.4     Relationship to other Internet Protocol Transports

  The astute reader might note that the MTP/Bridge Protocol looks much
  like the User Datagram Protocol (UDP).  UDP itself was not used
  because the protocol field in the Internet Protocol packet should
  reflect the fact that the higher level protocol of interest is MTP.

References

  AFM91   Armstrong, S., A. Freier and K. Marzullo, "MTP: An Atomic
          Multicast Transport Protocol", Xerox Webster Research Center
          technical report X9100359, March 1991.

  Bog83   Boggs, D., "Internet Broadcasting", Xerox PARC technical
          report CSL-83-3, October 1983.

  BSTM79  Boggs, D., J. Shoch, E. Taft, and R. Metcalfe, "Pup: An
          Internetwork Architecture", IEEE Transactions on
          Communications, COM-28(4), pages 612-624. April 1980.

  DIX82   Digital Equipment Corp., Intel Corp., Xerox Corp., "The
          Ethernet, a Local Area Network: Data Link and Physical Layer
          Specifications", September 1982.

  CLZ87   Clark, D., M. Lambert, and L. Zhang, "NETBLT: A high
          throughput transport protocol", In Proceedings of ACM SIGCOMM
          '87 Workshop, pages 353-359, 1987.

  CM87    Chang J., and M. Maxemchuck. "Atomic broadcast",  ACM
          Transactions on Computer Systems, 2(3):251-273, August 1987.

  Cri88   Cristian, F., "Reaching agreement on processor group
          membership in synchronous distributed systems",  In
          Proceedings of the 18th International Conference on Fault-
          Tolerant Computing. IEEE TOCS, 1988.

  Dee89   Deering, S., "Host Extensions for IP Multicasting", RFC 1112,
          Stanford University, August 1989.



Armstrong, Freier & Marzullo                                   [Page 36]

RFC 1301              Multicast Transport Protocol         February 1992


  Fre84   Freier, A., "Compatability and interoperability", Open letter
          to XNS Interest Group, Xerox Systems Developement Division,
          December 13, 1984.

  JB89    Joseph T., and K. Birman, "Reliable Broadcast Protocols",
          pages 294-318, ACM Press, New York, 1989.

  Pos81   Postel, J., "Transmission Control Protocol - DARPA Internet
          Program Protocol Specification", RFC 793, DARPA, September
          1981.

  Xer81   Xerox Corp., "Internet Transport Protocols", Xerox System
          Integration Standard 028112, Stamford, Connecticut. December
          1981.

Footnotes

  [1] The network layer is not specified by MTP. One of the goals is to
  specify a transport that can be implemented with equal functionality
  on many network architectures.

  [2] There's only one such multicast connection identifier per web. If
  there are multiple processes on the same machine participating in a
  web, the transport must descriminate between those processes by using
  the connnection identifier.

  [3] Determining the network service access point (NSAP) for a given
  instantiation of a web is not addressed by this protocol. This
  document may define some policy, but the actual means are left for
  other mechanisms.

  [4] Best effort delivery is also known as highly reliable delivery.
  It is somewhat unique that the qualifying adjective highly weakens
  the definition of reliable in this context.

  [5] The resource being flow controlled is packets carrying client
  data.  Consequently, full data units provide the greatest efficiency.

  [6] There seems to be an opportunity to suppress retransmissions to
  networks that were not represented in the set of naks received.

Security Considerations

  Security issues are not discussed in this memo.







Armstrong, Freier & Marzullo                                   [Page 37]

RFC 1301              Multicast Transport Protocol         February 1992


Authors' Addresses

  Susan M. Armstrong
  Xerox Webster Research Center
  800 Phillips Rd. MS 128-27E
  Webster, NY 14580

  Phone: (716) 422-6437
  EMail: [email protected]


  Alan O. Freier
  Apple Computer, Inc.
  20525 Mariani Ave. MS 3-PK
  Cupertino, CA 95014

  Phone: (408) 974-9196
  EMail: [email protected]


  Keith A. Marzullo
  Cornell University
  Department of Computer Science
  Upson Hall
  Ithaca, NY 14853-7501

  Phone: (607) 255-9188
  EMail: [email protected]

     Keith Marzullo is supported in part by the Defense Advanced
     Research Projects Agency (DoD) under NASA Ames grant number NAG
     2-593, Contract N00140-87-C-8904.  The views, opinions and
     findings contained in this report are those of the authors and
     should not be construed as an official Department of Defense
     position, policy, or decision.
















Armstrong, Freier & Marzullo                                   [Page 38]