Network Working Group                              F. Kastenholz, Editor
Request for Comments: 1270               Clearpoint Research Corporation
                                                           October 1991


                     SNMP Communications Services

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard.  Distribution of this memo is
  unlimited.

Table of Contents

  1. Abstract ..............................................    1
  2. Introduction ..........................................    1
  3. Standardization .......................................    3
  4. Interoperability ......................................    3
  5. To Transport or Not To Transport ......................    3
  6. Connection Oriented vs. Connectionless ................    6
  7. Which Protocol ........................................    8
  8. Security Considerations ...............................    9
  9. Appendix ..............................................    9
  10. References ...........................................   10
  11. Acknowledgements .....................................   11
  12. Author's Address .....................................   11

1.  Abstract

  This memo is being distributed to members of the Internet community as
  an Informational RFC.  The intent is to present a discussion on the
  issues relating to the communications services for SNMP.  While the
  issues discussed may not be directly relevant to the research problems
  of the Internet, they may be interesting to a number of researchers
  and implementors.

2.  Introduction

  This document discusses various issues to be considered when
  determining the underlying communications services to be used by an
  SNMP implementation.

  As reported in RFC 1052, IAB Recommendations for the Development of
  Internet Network Management Standards [8], a two-prong strategy for
  network management of TCP/IP-based internets was undertaken.  In the
  short-term, the Simple Network Management Protocol (SNMP), defined in
  RFC 1067, was to be used to manage nodes in the Internet community.



SNMP Working Group                                              [Page 1]

RFC 1270              SNMP Communications Services          October 1991


  In the long-term, the use of the OSI network management framework was
  to be examined.  Two documents were produced to define the management
  information: RFC 1065, which defined the Structure of Management
  Information (SMI), and RFC 1066, which defined the Management
  Information Base (MIB).  Both of these documents were designed so as
  to be compatible with both the SNMP and the OSI network management
  framework.

  This strategy was quite successful in the short-term: Internet-based
  network management technology was fielded, by both the research and
  commercial communities, within a few months.  As a result of this,
  portions of the Internet community became network manageable in a
  timely fashion.

  In May of 1990, the core documents were elevated to "Standard
  Protocols" with "Recommended" status.  As such, the Internet-standard
  network management framework consists of: Structure and Identification
  of Management Information for TCP/IP-based internets, RFC 1155 [9],
  which describes how managed objects contained in the MIB are defined;
  Management Information Base for Network Management of TCP/IP-based
  internets, which describes the managed objects contained in the MIB,
  RFC 1156 [10]; and, the Simple Network Management Protocol, RFC 1157
  [1], which defines the protocol used to manage these objects.

  In parallel with this activity, documents specifying how to transport
  SNMP messages over protocols other than UDP/IP have been developed and
  published: SNMP Over Ethernet [3], SNMP Over OSI [2], and SNMP Over
  IPX [6] and it would be suprising if more were not developed.  These
  memos have caused a degree of confusion in the community.  This
  document is intended to disperse that confusion by discussing the
  issues of relevance to an implementor when choosing how to encapsulate
  SNMP packets.

  None of these documents have been made full Internet Standards. SNMP
  Over ISO and SNMP Over Ethernet are both Experimental protocols. SNMP
  Over IPX [6] is an Internet Draft. Only the SNMP Specification [1] is
  an Internet Standard.

  No single transport scheme can be considered the absolute best
  solution for all circumstances.  This note will argue that, except for
  a very small set of special circumstances, operating SNMP over UDP/IP
  is the optimal scheme.

  This document does not present a standard or a protocol for the
  Internet Community.  For production use in the Internet the SNMP and
  its required communication services are specified in [1].





SNMP Working Group                                              [Page 2]

RFC 1270              SNMP Communications Services          October 1991


3.  Standardization

  Currently, the SNMP Specification [1] only specifies that the UDP
  protocol be used to exchange SNMP messages.  While the IAB may
  standardize other protocols for use in exchanging SNMP messages in the
  future, only UDP is currently standardized for this purpose.

  In order to claim full compliance with the SNMP Specification, an
  implementation would have to use UDP for SNMP message exchange.

4.  Interoperability

  Interoperability is the degree to which the equipment produced by one
  vendor can can operate with equipment produced by another vendor.

  Related to Interoperability is compliance with a standard.  Everything
  else being equal, a device that complies with some standard is more
  likely to be interoperable than a device that does not.

  For commercial product development, the pros and cons of developing an
  interoperable product must be weighed and a choice made.  Both
  engineering and marketing organizations participate in this process.

  The Internet is the single largest market for SNMP systems.  A large
  portion of SNMP systems will be developed with the Internet as a
  target environment.  Therefore, it may be expected that the Internet's
  needs and requirements will be the driving force for SNMP.  SNMP over
  UDP/IP is specified as the "Internet Standard" protocol.  Therefore,
  in order to operate in the Internet and be managed in that environment
  on a production basis, a device must support SNMP over UDP/IP.  This
  situation will lead to SNMP over UDP/IP being the most common method
  of operating SNMP.  Therefore, the widest degree of interoperability
  and widest acceptance of a commercial product will be attained by
  operating SNMP over UDP/IP.

  The preponderance of UDP/IP based network management stations also
  strongly suggests that an agent should operate SNMP over UDP/IP.

  The results of the interoperability decision drive a number of
  technical decisions.  If interoperability is desired, then SNMP must be
  operated over UDP/IP.

5.  To Transport or Not To Transport

  A major issue is whether SNMP should run on top of a transport-layer
  protocol (such as UDP) or not.  Typically, the choice is to run over a
  transport/network/data link protocol or just run over the datalink.
  In fact, several protocols have been published for operating SNMP over



SNMP Working Group                                              [Page 3]

RFC 1270              SNMP Communications Services          October 1991


  several different datalink and transport protocols.

  Operation of SNMP over a Transport and Network protocol stack
  is preferred.  These protocols provide at least five functions
  that are of vital importance to the movement of SNMP packets
  through a network:

         o Routing
              The network layer provides routing functions, which
              improves the overall utility of network management.  The
              network has the ability to re-route packets around failed
              areas.  This allows network management to continue
              operating during localized losses of service (It should
              be noted that these losses of service occur not only
              because of failures, but also for non-failure reasons
              such as preventive maintenance).

         o Media Independence
              The network layer provides a high degree of media
              independence.  By using this capability, many different
              types of network elements may be managed.  Tying SNMP to
              a particular data link protocol limits the management
              scope of those SNMP entities to just those devices that
              use that datalink protocol.

         o End-to-End Checksum
              The end-to-end checksum provided by transport protocols
              improves the reliability of the data transfer.

         o Multiplexing/Demultiplexing
              Transport protocols provide multiplexing and
              demultiplexing services.  These services facilitate the
              many-to-many management relationships possible with SNMP.

         o Fragmentation and Reassembly
              This is related to media independence.  IP allows SNMP
              packets to transit media with differing MTU sizes.  This
              capability is not available for datalink specific
              transmission schemes.

              Fragmentation and Reassembly does reduce the overall
              robustness of network management since, if any single
              fragment is lost along the way, the operation will fail.
              The worse the network operates, the higher the
              probability that a fragment will get lost or delayed.
              For monitoring and data gathering while the network is
              operating normally, Fragmentation and Reassembly is not a
              problem. When the network is operating poorly (and the



SNMP Working Group                                              [Page 4]

RFC 1270              SNMP Communications Services          October 1991


              network operators are typically trying to diagnose and
              repair a failure), small packets should to be used,
              preventing the packet from being fragmented.

  There are other services and functions that are provided by a
  connection oriented transport.  These services and functions are not
  desired for SNMP.  A later section will explore this issue in more
  detail.

  The main drawbacks that are cited with respect to using Transport and
  Network layers in the managed object are: a) Increased development
  time and b) Increased resource requirements.  These arguments are
  less than compelling.

  There are several excellent public domain or freely redistributable
  UDP/IP stacks that provide enough support for SNMP.  The effort
  required to port the essential components of one of these stacks is
  small compared to the overall effort of installing the SNMP software.

  The additional resources required in the managed object to support
  UDP/IP are minimal.  CPU resources are required only when actually
  transmitting or receiving a packet.  The largest single resource
  requirement of a UDP/IP is calculating the UDP checksum, which is
  very small compared to the cost of doing the ASN.1 encoding/decoding,
  Object Identifier lookup, and so on.

  The author has personal knowledge of a UDP/IP stack that was
  developed expressly for the purpose of supporting SNMP.  This stack
  requires less than 4Kb of code space.  It is a minimalist
  implementation of UDP/IP in that it is "just enough" so support SNMP.
  This stack supports UDP, IP, ARP, and handles ICMP redirect and echo
  request messages.  Furthermore, this stack was developed by a single
  person in approximately two months.  Obviously, neither the
  development effort nor the memory requirements are large.

  The network overhead of using UDP/IP is relatively small.  A UDP/IP
  header requires 28 octets (assuming no IP options).  Since the UDP is
  connectionless, it will generate no overhead traffic of its own (such
  as TCP SYNs, FINs, and ACKs).

  The growing popularity of internetworking outside of The Internet
  mandates that SNMP operate over, at least, a network layer protocol.
  These internetworks consist of a number of networks all connected
  together with routers.  In order to traverse a router, a packet must
  be one of the network layer protocols that the router understands.
  Therefore, for SNMP management to be deployed in an internetwork, the
  SNMP entities in that internetwork must use a network layer protocol.
  SNMP over a datalink can not traverse a router.



SNMP Working Group                                              [Page 5]

RFC 1270              SNMP Communications Services          October 1991


  There are some circumstances where running SNMP over some datalink is
  appropriate.

  There are schemes are under development to provide Out-Of-Band (OOB)
  management access to network devices.  This OOB access is typically
  provided over point-to-point or dial-up connections.  Since these
  connections are dedicated to OOB network management and go directly
  from the network management station to the managed device, a
  Transport/Network protocol may not be necessary.

  Using a Transport/Network protocol on these links may be easier from
  a development point of view though.  It is probably a simple
  configuration operation to have the management station's IP use a
  serial port rather than the "normal" (e.g., Ethernet) port for
  traffic destined for a particular node.

  If the Out-Of-Band link is also used as a "primary" route to some
  nodes, then the functions of a network-layer are required.  These
  functions are readily supplied by using UDP/IP.

  For a datalink interface and driver (e.g., a PC Ethernet interface
  card) that must be manageable independent of the higher level
  protocol suite (which might NOT be manageable), operating SNMP
  directly over the datalink is reasonable.  It is not known, a priori,
  what higher-level protocol services may be available, so those
  services can not be used.  If an arbitrary choice is made for
  example, to put in an elementary UDP/IP stack, then there may be two
  independent UDP/IPs in the system (which is undesireable as this
  would require two IP addresses per managed node), or a new protocol
  stack will be introduced into the environment.

6.  Connection Oriented vs. Connectionless

  While this section primarily addresses itself to transport layer
  issues, its basic discussion of connection oriented vs connectionless
  applies to any layer which provides communication services for SNMP.

  For SNMP, connectionless transport service (UDP) is specified in the
  Protocol Specification [1].  This choice was made after careful study
  and consideration by the original SNMP developers.

  The prime motivation of this choice is that SNMP must continue to
  operate (if at all possible) when the network is operating at its
  worst.  For other applications, such as Telnet or FTP, the user can
  always "try again later" if the network is operating poorly.  On the
  other hand, the major purpose of a network management protocol is to
  fix the network when it is operating poorly so the "try again later"
  strategy is useless.



SNMP Working Group                                              [Page 6]

RFC 1270              SNMP Communications Services          October 1991


  By using a connectionless transport protocol, SNMP takes on the
  responsibility of reliable data transmission (A SNMP application may
  time out outstanding requests and either retransmit them or abort
  them as appropriate).  However, the SNMP requires these functions
  only of the sender of a Request PDU (get, getNext, or Set), which
  typically is a network management station.  Since the Agent only
  generates responses, it need not perform any of these functions.
  This vastly reduces the resource and functional requirements on the
  Agent.

  If a connection oriented transport is used, then a fundamental design
  choice must be made with respect to connection maintenance:

         (1)  Keep a connection open to each managed object on the
              network,

         (2)  Establish and tear down connections on a per-operation
              basis, or

         (3)  Keep a fixed number of connections open and, when another
              connection is needed, use some algorithm (e.g., LRU) to
              select one for closing and opening to the new agent.

  All of these alternatives pose severe problems, and because of them,
  each is undesirable.

  The first option reduces the amount of resources required to perform
  a single operation in that the connection establishment and
  termination cost is "amortized" over many operations.  On the other
  hand, keeping a connection open implies that the management station
  needs to maintain a large number of connection records (in the
  hundreds or even thousands).  Furthermore, if either side of the
  connection engages in "keep-alives" (even though such behavior is
  frowned upon), a large amount of traffic will be generated, consuming
  a large amount of network resources, all for no gain.

  The second option reduces the amount of idle resources such as
  connection records, but vastly increases the amount of resources
  required to perform an operation.  A connection must be established,
  the request Message sent and the response returned, and then the
  connection closed for each operation.  For a TCP, this would
  typically require 10 separate packet transfers plus the TCP Time-Wait
  (see the Appendix for details).

  In the face of pathological network problems, a connection oriented
  transport protocol may simply cease to operate because the
  probability of getting all of these packets through reduces to a very
  small number.



SNMP Working Group                                              [Page 7]

RFC 1270              SNMP Communications Services          October 1991


  The third option requires that the management station maintain
  connection usage information in order to implement the LRU algorithm.
  This excessively complicates the management station.  Furthermore,
  this option tends to reduce to the second option when doing health
  check polling for a number of agents that is large compared to the
  number of supported connections.

  A connection oriented transport protocol may provide services that
  are undesirable or unneeded by SNMP.

  For example, one application of network management is to poll nodes
  to determine if they are up or not.  When a node is up, it makes
  little difference whether SNMP operates over TCP or UDP.  However, if
  the node goes down then TCP will eventually close the connection.
  Every poll request must then be translated into a TCP Open request
  while the managed node is down.  Once the node comes up, the send
  must then be done.

  For connection oriented transports, the transport ACK does not
  necessarily indicate delivery of data to the destination application
  process (for TCP, see section 2.6 of [4]).  The SNMP would still need
  its own timeout/retry procedure to ensure that the SNMP software
  actually got the packet.

  A connection oriented transport such as TCP provides flow control for
  the data stream.  Because of the lock-step nature of SNMP protocol
  exchanges, this is not a service that SNMP requires.

  Architectural purists may argue that an "Application" layer entity
  (SNMP) must not perform operations that are properly the realm of the
  Transport layer (timeouts, retransmissions, and so on).  While
  architecturally pure, this line of reasoning is not relevant.  The
  network management applications and protocols are monitoring the
  "health" of the network and, as a result, have the best information
  and are in the best position to adapt their own behavior to the state
  of the network, and thereby, continuing operations in the face of
  network adversity.

7.  Which Protocol

  The final point of discussion is the actual choice of a protocol to
  support SNMP.

  If a device is destined for use in the Internet then it must operate
  SNMP over UDP/IP.

  If the device is operating in some other protocol environment, then
  SNMP ought to use the transport services that are native to that



SNMP Working Group                                              [Page 8]

RFC 1270              SNMP Communications Services          October 1991


  environment.  It may make very little sense to introduce a new
  protocol stack into a network in order to provide just one service.
  For example, it could require that the network operations staff
  understand and be able to administer and operate two protocol stacks,
  that hosts and routers understand both protocols, and so on.  It may
  also be bureaucratically impossible to introduce UDP/IP into the
  environment (the "We are only a FOONET shop - if it doesn't speak
  FOONET, we don't want it" argument).

  References [2] and [6] are experimental standards for operating SNMP
  over IPX and OSI respectively.  In these environments, those
  standards ought to be adhered to.

8.  Security Considerations

  Security issues are not discussed in this memo.

9.  Appendix

  This appendix details the TCP packet transfers required to perform a
  single SNMP operation assuming that the connection is established
  only for that operation and that a single SNMP operation (e.g., get
  request) is performed.  We also assume that all operations are
  "normal" i.e., that there are no lost packets, no simultaneous opens,
  no half opens, and no simultaneous closes.  We also ignore the
  possibility of TCP segmentation and IP fragmentation.

  The nomenclature used to illustrate the packet transactions is the
  same as that used in the TCP Specification [4].






















SNMP Working Group                                              [Page 9]

RFC 1270              SNMP Communications Services          October 1991


             Packet  Management                         Managed
             Number  Station                            Object
                              Connection Open...
              1         >--<CTL=SYN>----------------------->
              2         <--<CTL=SYN,ACK>-------------------<
              3         >--<CTL=ACK>----------------------->
                          Connection now open,
                          SNMP Request is sent.
              4         >--<DATA=SNMP Request>------------->
                          Response comes back
              5         <--<DATA=SNMP Response, CTL=ACK>---<
              6         >--<CTL=ACK>----------------------->
                          Operation is complete,
                          Management station initiates the
                          close.
              7         >--<CTL=FIN,ACK>------------------->
              8         <--<CTL=ACK>-----------------------<
              9         <--<CTL=FIN,ACK>-------------------<
             10         >--<CTL=ACK>----------------------->
                         Wait 2 MSL
                         Connection now closed.

  Some optimizations are possible IF the TCP has knowledge of the type
  of operation.  However, a general purpose TCP would not be tuned to
  SNMP operations so those optimizations would not be done.

10.  References

  [1] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple
      Network Management Protocol", RFC 1157, SNMP Research,
      Performance Systems International, Performance Systems
      International, MIT Laboratory for Computer Science, May 1990.

  [2] Rose, M., Editor, "SNMP over OSI", RFC 1161, Performance Systems
      International, Inc., June 1990.

  [3] Schoffstall, M., Davin, C., Fedor, M., and J. Case, "SNMP over
      Ethernet", RFC 1089, Rensselaer Polytechnic Institute, MIT
      Laboratory for Computer Science, NYSERNet, Inc., University of
      Tennessee at Knoxville, February 1989.

  [4] Postel, J., "Transmission Control Protocol - DARPA Internet
      Program Protocol Specification", RFC 793, DARPA, September 1981.

  [5] Postel, J., "User Datagram Protocol", RFC 768, USC/Information
      Sciences Institute, August 1980.

  [6] Wormley, R., "SNMP Over IPX", draft in process, August 1990.



SNMP Working Group                                             [Page 10]

RFC 1270              SNMP Communications Services          October 1991


  [7] Postel, J., Editor, "IAB Official Protocol Standards", RFC 1250,
      IAB, August 1991.

  [8] Cerf, V., "IAB Recommendations for the Development of Internet
      Network Management Standards", RFC 1052, NRI, April 1988.

  [9] Rose M., and K. McCloghrie, "Structure and Identification of
      Management Information for TCP/IP-based internets", RFC 1155,
      Performance Systems International, Hughes LAN Systems, May 1990.

 [10] McCloghrie K., and M. Rose, "Management Information Base for
      Network Management of TCP/IP-based internets", RFC 1156, Hughes
      LAN Systems, Performance Systems International, May 1990.

11.  Acknowledgements

  The author wishes to thank Jeff Case, Chuck Davin and Keith
  McCloghrie for their technical and editorial contributions to this
  document.

12.  Author's Address

  Frank Kastenholz
  Clearpoint Research Corporation
  35 Parkwood Drive
  Hopkinton, Mass. 01748

  Phone: (508) 435-2000

  Email: [email protected]





















SNMP Working Group                                             [Page 11]