Network Working Group                                           M. Rose
Request for Comments: 1212            Performance Systems International
                                                         K. McCloghrie
                                                    Hughes LAN Systems
                                                               Editors
                                                            March 1991


                       Concise MIB Definitions
Status of this Memo

  This memo defines a format for producing MIB modules.  This RFC
  specifies an IAB standards track document for the Internet community,
  and requests discussion and suggestions for improvements.  Please
  refer to the current edition of the "IAB Official Protocol Standards"
  for the standardization state and status of this protocol.
  Distribution of this memo is unlimited.

Table of Contents

  1. Abstract..............................................    2
  2. Historical Perspective ...............................    2
  3. Columnar Objects .....................................    3
  3.1 Row Deletion ........................................    4
  3.2 Row Addition ........................................    4
  4. Defining Objects .....................................    5
  4.1 Mapping of the OBJECT-TYPE macro ....................    7
  4.1.1 Mapping of the SYNTAX clause ......................    7
  4.1.2 Mapping of the ACCESS clause ......................    8
  4.1.3 Mapping of the STATUS clause ......................    8
  4.1.4 Mapping of the DESCRIPTION clause .................    8
  4.1.5 Mapping of the REFERENCE clause ...................    8
  4.1.6 Mapping of the INDEX clause .......................    8
  4.1.7 Mapping of the DEFVAL clause ......................   10
  4.1.8 Mapping of the OBJECT-TYPE value ..................   11
  4.2 Usage Example .......................................   11
  5. Appendix: DE-osifying MIBs ...........................   13
  5.1 Managed Object Mapping ..............................   14
  5.1.1 Mapping to the SYNTAX clause ......................   15
  5.1.2 Mapping to the ACCESS clause ......................   15
  5.1.3 Mapping to the STATUS clause ......................   15
  5.1.4 Mapping to the DESCRIPTION clause .................   15
  5.1.5 Mapping to the REFERENCE clause ...................   16
  5.1.6 Mapping to the INDEX clause .......................   16
  5.1.7 Mapping to the DEFVAL clause ......................   16
  5.2 Action Mapping ......................................   16
  5.2.1 Mapping to the SYNTAX clause ......................   16
  5.2.2 Mapping to the ACCESS clause ......................   16



SNMP Working Group                                              [Page 1]

RFC 1212                Concise MIB Definitions               March 1991


  5.2.3 Mapping to the STATUS clause ......................   16
  5.2.4 Mapping to the DESCRIPTION clause .................   16
  5.2.5 Mapping to the REFERENCE clause ...................   16
  6. Acknowledgements .....................................   17
  7. References ...........................................   18
  8. Security Considerations...............................   19
  9. Authors' Addresses....................................   19

1.  Abstract

  This memo describes a straight-forward approach toward producing
  concise, yet descriptive, MIB modules.  It is intended that all
  future MIB modules be written in this format.

2.  Historical Perspective

  As reported in RFC 1052, IAB Recommendations for the Development of
  Internet Network Management Standards [1], a two-prong strategy for
  network management of TCP/IP-based internets was undertaken.  In the
  short-term, the Simple Network Management Protocol (SNMP), defined in
  RFC 1067, was to be used to manage nodes in the Internet community.
  In the long-term, the use of the OSI network management framework was
  to be examined.  Two documents were produced to define the management
  information: RFC 1065, which defined the Structure of Management
  Information (SMI), and RFC 1066, which defined the Management
  Information Base (MIB).  Both of these documents were designed so as
  to be compatible with both the SNMP and the OSI network management
  framework.

  This strategy was quite successful in the short-term: Internet-based
  network management technology was fielded, by both the research and
  commercial communities, within a few months.  As a result of this,
  portions of the Internet community became network manageable in a
  timely fashion.

  As reported in RFC 1109, Report of the Second Ad Hoc Network
  Management Review Group [2], the requirements of the SNMP and the OSI
  network management frameworks were more different than anticipated.
  As such, the requirement for compatibility between the SMI/MIB and
  both frameworks was suspended.  This action permitted the operational
  network management framework, based on the SNMP, to respond to new
  operational needs in the Internet community by producing MIB-II.

  In May of 1990, the core documents were elevated to "Standard
  Protocols" with "Recommended" status.  As such, the Internet-standard
  network management framework consists of: Structure and
  Identification of Management Information for TCP/IP-based internets,
  RFC 1155 [3], which describes how managed objects contained in the



SNMP Working Group                                              [Page 2]

RFC 1212                Concise MIB Definitions               March 1991


  MIB are defined; Management Information Base for Network Management
  of TCP/IP-based internets, which describes the managed objects
  contained in the MIB, RFC 1156 [4]; and, the Simple Network
  Management Protocol, RFC 1157 [5], which defines the protocol used to
  manage these objects.  Consistent with the IAB directive to produce
  simple, workable systems in the short-term, the list of managed
  objects defined in the Internet-standard MIB was derived by taking
  only those elements which are considered essential.  However, the SMI
  defined three extensibility mechanisms: one, the addition of new
  standard objects through the definitions of new versions of the MIB;
  two, the addition of widely-available but non-standard objects
  through the experimental subtree; and three, the addition of private
  objects through the enterprises subtree.  Such additional objects can
  not only be used for vendor-specific elements, but also for
  experimentation as required to further the knowledge of which other
  objects are essential.

  As more objects are defined using the second method, experience has
  shown that the resulting MIB descriptions contain redundant
  information.  In order to provide for MIB descriptions which are more
  concise, and yet as informative, an enhancement is suggested.  This
  enhancement allows the author of a MIB to remove the redundant
  information, while retaining the important descriptive text.

  Before presenting the approach, a brief presentation of columnar
  object handling by the SNMP is necessary.  This explains and further
  motivates the value of the enhancement.

3.  Columnar Objects

  The SNMP supports operations on MIB objects whose syntax is
  ObjectSyntax as defined in the SMI.  Informally stated, SNMP
  operations apply exclusively to scalar objects.  However, it is
  convenient for developers of management applications to impose
  imaginary, tabular structures on the ordered collection of objects
  that constitute the MIB.  Each such conceptual table contains zero or
  more rows, and each row may contain one or more scalar objects,
  termed columnar objects.  Historically, this conceptualization has
  been formalized by using the OBJECT-TYPE macro to define both an
  object which corresponds to a table and an object which corresponds
  to a row in that table.  (The ACCESS clause for such objects is
  "not-accessible", of course.) However, it must be emphasized that, at
  the protocol level, relationships among columnar objects in the same
  row is a matter of convention, not of protocol.

  Note that there are good reasons why the tabular structure is not a
  matter of protocol.  Consider the operation of the SNMP Get-Next-PDU
  acting on the last columnar object of an instance of a conceptual



SNMP Working Group                                              [Page 3]

RFC 1212                Concise MIB Definitions               March 1991


  row; it returns the next column of the first conceptual row or the
  first object instance occurring after the table.  In contrast, if the
  rows were a matter of protocol, then it would instead return an
  error.  By not returning an error, a single PDU exchange informs the
  manager that not only has the end of the conceptual row/table been
  reached, but also provides information on the next object instance,
  thereby increasing the information density of the PDU exchange.

3.1.  Row Deletion

  Nonetheless, it is highly useful to provide a means whereby a
  conceptual row may be removed from a table. In MIB-II, this was
  achieved by defining, for each conceptual row, an integer-valued
  columnar object.  If a management station sets the value of this
  object to some value, usually termed "invalid", then the effect is
  one of invalidating the corresponding row in the table.  However, it
  is an implementation-specific matter as to whether an agent removes
  an invalidated entry from the table.  Accordingly, management
  stations must be prepared to receive tabular information from agents
  that corresponds to entries not currently in use.  Proper
  interpretation of such entries requires examination of the columnar
  object indicating the in-use status.

3.2.  Row Addition

  It is also highly useful to have a clear understanding of how a
  conceptual row may be added to a table.  In the SNMP, at the protocol
  level, a management station issues an SNMP set operation containing
  an arbitrary set of variable bindings.  In the case that an agent
  detects that one or more of those variable bindings refers to an
  object instance not currently available in that agent, it may,
  according to the rules of the SNMP, behave according to any of the
  following paradigms:

         (1)  It may reject the SNMP set operation as referring to
              non-existent object instances by returning a response
              with the error-status field set to "noSuchName" and the
              error-index field set to refer to the first vacuous
              reference.

         (2)  It may accept the SNMP set operation as requesting the
              creation  of new object instances corresponding to each
              of the object instances named in the variable bindings.
              The value of each (potentially) newly created object
              instance is specified by the "value" component of the
              relevant variable binding.  In this case, if the request
              specifies a value for a newly (or previously) created
              object that it deems inappropriate by reason of value or



SNMP Working Group                                              [Page 4]

RFC 1212                Concise MIB Definitions               March 1991


              syntax, then it rejects the SNMP set operation by
              responding with the error-status field set to badValue
              and the error-index field set to refer to the first
              offending variable binding.

         (3)  It may accept the SNMP set operation and create new
              object instances as described in (2) above and, in
              addition, at its discretion, create supplemental object
              instances to complete a row in a conceptual table of
              which the new object instances specified in the request
              may be a part.

  It should be emphasized that all three of the above behaviors are
  fully conformant to the SNMP specification and are fully acceptable,
  subject to any restrictions which may be imposed by access control
  and/or the definitions of the MIB objects themselves.

4.  Defining Objects

  The Internet-standard SMI employs a two-level approach towards object
  definition.  A MIB definition consists of two parts: a textual part,
  in which objects are placed into groups, and a MIB module, in which
  objects are described solely in terms of the ASN.1 macro OBJECT-TYPE,
  which is defined by the SMI.

  An example of the former definition might be:

         OBJECT:
         -------
              sysLocation { system 6 }

         Syntax:
              DisplayString (SIZE (0..255))

         Definition:
              The physical location of this node (e.g., "telephone
              closet, 3rd floor").

         Access:
              read-only.

         Status:
              mandatory.

         An example of the latter definition might be:

              sysLocation OBJECT-TYPE
                  SYNTAX  DisplayString (SIZE (0..255))



SNMP Working Group                                              [Page 5]

RFC 1212                Concise MIB Definitions               March 1991


                  ACCESS  read-only
                  STATUS  mandatory
                  ::= { system 6 }

         In the interests of brevity and to reduce the chance of
         editing errors, it would seem useful to combine the two
         definitions.  This can be accomplished by defining an
         extension to the OBJECT-TYPE macro:

         IMPORTS
             ObjectName
                 FROM RFC1155-SMI
             DisplayString
                 FROM RFC1158-MIB;

         OBJECT-TYPE MACRO ::=
         BEGIN
             TYPE NOTATION ::=
                                         -- must conform to
                                         -- RFC1155's ObjectSyntax
                               "SYNTAX" type(ObjectSyntax)
                               "ACCESS" Access
                               "STATUS" Status
                               DescrPart
                               ReferPart
                               IndexPart
                               DefValPart
             VALUE NOTATION ::= value (VALUE ObjectName)

             Access ::= "read-only"
                             | "read-write"
                             | "write-only"
                             | "not-accessible"
             Status ::= "mandatory"
                             | "optional"
                             | "obsolete"
                             | "deprecated"

             DescrPart ::=
                        "DESCRIPTION" value (description DisplayString)
                             | empty

             ReferPart ::=
                        "REFERENCE" value (reference DisplayString)
                             | empty

             IndexPart ::=
                        "INDEX" "{" IndexTypes "}"



SNMP Working Group                                              [Page 6]

RFC 1212                Concise MIB Definitions               March 1991


                             | empty
             IndexTypes ::=
                        IndexType | IndexTypes "," IndexType
             IndexType ::=
                                 -- if indexobject, use the SYNTAX
                                 -- value of the correspondent
                                 -- OBJECT-TYPE invocation
                        value (indexobject ObjectName)
                                 -- otherwise use named SMI type
                                 -- must conform to IndexSyntax below
                             | type (indextype)

             DefValPart ::=
                        "DEFVAL" "{" value (defvalue ObjectSyntax) "}"
                             | empty

         END

         IndexSyntax ::=
             CHOICE {
                 number
                     INTEGER (0..MAX),
                 string
                     OCTET STRING,
                 object
                     OBJECT IDENTIFIER,
                 address
                     NetworkAddress,
                 ipAddress
                     IpAddress
             }


4.1.  Mapping of the OBJECT-TYPE macro

  It should be noted that the expansion of the OBJECT-TYPE macro is
  something which conceptually happens during implementation and not
  during run-time.

4.1.1.  Mapping of the SYNTAX clause

  The SYNTAX clause, which must be present, defines the abstract data
  structure corresponding to that object type.  The ASN.1 language [6]
  is used for this purpose.  However, the SMI purposely restricts the
  ASN.1 constructs which may be used.  These restrictions are made
  expressly for simplicity.





SNMP Working Group                                              [Page 7]

RFC 1212                Concise MIB Definitions               March 1991


4.1.2.  Mapping of the ACCESS clause

  The ACCESS clause, which must be present, defines the minimum level
  of support required for that object type.  As a local matter,
  implementations may support other access types (e.g., an
  implementation may elect to permitting writing a variable marked as
  read-only).  Further, protocol-specific "views" (e.g., those
  indirectly implied by an SNMP community) may make further
  restrictions on access to a variable.

4.1.3.  Mapping of the STATUS clause

  The STATUS clause, which must be present, defines the implementation
  support required for that object type.

4.1.4.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which need not be present, contains a textual
  definition of that object type which provides all semantic
  definitions necessary for implementation, and should embody any
  information which would otherwise be communicated in any ASN.1
  commentary annotations associated with the object.  Note that, in
  order to conform to the ASN.1 syntax, the entire value of this clause
  must be enclosed in double quotation marks, although the value may be
  multi-line.

  Further, note that if the MIB module does not contain a textual
  description of the object type elsewhere then the DESCRIPTION clause
  must be present.

4.1.5.  Mapping of the REFERENCE clause

  The REFERENCE clause, which need not be present, contains a textual
  cross-reference to an object defined in some other MIB module.  This
  is useful when de-osifying a MIB produced by some other organization.

4.1.6.  Mapping of the INDEX clause

  The INDEX clause, which may be present only if that object type
  corresponds to a conceptual row, defines instance identification
  information for that object type.  (Historically, each MIB definition
  contained a section entitled "Identification of OBJECT instances for
  use with the SNMP".  By using the INDEX clause, this section need no
  longer occur as this clause concisely captures the precise semantics
  needed for instance identification.)

  If the INDEX clause is not present, and the object type corresponds
  to a non-columnar object, then instances of the object are identified



SNMP Working Group                                              [Page 8]

RFC 1212                Concise MIB Definitions               March 1991


  by appending a sub-identifier of zero to the name of that object.
  Further, note that if the MIB module does not contain a textual
  description of how instance identification information is derived for
  columnar objects, then the INDEX clause must be present.

  To define the instance identification information, determine which
  object value(s) will unambiguously distinguish a conceptual row.  The
  syntax of those objects indicate how to form the instance-identifier:

         (1)  integer-valued: a single sub-identifier taking the
              integer value (this works only for non-negative
              integers);

         (2)  string-valued, fixed-length strings: `n' sub-identifiers,
              where `n' is the length of the string (each octet of the
              string is encoded in a separate sub-identifier);

         (3)  string-valued, variable-length strings: `n+1' sub-
              identifiers, where `n' is the length of the string (the
              first sub-identifier is `n' itself, following this, each
              octet of the string is encoded in a separate sub-
              identifier);

         (4)  object identifier-valued: `n+1' sub-identifiers, where
              `n' is the number of sub-identifiers in the value (the
              first sub-identifier is `n' itself, following this, each
              sub-identifier in the value is copied);

         (5)  NetworkAddress-valued: `n+1' sub-identifiers, where `n'
              depends on the kind of address being encoded (the first
              sub-identifier indicates the kind of address, value 1
              indicates an IpAddress); or,

         (6)  IpAddress-valued: 4 sub-identifiers, in the familiar
              a.b.c.d notation.

  Note that if an "indextype" value is present (e.g., INTEGER rather
  than ifIndex), then a DESCRIPTION clause must be present; the text
  contained therein indicates the semantics of the "indextype" value.












SNMP Working Group                                              [Page 9]

RFC 1212                Concise MIB Definitions               March 1991


  By way of example, in the context of MIB-II [7], the following INDEX
  clauses might be present:

                objects under         INDEX clause
              -----------------       ------------
              ifEntry                 { ifIndex }
              atEntry                 { atNetIfIndex,
                                        atNetAddress }
              ipAddrEntry             { ipAdEntAddr }
              ipRouteEntry            { ipRouteDest }
              ipNetToMediaEntry       { ipNetToMediaIfIndex,
                                        ipNetToMediaNetAddress }
              tcpConnEntry            { tcpConnLocalAddress,
                                        tcpConnLocalPort,
                                        tcpConnRemoteAddress,
                                        tcpConnRemotePort }
              udpEntry                { udpLocalAddress,
                                        udpLocalPort }
              egpNeighEntry           { egpNeighAddr }


4.1.7.  Mapping of the DEFVAL clause

  The DEFVAL clause, which need not be present, defines an acceptable
  default value which may be used when an object instance is created at
  the discretion of the agent acting in conformance with the third
  paradigm described in Section 4.2 above.

  During conceptual row creation, if an instance of a columnar object
  is not present as one of the operands in the correspondent SNMP set
  operation, then the value of the DEFVAL clause, if present, indicates
  an acceptable default value that the agent might use.

  The value of the DEFVAL clause must, of course, correspond to the
  SYNTAX clause for the object.  Note that if an operand to the SNMP
  set operation is an instance of a read-only object, then the error
  noSuchName will be returned.  As such, the DEFVAL clause can be used
  to provide an acceptable default value that the agent might use.

  It is possible that no acceptable default value may exist for any of
  the columnar objects in a conceptual row for which the creation of
  new object instances is allowed.  In this case, the objects specified
  in the INDEX clause must have a corresponding ACCESS clause value of
  read-write.







SNMP Working Group                                             [Page 10]

RFC 1212                Concise MIB Definitions               March 1991


  By way of example, consider the following possible DEFVAL clauses:

      ObjectSyntax            DEFVAL clause
      -----------------       ------------
      INTEGER                 1 -- same for Counter, Gauge, TimeTicks
      OCTET STRING            'ffffffffffff'h
      DisplayString           "any NVT ASCII string"
      OBJECT IDENTIFIER       sysDescr
      OBJECT IDENTIFIER       { system 2 }
      NULL                    NULL
      NetworkAddress          { internet 'c0210415'h }
      IpAddress               'c0210415'h -- 192.33.4.21


4.1.8.  Mapping of the OBJECT-TYPE value

  The value of an invocation of the OBJECT-TYPE macro is the name of
  the object, which is an object identifier.

4.2.  Usage Example

  Consider how the ipNetToMediaTable from MIB-II might be fully
  described:

         -- the IP Address Translation tables

         -- The Address Translation tables contain IpAddress to
         -- "physical" address equivalences.  Some interfaces do not
         -- use translation tables for determining address equivalences
         -- (e.g., DDN-X.25 has an algorithmic method); if all
         -- interfaces are of this type, then the Address Translation
         -- table is empty, i.e., has zero entries.

         ipNetToMediaTable OBJECT-TYPE
             SYNTAX  SEQUENCE OF IpNetToMediaEntry
             ACCESS  not-accessible
             STATUS  mandatory
             DESCRIPTION
                     "The IP Address Translation table used for mapping
                     from IP addresses to physical addresses."
             ::= { ip 22 }

         ipNetToMediaEntry OBJECT-TYPE
             SYNTAX  IpNetToMediaEntry
             ACCESS  not-accessible
             STATUS  mandatory
             DESCRIPTION
                     "Each entry contains one IpAddress to 'physical'



SNMP Working Group                                             [Page 11]

RFC 1212                Concise MIB Definitions               March 1991


                     address equivalence."
             INDEX   { ipNetToMediaIfIndex,
                       ipNetToMediaNetAddress }
             ::= { ipNetToMediaTable 1 }

         IpNetToMediaEntry ::=
             SEQUENCE {
                 ipNetToMediaIfIndex
                     INTEGER,
                 ipNetToMediaPhysAddress
                     OCTET STRING,
                 ipNetToMediaNetAddress
                     IpAddress,
                 ipNetoToMediaType
                     INTEGER
             }

         ipNetToMediaIfIndex OBJECT-TYPE
             SYNTAX  INTEGER
             ACCESS  read-write
             STATUS  mandatory
             DESCRIPTION
                     "The interface on which this entry's equivalence
                     is effective.  The interface identified by a
                     particular value of this index is the same
                     interface as identified by the same value of
                     ifIndex."
             ::= { ipNetToMediaEntry 1 }

         ipNetToMediaPhysAddress OBJECT-TYPE
             SYNTAX  OCTET STRING
             ACCESS  read-write
             STATUS  mandatory
             DESCRIPTION
                     "The media-dependent 'physical' address."
             ::= { ipNetToMediaEntry 2 }

         ipNetToMediaNetAddress OBJECT-TYPE
             SYNTAX  IpAddress
             ACCESS  read-write
             STATUS  mandatory
             DESCRIPTION
                     "The IpAddress corresponding to the media-
                     dependent 'physical' address."
             ::= { ipNetToMediaEntry 3 }

         ipNetToMediaType OBJECT-TYPE
             SYNTAX  INTEGER {



SNMP Working Group                                             [Page 12]

RFC 1212                Concise MIB Definitions               March 1991


                         other(1),   -- none of the following
                         invalid(2), -- an invalidated mapping
                         dynamic(3),
                         static(4)
                     }
             ACCESS  read-write
             STATUS  mandatory
             DESCRIPTION
                     "The type of mapping.

                     Setting this object to the value invalid(2) has
                     the effect of invalidating the corresponding entry
                     in the ipNetToMediaTable.  That is, it effectively
                     disassociates the interface identified with said
                     entry from the mapping identified with said entry.
                     It is an implementation-specific matter as to
                     whether the agent removes an invalidated entry
                     from the table.  Accordingly, management stations
                     must be prepared to receive tabular information
                     from agents that corresponds to entries not
                     currently in use.  Proper interpretation of such
                     entries requires examination of the relevant
                     ipNetToMediaType object."
                 ::= { ipNetToMediaEntry 4 }


5.  Appendix: DE-osifying MIBs

  There has been an increasing amount of work recently on taking MIBs
  defined by other organizations (e.g., the IEEE) and de-osifying them
  for use with the Internet-standard network management framework.  The
  steps to achieve this are straight-forward, though tedious.  Of
  course, it is helpful to already be experienced in writing MIB
  modules for use with the Internet-standard network management
  framework.

  The first step is to construct a skeletal MIB module, e.g.,

              RFC1213-MIB DEFINITIONS ::= BEGIN

              IMPORTS
                      experimental, OBJECT-TYPE, Counter
                          FROM RFC1155-SMI;

                      -- contact IANA for actual number
              root    OBJECT IDENTIFIER ::= { experimental xx }

              END



SNMP Working Group                                             [Page 13]

RFC 1212                Concise MIB Definitions               March 1991


  The next step is to categorize the objects into groups.  For
  experimental MIBs, optional objects are permitted.  However, when a
  MIB module is placed in the Internet-standard space, these optional
  objects are either removed, or placed in a optional group, which, if
  implemented, all objects in the group must be implemented.  For the
  first pass, it is wisest to simply ignore any optional objects in the
  original MIB: experience shows it is better to define a core MIB
  module first, containing only essential objects; later, if experience
  demands, other objects can be added.

  It must be emphasized that groups are "units of conformance" within a
  MIB: everything in a group is "mandatory" and implementations do
  either whole groups or none.

5.1.  Managed Object Mapping

  Next for each managed object class, determine whether there can exist
  multiple instances of that managed object class.  If not, then for
  each of its attributes, use the OBJECT-TYPE macro to make an
  equivalent definition.

  Otherwise, if multiple instances of the managed object class can
  exist, then define a conceptual table having conceptual rows each
  containing a columnar object for each of the managed object class's
  attributes. If the managed object class is contained within the
  containment tree of another managed object class, then the assignment
  of an object type is normally required for each of the "distinguished
  attributes" of the containing managed object class.  If they do not
  already exist within the MIB module, then they can be added via the
  definition of additional columnar objects in the conceptual row
  corresponding to the contained managed object class.

  In defining a conceptual row, it is useful to consider the
  optimization of network management operations which will act upon its
  columnar objects.  In particular, it is wisest to avoid defining more
  columnar objects within a conceptual row, than can fit in a single
  PDU.  As a rule of thumb, a conceptual row should contain no more
  than approximately 20 objects.  Similarly, or as a way to abide by
  the "20 object guideline", columnar objects should be grouped into
  tables according to the expected grouping of network management
  operations upon them.  As such, the content of conceptual rows should
  reflect typical access scenarios, e.g., they should be organized
  along functional lines such as one row for statistics and another row
  for parameters, or along usage lines such as commonly-needed objects
  versus rarely-needed objects.

  On the other hand, the definition of conceptual rows where the number
  of columnar objects used as indexes outnumbers the number used to



SNMP Working Group                                             [Page 14]

RFC 1212                Concise MIB Definitions               March 1991


  hold information, should also be avoided.  In particular, the
  splitting of a managed object class's attributes into many conceptual
  tables should not be used as a way to obtain the same degree of
  flexibility/complexity as is often found in MIB's with a myriad of
  optionals.

5.1.1.  Mapping to the SYNTAX clause

  When mapping to the SYNTAX clause of the OBJECT-type macro:

         (1)  An object with BOOLEAN syntax becomes an INTEGER taking
              either of values true(1) or false(2).

         (2)  An object with ENUMERATED syntax becomes an INTEGER,
              taking any of the values given.

         (3)  An object with BIT STRING syntax containing no more than
              32 bits becomes an INTEGER defined as a sum; otherwise if
              more than 32 bits are present, the object becomes an
              OCTET STRING, with the bits numbered from left-to-right,
              in which the least significant bits of the last octet may
              be "reserved for future use".

         (4)  An object with a character string syntax becomes either
              an OCTET STRING or a DisplayString, depending on the
              repertoire of the character string.

         (5)  An non-tabular object with a complex syntax, such as REAL
              or EXTERNAL, must be decomposed, usually into an OCTET
              STRING (if sensible).  As a rule, any object with a
              complicated syntax should be avoided.

         (6)  Tabular objects must be decomposed into rows of columnar
              objects.

5.1.2.  Mapping to the ACCESS clause

  This is straight-forward.

5.1.3.  Mapping to the STATUS clause

  This is usually straight-forward; however, some osified-MIBs use the
  term "recommended".  In this case, a choice must be made between
  "mandatory" and "optional".

5.1.4.  Mapping to the DESCRIPTION clause

  This is straight-forward: simply copy the text, making sure that any



SNMP Working Group                                             [Page 15]

RFC 1212                Concise MIB Definitions               March 1991


  embedded double quotation marks are sanitized (i.e., replaced with
  single-quotes or removed).

5.1.5.  Mapping to the REFERENCE clause

  This is straight-forward: simply include a textual reference to the
  object being mapped, the document which defines the object, and
  perhaps a page number in the document.

5.1.6.  Mapping to the INDEX clause

  Decide how instance-identifiers for columnar objects are to be formed
  and define this clause accordingly.

5.1.7.  Mapping to the DEFVAL clause

  Decide if a meaningful default value can be assigned to the object
  being mapped, and if so, define the DEFVAL clause accordingly.

5.2.  Action Mapping

  Actions are modeled as read-write objects, in which writing a
  particular value results in the action taking place.

5.2.1.  Mapping to the SYNTAX clause

  Usually an INTEGER syntax is used with a distinguished value provided
  for each action that the object provides access to.  In addition,
  there is usually one other distinguished value, which is the one
  returned when the object is read.

5.2.2.  Mapping to the ACCESS clause

  Always use read-write.

5.2.3.  Mapping to the STATUS clause

  This is straight-forward.

5.2.4.  Mapping to the DESCRIPTION clause

  This is straight-forward: simply copy the text, making sure that any
  embedded double quotation marks are sanitized (i.e., replaced with
  single-quotes or removed).

5.2.5.  Mapping to the REFERENCE clause

  This is straight-forward: simply include a textual reference to the



SNMP Working Group                                             [Page 16]

RFC 1212                Concise MIB Definitions               March 1991


  action being mapped, the document which defines the action, and
  perhaps a page number in the document.

6.  Acknowledgements

  This document was produced by the SNMP Working Group:

              Anne Ambler, Spider
              Karl Auerbach, Sun
              Fred Baker, ACC
              Ken Brinkerhoff
              Ron Broersma, NOSC
              Jack Brown, US Army
              Theodore Brunner, Bellcore
              Jeffrey Buffum, HP
              John Burress, Wellfleet
              Jeffrey D. Case, University of Tennessee at Knoxville
              Chris Chiptasso, Spartacus
              Paul Ciarfella, DEC
              Bob Collet
              John Cook, Chipcom
              Tracy Cox, Bellcore
              James R. Davin, MIT-LCS
              Eric Decker, cisco
              Kurt Dobbins, Cabletron
              Nadya El-Afandi, Network Systems
              Gary Ellis, HP
              Fred Engle
              Mike Erlinger
              Mark S. Fedor, PSI
              Richard Fox, Synoptics
              Karen Frisa, CMU
              Chris Gunner, DEC
              Fred Harris, University of Tennessee at Knoxville
              Ken Hibbard, Xylogics
              Ole Jacobsen, Interop
              Ken Jones
              Satish Joshi, Synoptics
              Frank Kastenholz, Racal-Interlan
              Shimshon Kaufman, Spartacus
              Ken Key, University of Tennessee at Knoxville
              Jim Kinder, Fibercom
              Alex Koifman, BBN
              Christopher Kolb, PSI
              Cheryl Krupczak, NCR
              Paul Langille, DEC
              Peter Lin, Vitalink
              John Lunny, TWG



SNMP Working Group                                             [Page 17]

RFC 1212                Concise MIB Definitions               March 1991


              Carl Malamud
              Randy Mayhew, University of Tennessee at Knoxville
              Keith McCloghrie, Hughes LAN Systems
              Donna McMaster, David Systems
              Lynn Monsanto, Sun
              Dave Perkins, 3COM
              Jim Reinstedler, Ungerman Bass
              Anil Rijsinghani, DEC
              Kathy Rinehart, Arnold AFB
              Kary Robertson
              Marshall T. Rose, PSI (chair)
              L. Michael Sabo, NCSC
              Jon Saperia, DEC
              Greg Satz, cisco
              Martin Schoffstall, PSI
              John Seligson
              Steve Sherry, Xyplex
              Fei Shu, NEC
              Sam Sjogren, TGV
              Mark Sleeper, Sparta
              Lance Sprung
              Mike St.Johns
              Bob Stewart, Xyplex
              Emil Sturniold
              Kaj Tesink, Bellcore
              Dean Throop, Data General
              Bill Townsend, Xylogics
              Maurice Turcotte, Racal-Milgo
              Kannan Varadhou
              Sudhanshu Verma, HP
              Bill Versteeg, Network Research Corporation
              Warren Vik, Interactive Systems
              David Waitzman, BBN
              Steve Waldbusser, CMU
              Dan Wintringhan
              David Wood
              Wengyik Yeong, PSI
              Jeff Young, Cray Research

7.  References

  [1] Cerf, V., "IAB Recommendations for the Development of Internet
      Network Management Standards", RFC 1052, NRI, April 1988.

  [2] Cerf, V., "Report of the Second Ad Hoc Network Management Review
      Group", RFC 1109, NRI, August 1989.

  [3] Rose M., and K. McCloghrie, "Structure and Identification of



SNMP Working Group                                             [Page 18]

RFC 1212                Concise MIB Definitions               March 1991


      Management Information for TCP/IP-based internets", RFC 1155,
      Performance Systems International, Hughes LAN Systems, May 1990.

  [4] McCloghrie K., and M. Rose, "Management Information Base for
      Network Management of TCP/IP-based internets", RFC 1156, Hughes
      LAN Systems, Performance Systems International, May 1990.

  [5] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple
      Network Management Protocol", RFC 1157, SNMP Research,
      Performance Systems International, Performance Systems
      International, MIT Laboratory for Computer Science, May 1990.

  [6] Information processing systems - Open Systems Interconnection -
      Specification of Abstract Syntax Notation One (ASN.1),
      International Organization for Standardization International
      Standard 8824, December 1987.

  [7] Rose M., Editor, "Management Information Base for Network
      Management of TCP/IP-based internets: MIB-II", RFC 1213,
      Performance Systems International, March 1991.

8.  Security Considerations

  Security issues are not discussed in this memo.

9.  Authors' Addresses

  Marshall T. Rose
  Performance Systems International
  5201 Great America Parkway
  Suite 3106
  Santa Clara, CA  95054

  Phone: +1 408 562 6222
  EMail: [email protected]
  X.500:  rose, psi, us


  Keith McCloghrie
  Hughes LAN Systems
  1225 Charleston Road
  Mountain View, CA 94043
  1225 Charleston Road
  Mountain View, CA 94043

  Phone: (415) 966-7934
  EMail: [email protected]




SNMP Working Group                                             [Page 19]