Network Working Group                                        K. Lougheed
Request for Comments: 1163                                 cisco Systems
Obsoletes: RFC 1105                                           Y. Rekhter
                                  T.J. Watson Research Center, IBM Corp
                                                              June 1990


                   A Border Gateway Protocol (BGP)

Status of this Memo

  This RFC, together with its companion RFC-1164, "Application of the
  Border Gateway Protocol in the Internet", define a Proposed Standard
  for an inter-autonomous system routing protocol for the Internet.

  This protocol, like any other at this initial stage, may undergo
  modifications before reaching full Internet Standard status as a
  result of deployment experience.  Implementers are encouraged to
  track the progress of this or any protocol as it moves through the
  standardization process, and to report their own experience with the
  protocol.

  This protocol is being considered by the Interconnectivity Working
  Group (IWG) of the Internet Engineering Task Force (IETF).
  Information about the progress of BGP can be monitored and/or
  reported on the IWG mailing list ([email protected]).

  Please refer to the latest edition of the "IAB Official Protocol
  Standards" RFC for current information on the state and status of
  standard Internet protocols.

  Distribution of this memo is unlimited.

Table of Contents

     1.  Acknowledgements......................................    2
     2.  Introduction..........................................    2
     3.  Summary of Operation..................................    4
     4.  Message Formats.......................................    5
     4.1 Message Header Format.................................    5
     4.2 OPEN Message Format...................................    6
     4.3 UPDATE Message Format.................................    8
     4.4 KEEPALIVE Message Format..............................   10
     4.5 NOTIFICATION Message Format...........................   10
     5.  Path Attributes.......................................   12
     6.  BGP Error Handling....................................   14
     6.1 Message Header error handling.........................   14
     6.2 OPEN message error handling...........................   15



Lougheed & Rekhter                                              [Page 1]

RFC 1163                          BGP                          June 1990


     6.3 UPDATE message error handling.........................   16
     6.4 NOTIFICATION message error handling...................   17
     6.5 Hold Timer Expired error handling.....................   17
     6.6 Finite State Machine error handling...................   18
     6.7 Cease.................................................   18
     7.  BGP Version Negotiation...............................   18
     8.  BGP Finite State machine..............................   18
     9.  UPDATE Message Handling...............................   22
     10. Detection of Inter-AS Policy Contradictions...........   23
     Appendix 1.  BGP FSM State Transitions and Actions........   25
     Appendix 2.  Comparison with RFC 1105.....................   28
     Appendix 3.  TCP options that may be used with BGP........   28
     References................................................   29
     Security Considerations...................................   29
     Authors' Addresses........................................   29

1.  Acknowledgements

  We would like to express our thanks to Guy Almes (Rice University),
  Len Bosack (cisco Systems), Jeffrey C. Honig (Cornell Theory Center)
  and all members of the Interconnectivity Working Group of the
  Internet Engineering Task Force, chaired by Guy Almes, for their
  contributions to this document.

  We would also like to thank Bob Hinden, Director for Routing of the
  Internet Engineering Steering Group, and the team of reviewers he
  assembled to review earlier versions of this document.  This team,
  consisting of Deborah Estrin, Milo Medin, John Moy, Radia Perlman,
  Martha Steenstrup, Mike St. Johns, and Paul Tsuchiya, acted with a
  strong combination of toughness, professionalism, and courtesy.

2.  Introduction

  The Border Gateway Protocol (BGP) is an inter-Autonomous System
  routing protocol.  It is built on experience gained with EGP as
  defined in RFC 904 [1] and EGP usage in the NSFNET Backbone as
  described in RFC 1092 [2] and RFC 1093 [3].

  The primary function of a BGP speaking system is to exchange network
  reachability information with other BGP systems.  This network
  reachability information includes information on the full path of
  Autonomous Systems (ASs) that traffic must transit to reach these
  networks.  This information is sufficient to construct a graph of AS
  connectivity from which routing loops may be pruned and some policy
  decisions at the AS level may be enforced.

  To characterize the set of policy decisions that can be enforced
  using BGP, one must focus on the rule that an AS advertize to its



Lougheed & Rekhter                                              [Page 2]

RFC 1163                          BGP                          June 1990


  neighbor ASs only those routes that it itself uses.  This rule
  reflects the "hop-by-hop" routing paradigm generally used throughout
  the current Internet.  Note that some policies cannot be supported by
  the "hop-by-hop" routing paradigm and thus require techniques such as
  source routing to enforce.  For example, BGP does not enable one AS
  to send traffic to a neighbor AS intending that that traffic take a
  different route from that taken by traffic originating in the
  neighbor AS.  On the other hand, BGP can support any policy
  conforming to the "hop-by-hop" routing paradigm.  Since the current
  Internet uses only the "hop-by-hop" routing paradigm and since BGP
  can support any policy that conforms to that paradigm, BGP is highly
  applicable as an inter-AS routing protocol for the current Internet.

  A more complete discussion of what policies can and cannot be
  enforced with BGP is outside the scope of this document (but refer to
  the companion document discussing BGP usage [5]).

  BGP runs over a reliable transport protocol.  This eliminates the
  need to implement explicit update fragmentation, retransmission,
  acknowledgement, and sequencing.  Any authentication scheme used by
  the transport protocol may be used in addition to BGP's own
  authentication mechanisms.  The error notification mechanism used in
  BGP assumes that the transport protocol supports a "graceful" close,
  i.e., that all outstanding data will be delivered before the
  connection is closed.

  BGP uses TCP [4] as its transport protocol.  TCP meets BGP's
  transport requirements and is present in virtually all commercial
  routers and hosts.  In the following descriptions the phrase
  "transport protocol connection" can be understood to refer to a TCP
  connection.  BGP uses TCP port 179 for establishing its connections.

  This memo uses the term `Autonomous System' (AS) throughout.  The
  classic definition of an Autonomous System is a set of routers under
  a single technical administration, using an interior gateway protocol
  and common metrics to route packets within the AS, and using an
  exterior gateway protocol to route packets to other ASs.  Since this
  classic definition was developed, it has become common for a single
  AS to use several interior gateway protocols and sometimes several
  sets of metrics within an AS.  The use of the term Autonomous System
  here stresses the fact that, even when multiple IGPs and metrics are
  used, the administration of an AS appears to other ASs to have a
  single coherent interior routing plan and presents a consistent
  picture of what networks are reachable through it.  From the
  standpoint of exterior routing, an AS can be viewed as monolithic:
  reachability to networks directly connected to the AS must be
  equivalent from all border gateways of the AS.




Lougheed & Rekhter                                              [Page 3]

RFC 1163                          BGP                          June 1990


  The planned use of BGP in the Internet environment, including such
  issues as topology, the interaction between BGP and IGPs, and the
  enforcement of routing policy rules is presented in a companion
  document [5].  This document is the first of a series of documents
  planned to explore various aspects of BGP application.

3.  Summary of Operation

  Two systems form a transport protocol connection between one another.
  They exchange messages to open and confirm the connection parameters.
  The initial data flow is the entire BGP routing table.  Incremental
  updates are sent as the routing tables change.  BGP does not require
  periodic refresh of the entire BGP routing table.  Therefore, a BGP
  speaker must retain the current version of the entire BGP routing
  tables of all of its peers for the duration of the connection.
  KeepAlive messages are sent periodically to ensure the liveness of
  the connection.  Notification messages are sent in response to errors
  or special conditions.  If a connection encounters an error
  condition, a notification message is sent and the connection is
  closed.

  The hosts executing the Border Gateway Protocol need not be routers.
  A non-routing host could exchange routing information with routers
  via EGP or even an interior routing protocol.  That non-routing host
  could then use BGP to exchange routing information with a border
  router in another Autonomous System.  The implications and
  applications of this architecture are for further study.

  If a particular AS has multiple BGP speakers and is providing transit
  service for other ASs, then care must be taken to ensure a consistent
  view of routing within the AS.  A consistent view of the interior
  routes of the AS is provided by the interior routing protocol.  A
  consistent view of the routes exterior to the AS can be provided by
  having all BGP speakers within the AS maintain direct BGP connections
  with each other.  Using a common set of policies, the BGP speakers
  arrive at an agreement as to which border routers will serve as
  exit/entry points for particular networks outside the AS.  This
  information is communicated to the AS's internal routers, possibly
  via the interior routing protocol.  Care must be taken to ensure that
  the interior routers have all been updated with transit information
  before the BGP speakers announce to other ASs that transit service is
  being provided.

  Connections between BGP speakers of different ASs are referred to as
  "external" links.  BGP connections between BGP speakers within the
  same AS are referred to as "internal" links.





Lougheed & Rekhter                                              [Page 4]

RFC 1163                          BGP                          June 1990


4.  Message Formats

  This section describes message formats used by BGP.

  Messages are sent over a reliable transport protocol connection.  A
  message is processed only after it is entirely received.  The maximum
  message size is 4096 octets.  All implementations are required to
  support this maximum message size.  The smallest message that may be
  sent consists of a BGP header without a data portion, or 19 octets.

4.1 Message Header Format

  Each message has a fixed-size header.  There may or may not be a data
  portion following the header, depending on the message type.  The
  layout of these fields is shown below:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  +                                                               +
  |                                                               |
  +                                                               +
  |                           Marker                              |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Length               |      Type     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Marker:

     This 16-octet field contains a value that the receiver of the
     message can predict.  If the Type of the message is OPEN, or if
     the Authentication Code used in the OPEN message of the connection
     is zero, then the Marker must be all ones.  Otherwise, the value
     of the marker can be predicted by some a computation specified as
     part of the authentication mechanism used.  The Marker can be used
     to detect loss of synchronization between a pair of BGP peers, and
     to authenticate incoming BGP messages.

  Length:

     This 2-octet unsigned integer indicates the total length of the
     message, including the header, in octets.  Thus, e.g., it allows
     one to locate in the transport-level stream the (Marker field of
     the) next message.  The value of the Length field must always be
     at least 19 and no greater than 4096, and may be further



Lougheed & Rekhter                                              [Page 5]

RFC 1163                          BGP                          June 1990


     constrained, depending on the message type.  No "padding" of extra
     data after the message is allowed, so the Length field must have
     the smallest value required given the rest of the message.

  Type:

     This 1-octet unsigned integer indicates the type code of the
     message.  The following type codes are defined:

                          1 - OPEN
                          2 - UPDATE
                          3 - NOTIFICATION
                          4 - KEEPALIVE

4.2 OPEN Message Format

  After a transport protocol connection is established, the first
  message sent by each side is an OPEN message.  If the OPEN message is
  acceptable, a KEEPALIVE message confirming the OPEN is sent back.
  Once the OPEN is confirmed, UPDATE, KEEPALIVE, and NOTIFICATION
  messages may be exchanged.

  In addition to the fixed-size BGP header, the OPEN message contains
  the following fields:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+
   |    Version    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     My Autonomous System      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Hold Time           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Auth. Code   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                       Authentication Data                     |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Version:

     This 1-octet unsigned integer indicates the protocol version
     number of the message.  The current BGP version number is 2.






Lougheed & Rekhter                                              [Page 6]

RFC 1163                          BGP                          June 1990


  My Autonomous System:

     This 2-octet unsigned integer indicates the Autonomous System
     number of the sender.

  Hold Time:

     This 2-octet unsigned integer indicates the maximum number of
     seconds that may elapse between the receipt of successive
     KEEPALIVE and/or UPDATE and/or NOTIFICATION messages.

  Authentication Code:

     This 1-octet unsigned integer indicates the authentication
     mechanism being used.  Whenever an authentication mechanism is
     specified for use within BGP, three things must be included in the
     specification:
        - the value of the Authentication Code which indicates use of
        the mechanism,
        - the form and meaning of the Authentication Data, and
        - the algorithm for computing values of Marker fields.
     Only one authentication mechanism is specified as part of this
     memo:
        - its Authentication Code is zero,
        - its Authentication Data must be empty (of zero length), and
        - the Marker fields of all messages must be all ones.
     The semantics of non-zero Authentication Codes lies outside the
     scope of this memo.

     Note that a separate authentication mechanism may be used in
     establishing the transport level connection.

  Authentication Data:

     The form and meaning of this field is a variable-length field
     depend on the Authentication Code.  If the value of Authentication
     Code field is zero, the Authentication Data field must have zero
     length.  The semantics of the non-zero length Authentication Data
     field is outside the scope of this memo.

     Note that the length of the Authentication Data field can be
     determined from the message Length field by the formula:

        Message Length = 25 + Authentication Data Length

     The minimum length of the OPEN message is 25 octets (including
     message header).




Lougheed & Rekhter                                              [Page 7]

RFC 1163                          BGP                          June 1990


4.3 UPDATE Message Format

  UPDATE messages are used to transfer routing information between BGP
  peers.  The information in the UPDATE packet can be used to construct
  a graph describing the relationships of the various Autonomous
  Systems.  By applying rules to be discussed, routing information
  loops and some other anomalies may be detected and removed from
  inter-AS routing.

  In addition to the fixed-size BGP header, the UPDATE message contains
  the following fields (note that all fields may have arbitrary
  alignment):

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Total Path Attributes Length |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   /                      Path Attributes                          /
   /                                                               /
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Network 1                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   /                                                               /
   /                                                               /
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Network n                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Total Path Attribute Length:

     This 2-octet unsigned integer indicates the total length of the
     Path Attributes field in octets.  Its value must allow the (non-
     negative integer) number of Network fields to be determined as
     specified below.

  Path Attributes:

     A variable length sequence of path attributes is present in every
     UPDATE.  Each path attribute is a triple <attribute type,
     attribute length, attribute value> of variable length.

     Attribute Type is a two-octet field that consists of the Attribute
     Flags octet followed by the Attribute Type Code octet.






Lougheed & Rekhter                                              [Page 8]

RFC 1163                          BGP                          June 1990


      0                   1
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Attr. Flags  |Attr. Type Code|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     The high-order bit (bit 0) of the Attribute Flags octet is the
     Optional bit.  It defines whether the attribute is optional (if
     set to 1) or well-known (if set to 0).

     The second high-order bit (bit 1) of the Attribute Flags octet is
     the Transitive bit.  It defines whether an optional attribute is
     transitive (if set to 1) or non-transitive (if set to 0).  For
     well-known attributes, the Transitive bit must be set to 1.  (See
     Section 5 for a discussion of transitive attributes.)

     The third high-order bit (bit 2) of the Attribute Flags octet is
     the Partial bit.  It defines whether the information contained in
     the optional transitive attribute is partial (if set to 1) or
     complete (if set to 0).  For well-known attributes and for
     optional non-transitive attributes the Partial bit must be set to
     0.

     The fourth high-order bit (bit 3) of the Attribute Flags octet is
     the Extended Length bit.  It defines whether the Attribute Length
     is one octet (if set to 0) or two octets (if set to 1).  Extended
     Length may be used only if the length of the attribute value is
     greater than 255 octets.

     The lower-order four bits of the Attribute Flags octet are unused.
     They must be zero (and should be ignored when received).

     The Attribute Type Code octet contains the Attribute Type Code.
     Currently defined Attribute Type Codes are discussed in Section 5.

     If the Extended Length bit of the Attribute Flags octet is set to
     0, the third octet of the Path Attribute contains the length of
     the attribute data in octets.

     If the Extended Length bit of the Attribute Flags octet is set to
     1, then the third and the fourth octets of the path attribute
     contain the length of the attribute data in octets.

     The remaining octets of the Path Attribute represent the attribute
     value and are interpreted according to the Attribute Flags and the
     Attribute Type Code.

     The meaning and handling of Path Attributes is discussed in



Lougheed & Rekhter                                              [Page 9]

RFC 1163                          BGP                          June 1990


     Section 5.

  Network:

     Each 4-octet Internet network number indicates one network whose
     Inter-Autonomous System routing is described by the Path
     Attributes.  Subnets and host addresses are specifically not
     allowed.  The total number of Network fields in the UPDATE message
     can be determined by the formula:

        Message Length = 19 + Total Path Attribute Length + 4 * #Nets

     The message Length field of the message header and the Path
     Attributes Length field of the UPDATE message must be such that
     the formula results in a non-negative integer number of Network
     fields.

  The minimum length of the UPDATE message is 37 octets (including
  message header).

4.4 KEEPALIVE Message Format

  BGP does not use any transport protocol-based keep-alive mechanism to
  determine if peers are reachable.  Instead, KEEPALIVE messages are
  exchanged between peers often enough as not to cause the hold time
  (as advertised in the OPEN message) to expire.  A reasonable maximum
  time between KEEPALIVE messages would be one third of the Hold Time
  interval.

  KEEPALIVE message consists of only message header and has a length of
  19 octets.

4.5 NOTIFICATION Message Format

  A NOTIFICATION message is sent when an error condition is detected.
  The BGP connection is closed immediately after sending it.

  In addition to the fixed-size BGP header, the NOTIFICATION message
  contains the following fields:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Error code    | Error subcode |           Data                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Lougheed & Rekhter                                             [Page 10]

RFC 1163                          BGP                          June 1990


  Error Code:

     This 1-octet unsigned integer indicates the type of NOTIFICATION.
     The following Error Codes have been defined:

          Error Code       Symbolic Name               Reference

            1         Message Header Error             Section 6.1
            2         OPEN Message Error               Section 6.2
            3         UPDATE Message Error             Section 6.3
            4         Hold Timer Expired               Section 6.5
            5         Finite State Machine Error       Section 6.6
            6         Cease                            Section 6.7

  Error subcode:

     This 1-octet unsigned integer provides more specific information
     about the nature of the reported error.  Each Error Code may have
     one or more Error Subcodes associated with it.  If no appropriate
     Error Subcode is defined, then a zero (Unspecific) value is used
     for the Error Subcode field.

     Message Header Error subcodes:

                     1  - Connection Not Synchronized.
                     2  - Bad Message Length.
                     3  - Bad Message Type.

     OPEN Message Error subcodes:

                     1  - Unsupported Version Number.
                     2  - Bad Peer AS.
                     3  - Unsupported Authentication Code.
                     4  - Authentication Failure.

     UPDATE Message Error subcodes:

                     1 - Malformed Attribute List.
                     2 - Unrecognized Well-known Attribute.
                     3 - Missing Well-known Attribute.
                     4 - Attribute Flags Error.
                     5 - Attribute Length Error.
                     6 - Invalid ORIGIN Attribute
                     7 - AS Routing Loop.
                     8 - Invalid NEXT_HOP Attribute.
                     9 - Optional Attribute Error.
                    10 - Invalid Network Field.




Lougheed & Rekhter                                             [Page 11]

RFC 1163                          BGP                          June 1990


  Data:

     This variable-length field is used to diagnose the reason for the
     NOTIFICATION.  The contents of the Data field depend upon the
     Error Code and Error Subcode.  See Section 6 below for more
     details.

     Note that the length of the Data field can be determined from the
     message Length field by the formula:

        Message Length = 21 + Data Length

  The minimum length of the NOTIFICATION message is 21 octets
  (including message header).

5.  Path Attributes

  This section discusses the path attributes of the UPDATE message.

  Path attributes fall into four separate categories:

        1. Well-known mandatory.
        2. Well-known discretionary.
        3. Optional transitive.
        4. Optional non-transitive.

  Well-known attributes must be recognized by all BGP implementations.
  Some of these attributes are mandatory and must be included in every
  UPDATE message.  Others are discretionary and may or may not be sent
  in a particular UPDATE message.  Which well-known attributes are
  mandatory or discretionary is noted in the table below.

  All well-known attributes must be passed along (after proper
  updating, if necessary) to other BGP peers.

  In addition to well-known attributes, each path may contain one or
  more optional attributes.  It is not required or expected that all
  BGP implementations support all optional attributes.  The handling of
  an unrecognized optional attribute is determined by the setting of
  the Transitive bit in the attribute flags octet.  Unrecognized
  transitive optional attributes should be accepted and passed along to
  other BGP peers.  If a path with unrecognized transitive optional
  attribute is accepted and passed along to other BGP peers, the
  Partial bit in the Attribute Flags octet is set to 1.  If a path with
  recognized transitive optional attribute is accepted and passed along
  to other BGP peers and the Partial bit in the Attribute Flags octet
  is set to 1 by some previous AS, it is not set back to 0 by the
  current AS.  Unrecognized non-transitive optional attributes should



Lougheed & Rekhter                                             [Page 12]

RFC 1163                          BGP                          June 1990


  be quietly ignored and not passed along to other BGP peers.

  New transitive optional attributes may be attached to the path by the
  originator or by any other AS in the path.  If they are not attached
  by the originator, the Partial bit in the Attribute Flags octet is
  set to 1.  The rules for attaching new non-transitive optional
  attributes will depend on the nature of the specific attribute.  The
  documentation of each new non-transitive optional attribute will be
  expected to include such rules.  (The description of the INTER-AS
  METRIC attribute gives an example.)  All optional attributes (both
  transitive and non-transitive) may be updated (if appropriate) by ASs
  in the path.

  The order of attributes within the Path Attributes field of a
  particular UPDATE message is irrelevant.

  The same attribute cannot appear more than once within the Path
  Attributes field of a particular UPDATE message.

  Following table specifies attribute type code, attribute length, and
  attribute category for path attributes defined in this document:

  Attribute Name     Type Code    Length     Attribute category
     ORIGIN              1          1        well-known, mandatory
     AS_PATH             2       variable    well-known, mandatory
     NEXT_HOP            3          4        well-known, mandatory
     UNREACHABLE         4          0        well-known, discretionary
     INTER-AS METRIC     5          2        optional, non-transitive

  ORIGIN:

     The ORIGIN path attribute defines the origin of the path
     information.  The data octet can assume the following values:

        Value    Meaning
          0       IGP - network(s) are interior to the originating AS
          1       EGP - network(s) learned via EGP
          2       INCOMPLETE - network(s) learned by some other means

  AS_PATH:

     The AS_PATH attribute enumerates the ASs that must be traversed to
     reach the networks listed in the UPDATE message.  Since an AS
     identifier is 2 octets, the length of an AS_PATH attribute is
     twice the number of ASs in the path.  Rules for constructing an
     AS_PATH attribute are discussed in Section 9.





Lougheed & Rekhter                                             [Page 13]

RFC 1163                          BGP                          June 1990


  NEXT_HOP:

     The NEXT_HOP path attribute defines the IP address of the border
     router that should be used as the next hop to the networks listed
     in the UPDATE message.  This border router must belong to the same
     AS as the BGP peer that advertises it.

  UNREACHABLE:

     The UNREACHABLE attribute is used to notify a BGP peer that some
     of the previously advertised routes have become unreachable.

  INTER-AS METRIC:

     The INTER-AS METRIC attribute may be used on external (inter-AS)
     links to discriminate between multiple exit or entry points to the
     same neighboring AS.  The value of the INTER-AS METRIC attribute
     is a 2-octet unsigned number which is called a metric.  All other
     factors being equal, the exit or entry point with lower metric
     should be preferred.  If received over external links, the INTER-
     AS METRIC attribute may be propagated over internal links to other
     BGP speaker within the same AS.  The INTER-AS METRIC attribute is
     never propagated to other BGP speakers in neighboring AS's.

6.  BGP Error Handling.

  This section describes actions to be taken when errors are detected
  while processing BGP messages.

  When any of the conditions described here are detected, a
  NOTIFICATION message with the indicated Error Code, Error Subcode,
  and Data fields is sent, and the BGP connection is closed.  If no
  Error Subcode is specified, then a zero should be used.

  The phrase "the BGP connection is closed" means that the transport
  protocol connection has been closed and that all resources for that
  BGP connection have been deallocated.  Routing table entries
  associated with the remote peer are marked as invalid.  The fact that
  the routes have become invalid is passed to other BGP peers before
  the routes are deleted from the system.

  Unless specified explicitly, the Data field of the NOTIFICATION
  message that is sent to indicate an error is empty.

6.1 Message Header error handling.

  All errors detected while processing the Message Header are indicated
  by sending the NOTIFICATION message with Error Code Message Header



Lougheed & Rekhter                                             [Page 14]

RFC 1163                          BGP                          June 1990


  Error.  The Error Subcode elaborates on the specific nature of the
  error.

  The expected value of the Marker field of the message header is all
  ones if the message type is OPEN.  The expected value of the Marker
  field for all other types of BGP messages determined based on the
  Authentication Code in the BGP OPEN message and the actual
  authentication mechanism (if the Authentication Code in the BGP OPEN
  message is non-zero). If the Marker field of the message header is
  not the expected one, then a synchronization error has occurred and
  the Error Subcode is set to Connection Not Synchronized.

  If the Length field of the message header is less than 19 or greater
  than 4096, or if the Length field of an OPEN message is less  than
  the minimum length of the OPEN message, or if the Length field of an
  UPDATE message is less than the minimum length of the UPDATE message,
  or if the Length field of a KEEPALIVE message is not equal to 19, or
  if the Length field of a NOTIFICATION message is less than the
  minimum length of the NOTIFICATION message, then the Error Subcode is
  set to Bad Message Length.  The Data field contains the erroneous
  Length field.

  If the Type field of the message header is not recognized, then the
  Error Subcode is set to Bad Message Type.  The Data field contains
  the erroneous Type field.

6.2 OPEN message error handling.

  All errors detected while processing the OPEN message are indicated
  by sending the NOTIFICATION message with Error Code OPEN Message
  Error.  The Error Subcode elaborates on the specific nature of the
  error.

  If the version number contained in the Version field of the received
  OPEN message is not supported, then the Error Subcode is set to
  Unsupported Version Number.  The Data field is a 2-octet unsigned
  integer, which indicates the largest locally supported version number
  less than the version the remote BGP peer bid (as indicated in the
  received OPEN message).

  If the Autonomous System field of the OPEN message is unacceptable,
  then the Error Subcode is set to Bad Peer AS.  The determination of
  acceptable Autonomous System numbers is outside the scope of this
  protocol.

  If the Authentication Code of the OPEN message is not recognized,
  then the Error Subcode is set to Unsupported Authentication Code.




Lougheed & Rekhter                                             [Page 15]

RFC 1163                          BGP                          June 1990


  If the Authentication Code is zero, then the Authentication Data must
  be of zero length.  Otherwise, the Error Subcode is set to
  Authentication Failure.

  If the Authentication Code is non-zero, then the corresponding
  authentication procedure is invoked.  If the authentication procedure
  (based on Authentication Code and Authentication Data) fails, then
  the Error Subcode is set to Authentication Failure.

6.3 UPDATE message error handling.

  All errors detected while processing the UPDATE message are indicated
  by sending the NOTIFICATION message with Error Code UPDATE Message
  Error.  The error subcode elaborates on the specific nature of the
  error.

  Error checking of an UPDATE message begins by examining the path
  attributes.  If the Total Attribute Length is too large (i.e., if
  Total Attribute Length + 21 exceeds the message Length), or if the
  (non-negative integer) Number of Network fields cannot be computed as
  in Section 4.3, then the Error Subcode is set to Malformed Attribute
  List.

  If any recognized attribute has Attribute Flags that conflict with
  the Attribute Type Code, then the Error Subcode is set to Attribute
  Flags Error.  The Data field contains the erroneous attribute (type,
  length and value).

  If any recognized attribute has Attribute Length that conflicts with
  the expected length (based on the attribute type code), then the
  Error Subcode is set to Attribute Length Error.  The Data field
  contains the erroneous attribute (type, length and value).

  If any of the mandatory well-known attributes are not present, then
  the Error Subcode is set to Missing Well-known Attribute.  The Data
  field contains the Attribute Type Code of the missing well-known
  attribute.

  If any of the mandatory well-known attributes are not recognized,
  then the Error Subcode is set to Unrecognized Well-known Attribute.
  The Data field contains the unrecognized attribute (type, length and
  value).

  If the ORIGIN attribute has an undefined value, then the Error
  Subcode is set to Invalid Origin Attribute.  The Data field contains
  the unrecognized attribute (type, length and value).

  If the NEXT_HOP attribute field is syntactically incorrect, then the



Lougheed & Rekhter                                             [Page 16]

RFC 1163                          BGP                          June 1990


  Error Subcode is set to Invalid NEXT_HOP Attribute.  The Data field
  contains the incorrect attribute (type, length and value).  Syntactic
  correctness means that the NEXT_HOP attribute represents a valid IP
  host address.

  The AS route specified by the AS_PATH attribute is checked for AS
  loops.  AS loop detection is done by scanning the full AS route (as
  specified in the AS_PATH attribute) and checking that each AS occurs
  at most once.  If a loop is detected, then the Error Subcode is set
  to AS Routing Loop.  The Data field contains the incorrect attribute
  (type, length and value).

  If an optional attribute is recognized, then the value of this
  attribute is checked.  If an error is detected, the attribute is
  discarded, and the Error Subcode is set to Optional Attribute Error.
  The Data field contains the attribute (type, length and value).

  If any attribute appears more than once in the UPDATE message, then
  the Error Subcode is set to Malformed Attribute List.

  Each Network field in the UPDATE message is checked for syntactic
  validity.  If the Network field is syntactically incorrect, or
  contains a subnet or a host address, then the Error Subcode is set to
  Invalid Network Field.

6.4 NOTIFICATION message error handling.

  If a peer sends a NOTIFICATION message, and there is an error in that
  message, there is unfortunately no means of reporting this error via
  a subsequent NOTIFICATION message.  Any such error, such as an
  unrecognized Error Code or Error Subcode, should be noticed, logged
  locally, and brought to the attention of the administration of the
  peer.  The means to do this, however, lies outside the scope of this
  document.

6.5 Hold Timer Expired error handling.

  If a system does not receive successive KEEPALIVE and/or UPDATE
  and/or NOTIFICATION messages within the period specified in the Hold
  Time field of the OPEN message, then the NOTIFICATION message with
  Hold Timer Expired Error Code should be sent and the BGP connection
  closed.









Lougheed & Rekhter                                             [Page 17]

RFC 1163                          BGP                          June 1990


6.6 Finite State Machine error handling.

  Any error detected by the BGP Finite State Machine (e.g., receipt of
  an unexpected event) is indicated by sending the NOTIFICATION message
  with Error Code Finite State Machine Error.

6.7 Cease.

  In absence of any fatal errors (that are indicated in this section),
  a BGP peer may choose at any given time to close its BGP connection
  by sending the NOTIFICATION message with Error Code Cease.  However,
  the Cease NOTIFICATION message should not be used when a fatal error
  indicated by this section does exist.

7.  BGP Version Negotiation.

  BGP speakers may negotiate the version of the protocol by making
  multiple attempts to open a BGP connection, starting with the highest
  version number each supports.  If an open attempt fails with an Error
  Code OPEN Message Error, and an Error Subcode Unsupported Version
  Number, then the BGP speaker has available the version number it
  tried, the version number its peer tried, the version number passed
  by its peer in the NOTIFICATION message, and the version numbers that
  it supports.  If the two peers do support one or more common
  versions, then this will allow them to rapidly determine the highest
  common version. In order to support BGP version negotiation, future
  versions of BGP must retain the format of the OPEN and NOTIFICATION
  messages.

8.  BGP Finite State machine.

  This section specifies BGP operation in terms of a Finite State
  Machine (FSM).  Following is a brief summary and overview of BGP
  operations by state as determined by this FSM.  A condensed version
  of the BGP FSM is found in Appendix 1.

  Initially BGP is in the Idle state.

     Idle state:

        In this state BGP refuses all incoming BGP connections.  No
        resources are allocated to the BGP neighbor.  In response to
        the Start event (initiated by either system or operator) the
        local system initializes all BGP resources, starts the
        ConnectRetry timer, initiates a transport connection to other
        BGP peer, while listening for connection that may be initiated
        by the remote BGP peer, and changes its state to Connect.




Lougheed & Rekhter                                             [Page 18]

RFC 1163                          BGP                          June 1990


        The exact value of the ConnectRetry timer is a local matter,
        but should be sufficiently large to allow TCP initialization.

        Any other event received in the Idle state is ignored.

     Connect state:

        In this state BGP is waiting for the transport protocol
        connection to be completed.

        If the transport protocol connection succeeds, the local system
        clears the ConnectRetry timer, completes initialization, sends
        an OPEN message to its peer, and changes its state to OpenSent.

        If the transport protocol connect fails (e.g., retransmission
        timeout), the local system restarts the ConnectRetry timer,
        continues to listen for a connection that may be initiated by
        the remote BGP peer, and changes its state to Active state.

        In response to the ConnectRetry timer expired event, the local
        system restarts the ConnectRetry timer, initiates a transport
        connection to other BGP peer, continues to listen for a
        connection that may be initiated by the remote BGP peer, and
        stays in the Connect state.

        Start event is ignored in the Active state.

        In response to any other event (initiated by either system or
        operator), the local system releases all BGP resources
        associated with this connection and changes its state to Idle.

     Active state:

        In this state BGP is trying to acquire a BGP neighbor by
        initiating a transport protocol connection.

        If the transport protocol connection succeeds, the local system
        clears the ConnectRetry timer, completes initialization, sends
        an OPEN message to its peer, sets its hold timer to a large
        value, and changes its state to OpenSent.

        In response to the ConnectRetry timer expired event, the local
        system restarts the ConnectRetry timer, initiates a transport
        connection to other BGP peer, continues to listen for a
        connection that may be be initiated by the remote BGP peer, and
        changes its state to Connect.

        If the local system detects that a remote peer is trying to



Lougheed & Rekhter                                             [Page 19]

RFC 1163                          BGP                          June 1990


        establish BGP connection to it, and the IP address of the
        remote peer is not an expected one, the local system restarts
        the ConnectRetry timer, rejects the attempted connection,
        continues to listen for a connection that may be initiated by
        the remote BGP peer, and stays in the Active state.

        Start event is ignored in the Active state.

        In response to any other event (initiated by either system or
        operator), the local system releases all BGP resources
        associated with this connection and changes its state to Idle.

     OpenSent state:

        In this state BGP waits for an OPEN message from its peer.
        When an OPEN message is received, all fields are checked for
        correctness.  If the BGP message header checking or OPEN
        message checking detects an error (see Section 6), the local
        system sends a NOTIFICATION message and changes its state to
        Idle.

        If there are no errors in the OPEN message, BGP sends a
        KEEPALIVE message and sets a KeepAlive timer.  The hold timer,
        which was originally set to an arbitrary large value (see
        above), is replaced with the value indicated in the OPEN
        message.  If the value of the Autonomous System field is the
        same as our own , then the connection is "internal" connection;
        otherwise, it is "external".  (This will effect UPDATE
        processing as described below.)  Finally, the state is changed
        to OpenConfirm.

        If a disconnect notification is received from the underlying
        transport protocol, the local system closes the BGP connection,
        restarts the ConnectRetry timer, while continue listening for
        connection that may be initiated by the remote BGP peer, and
        goes into the Active state.

        If the hold time expires, the local system sends NOTIFICATION
        message with error code Hold Timer Expired and changes its
        state to Idle.

        In response to the Stop event (initiated by either system or
        operator) the local system sends NOTIFICATION message with
        Error Code Cease and changes its state to Idle.

        Start event is ignored in the OpenSent state.

        In response to any other event the local system sends



Lougheed & Rekhter                                             [Page 20]

RFC 1163                          BGP                          June 1990


        NOTIFICATION message with Error Code Finite State Machine Error
        and changes its state to Idle.

        Whenever BGP changes its state from OpenSent to Idle, it closes
        the BGP (and transport-level) connection and releases all
        resources associated with that connection.

     OpenConfirm state:

        In this state BGP waits for a KEEPALIVE or NOTIFICATION
        message.

        If the local system receives a KEEPALIVE message, it changes
        its state to Established.

        If the hold timer expires before a KEEPALIVE message is
        received, the local system sends NOTIFICATION message with
        error code Hold Timer expired and changes its state to Idle.

        If the local system receives a NOTIFICATION message, it changes
        its state to Idle.

        If the KeepAlive timer expires, the local system sends a
        KEEPALIVE message and restarts its KeepAlive timer.

        If a disconnect notification is received from the underlying
        transport protocol, the local system changes its state to Idle.

        In response to the Stop event (initiated by either system or
        operator) the local system sends NOTIFICATION message with
        Error Code Cease and changes its state to Idle.

        Start event is ignored in the OpenConfirm state.

        In response to any other event the local system sends
        NOTIFICATION message with Error Code Finite State Machine Error
        and changes its state to Idle.

        Whenever BGP changes its state from OpenConfirm to Idle, it
        closes the BGP (and transport-level) connection and releases
        all resources associated with that connection.

     Established state:

        In the Established state BGP can exchange UPDATE, NOTIFICATION,
        and KEEPALIVE messages with its peer.

        If the local system receives an UPDATE or KEEPALIVE message, it



Lougheed & Rekhter                                             [Page 21]

RFC 1163                          BGP                          June 1990


        restarts its Holdtime timer.

        If the local system receives a NOTIFICATION message, it changes
        its state to Idle.

        If the local system receives an UPDATE message and the UPDATE
        message error handling procedure (see Section 6.3) detects an
        error, the local system sends a NOTIFICATION message and
        changes its state to Idle.

        If a disconnect notification is received from the underlying
        transport protocol, the local system  changes its state to
        Idle.

        If the Holdtime timer expires, the local system sends a
        NOTIFICATION message with Error Code Hold Timer Expired and
        changes its state to Idle.

        If the KeepAlive timer expires, the local system sends a
        KEEPALIVE message and restarts its KeepAlive timer.

        Each time the local system sends a KEEPALIVE or UPDATE message,
        it restarts its KeepAlive timer.

        In response to the Stop event (initiated by either system or
        operator), the local system sends a NOTIFICATION message with
        Error Code Cease and changes its state to Idle.

        Start event is ignored in the Established state.

        In response to any other event, the local system sends
        NOTIFICATION message with Error Code Finite State Machine Error
        and changes its state to Idle.

        Whenever BGP changes its state from Established to Idle, it
        closes the BGP (and transport-level) connection, releases all
        resources associated with that connection, and deletes all
        routes derived from that connection.

9.  UPDATE Message Handling

  An UPDATE message may be received only in the Established state.
  When an UPDATE message is received, each field is checked for
  validity as specified in Section 6.3.

  If an optional non-transitive attribute is unrecognized, it is
  quietly ignored.  If an optional transitive attribute is
  unrecognized, the Partial bit (the third high-order bit) in the



Lougheed & Rekhter                                             [Page 22]

RFC 1163                          BGP                          June 1990


  attribute flags octet is set to 1, and the attribute is retained for
  propagation to other BGP speakers.

  If an optional attribute is recognized, and has a valid value, then,
  depending on the type of the optional attribute, it is processed
  locally, retained, and updated, if necessary, for possible
  propagation to other BGP speakers.

  If the network and the path attributes associated with a route to
  that network are correct, then the route is compared with other
  routes to the same network.  If the new route is better than the
  current one, then it is propagated via an UPDATE message to adjacent
  BGP speakers as follows:

  - If a route in the UPDATE was received over an internal link, it is
    not propagated over any other internal link.  This restriction is
    due to the fact that all BGP speakers within a single AS form a
    completely connected graph (see above).

  - If the UPDATE message is propagated over an external link, then the
    local AS number is prepended to the AS_PATH attribute, and the
    NEXT_HOP attribute is updated with an IP address of the router that
    should be used as a next hop to the network.  If the UPDATE message
    is propagated over an internal link, then the AS_PATH attribute is
    passed unmodified and the NEXT_HOP attribute is replaced with the
    sender's own IP address.

  Generally speaking, the rules for comparing routes among several
  alternatives are outside the scope of this document.  There are two
  exceptions:

  - If the local AS appears in the AS path of the new route being
    considered, then that new route cannot be viewed as better than any
    other route.  If such a route were ever used, a routing loop would
    result.

  - In order to achieve successful distributed operation, only routes
    with a likelihood of stability can be chosen.  Thus, an AS must
    avoid using unstable routes, and it must not make rapid spontaneous
    changes to its choice of route.  Quantifying the terms "unstable"
    and "rapid" in the previous sentence will require experience, but
    the principle is clear.

10. Detection of Inter-AS Policy Contradictions

  Since BGP requires no central authority for coordinating routing
  policies among ASs, and since routing policies are not exchanged via
  the protocol itself, it is possible for a group of ASs to have a set



Lougheed & Rekhter                                             [Page 23]

RFC 1163                          BGP                          June 1990


  of routing policies that cannot simultaneously be satisfied.  This
  may cause an indefinite oscillation of the routes in this group of
  ASs.

  To help detect such a situation, all BGP speakers must observe the
  following rule.  If a route to a destination that is currently used
  by the local system is determined to be unreachable (e.g., as a
  result of receiving an UPDATE message for this route with the
  UNREACHABLE attribute), then, before switching to another route, this
  local system must advertize this route as unreachable to all the BGP
  neighbors to which it previously advertized this route.

  This rule will allow other ASs to distinguish between two different
  situations:

  - The local system has chosen to use a new route because the old
    route become unreachable.

  - The local system has chosen to use a new route because it preferred
    it over the old route.  The old route is still viable.

  In the former case, an UPDATE message with the UNREACHABLE attribute
  will be received for the old route.  In the latter case it will not.

  In some cases, this may allow a BGP speaker to detect the fact that
  its policies, taken together with the policies of some other AS,
  cannot simultaneously be satisfied.  For example, consider the
  following situation involving AS A and its neighbor AS B.  B
  advertises a route with a path of the form <B,...>, where A is not
  present in the path.  A then decides to use this path, and advertises
  <A,B,...> to all its neighbors.  B later advertises <B,...,A,...>
  back to A, without ever declaring its previous path <B,...> to be
  unreachable.  Evidently, A prefers routes via B and B prefers routes
  via A.  The combined policies of A and B, taken together, cannot be
  satisfied.  Such an event should be noticed, logged locally, and
  brought to the attention of AS A's administration.  The means to do
  this, however, lies outside the scope of this document.  Also outside
  the document is a more complete procedure for detecting such
  contradictions of policy.

  While the above rules provide a mechanism to detect a set of routing
  policies that cannot be satisfied simultaneously, the protocol itself
  does not provide any mechanism for suppressing the route oscillation
  that may result from these unsatisfiable policies.  The reason for
  doing this is that routing policies are viewed as external to the
  protocol and as determined by the local AS administrator.





Lougheed & Rekhter                                             [Page 24]

RFC 1163                          BGP                          June 1990


Appendix 1.  BGP FSM State Transitions and Actions.

  This Appendix discusses the transitions between states in the BGP FSM
  in response to BGP events.  The following is the list of these states
  and events.

   BGP States:

            1 - Idle
            2 - Connect
            3 - Active
            4 - OpenSent
            5 - OpenConfirm
            6 - Established


   BGP Events:

            1 - BGP Start
            2 - BGP Stop
            3 - BGP Transport connection open
            4 - BGP Transport connection closed
            5 - BGP Transport connection open failed
            6 - BGP Transport fatal error
            7 - ConnectRetry timer expired
            8 - Holdtime timer expired
            9 - KeepAlive timer expired
           10 - Receive OPEN message
           11 - Receive KEEPALIVE message
           12 - Receive UPDATE messages
           13 - Receive NOTIFICATION message

  The following table describes the state transitions of the BGP FSM
  and the actions triggered by these transitions.

   Event                Actions               Message Sent   Next State
   --------------------------------------------------------------------
   Idle (1)
    1            Initialize resources            none             2
                 Start ConnectRetry timer
                 Initiate a transport connection
    others               none                    none             1









Lougheed & Rekhter                                             [Page 25]

RFC 1163                          BGP                          June 1990


   Connect(2)
    1                    none                    none             2
    3            Complete initialization         OPEN             4
                 Clear ConnectRetry timer
    5            Restart ConnectRetry timer      none             3
    7            Restart ConnectRetry timer      none             2
                 Initiate a transport connection
    others       Release resources               none             1

   Active (3)
    1                    none                    none             3
    3            Complete initialization         OPEN             4
                 Clear ConnectRetry timer
    5            Close connection                                 3
                 Restart ConnectRetry timer
    7            Restart ConnectRetry timer      none             2
                 Initiate a transport connection
    others       Release resources               none             1

   OpenSent(4)
    1                    none                    none             4
    4            Close transport connection      none             3
                 Restart ConnectRetry timer
    6            Release resources               none             1
   10            Process OPEN is OK            KEEPALIVE          5
                 Process OPEN failed           NOTIFICATION       1
   others        Close transport connection    NOTIFICATION       1
                 Release resources

   OpenConfirm (5)
    1                   none                     none             5
    4            Release resources               none             1
    6            Release resources               none             1
    9            Restart KeepAlive timer       KEEPALIVE          5
   11            Complete initialization         none             6
                 Restart Holdtime timer
   13            Close transport connection                       1
                 Release resources
   others        Close transport connection    NOTIFICATION       1
                 Release resources











Lougheed & Rekhter                                             [Page 26]

RFC 1163                          BGP                          June 1990


   Established (6)
    1                   none                     none             6
    4            Release resources               none             1
    6            Release resources               none             1
    9            Restart KeepAlive timer       KEEPALIVE          6
   11            Restart Holdtime timer        KEEPALIVE          6
   12            Process UPDATE is OK          UPDATE             6
                 Process UPDATE failed         NOTIFICATION       1
   13            Close transport connection                       1
                 Release resources
   others        Close transport connection    NOTIFICATION       1
                 Release resources
  ---------------------------------------------------------------------

  The following is a condensed version of the above state transition
  table.

Events| Idle | Active | Connect | OpenSent | OpenConfirm | Estab
     | (1)  |   (2)  |  (3)    |    (4)   |     (5)     |   (6)
     |--------------------------------------------------------------
1    |  2   |    2   |   3     |     4    |      5      |    6
     |      |        |         |          |             |
2    |  1   |    1   |   1     |     1    |      1      |    1
     |      |        |         |          |             |
3    |  1   |    4   |   4     |     1    |      1      |    1
     |      |        |         |          |             |
4    |  1   |    1   |   1     |     3    |      1      |    1
     |      |        |         |          |             |
5    |  1   |    3   |   3     |     1    |      1      |    1
     |      |        |         |          |             |
6    |  1   |    1   |   1     |     1    |      1      |    1
     |      |        |         |          |             |
7    |  1   |    2   |   2     |     1    |      1      |    1
     |      |        |         |          |             |
8    |  1   |    1   |   1     |     1    |      1      |    1
     |      |        |         |          |             |
9    |  1   |    1   |   1     |     1    |      5      |    6
     |      |        |         |          |             |
10    |  1   |    1   |   1     |  1 or 5  |      1      |    1
     |      |        |         |          |             |
11    |  1   |    1   |   1     |     1    |      6      |    6
     |      |        |         |          |             |
12    |  1   |    1   |   1     |     1    |      1      | 1 or 6
     |      |        |         |          |             |
13    |  1   |    1   |   1     |     1    |      1      |    1
     |      |        |         |          |             |
     ---------------------------------------------------------------




Lougheed & Rekhter                                             [Page 27]

RFC 1163                          BGP                          June 1990


Appendix 2.  Comparison with RFC 1105

  Minor changes to the RFC1105 Finite State Machine were necessary to
  accommodate the TCP user interface provided by 4.3 BSD.

  The notion of Up/Down/Horizontal relations present in RFC1105 has
  been removed from the protocol.

  The changes in the message format from RFC1105 are as follows:

      1.  The Hold Time field has been removed from the BGP header and
          added to the OPEN message.

      2.  The version field has been removed from the BGP header and
          added to the OPEN message.

      3.  The Link Type field has been removed from the OPEN message.

      4.  The OPEN CONFIRM message has been eliminated and replaced
          with implicit confirmation provided by the KEEPALIVE message.

      5.  The format of the UPDATE message has been changed
          significantly.  New fields were added to the UPDATE message
          to support multiple path attributes.

      6.  The Marker field has been expanded and its role broadened to
          support authentication.

Appendix 3.  TCP options that may be used with BGP

  If a local system TCP user interface supports TCP PUSH function, then
  each BGP message should be transmitted with PUSH flag set.  Setting
  PUSH flag forces BGP messages to be transmitted promptly to the
  receiver.

  If a local system TCP user interface supports setting precedence for
  TCP connection, then the BGP transport connection should be opened
  with precedence set to Internetwork Control (110) value (see also
  [6]).












Lougheed & Rekhter                                             [Page 28]

RFC 1163                          BGP                          June 1990


References

  [1]  Mills, D., "Exterior Gateway Protocol Formal Specification", RFC
       904, BBN, April 1984.

  [2]  Rekhter, Y., "EGP and Policy Based Routing in the New NSFNET
       Backbone", RFC 1092, T.J. Watson Research Center, February 1989.

  [3]  Braun, H-W., "The NSFNET Routing Architecture", RFC 1093,
       MERIT/NSFNET Project, February 1989.

  [4]  Postel, J., "Transmission Control Protocol - DARPA Internet
       Program Protocol Specification", RFC 793, DARPA, September 1981.

  [5]  Honig, J., Katz, D., Mathis, M., Rekhter, Y., and J. Yu,
       "Application of the Border Gateway Protocol in the Internet",
       RFC 1164, Cornell University Theory Center, Merit/NSFNET,
       Pittsburgh Supercomputing Center, IBM, Merit/NSFNET, June 1990.

  [6]  Postel, J., "Internet Protocol - DARPA Internet Program Protocol
       Specification", RFC 791, DARPA, September 1981.

Security Considerations

  Security issues are not discussed in this memo.

Authors' Addresses

  Kirk Lougheed
  cisco Systems, Inc.
  1525 O'Brien Drive
  Menlo Park, CA 94025

  Phone:  (415) 326-1941

  Email:  [email protected]


  Yakov Rekhter
  T.J. Watson Research Center IBM Corporation
  P.O. Box 218
  Yorktown Heights, NY 10598

  Phone:  (914) 945-3896

  Email:  [email protected]





Lougheed & Rekhter                                             [Page 29]