Network Working Group                                         D. Perkins
Request for Comments: 1134                                           CMU
                                                          November 1989


      The Point-to-Point Protocol: A Proposal for Multi-Protocol
         Transmission of Datagrams Over Point-to-Point Links


                          Table of Contents

  Status of this Memo ...................................    2
  Abstract ..............................................    2
  1. Introduction .......................................    2
  1.1 Motivation ........................................    2
  1.2 Overview of PPP ...................................    3
  1.3 Organization of the document ......................    4
  2. Physical Layer Requirements ........................    4
  3. The Data Link Layer ................................    4
  3.1 Frame Format ......................................    5
  4. The PPP Link Control Protocol (LCP) ................    8
  4.1 The LCP Automaton .................................    9
  4.1.1 Overview ........................................    9
  4.1.2 State Diagram ...................................   10
  4.1.3 State Transition Table ..........................   12
  4.1.4 Events ..........................................   12
  4.1.5 Actions .........................................   14
  4.1.6 States ..........................................   16
  4.2 Loop Avoidance ....................................   19
  4.3 Packet Format .....................................   19
  4.3.1 Configure-Request ...............................   21
  4.3.2 Configure-Ack ...................................   21
  4.3.3 Configure-Nak ...................................   22
  4.3.4 Configure-Reject ................................   24
  4.3.5 Terminate-Request and Terminate-Ack .............   25
  4.3.6 Code-Reject .....................................   26
  4.3.7 Protocol-Reject .................................   27
  4.3.8 Echo-Request and Echo-Reply .....................   28
  4.3.9 Discard-Request .................................   29
  4.4 Configuration Options .............................   30
  4.4.1 Format ..........................................   31
  5. A PPP Network Control Protocol (NCP) for IP ........   32
  5.1 Sending IP Datagrams ..............................   33
  APPENDICES ............................................   33
  A. Asynchronous HDLC ..................................   33
  B. Fast Frame Check Sequence (FCS) Implementation .....   35
  B.1 FCS Computation Method ............................   35
  B.2 Fast FCS table generator ..........................   36



Perkins                                                         [Page 1]

RFC 1134                          PPP                      November 1989


  REFERENCES ............................................   37
  AUTHOR'S ADDRESS ......................................   38

Status of this Memo

  This memo defines a proposed protocol for the Internet community.

  This proposal is the product of the Point-to-Point Protocol Working
  Group of the Internet Engineering Task Force (IETF).  Comments on this
  memo should be submitted to the IETF Point-to-Point Protocol Working
  Group chair by January 15, 1990.  Comments will be reviewed at the
  February 1990 IETF meeting, with the goal of advancing PPP to draft
  standard status.  Distribution of this memo is unlimited.

Abstract

  The Point-to-Point Protocol (PPP) provides a method for transmitting
  datagrams over serial point-to-point links.  PPP is composed of three
  parts:

     1. A method for encapsulating datagrams over serial links.

     2. An extensible Link Control Protocol (LCP).

     3. A family of Network Control Protocols (NCP) for establishing
        and configuring different network-layer protocols.

  This document defines the encapsulation scheme, the basic LCP, and an
  NCP for establishing and configuring the Internet Protocol (IP)
  (called the IP Control Protocol, IPCP).

  The options and facilities used by the LCP and the IPCP are defined
  in separate documents.  Control protocols for configuring and
  utilizing other network-layer protocols besides IP (e.g., DECNET,
  OSI) are expected to be developed as needed.

1.  Introduction

1.1.  Motivation

  In the last few years, the Internet has seen explosive growth in the
  number of hosts supporting TCP/IP.  The vast majority of these hosts
  are connected to Local Area Networks (LANs) of various types,
  Ethernet being the most common.  Most of the other hosts are
  connected through Wide Area Networks (WANs) such as X.25 style Public
  Data Networks (PDNs).  Relatively few of these hosts are connected
  with simple point-to-point (i.e., serial) links.  Yet, point-to-point
  links are among the oldest methods of data communications and almost



Perkins                                                         [Page 2]

RFC 1134                          PPP                      November 1989


  every host supports point-to-point connections.  For example,
  asynchronous RS-232-C [1] interfaces are essentially ubiquitous.

  One reason for the small number of point-to-point IP links is the
  lack of a standard encapsulation protocol.  There are plenty of non-
  standard (and at least one defacto standard) encapsulation protocols
  available, but there is not one which has been agreed upon as an
  Internet Standard.  By contrast, standard encapsulation schemes do
  exist for the transmission of datagrams over most popular LANs.

  One purpose of this memo is to remedy this problem.  But even more
  importantly, the Point-to-Point Protocol proposes more than just an
  encapsulation scheme.  Point-to-Point links tend to exacerbate many
  problems with the current family of network protocols.  For instance,
  assignment and management of IP addresses, which is a problem even in
  LAN environments, is especially difficult over switched point-to-
  point circuits (e.g., dialups).

  Some additional issues addressed by PPP include asynchronous
  (start/stop) and bit-oriented synchronous encapsulation, network
  protocol multiplexing, link configuration, link quality testing,
  error detection, and option negotiation for such capabilities as
  network-layer address negotiation and data compression negotiation.

  PPP addresses these issues by providing an extensible Link Control
  Protocol (LCP) and a family of Network Control Protocols (NCP) to
  negotiate optional configuration parameters and facilities.

1.2.  Overview of PPP

  PPP has three main components:

     1. A method for encapsulating datagrams over serial links.  PPP
        uses HDLC as a basis for encapsulating datagrams over point-
        to-point links.

     2. An extensible Link Control Protocol (LCP) to establish,
        configure, and test the data-link connection.

     3. A family of Network Control Protocols (NCP) for establishing
        and configuring different network-layer protocols.  PPP is
        designed to allow the simultaneous use of multiple network-
        layer protocols.

  In order to establish communications over a point-to-point link, the
  originating PPP would first send LCP packets to configure and test
  the data link.  After the link has been establish and optional
  facilities have been negotiated as needed by the LCP, the originating



Perkins                                                         [Page 3]

RFC 1134                          PPP                      November 1989


  PPP would send NCP packets to choose and configure one or more
  network-layer protocols.  Once each of the chosen network-layer
  protocols has been configured, datagrams from each network-layer
  protocol can be sent over the link.

  The link will remain configured for communications until explicit LCP
  or NCP packets close the link down, or until some external event
  occurs (e.g., inactivity timer expires or user intervention).

1.3.  Organization of the document

  This memo is divided into several sections.  Section 2 discusses the
  physical-layer requirements of PPP.  Section 3 describes the Data
  Link Layer including the PPP frame format and data link encapsulation
  scheme.  Section 4 specifies the LCP including the connection
  establishment and option negotiation procedures.  Section 5 specifies
  the IP Control Protocol (IPCP), which is the NCP for the Internet
  Protocol, and describes the encapsulation of IP datagrams within PPP
  packets.  Appendix A summarizes important features of asynchronous
  HDLC, and Appendix B describes an efficient table-lookup algorithm
  for fast Frame Check Sequence (FCS) computation.

2.  Physical Layer Requirements

  The Point-to-Point Protocol is capable of operating across any
  DTE/DCE interface (e.g., EIA RS-232-C, EIA RS-422, EIA RS-423 and
  CCITT V.35).  The only absolute requirement imposed by PPP is the
  provision of a duplex circuit, either dedicated or switched, which
  can operate in either an asynchronous (start/stop) or synchronous
  bit-serial mode, transparent to PPP Data Link Layer frames.  PPP does
  not impose any restrictions regarding transmission rate, other than
  those imposed by the particular DTE/DCE interface in use.

  PPP does not require the use of modem control signals, such as
  Request To Send (RTS), Clear To Send (CTS), Data Carrier Detect
  (DCD), and Data Terminal Ready (DTR).  However, using such signals
  when available can allow greater functionality and performance.

3.  The Data Link Layer

  The Point-to-Point Protocol uses the principles, terminology, and
  frame structure of the International Organization For
  Standardization's (ISO) High-level Data Link Control (HDLC)
  procedures (ISO 3309-1979 [2]), as modified by ISO 3309:1984/PDAD1
  "Addendum 1: Start/stop transmission" [5].  ISO 3309-1979 specifies
  the HDLC frame structure for use in synchronous environments.  ISO
  3309:1984/PDAD1 specifies proposed modifications to ISO 3309-1979 to
  allow its use in asynchronous environments.



Perkins                                                         [Page 4]

RFC 1134                          PPP                      November 1989


  The PPP control procedures use the definitions and Control field
  encodings standardized in ISO 4335-1979 [3] and ISO 4335-
  1979/Addendum 1-1979 [4].  The PPP frame structure is also consistent
  with CCITT Recommendation X.25 LAPB [6], since that too is based on
  HDLC.

     Note: ISO 3309:1984/PDAD1 is a Proposed Draft standard.  At
     present, it seems that ISO 3309:1984/PDAD1 is stable and likely to
     become an International Standard.  Therefore, we feel comfortable
     about using it before it becomes an International Standard.  The
     progress of this proposal should be tracked and encouraged by the
     Internet community.

  The purpose of this memo is not to document what is already
  standardized in ISO 3309.  We assume that the reader is already
  familiar with HDLC, or has access to a copy of [2] or [6].  Instead,
  this paper attempts to give a concise summary and point out specific
  options and features used by PPP.  Since "Addendum 1: Start/stop
  transmission", is not yet standardized and widely available, it is
  summarized in Appendix A.

3.1.  Frame Format

  A summary of the standard PPP frame structure is shown below.  The
  fields are transmitted from left to right.

     +----------+---------+---------+----------+------------
     |   Flag   | Address | Control | Protocol | Information
     | 01111110 | 1111111 | 0000011 | 16 bits  |      *
     +----------+---------+---------+----------+------------
             ---+---------+----------+
                |   FCS   |   Flag   |
                | 16 bits | 01111110 |
             ---+---------+----------+

  This figure does not include start/stop bits (for asynchronous links)
  or any bits or octets inserted for transparency.  When asynchronous
  links are used, all octets are transmitted with one start bit, eight
  bits of data, and one stop bit.  There is no provision in either PPP
  or ISO 3309:1984/PDAD1 for seven bit asynchronous links.

  To remain consistent with standard Internet practice, and avoid
  confusion for people used to reading RFCs, all binary numbers in the
  following descriptions are in Most Significant Bit to Least
  Significant Bit order, reading from left to right, unless otherwise
  indicated.  Note that this is contrary to standard ISO and CCITT
  practice which orders bits as transmitted (i.e., network bit order).
  Keep this in mind when comparing this document with the international



Perkins                                                         [Page 5]

RFC 1134                          PPP                      November 1989


  standards documents.

  Flag Sequence

     The Flag Sequence is a single octet and indicates the beginning or
     end of a frame.  The Flag Sequence consists of the binary sequence
     01111110 (hexadecimal 0x7e).

  Address Field

     The Address field is a single octet and contains the binary
     sequence 11111111 (hexadecimal 0xff), the All-Stations address.
     PPP does not assign individual station addresses.  The All-
     Stations address should always be recognized and received.  Frames
     with other Addresses should be silently discarded.

  Control Field

     The Control field is a single octet and contains the binary
     sequence 00000011 (hexadecimal 0x03), the Unnumbered Information
     (UI) command with the P/F bit is set to zero.  Frames with other
     Control field values should be silently discarded.

  Protocol Field

     The Protocol field is two octets and its value identifies the
     protocol encapsulated in the Information field of the frame.  The
     most up-to-date values of the Protocol field are specified in the
     most recent "Assigned Numbers" RFC [11].  Initial values are also
     listed below.

     Protocol field values in the "cxxx" range identify datagrams as
     belonging to the Link Control Protocol (LCP) or associated
     protocols.  Values in the "8xxx" range identify datagrams belonging
     to the family of Network Control Protocols (NCP).  Values in the
     "0xxx" range identify the network protocol of specific datagrams.

     This Protocol field is defined by PPP and is not a field defined
     by HDLC.  However, the Protocol field is consistent with the ISO
     3309 extension mechanism for Address fields.  All Protocols MUST be
     odd; the least significant bit of the least significant octet MUST
     equal "1".  Also, all Protocols MUST be assigned such that the
     least significant bit of the most significant octet equals "0".
     Frames received which don't comply with these rules should be
     considered as having an unrecognized Protocol, and should be
     handled as specified by the LCP.  The Protocol field is
     transmitted and received most significant octet first.




Perkins                                                         [Page 6]

RFC 1134                          PPP                      November 1989


     The Protocol field is initially assigned as follows:

        Value (in hex)          Protocol

        0001 to 001f            reserved (transparency inefficient)
        0021                    Internet Protocol
        0023                  * ISO CLNP
        0025                  * Xerox NS IDP
        0027                  * DECnet Phase IV
        0029                  * Appletalk
        002b                  * Novell IPX
        002d                  * Van Jacobson Compressed TCP/IP 1
        002f                  * Van Jacobson Compressed TCP/IP 2

        8021                    Internet Protocol Control Protocol
        8023                  * ISO CLNP Control Protocol
        8025                  * Xerox NS IDP Control Protocol
        8027                  * DECnet Phase IV Control Protocol
        8029                  * Appletalk Control Protocol
        802b                  * Novell IPX Control Protocol
        802d                  * Reserved
        802f                  * Reserved

        c021                    Link Control Protocol
        c023                  * User/Password Authentication Protocol

           * Reserved for future use; not described in this document.

  Information Field

     The Information field is zero or more octets.  The Information
     field contains the datagram for the protocol specified in the
     Protocol field.  The end of the Information field is found by
     locating the closing Flag Sequence and allowing two octets for the
     Frame Check Sequence field.  The default maximum length of the
     Information field is 1500 octets.  By prior agreement, consenting
     PPP implementations may use other values for the maximum
     Information field length.

     On transmission, the Information field may be padded with an
     arbitrary number of octets up to the maximum length.  It is the
     responsibility of each protocol to disambiguate padding characters
     from real information.

  Frame Check Sequence (FCS) Field

     The Frame Check Sequence field is normally 16 bits (two octets).
     By prior agreement, consenting PPP implementations may use a 32-



Perkins                                                         [Page 7]

RFC 1134                          PPP                      November 1989


     bit (four-octet) FCS for improved error detection.

     The FCS field is calculated over all bits of the Address, Control,
     Protocol and Information fields not including any start and stop
     bits (asynchronous) and any bits (synchronous) or octets
     (asynchronous) inserted for transparency.  This does not include
     the Flag Sequences or FCS field.  The FCS is transmitted with the
     coefficient of the highest term first.

     For more information on the specification of the FCS, see ISO 3309
     or CCITT X.25.

        Note: A fast, table-driven implementation of the 16-bit FCS
        algorithm is shown in Appendix B.  This implementation is based
        on [7] and [8].

  Modifications to the Basic Frame Format

     The Link Control Protocol can negotiate modifications to the
     standard PPP frame structure.  However, modified frames will
     always be clearly distinguishable from standard frames.

4.  The PPP Link Control Protocol (LCP)

  The Link Control Protocol (LCP) provides a method of establishing,
  configuring, maintaining and terminating the point-to-point
  connection.  LCP goes through four distinct phases:

  Phase 1: Link Establishment and Configuration Negotiation

     Before any network-layer datagrams (e.g., IP) may be exchanged,
     LCP must first open the connection through an exchange of
     Configure packets.  This exchange is complete, and the Open state
     entered, once a Configure-Ack packet (described below) has been
     both sent and received.  Any non-LCP packets received before this
     exchange is complete are silently discarded.

     It is important to note that LCP handles configuration only of the
     link; LCP does not handle configuration of individual network-
     layer protocols.  In particular, all Configuration Parameters
     which are independent of particular network-layer protocols are
     configured by LCP.  All Configuration Options are assumed to be at
     default values unless altered by the configuration exchange.

  Phase 2: Link Quality Determination

     LCP allows an optional Link Quality Determination phase following
     transition to the LCP Open state.  In this phase, the link is



Perkins                                                         [Page 8]

RFC 1134                          PPP                      November 1989


     tested to determine if the link quality is sufficient to bring up
     network-layer protocols.  This phase is completely optional.  LCP
     may delay transmission of network-layer protocol information until
     this phase is completed.

     The procedure for Link Quality Determination is unspecified and
     may vary from implementation to implementation, or because of
     user-configured parameters, but only so long as the procedure
     doesn't violate other aspects of LCP.  One suggested method is to
     use LCP Echo-Request and Echo-Reply packets.

     What is important is that this phase may persist for any length of
     time.  Therefore, implementations should avoid fixed timeouts when
     waiting for their peers to advance to phase 3.

  Phase 3: Network-Layer Protocol Configuration Negotiation

     Once LCP has finished the Link Quality Determination phase,
     network-layer protocols may be separately configured by the
     appropriate Network Control Protocols (NCP), and may be brought up
     and taken down at any time.  If LCP closes the link, it informs
     the network-layer protocols so that they may take appropriate
     action.

  Phase 4: Link Termination

     LCP may terminate the link at any time.  This will usually be done
     at the request of a human user, but may happen because of a
     physical event such as the loss of carrier, or the expiration of
     an idle-period timer.

4.1.  The LCP Automation

4.1.1.  Overview

  LCP is specified by a number of packet formats and a finite-state
  automation.  This section presents an overview of the LCP automation,
  followed by a representation of it as both a state diagram and a
  state transition table.

  There are three classes of LCP packets:

     1. Link Establishment packets used to establish and configure a
        link, (e.g., Configure-Request, Configure-Ack, Configure-Nak
        and Configure-Reject)

     2. Link Termination packets used to terminate a link, (e.g.,
        Terminate-Request and Terminate-Ack)



Perkins                                                         [Page 9]

RFC 1134                          PPP                      November 1989


     3. Link Maintenance packets used to manage and debug a link,
        (e.g., Code-Reject, Protocol-Reject, Echo-Request, Echo-Reply
        and Discard-Request)

  The finite-state automation is defined by events, state transitions
  and actions.  Events include receipt of external commands such as
  Open and Close, expiration of the Restart timer, and receipt of
  packets from a LCP peer.  Actions include the starting of the Restart
  timer and transmission of packets.

4.1.2.  State Diagram

  The state diagram which follows describes the sequence of events for
  reaching agreement on Configuration Options (opening the PPP
  connection) and for later closing of the connection.  The state
  machine is initially in the Closed state (1).  Once the Open state
  (6) has been reached, both ends of the link have met the requirement
  of having both sent and received a Configure-Ack packet.

  In the state diagram, events are shown above horizontal lines.
  Actions are shown below horizontal lines.  Two types of LCP packets -
  Configure-Naks and Configure-Rejects - are not differentiated in the
  state diagram.  As will be described later, these packets do indeed
  serve different, though similar, functions.  However, at the level of
  detail of this state diagram, they always cause the same transition.

  Since a more detailed specification of the LCP automation is given in
  a state transition table in the following section, implementation
  should be done by consulting it rather than this state diagram.






















Perkins                                                        [Page 10]

RFC 1134                          PPP                      November 1989


                                   +------------------------------+
                                   |                              |
                                   V                              |
       +---2---+           PO +---1---+        RTA +---7---+      |
       |       |<-------------|       |<-----------|       |      |
       |Listen |              |Closed |            |Closing|      |
   RCR |       | C            |       | PLD        |       |      |
  +----|       |----->+------>|       |<---Any     |       |<--+  |
  |scr +-------+      ^       +-------+    State   +-------+   |  |
  |                   |     AO  |                    ^   | TO  |  |
  |       +-----------+     --- |                    |   +---->+  |
  |       |                 SCR |     C              |     str ^  |
  |    C  |   RCN/TO            |   +----------------+         |  |
  |    -- | +-------->+<--------+   | str                      |  |
  |       | | scr     |             |                          |  |
  |    +---3---+      V   TO  +---4---+            +-------+   |  |
  |    |       |<-----+<------|       |<-----------|       |   |  |
  |    | Req-  |          scr | Ack-  |        scn | Good  |   |  |
  |    | Sent  | RCA          | Rcvd  | RCR        | Req?  |   |  |
  |    |       |------------->|       |----------->|       |   |  |
  |    +-------+              +-------+            +-------+   |  |
  |       | ^                                         |        |  |
  |   RCR | +<--------+                               |        |  |
  |   --- | |         |     TO        RCN         --- |        |  |
  |       | | ---     +---------+   +-----+       sca |        |  |
  |       V | scn           scr |   | scr |           V        |  |
  |    +-------+              +---5---+   |        +---6---+ C |  |
  +--->|       |------------->|       |<--+        |       |---+  |
       | Good  | sca          | Ack-  |            | Open  | str  |
       | Req?  |          RCR | Sent  | RCA        |       |      |
       |       |<-------------|       |----------->|       |      |
       +-------+              +-------+            +-------+      |
             ^                                       |   |        |
             |                                   RCR |   | RTR    |
             +---------------------------------------+   +--------+
                                                 scr       sta

  Events                                  Actions
  RCR - Receive-Configure-Request         scr - Send Configure-Request
  RCA - Receive-Configure-Ack             sca - Send Configure-Ack
  RCN - Receive-Configure-Nak or Reject   scn - Send Configure-Nak or
  RTR - Receive-Terminate-Req                   Reject
  RTA - Receive-Terminate-Ack             str - Send Terminate-Req
  AO  - Active-Open                       sta - Sent Terminate-Ack
  PO  - Passive-Open
  C   - Close
  TO  - Timeout
  PLD - Physical-Layer-Down



Perkins                                                        [Page 11]

RFC 1134                          PPP                      November 1989


4.1.3.  State Transition Table

  The complete state transition table follows.  States are indicated
  horizontally, and events are read vertically.  State transitions and
  actions are represented in the form action/new-state.  Two actions
  caused by the same event are represented as action1&action2.

        | State
        |   1       2        3        4        5        6        7
  Events| Closed  Listen  Req-Sent Ack-Rcvd Ack-Sent  Open    Closing
  ------+-------------------------------------------------------------
    AO  | scr/3   scr/3      3        4        5        6      scr/3
    PO  |   2       2        2*       4        5        6      sta/3*
    C   |   1       1        1*       1      str/7    str/7      7
    TO  |   1       2      scr/3    scr/3    scr/3      6      str/7*
   PLD  |   1       1        1        1        1        1        1
   RCR+ | sta/1 scr&sca/5  sca/5    sca/6    sca/5  scr&sca/5    7
   RCR- | sta/1 scr&scn/3  scn/3    scn/4    scn/3  scr&scn/3    7
   RCA  | sta/1   sta/2      4      scr/3      6      scr/3      7
   RCN  | sta/1   sta/2    scr/3    scr/3    scr/5    scr/3      7
   RTR  | sta/1   sta/2    sta/3    sta/3    sta/3    sta/1    sta/7
   RTA  |   1       2        3        3        3        1        1
   RCJ  |   1       2        1        1        1        1        1
   RUC  | scj/1   scj/1    scj/1    scj/1    scj/1    scj/1  1 scj/1
   RER  | sta/1   sta/2      3        4        5      ser/1      7

  Notes:
      RCR+ - Receive-Configure-Request (Good)
      RCR- - Receive-Configure-Request (Bad)
      RCJ  - Receive-Code-Reject
      RUC  - Receive-Unknown-Code
      RER  - Receive-Echo-Request
      scj  - Send-Code-Reject
      ser  - Send-Echo-Reply
       *   - Special attention necessary, see detailed text

4.1.4.  Events

  Transitions and actions in the LCP state machine are caused by
  events.  Some events are caused by commands executed at the local end
  (e.g., Active-Open, Passive-Open, and Close), others are caused by
  the receipt of packets from the remote end (e.g., Receive- Configure-
  Request, Receive-Configure-Ack, Receive-Configure-Nak, Receive-
  Terminate-Request and Receive-Terminate-Ack), and still others are
  caused by the expiration of the Restart timer started as the result
  of other events (e.g., Timeout).

  Following is a list of LCP events.



Perkins                                                        [Page 12]

RFC 1134                          PPP                      November 1989


  Active-Open (AO)

     The Active-Open event indicates the local execution of an Active-
     Open command by the network administrator (human or program).
     When this event occurs, LCP should immediately attempt to open the
     connection by exchanging configuration packets with the LCP peer.

  Passive-Open (PO)

     The Passive-Open event is similar to the Active-Open event.
     However, instead of immediately exchanging configuration packets,
     LCP should wait for the peer to send the first packet.  This will
     only happen after an Active-Open event in the LCP peer.

  Close (C)

     The Close event indicates the local execution of a Close command.
     When this event occurs, LCP should immediately attempt to close
     the connection.

  Timeout (TO)

     The Timeout event indicates the expiration of the LCP Restart
     timer.  The LCP Restart timer is started as the result of other
     LCP events.

     The Restart timer is used to time out transmissions of Configure-
     Request and Terminate-Request packets.  Expiration of the Restart
     timer causes a Timeout event, which triggers the corresponding
     Configure-Request or Terminate-Request packet to be retransmitted.
     The Restart timer MUST be configurable, but should default to
     three (3) seconds.

  Receive-Configure-Request (RCR)

     The Receive-Configure-Request event occurs when a Configure-
     Request packet is received from the LCP peer.  The Configure-
     Request packet indicates the desire to open a LCP connection and
     may specify Configuration Options.  The Configure-Request packet
     is more fully described in a later section.

  Receive-Configure-Ack (RCA)

     The Receive-Configure-Ack event occurs when a valid Configure-Ack
     packet is received from the LCP peer.  The Configure-Ack packet is
     a positive response to a Configure-Request packet.





Perkins                                                        [Page 13]

RFC 1134                          PPP                      November 1989


  Receive-Configure-Nak (RCN)

     The Receive-Configure-Nak event occurs when a valid Configure-Nak
     or Configure-Reject packet is received from the LCP peer.  The
     Configure-Nak and Configure-Reject packets are negative responses
     to a Configure-Request packet.

  Receive-Terminate-Request (RTR)

     The Receive-Terminate-Request event occurs when a Terminate-
     Request packet is received from the LCP peer.  The Terminate-
     Request packet indicates the desire to close the LCP connection.

  Receive-Terminate-Ack (RTA)

     The Receive-Terminate-Ack event occurs when a Terminate-Ack packet
     is received from the LCP peer.  The Terminate-Ack packet is a
     response to a Terminate-Request packet.

  Receive-Code-Reject (RCJ)

     The Receive-Code-Reject event occurs when a Code-Reject packet is
     received from the LCP peer.  The Code-Reject packet communicates
     an error that immediately closes the connection.

  Receive-Unknown-Code (RUC)

     The Receive-Unknown-Code event occurs when an un-interpretable
     packet is received from the LCP peer.  The Code-Reject packet is a
     response to an unknown packet.

  Receive-Echo-Request (RER)

     The Receive-Echo-Request event occurs when a Echo-Request, Echo-
     Reply, or Discard-Request packet is received from the LCP peer.
     The Echo-Reply packet is a response to a Echo-Request packet.
     There is no reply to a Discard-Request.

  Physical-Layer-Down (PLD)

     The Physical-Layer-Down event occurs when the Physical Layer
     indicates that it is down.

4.1.5.  Actions

  Actions in the LCP state machine are caused by events and typically
  indicate the transmission of packets and/or the starting or stopping
  of the Restart timer.  Following is a list of LCP actions.



Perkins                                                        [Page 14]

RFC 1134                          PPP                      November 1989


  Send-Configure-Request (scr)

     The Send-Configure-Request action transmits a Configure-Request
     packet.  This indicates the desire to open a LCP connection with a
     specified set of Configuration Options.  The Restart timer is
     started after the Configure-Request packet is transmitted, to
     guard against packet loss.

  Send-Configure-Ack (sca)

     The Send-Configure-Ack action transmits a Configure-Ack packet.
     This acknowledges the receipt of a Configure-Request packet with
     an acceptable set of Configuration Options.

  Send-Configure-Nak (scn)

     The Send-Configure-Nak action transmits a Configure-Nak or
     Configure-Reject packet, as appropriate.  This negative response
     reports the receipt of a Configure-Request packet with an
     unacceptable set of Configuration Options.  Configure-Nak packets
     are used to refuse a Configuration Option value, and to suggest a
     new, acceptable value.  Configure-Reject packets are used to
     refuse all negotiation about a Configuration Option, typically
     because it is not recognized or implemented.  The use of
     Configure-Nak vs. Configure-Reject is more fully described in the
     section on LCP Packet Formats.

  Send-Terminate-Req (str)

     The Send-Terminate-Request action transmits a Terminate-Request
     packet.  This indicates the desire to close a LCP connection.  The
     Restart timer is started after the Terminate-Request packet is
     transmitted, to guard against packet loss.

  Send-Terminate-Ack (sta)

     The Send-Terminate-Request action transmits a Terminate-Ack
     packet.  This acknowledges the receipt of a Terminate-Request
     packet or otherwise confirms the belief that a LCP connection is
     Closed.

  Send-Code-Reject (scj)

     The Send-Code-Reject action transmits a Code-Reject packet.  This
     indicates the receipt of an unknown type of packet.  This is an
     unrecoverable error which causes immediate transitions to the
     Closed state on both ends of the link.




Perkins                                                        [Page 15]

RFC 1134                          PPP                      November 1989


  Send-Echo-Reply (ser)

     The Send-Echo-Reply action transmits an Echo-Reply packet.  This
     acknowledges the receipt of an Echo-Request packet.

4.1.6.  States

  Following is a more detailed description of each LCP state.

  Closed (1)

     The initial and final state is the Closed state.  In the Closed
     state the connection is down and there is no attempt to open it;
     all connection requests from peers are rejected.  Physical-Layer-
     Down events always cause an immediate transition to the Closed
     state.

     There are two events which cause a transition out of the Closed
     state, Active-Open and Passive-Open.  Upon an Active-Open event, a
     Configure-Request is transmitted, the Restart timer is started,
     and the Request-Sent state is entered.  Upon a Passive-Open event,
     the Listen state is entered immediately.  Upon receipt of any
     packet, with the exception of a Terminate-Ack, a Terminate-Ack is
     sent.  Terminate-Acks are silently discarded to avoid creating a
     loop.

     The Restart timer is not running in the Closed state.

     The Physical Layer connection may be disconnected at any time when
     in the LCP Closed state.

  Listen (2)

     The Listen state is similar to the Closed state in that the
     connection is down and there is no attempt to open it.  However,
     peer connection requests are no longer rejected.

     Upon receipt of a Configure-Request, a Configure-Request is
     immediately transmitted and the Restart timer is started.  The
     received Configuration Options are examined and the proper
     response is sent.  If a Configure-Ack is sent, the Ack-Sent state
     is entered.  Otherwise, if a Configure-Nak or Configure-Reject is
     sent, the Request-Sent state is entered.  In either case, LCP
     exits its passive state, and begins to actively open the
     connection.  Terminate-Ack packets are sent in response to either
     Configure-Ack or Configure-Nak packets,

     The Restart timer is not running in the Listen state.



Perkins                                                        [Page 16]

RFC 1134                          PPP                      November 1989


  Request-Sent (3)

     In the Request-Sent state an active attempt is made to open the
     connection.  A Configure-Request has been sent and the Restart
     timer is running, but a Configure-Ack has not yet been received
     nor has one been sent.

     Upon receipt of a Configure-Ack, the Ack-Received state is
     immediately entered.  Upon receipt of a Configure-Nak or
     Configure-Reject, the Configure-Request Configuration Options are
     adjusted appropriately, a new Configure-Request is transmitted,
     and the Restart timer is restarted.  Similarly, upon the
     expiration of the Restart timer, a new Configure-Request is
     transmitted and the Restart timer is restarted.  Upon receipt of a
     Configure-Request, the Configuration Options are examined and if
     acceptable, a Configure-Ack is sent and the Ack-Sent state is
     entered.  If the Configuration Options are unacceptable, a
     Configure-Nak or Configure-Reject is sent as appropriate.

     Since there is an outstanding Configure-Request in the Request-
     Sent state, special care must be taken to implement the Passive-
     Open and Close events; otherwise, it is possible for the LCP peer
     to think the connection is open.  Processing of either event
     should be postponed until there is reasonable assurance that the
     peer is not open.  In particular, the Restart timer should be
     allowed to expire.

  Ack-Received (4)

     In the Ack-Received state, a Configure-Request has been sent and a
     Configure-Ack has been received.  The Restart timer is still
     running since a Configure-Ack has not yet been transmitted.

     Upon receipt of a Configure-Request with acceptable Configuration
     Options, a Configure-Ack is transmitted, the Restart timer is
     stopped and the Open state is entered.  If the Configuration
     Options are unacceptable, a Configure-Nak or Configure-Reject is
     sent as appropriate.  Upon the expiration of the Restart timer, a
     new Configure-Request is transmitted, the Restart timer is
     restarted, and the state machine returns to the Request-Sent
     state.

  Ack-Sent (5)

     In the Ack-Sent state, a Configure-Ack and a Configure-Request
     have been sent but a Configure-Ack has not yet been received.  The
     Restart timer is always running in the Ack-Sent state.




Perkins                                                        [Page 17]

RFC 1134                          PPP                      November 1989


     Upon receipt of a Configure-Ack, the Restart timer is stopped and
     the Open state is entered.  Upon receipt of a Configure-Nak or
     Configure-Reject, the Configure-Request Configuration Options are
     adjusted appropriately, a new Configure-Request is transmitted,
     and the Restart timer is restarted.  Upon the expiration of the
     Restart timer, a new Configure-Request is transmitted, the Restart
     timer is restarted, and the state machine returns to the Request-
     Sent state.

  Open (6)

     In the Open state, a connection exists and data may be
     communicated over the link.  The Restart timer is not running in
     the Open state.

     In normal operation, only two events cause transitions out of the
     Open state.  Upon receipt of a Close command, a Terminate-Request
     is transmitted, the Restart timer is started, and the Closing
     state is entered.  Upon receipt of a Terminate-Request, a
     Terminate-Ack is transmitted and the Closed state is entered.
     Upon receipt of an Echo-Request, an Echo-Reply is transmitted.
     Similarly, Echo-Reply and Discard-Request packets are silently
     discarded or processed as expected.  All other events cause
     immediate transitions out of the Open state and should be handled
     as if the state machine were in the Listen state.

  Closing (7)

     In the Closing state, an active attempt is made to close the
     connection.  A Terminate-Request has been sent and the Restart
     timer is running, but a Terminate-Ack has not yet been received.

     Upon receipt of a Terminate-Ack, the Closed state is immediately
     entered.  Upon the expiration of the Restart timer, a new
     Terminate-Request is transmitted and the Restart timer is
     restarted.  After the Restart timer has expired Max-Restart times,
     this action may be skipped, and the Closed state may be entered.
     Max-Restart MUST be a configurable parameter.

     Since there is an outstanding Terminate-Request in the Closing
     state, special care must be taken to implement the Passive-Open
     event; otherwise, it is possible for the LCP peer to think the
     connection is open.  Processing of the Passive-Open event should
     be postponed until there is reasonable assurance that the peer is
     not open.  In particular, the implementation should wait until the
     state machine would normally transition to the Closed state
     because of a Receive-Terminate-Ack event or Max-Restart Timeout
     events.



Perkins                                                        [Page 18]

RFC 1134                          PPP                      November 1989


4.2.  Loop Avoidance

  Note that the protocol makes a reasonable attempt at avoiding
  Configuration Option negotiation loops.  However, the protocol does
  NOT guarantee that loops will not happen.  As with any negotiation,
  it is possible to configure two PPP implementations with conflicting
  policies that will never converge.  It is also possible to configure
  policies which do converge, but which take significant time to do so.
  Implementors should keep this in mind and should implement loop
  detection mechanisms or higher level timeouts.  If a timeout is
  implemented, it MUST be configurable.

  For example, implementations could take care to avoid Configure-
  Request or Terminate-Request livelocks by using a Max-Retries
  counter.  A Configure-Request livelock could occur when an
  originating PPP sends and re-sends a C-R without receiving a reply
  (e.g., the receiving PPP entity may have died).  A Terminate-Request
  livelock could occur when the originating PPP sends and re-sends a
  T-R without receiving a Terminate-Ack (e.g., the T-A may have been
  lost, but the remote PPP may have already terminated).  Max-Retries
  indicates the number of packet retransmissions that are allowed
  before there is reasonable assurance that a livelock situation
  exists.  Max-Retries MUST also be configurable, but should default to
  ten (10) retransmissions.

4.3  Packet Format

  Exactly one Link Control Protocol packet is encapsulated in the
  Information field of PPP Data Link Layer frames where the Protocol
  field indicates type hex c021 (Link Control Protocol).

  A summary of the Link Control Protocol packet format is shown below.
  The fields are transmitted from left to right.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Code      |  Identifier   |            Length             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Data ...
     +-+-+-+-+

  Code

     The Code field is one octet and identifies the kind of LCP packet.
     LCP Codes are assigned as follows:





Perkins                                                        [Page 19]

RFC 1134                          PPP                      November 1989


        1       Configure-Request
        2       Configure-Ack
        3       Configure-Nak
        4       Configure-Reject
        5       Terminate-Request
        6       Terminate-Ack
        7       Code-Reject
        8       Protocol-Reject
        9       Echo-Request
        10      Echo-Reply
        11      Discard-Request

  Identifier

     The Identifier field is one octet and aids in matching requests
     and replies.

  Length

     The Length field is two octets and indicates the length of the LCP
     packet including the Code, Identifier, Length and Data fields.
     Octets outside the range of the Length field should be treated as
     Data Link Layer padding and should be ignored on reception.

  Data

     The Data field is zero or more octets as indicated by the Length
     field.  The format of the Data field is determined by the Code
     field.

  Regardless of which Configuration Options are enabled, all LCP
  packets are always sent in the full, standard form, as if no
  Configuration Options were enabled.  This ensures that LCP
  Configure-Request packets are always recognizable even when one end
  of the link mistakenly believes the link to be Open.

  This document describes Version 1 of the Link Control Protocol.  In
  the interest of simplicity, there is no version field in the LCP
  packet.  If a new version of LCP is necessary in the future, the
  intention is that a new Data Link Layer Protocol field value should
  be used to differentiate Version 1 LCP from all other versions.  A
  correctly functioning Version 1 LCP implementation will always
  respond to unknown Protocols (including other versions) with an
  easily recognizable Version 1 packet, thus providing a deterministic
  fallback mechanism for implementations of other versions.






Perkins                                                        [Page 20]

RFC 1134                          PPP                      November 1989


4.3.1.  Configure-Request

  Description

     A LCP implementation wishing to open a connection MUST transmit a
     LCP packet with the Code field set to 1 (Configure-Request) and
     the Options field filled with any desired changes to the default
     link Configuration Options.

     Upon reception of a Configure-Request, an appropriate reply MUST
     be transmitted.

  A summary of the Configure-Request packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Options ...
  +-+-+-+-+

  Code

     1 for Configure-Request.

  Identifier

     The Identifier field should be changed on each transmission.  On
     reception, the Identifier field should be copied into the
     Identifier field of the appropriate reply packet.

  Options

     The options field is variable in length and contains the list of
     zero or more Configuration Options that the sender desires to
     negotiate.  All Configuration Options are always negotiated
     simultaneously.  The format of Configuration Options is further
     described in a later section.

4.3.2.  Configure-Ack

  Description

     If every Configuration Option received in a Configure-Request is
     both recognizable and acceptable, then a LCP implementation should
     transmit a LCP packet with the Code field set to 2 (Configure-



Perkins                                                        [Page 21]

RFC 1134                          PPP                      November 1989


     Ack), the Identifier field copied from the received Configure-
     Request, and the Options field copied from the received
     Configure-Request.  The acknowledged Configuration Options MUST
     NOT be reordered or modified in any way.

     On reception of a Configure-Ack, the Identifier field must match
     that of the last transmitted Configure-Request, or the packet is
     invalid.  Additionally, the Configuration Options in a Configure-
     Ack must match those of the last transmitted Configure-Request, or
     the packet is invalid.  Invalid packets should be silently
     discarded.

     Reception of a valid Configure-Ack indicates that all
     Configuration Options sent in the last Configure-Request are
     acceptable.

  A summary of the Configure-Ack packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Options ...
  +-+-+-+-+

  Code

     2 for Configure-Ack.

  Identifier

     The Identifier field is a copy of the Identifier field of the
     Configure-Request which caused this Configure-Ack.

  Options

     The Options field is variable in length and contains the list of
     zero or more Configuration Options that the sender is
     acknowledging.  All Configuration Options are always acknowledged
     simultaneously.

4.3.3.  Configure-Nak

  Description

     If every element of the received Configuration Options is



Perkins                                                        [Page 22]

RFC 1134                          PPP                      November 1989


     recognizable but some are not acceptable, then a LCP
     implementation should transmit a LCP packet with the Code field
     set to 3 (Configure-Nak), the Identifier field copied from the
     received Configure-Request, and the Options field filled with only
     the unacceptable Configuration Options from the Configure-Request.
     All acceptable Configuration Options should be filtered out of the
     Configure-Nak, but otherwise the Configuration Options from the
     Configure-Request MUST NOT be reordered.  Each of the nak'd
     Configuration Options MUST be modified to a value acceptable to
     the Configure-Nak sender.  Finally, an implementation may be
     configured to require the negotiation of a specific option.  If
     that option is not listed, then that option may be appended to the
     list of nak'd Configuration Options in order to request the remote
     end to list that option in its next Configure-Request packet.  The
     appended option must include a value acceptable to the Configure-
     Nak sender.

     On reception of a Configure-Nak, the Identifier field must match
     that of the last transmitted Configure-Request, or the packet is
     invalid and should be silently discarded.

     Reception of a valid Configure-Nak indicates that a new
     Configure-Request should be sent with the Configuration Options
     modified as specified in the Configure-Nak.

  A summary of the Configure-Nak packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Options ...
  +-+-+-+-+

  Code

     3 for Configure-Nak.

  Identifier

     The Identifier field is a copy of the Identifier field of the
     Configure-Request which caused this Configure-Nak.

  Options

     The Options field is variable in length and contains the list of



Perkins                                                        [Page 23]

RFC 1134                          PPP                      November 1989


     zero or more Configuration Options that the sender is nak'ing.
     All Configuration Options are always nak'd simultaneously.

4.3.4.  Configure-Reject

  Description

     If some Configuration Options received in a Configure-Request are
     not recognizable or are not acceptable for negotiation (as
     configured by a network manager), then a LCP implementation should
     transmit a LCP packet with the Code field set to 4 (Configure-
     Reject), the Identifier field copied from the received Configure-
     Request, and the Options field filled with only the unrecognized
     Configuration Options from the Configure-Request.  All
     recognizable and negotiable Configuration Options must be filtered
     out of the Configure-Reject, but otherwise the Configuration
     Options MUST not be reordered.

     On reception of a Configure-Reject, the Identifier field must
     match that of the last transmitted Configure-Request, or the
     packet is invalid.  Additionally, the Configuration Options in a
     Configure-Reject must be a proper subset of those in the last
     transmitted Configure-Request, or the packet is invalid.  Invalid
     packets should be silently discarded.

     Reception of a Configure-Reject indicates that a new Configure-
     Request should be sent which does not include any of the
     Configuration Options listed in the Configure-Reject.

  A summary of the Configure-Reject packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Options ...
  +-+-+-+-+

  Code

     4 for Configure-Reject.

  Identifier

     The Identifier field is a copy of the Identifier field of the
     Configure-Request which caused this Configure-Reject.



Perkins                                                        [Page 24]

RFC 1134                          PPP                      November 1989


  Options

     The Options field is variable in length and contains the list of
     zero or more Configuration Options that the sender is rejecting.
     All Configuration Options are always rejected simultaneously.

4.3.5.  Terminate-Request and Terminate-Ack

  Description

     LCP includes Terminate-Request and Terminate-Ack Codes in order to
     provide a mechanism for closing a connection.

     A LCP implementation wishing to close a connection should transmit
     a LCP packet with the Code field set to 5 (Terminate-Request) and
     the Data field filled with any desired data.  Terminate-Request
     packets should continue to be sent until Terminate-Ack is
     received, the Physical Layer indicates that it has gone down, or a
     sufficiently large number have been transmitted such that the
     remote end is down with reasonable certainty.

     Upon reception of a Terminate-Request, a LCP packet MUST be
     transmitted with the Code field set to 6 (Terminate-Ack), the
     Identifier field copied from the Terminate-Request packet, and the
     Data field filled with any desired data.

     Reception of an unelicited Terminate-Ack indicates that the
     connection has been closed.

  A summary of the Terminate-Request and Terminate-Ack packet formats
  is shown below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+

  Code

     5 for Terminate-Request;

     6 for Terminate-Ack.






Perkins                                                        [Page 25]

RFC 1134                          PPP                      November 1989


  Identifier

     The Identifier field is one octet and aids in matching requests
     and replies.

  Data

     The Data field is zero or more octets and contains uninterpreted
     data for use by the sender.  The data may consist of any binary
     value and may be of any length from zero to the established value
     for the peer's MRU.

4.3.6.  Code-Reject

  Description

     Reception of a LCP packet with an unknown Code indicates that one
     of the communicating LCP implementations is faulty or incomplete.
     This error MUST be reported back to the sender of the unknown Code
     by transmitting a LCP packet with the Code field set to 7 (Code-
     Reject), and the inducing packet copied to the Rejected-Packet
     field.

     Upon reception of a Code-Reject, a LCP implementation should make
     an immediate transition to the Closed state, and should report the
     error, since it is unlikely that the situation can be rectified
     automatically.

  A summary of the Code-Reject packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Rejected-Packet ...
  +-+-+-+-+-+-+-+-+

  Code

     7 for Code-Reject.

  Identifier

     The Identifier field is one octet and is for use by the
     transmitter.




Perkins                                                        [Page 26]

RFC 1134                          PPP                      November 1989


  Rejected-Packet

     The Rejected-Packet field contains a copy of the LCP packet which
     is being rejected.  It begins with the rejected Code field; it
     does not include any PPP Data Link Layer headers.  The Rejected-
     Packet should be truncated to comply with the established value of
     the peer's MRU.

4.3.7.  Protocol-Reject

  Description

     Reception of a PPP frame with an unknown Data Link Layer Protocol
     indicates that the remote end is attempting to use a protocol
     which is unsupported at the local end.  This typically occurs when
     the remote end attempts to configure a new, but unsupported
     protocol.  If the LCP state machine is in the Open state, then
     this error MUST be reported back to the sender of the unknown
     protocol by transmitting a LCP packet with the Code field set to 8
     (Protocol-Reject), the Rejected-Protocol field set to the received
     Protocol, and the Data field filled with any desired data.

     Upon reception of a Protocol-Reject, a LCP implementation should
     stop transmitting frames of the indicated protocol.

     Protocol-Reject packets may only be sent in the LCP Open state.
     Protocol-Reject packets received in any state other than the LCP
     Open state should be discarded and no further action should be
     taken.

  A summary of the Protocol-Reject packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Rejected-Protocol       |      Rejected-Information ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Code

     8 for Protocol-Reject.

  Identifier

     The Identifier field is one octet and is for use by the



Perkins                                                        [Page 27]

RFC 1134                          PPP                      November 1989


     transmitter.

  Rejected-Protocol

     The Rejected-Protocol field is two octets and contains the
     Protocol of the Data Link Layer frame which is being rejected.

  Rejected-Information

     The Rejected-Information field contains a copy from the frame
     which is being rejected.  It begins with the Information field,
     and does not include any PPP Data Link Layer headers or the FCS.
     The Rejected-Information field should be truncated to comply with
     the established value of the peer's MRU.

4.3.8.  Echo-Request and Echo-Reply

  Description

     LCP includes Echo-Request and Echo-Reply Codes in order to provide
     a Data Link Layer loopback mechanism for use in exercising both
     directions of the link.  This is useful as an aid in debugging,
     link quality determination, performance testing, and for numerous
     other functions.

     An Echo-Request sender transmits a LCP packet with the Code field
     set to 9 (Echo-Request) and the Data field filled with any desired
     data, up to but not exceeding the receivers established MRU.

     Upon reception of an Echo-Request, a LCP packet MUST be
     transmitted with the Code field set to 10 (Echo-Reply), the
     Identifier field copied from the received Echo-Request, and the
     Data field copied from the Echo-Request, truncating as necessary
     to avoid exceeding the peer's established MRU.

     Echo-Request and Echo-Reply packets may only be sent in the LCP
     Open state.  Echo-Request and Echo-Reply packets received in any
     state other than the LCP Open state should be discarded and no
     further action should be taken.

  A summary of the Echo-Request and Echo-Reply packet formats is shown
  below.  The fields are transmitted from left to right.









Perkins                                                        [Page 28]

RFC 1134                          PPP                      November 1989


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Magic-Number                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+

  Code

     9 for Echo-Request;

     10 for Echo-Reply.

  Identifier

     The Identifier field is one octet and aids in matching Echo-
     Requests and Echo-Replies.

  Magic-Number

     The Magic-Number field is four octets and aids in detecting
     loopbacked links.  Unless modified by a Configuration Option, the
     Magic-Number MUST always be transmitted as zero and MUST always be
     ignored on reception.  Further use of the Magic-Number is beyond
     the scope of this discussion.

  Data

     The Data field is zero or more octets and contains uninterpreted
     data for use by the sender.  The data may consist of any binary
     value and may be of any length from zero to the established value
     for the peer's MRU.

4.3.9.  Discard-Request

  Description

     LCP includes a Discard-Request Code in order to provide a Data
     Link Layer data sink mechanism for use in exercising the local to
     remote direction of the link.  This is useful as an aid in
     debugging, performance testing, and and for numerous other
     functions.

     A discard sender transmits a LCP packet with the Code field set to
     11 (Discard-Request) and the Data field filled with any desired



Perkins                                                        [Page 29]

RFC 1134                          PPP                      November 1989


     data, up to but not exceeding the receivers established MRU.

     A discard receiver MUST simply throw away an Discard-Request that
     it receives.

     Discard-Request packets may only be sent in the LCP Open state.

  A summary of the Discard-Request packet formats is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Magic-Number                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+

  Code

     11 for Discard-Request.

  Identifier

     The Identifier field is one octet and is for use by the Discard-
     Request transmitter.

  Magic-Number

     The Magic-Number field is four octets and aids in detecting
     loopbacked links.  Unless modified by a configuration option, the
     Magic-Number MUST always be transmitted as zero and MUST always be
     ignored on reception.  Further use of the Magic-Number is beyond
     the scope of this discussion.

  Data

     The Data field is zero or more octets and contains uninterpreted
     data for use by the sender.  The data may consist of any binary
     value and may be of any length from zero to the established value
     for the peer's MRU.

4.4.  Configuration Options

  LCP Configuration Options allow modifications to the standard
  characteristics of a point-to-point link to be negotiated.



Perkins                                                        [Page 30]

RFC 1134                          PPP                      November 1989


  Negotiable modifications include such things as the maximum receive
  unit, async control character mapping, the link authentication
  method, the link encryption method, etc..  The Configuration Options
  themselves are described in separate documents.  If a Configuration
  Option is not included in a Configure-Request packet, the default
  value for that Configuration Option is assumed.

  The end of the list of Configuration Options is indicated by the end
  of the LCP packet.

  Unless otherwise specified, a specific Configuration Options should
  be listed no more than once in a Configuration Options list.
  Specific Configuration Options may override this general rule and may
  be listed more than once.  The effect of this is Configuration Option
  specific and is specified by each such Configuration Option.

  Also unless otherwise specified, all Configuration Options apply in a
  half-duplex fashion.  When negotiated, they apply to only one
  direction of the link, typically in the receive direction when
  interpreted from the point of view of the Configure-Request sender.

4.4.1.  Format

  A summary of the Configuration Option format is shown below.  The
  fields are transmitted from left to right.

   0                   1
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |    Data ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     The Type field is one octet and indicates the type of
     Configuration Option.  The most up-to-date values of the Type
     field are specified in the most recent "Assigned Numbers" RFC
     [11].

  Length

     The Length field is one octet and indicates the length of this
     Configuration Option including the Type, Length and Data fields.
     If a negotiable Configuration Option is received in a Configure-
     Request but with an invalid Length, a Configure-Nak should be
     transmitted which includes the desired Configuration Option with
     an appropriate Length and Data.




Perkins                                                        [Page 31]

RFC 1134                          PPP                      November 1989


  Data

     The Data field is zero or more octets and indicates the value or
     other information for this Configuration Option.  The format and
     length of the Data field is determined by the Type and Length
     fields.

5.  A PPP Network Control Protocol (NCP) for IP

  The IP Control Protocol (IPCP) is responsible for configuring,
  enabling, and disabling the IP protocol modules on both ends of the
  point-to-point link.  As with the Link Control Protocol, this is
  accomplished through an exchange of packets.  IPCP packets may not be
  exchanged until LCP has reached the network-layer Protocol
  Configuration Negotiation phase.  Likewise, IP datagrams may not be
  exchanged until IPCP has first opened the connection.

  The IP Control Protocol is exactly the same as the Link Control
  Protocol with the following exceptions:

  Data Link Layer Protocol Field

     Exactly one IP Control Protocol packet is encapsulated in the
     Information field of PPP Data Link Layer frames where the Protocol
     field indicates type hex 8021 (IP Control Protocol).

  Code field

     Only Codes 1 through 7 (Configure-Request, Configure-Ack,
     Configure-Nak, Configure-Reject, Terminate-Request, Terminate-Ack
     and Code-Reject) are used.  Other Codes should be treated as
     unrecognized and should result in Code-Rejects.

  Timeouts

     IPCP packets may not be exchanged until the Link Control Protocol
     has reached the network-layer Protocol Configuration Negotiation
     phase.  An implementation should be prepared to wait for Link
     Quality testing to finish before timing out waiting for a
     Configure-Ack or other response.  It is suggested that an
     implementation give up only after user intervention or a
     configurable amount of time.

  Configuration Option Types

     The IPCP has a separate set of Configuration Options.  The most
     up-to-date values of the type field are specified in the most
     recent "Assigned Numbers" RFC [11].



Perkins                                                        [Page 32]

RFC 1134                          PPP                      November 1989


5.1.  Sending IP Datagrams

  Before any IP packets may be communicated, both the Link Control
  Protocol and the IP Control Protocol must reach the Open state.

  Exactly one IP packet is encapsulated in the Information field of PPP
  Data Link Layer frames where the Protocol field indicates type hex
  0021 (Internet Protocol).

  The maximum length of an IP packet transmitted over a PPP link is the
  same as the maximum length of the Information field of a PPP data
  link layer frame.  Larger IP datagrams must be fragmented as
  necessary.  If a system wishes to avoid fragmentation and reassembly,
  it should use the TCP Maximum Segment Size option [12], or a similar
  mechanism, to discourage others from sending large datagrams.

A.  Asynchronous HDLC

  This appendix summarizes the modifications to ISO 3309-1979 proposed
  in ISO 3309:1984/PDAD1.  These modifications allow HDLC to be used
  with 8-bit asynchronous links.

  Transmission Considerations

     Each octet is delimited by a start and a stop element.

  Flag Sequence

     The Flag Sequence is a single octet and indicates the beginning or
     end of a frame.  The Flag Sequence consists of the binary sequence
     01111110 (hexadecimal 0x7e).

  Transparency

     On asynchronous links, a character stuffing procedure is used.
     The Control Escape octet is defined as binary 01111101
     (hexadecimal 0x7d) where the bit positions are numbered 87654321
     (not 76543210, BEWARE).

     After FCS computation, the transmitter examines the entire frame
     between the two Flag Sequences.  Each Flag Sequence, Control
     Escape octet and octet with value less than hexadecimal 0x20 is
     replaced by a two character sequence consisting of the Control
     Escape octet and the original octet with bit 6 complemented (i.e.,
     exclusive-or'd with hexadecimal 0x20).

     Prior to FCS computation, the receiver examines the entire frame
     between the two Flag Sequences.  For each Control Escape octet,



Perkins                                                        [Page 33]

RFC 1134                          PPP                      November 1989


     that octet is removed and bit 6 of the following octet is
     complemented.  A Control Escape octet immediately preceding the
     closing Flag Sequence indicates an invalid frame.

        Note: The inclusion of all octets less than hexadecimal 0x20
        allows all ASCII control characters [10] excluding DEL (Delete)
        to be transparently communicated through almost all known data
        communications equipment.

     A few examples may make this more clear.  Packet data is
     transmitted on the link as follows:

        0x7e is encoded as 0x7d, 0x5e.
        0x7d is encoded as 0x7d, 0x5d.
        0x01 is encoded as 0x7d, 0x21.

  Aborting a Transmission

     On asynchronous links, frames may be aborted by transmitting a "0"
     stop bit where a "1" bit is expected (framing error) or by
     transmitting a Control Escape octet followed immediately by a
     closing Flag Sequence.

  Inter-frame Time Fill

     On asynchronous links, inter-octet and inter-frame time fill
     should be accomplished by transmitting continuous "1" bits (mark-
     hold state).

        Note: On asynchronous links, inter-frame time fill can be
        viewed as extended inter-octet time fill.  Doing so can save
        one octet for every frame, decreasing delay and increasing
        bandwidth.  This is possible since a Flag Sequence may serve as
        both a frame close and a frame begin.  After having received
        any frame, an idle receiver will always be in a frame begin
        state.

        Robust transmitters should avoid using this trick over-
        zealously since the price for decreased delay is decreased
        reliability.  Noisy links may cause the receiver to receive
        garbage characters and interpret them as part of an incoming
        frame.  If the transmitter does not transmit a new opening Flag
        Sequence before sending the next frame, then that frame will be
        appended to the noise characters causing an invalid frame (with
        high reliability).  Transmitters should avoid this by
        transmitting an open Flag Sequence whenever "appreciable time"
        has elapsed since the prior closing Flag Sequence.  It is
        suggested that implementations will achieve the best results by



Perkins                                                        [Page 34]

RFC 1134                          PPP                      November 1989


        always sending an opening Flag Sequence if the new frame is not
        back-to-back with the last.  The maximum value for "appreciable
        time" is likely to be no greater than the typing rate of a slow
        to average typist, say 1 second.

B.  Fast Frame Check Sequence (FCS) Implementation

B.1.  FCS Computation Method

  The following code provides a table lookup computation for
  calculating the Frame Check Sequence as data arrives at the
  interface.  The table is created by the code in section 2.

  /*
   * FCS lookup table as calculated by the table generator in section 2.
   */
  static unsigned short fcstab[256] = {
       0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
       0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
       0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
       0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
       0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
       0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
       0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
       0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
       0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
       0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
       0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
       0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
       0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
       0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
       0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
       0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
       0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
       0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
       0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
       0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
       0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
       0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
       0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
       0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
       0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
       0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
       0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
       0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
       0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
       0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
       0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,



Perkins                                                        [Page 35]

RFC 1134                          PPP                      November 1989


       0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
  };

  #define PPPINITFCS      0xffff  /* Initial FCS value */
  #define PPPGOODFCS      0xf0b8  /* Good final FCS value */


  /*
   * Calculate a new fcs given the current fcs and the new data.
   */
  unsigned short pppfcs(fcs, cp, len)
      register unsigned short fcs;
      register unsigned char *cp;
      register int len;
  {
      while (len--)
          fcs = (fcs >> 8) ^ fcstab[(fcs ^ *cp++) & 0xff];

      return (fcs);
  }

B.2.  Fast FCS table generator

  The following code creates the lookup table used to calculate the
  FCS.

  /*
   * Generate a FCS table for the HDLC FCS.
   *
   * Drew D. Perkins at Carnegie Mellon University.
   *
   * Code liberally borrowed from Mohsen Banan and D. Hugh Redelmeier.
   */

  /*
   * The HDLC polynomial: x**0 + x**5 + x**12 + x**16 (0x8408).
   */
  #define P       0x8408


  main()
  {
      register unsigned int b, v;
      register int i;

      printf("static unsigned short fcstab[256] = {");
      for (b = 0; ; ) {
          if (b % 8 == 0)



Perkins                                                        [Page 36]

RFC 1134                          PPP                      November 1989


              printf("0);

          v = b;
          for (i = 8; i--; )
              v = v & 1 ? (v >> 1) ^ P : v >> 1;

          printf("0x%04x", v & 0xFFFF);

          if (++b == 256)
              break;
          printf(",");
      }
     printf("0;0);
  }


References

 [1]  Electronic Industries Association, "Interface Between Data
      Terminal Equipment and Data Communications Equipment Employing
      Serial Binary Data Interchange", EIA Standard RS-232-C, August
      1969.

 [2]  International Organization For Standardization, "Data
      Communication - High-level Data Link Control Procedures - Frame
      Structure", ISO Standard 3309-1979, 1979.

 [3]  International Organization For Standardization, "Data
      Communication - High-level Data Link Control Procedures -
      Elements of Procedures", ISO Standard 4335-1979, 1979.

 [4]  International Organization For Standardization, "Data
      Communication - High-Level Data Link Control Procedures -
      Elements of Procedures - Addendum 1", ISO Standard 4335-
      1979/Addendum 1, 1979.

 [5]  International Organization For Standardization, "Information
      Processing Systems - Data Communication - High-level Data Link
      Control Procedures - Frame structure - Addendum 1: Start/stop
      Transmission", Proposed Draft International Standard ISO
      3309:1983/PDAD1, 1984.

 [6]  International Telecommunication Union, CCITT Recommendation X.25,
      "Interface Between Data Terminal Equipment (DTE) and Data Circuit
      Terminating Equipment (DCE) for Terminals Operating in the Packet
      Mode on Public Data Networks", CCITT Red Book, Volume VIII,
      Fascicle VIII.3, Rec. X.25., October 1984.




Perkins                                                        [Page 37]

RFC 1134                          PPP                      November 1989


 [7]  Perez, "Byte-wise CRC Calculations", IEEE Micro, June 1983.
      Morse, G., "Calculating CRC's by Bits and Bytes", Byte, September
      1986.

 [8]  LeVan, J., "A Fast CRC", Byte, November 1987.

 [9]  American National Standards Institute, "American National
      Standard Code for Information Interchange", ANSI X3.4-1977, 1977.

[10]  Postel, J., "Internet Protocol", RFC 791, USC/Information
      Sciences Institute, September 1981.

[11]  Reynolds, J.K., and J. Postel, "Assigned Numbers", RFC 1010,
      USC/Information Sciences Institute, May 1987.

[12]  Postel, J., "The TCP Maximum Segment Size Option and Related
      Topics", RFC 879, USC/Information Sciences Institute, November
      1983.

Security Considerations

  Security issues are not addressed in this memo.

Author's Address

  This proposal is the product of the Point-to-Point Protocol Working
  Group of the Internet Engineering Task Force (IETF). The working
  group can be contacted via the chair:

  Russ Hobby
  UC Davis
  Computing Services
  Davis, CA 95616

  Phone: (916) 752-0236

  EMail: [email protected]

Acknowledgments

  Many people spent significant time helping to develop the Point-to-
  Point Protocol.  The complete list of people is too numerous to list,
  but the following people deserve special thanks: Ken Adelman (TGV),
  Craig Fox (NSC), Phill Gross (NRI), Russ Hobby (UC Davis), David
  Kaufman (Proteon), John LoVerso (Xylogics), Bill Melohn (Sun
  Microsystems), Mike Patton (MIT), Drew Perkins (CMU), Greg Satz
  (cisco systems) and Asher Waldfogel (Wellfleet).




Perkins                                                        [Page 38]