Network Working Group                                            J. Linn
Request for Comments:  1115                                          DEC
                                                 IAB Privacy Task Force
                                                            August 1989


          Privacy Enhancement for Internet Electronic Mail:
            Part III -- Algorithms, Modes, and Identifiers

STATUS OF THIS MEMO

  This RFC suggests a draft standard elective protocol for the Internet
  community, and requests discussion and suggestions for improvement.
  This RFC provides definitions, references, and citations for
  algorithms, usage modes, and associated identifiers used in RFC-1113
  and RFC-1114 in support of privacy-enhanced electronic mail.
  Distribution of this memo is unlimited.

ACKNOWLEDGMENT

  This RFC is the outgrowth of a series of IAB Privacy Task Force
  meetings and of internal working papers distributed for those
  meetings.  I would like to thank the following Privacy Task Force
  members and meeting guests for their comments and contributions at
  the meetings which led to the preparation of this RFC: David
  Balenson, Curt Barker, Jim Bidzos, Matt Bishop, Morrie Gasser, Russ
  Housley, Steve Kent (chairman), Dan Nessett, Mike Padlipsky, Rob
  Shirey, and Steve Wilbur.

Table of Contents

  1.  Executive Summary                                             2
  2.  Symmetric Encryption Algorithms and Modes                     2
  2.1.  DES Modes                                                   2
  2.1.1.  DES in ECB mode (DES-ECB)                                 2
  2.1.2.  DES in EDE mode (DES-EDE)                                 2
  2.1.3.  DES in CBC mode (DES-CBC)                                 3
  3.  Asymmetric Encryption Algorithms and Modes                    3
  3.1.  RSA                                                         3
  4.  Integrity Check Algorithms                                    3
  4.1.  Message Authentication Code (MAC)                           4
  4.2.  RSA-MD2 Message Digest Algorithm                            4
  4.2.1.  Discussion                                                4
  4.2.2.  Reference Implementation                                  5
  NOTES                                                             7






Linn                                                            [Page 1]

RFC 1115                Mail Privacy: Algorithms             August 1989


1.  Executive Summary

  This RFC provides definitions, references, and citations for algorithms,
  usage modes, and associated identifiers used in RFC-1113 and RFC-1114
  in support of privacy-enhanced electronic mail in the Internet
  community.  As some parts of this material are cited by both RFC-1113
  and RFC-1114, and as it is anticipated that some of the definitions
  herein may be changed, added, or replaced without affecting the citing
  RFCs, algorithm-specific material has been placed into this separate
  RFC.  The text is organized into three primary sections; dealing with
  symmetric encryption algorithms, asymmetric encryption algorithms, and
  integrity check algorithms.

2.  Symmetric Encryption Algorithms and Modes

  This section identifies alternative symmetric encryption algorithms
  and modes which may be used to encrypt DEKs, MICs, and message text,
  and assigns them character string identifiers to be incorporated in
  encapsulated header fields to indicate the choice of algorithm
  employed.  (Note: all alternatives presently defined in this category
  correspond to different usage modes of the DEA-1 (DES) algorithm,
  rather than to other algorithms per se.)

2.1.  DES Modes

  The Block Cipher Algorithm DEA-1, defined in ANSI X3.92-1981 [3] may
  be used for message text, DEKs, and MICs.  The DEA-1 is equivalent to
  the Data Encryption Standard (DES), as defined in FIPS PUB 46 [4].
  The ECB and CBC modes of operation of DEA-1 are defined in ISO IS 8372
  [5].

2.1.1.  DES in ECB mode (DES-ECB)

  The string "DES-ECB" indicates use of the DES algorithm in Electronic
  Codebook (ECB) mode.  This algorithm/mode combination is used for DEK
  and MIC encryption.

2.1.2.  DES in EDE mode (DES-EDE)

  The string "DES-EDE" indicates use of the DES algorithm in
  Encrypt-Decrypt-Encrypt (EDE) mode as defined by ANSI X9.17 [2] for
  key encryption and decryption with pairs of 64-bit keys.  This
  algorithm/mode combination is used for DEK and MIC encryption.








Linn                                                            [Page 2]

RFC 1115                Mail Privacy: Algorithms             August 1989


2.1.3.  DES in CBC mode (DES-CBC)

  The string "DES-CBC" indicates use of the DES algorithm in Cipher
  Block Chaining (CBC) mode.  This algorithm/mode combination is used
  for message text encryption only.  The CBC mode definition in IS 8372
  is equivalent to that provided in FIPS PUB 81 [6] and in ANSI X3.106-
  1983 [7].

3.  Asymmetric Encryption Algorithms and Modes

  This section identifies alternative asymmetric encryption algorithms and
  modes which may be used to encrypt DEKs and MICs, and assigns them
  character string identifiers to be incorporated in encapsulated
  header fields to indicate the choice of algorithm employed.  (Note:
  only one alternative is presently defined in this category.)

3.1.  RSA

  The string "RSA" indicates use of the RSA public-key encryption
  algorithm, as described in [8].  This algorithm is used for DEK and
  MIC encryption, in the following fashion: the product n of a
  individual's selected primes p and q is used as the modulus for the
  RSA encryption algorithm, comprising, for our purposes, the
  individual's public key.  A recipient's public key is used in
  conjunction with an associated public exponent (either 3 or 1+2**16)
  as identified in the recipient's certificate.

  When a MIC must be padded for RSA encryption, the MIC will be
  right-justified and padded on the left with zeroes.  This is also
  appropriate for padding of DEKs on singly-addressed messages, and for
  padding of DEKs on multi-addressed messages if and only if an exponent
  of 3 is used for no more than one recipient.  On multi-addressed
  messages in which an exponent of 3 is used for more than one recipient,
  it is recommended that a separate 64-bit pseudorandom quantity be
  generated for each recipient, in the same manner in which IVs are
  generated.  (Reference [9] discusses the rationale for this
  recommendation.)  At least one copy of the pseudorandom quantity should
  be included in the input to RSA encryption, placed to the left of the
  DEK.

4.  Integrity Check Algorithms

  This section identifies the alternative algorithms which may be used
  to compute Message Integrity Check (MIC) and Certificate Integrity
  Check (CIC) values, and assigns the algorithms character string
  identifiers for use in encapsulated header fields and within
  certificates to indicate the choice of algorithm employed.




Linn                                                            [Page 3]

RFC 1115                Mail Privacy: Algorithms             August 1989


  MIC algorithms which utilize DEA-1 cryptography are computed using a key
  which is a variant of the DEK used for message text encryption.  The
  variant is formed by modulo-2 addition of the hexadecimal quantity
  F0F0F0F0F0F0F0F0 to the encryption DEK.

  For compatibility with this specification, a privacy-enhanced mail
  implementation must be able to process both MAC (Section 2.1) and
  RSA-MD2 (Section 2.2) MICs on incoming messages.  It is a sender option
  whether MAC or RSA-MD2 is employed on an outbound message addressed to
  only one recipient.  However, use of MAC is strongly discouraged for
  messages sent to more than a single recipient.  The reason for this
  recommendation is that the use of MAC on multi-addressed mail fails to
  prevent other intended recipients from tampering with a message in a
  manner which preserves the message's appearance as an authentic message
  from the sender.  In other words, use of MAC on multi-addressed mail
  provides source authentication at the granularity of membership in the
  message's authorized address list (plus the sender) rather than at a
  finer (and more desirable) granularity authenticating the individual
  sender.

4.1.  Message Authentication Code (MAC)

  A message authentication code (MAC), denoted by the string "MAC", is
  computed using the DEA-1 algorithm in the fashion defined in FIPS PUB
  113 [1].  This algorithm is used only as a MIC algorithm, not as a CIC
  algorithm.

  As noted above, use of the MAC is not recommended for multicast
  messages, as it does not preserve authentication and integrity among
  individual recipients, i.e., it is not cryptographically strong enough
  for this purpose.  The message's canonically encoded text is padded at
  the end, per FIPS PUB 113, with zero-valued octets as needed in order to
  form an integral number of 8-octet encryption quanta.  These padding
  octets are inserted implicitly and are not transmitted with a message.
  The result of a MAC computation is a single 64-bit value.

4.2.  RSA-MD2 Message Digest Algorithm

4.2.1.  Discussion

  The RSA-MD2 Message Digest Algorithm, denoted by the string "RSA-MD2",
  is computed using an algorithm defined in this section.  It has been
  provided by Ron Rivest of RSA Data Security, Incorporated for use in
  support of privacy-enhanced electronic mail, free of licensing
  restrictions.  This algorithm should be used as a MIC algorithm
  whenever a message is addressed to multiple recipients.  It is also
  the only algorithm currently defined for use as CIC.  While its
  continued use as the standard CIC algorithm is anticipated, RSA-MD2



Linn                                                            [Page 4]

RFC 1115                Mail Privacy: Algorithms             August 1989


  may be supplanted by later recommendations for MIC algorithm
  selections.

  The RSA-MD2 message digest algorithm accepts as input a message of any
  length and produces as output a 16-byte quantity.  The attached
  reference implementation serves to define the algorithm; implementors
  may choose to develop optimizations suited to their operating
  environments.

4.2.2.  Reference Implementation

/* RSA-MD2 Message Digest algorithm in C  */
/*  by Ronald L. Rivest 10/1/88  */

#include <stdio.h>

/**********************************************************************/
/* Message digest routines:                                           */
/* To form the message digest for a message M                         */
/*    (1) Initialize a context buffer md using MDINIT                 */
/*    (2) Call MDUPDATE on md and each character of M in turn         */
/*    (3) Call MDFINAL on md                                          */
/* The message digest is now in md->D[0...15]                         */
/**********************************************************************/
/* An MDCTX structure is a context buffer for a message digest        */
/*  computation; it holds the current "state" of a message digest     */
/*  computation                                                       */
struct MDCTX
{
  unsigned char  D[48];   /* buffer for forming digest in */
                          /* At the end, D[0...15] form the message */
                          /*  digest */
  unsigned char  C[16];   /* checksum register */
  unsigned char  i;       /* number of bytes handled, modulo 16 */
  unsigned char  L;       /* last checksum char saved */
};
/* The table S given below is a permutation of 0...255 constructed    */
/*  from the digits of pi.  It is a ``random'' nonlinear byte         */
/*  substitution operation.                                           */
int S[256] = {
       41, 46, 67,201,162,216,124,  1, 61, 54, 84,161,236,240,  6, 19,
       98,167,  5,243,192,199,115,140,152,147, 43,217,188, 76,130,202,
       30,155, 87, 60,253,212,224, 22,103, 66,111, 24,138, 23,229, 18,
      190, 78,196,214,218,158,222, 73,160,251,245,142,187, 47,238,122,
      169,104,121,145, 21,178,  7, 63,148,194, 16,137, 11, 34, 95, 33,
      128,127, 93,154, 90,144, 50, 39, 53, 62,204,231,191,247,151,  3,
      255, 25, 48,179, 72,165,181,209,215, 94,146, 42,172, 86,170,198,
       79,184, 56,210,150,164,125,182,118,252,107,226,156,116,  4,241,



Linn                                                            [Page 5]

RFC 1115                Mail Privacy: Algorithms             August 1989


       69,157,112, 89,100,113,135, 32,134, 91,207,101,230, 45,168,  2,
       27, 96, 37,173,174,176,185,246, 28, 70, 97,105, 52, 64,126, 15,
       85, 71,163, 35,221, 81,175, 58,195, 92,249,206,186,197,234, 38,
       44, 83, 13,110,133, 40,132,  9,211,223,205,244, 65,129, 77, 82,
      106,220, 55,200,108,193,171,250, 36,225,123,  8, 12,189,177, 74,
      120,136,149,139,227, 99,232,109,233,203,213,254, 59,  0, 29, 57,
      242,239,183, 14,102, 88,208,228,166,119,114,248,235,117, 75, 10,
       49, 68, 80,180,143,237, 31, 26,219,153,141, 51,159, 17,131, 20,
};
/*The routine MDINIT initializes the message digest context buffer md.*/
/* All fields are set to zero.                                        */
void MDINIT(md)
 struct MDCTX *md;
 { int i;
   for (i=0;i<16;i++) md->D[i] = md->C[i] = 0;
   md->i = 0;
   md->L = 0;
 }
/* The routine MDUPDATE updates the message digest context buffer to  */
/*  account for the presence of the character c in the message whose  */
/*  digest is being computed.  This routine will be called for each   */
/*   message byte in turn.                                            */
void MDUPDATE(md,c)
 struct MDCTX *md;
 unsigned char c;
 { register unsigned char i,j,t,*p;
   /**** Put i in a local register for efficiency ****/
      i = md->i;
   /**** Add new character to buffer ****/
      md->D[16+i] = c;
      md->D[32+i] = c ^ md->D[i];
   /**** Update checksum register C and value L ****/
      md->L = (md->C[i] ^= S[0xFF & (c ^ md->L)]);
   /**** Increment md->i by one modulo 16 ****/
      i = md->i = (i + 1) & 15;
   /**** Transform D if i=0 ****/
      if (i == 0)
        { t = 0;
          for (j=0;j<18;j++)
            {/*The following is a more efficient version of the loop:*/
              /*  for (i=0;i<48;i++) t = md->D[i] = md->D[i] ^ S[t]; */
              p = md->D;
              for (i=0;i<8;i++)
                { t = (*p++ ^= S[t]);
                  t = (*p++ ^= S[t]);
                  t = (*p++ ^= S[t]);
                  t = (*p++ ^= S[t]);
                  t = (*p++ ^= S[t]);



Linn                                                            [Page 6]

RFC 1115                Mail Privacy: Algorithms             August 1989


                  t = (*p++ ^= S[t]);
                }
              /* End of more efficient loop implementation */
              t = t + j;
            }
        }
 }
/* The routine MDFINAL terminates the message digest computation and  */
/* ends with the desired message digest being in md->D[0...15].       */
void MDFINAL(md)
 struct MDCTX *md;
 { int i,padlen;
   /* pad out to multiple of 16 */
      padlen  = 16 - (md->i);
      for (i=0;i<padlen;i++) MDUPDATE(md,(unsigned char)padlen);
   /* extend with checksum */
   /* Note that although md->C is modified by MDUPDATE, character    */
   /* md->C[i] is modified after it has been passed to MDUPDATE, so  */
   /* the net effect is the same as if md->C were not being modified.*/
   for (i=0;i<16;i++) MDUPDATE(md,md->C[i]);
 }

/**********************************************************************/
/* End of message digest implementation                               */
/**********************************************************************/

NOTES:

 [1]  Federal Information Processing Standards Publication 113,
      Computer Data Authentication, May 1985.

 [2]  ANSI X9.17-1985, American National Standard, Financial
      Institution Key Management (Wholesale), American Bankers
      Association, April 4, 1985, Section 7.2.

 [3]  American National Standard Data Encryption Algorithm (ANSI
      X3.92-1981), American National Standards Institute, Approved 30
      December 1980.

 [4]  Federal Information Processing Standards Publication 46,  Data
      Encryption Standard, 15 January 1977.

 [5]  Information Processing Systems: Data Encipherment: Modes of
      Operation of a 64-bit Block Cipher.

 [6]  Federal Information Processing Standards Publication 81,
      DES Modes of Operation, 2 December 1980.




Linn                                                            [Page 7]

RFC 1115                Mail Privacy: Algorithms             August 1989


 [7]  American National Standard for Information Systems - Data
      Encryption  Algorithm - Modes of Operation (ANSI X3.106-1983),
      American National Standards Institute - Approved 16 May 1983.

 [8]  CCITT, Recommendation X.509, "The Directory: Authentication
      Framework", Annex C.

 [9]  Moore, J., "Protocol Failures in Cryptosystems",
      Proceedings of the IEEE, Vol. 76, No. 5, Pg. 597, May 1988.

Author's Address

      John Linn
      Secure Systems
      Digital Equipment Corporation
      85 Swanson Road, BXB1-2/D04
      Boxborough, MA  01719-1326

      Phone: 508-264-5491

      EMail: [email protected]






























Linn                                                            [Page 8]