Network Working Group                                         U. Warrier
Request for Comments: 1095                            Unisys Corporation
                                                               L. Besaw
                                                        Hewlett-Packard
                                                             April 1989


 The Common Management Information Services and Protocol over TCP/IP
                                (CMOT)

                       Table of Contents

1. Status of this Memo ............................................    3
2. Introduction ...................................................    4
Part I: Concepts and Models .......................................    7
3. The OSI Management Framework ...................................    7
3.1. Architectural Overview .......................................    7
3.2. Management Models ............................................    8
3.2.1. The Organizational Model ...................................    8
3.2.2. The Functional Model .......................................    8
3.2.3. The Information Model ......................................    9
3.3. ISO Application Protocols ....................................    9
3.3.1. ACSE .......................................................   10
3.3.2. ROSE .......................................................   10
3.3.3. CMISE ......................................................   10
3.3.3.1. Management Association Services ..........................   11
3.3.3.2. Management Notification Services .........................   12
3.3.3.3. Management Operation Services ............................   12
4. The CMOT Architecture ..........................................   13
4.1. Management Models ............................................   13
4.1.1. The Organizational Model ...................................   13
4.1.2. The Functional Model .......................................   14
4.1.3. The Information Model ......................................   14
4.2. Protocol Architecture ........................................   14
4.2.1 The Lightweight Presentation Layer ..........................   15
4.2.2 The Quality of Transport Service ............................   16
4.3. Proxy Management .............................................   17
4.4. Directory Service ............................................   18
5. Management Information .........................................   18
5.1. The Structure of Management Information ......................   19
5.1.1. The ISO SMI ................................................   19
5.1.1.1. Managed Objects and Attributes ...........................   19
5.1.1.2. Management Information Hierarchies .......................   20
5.1.1.2.1 The Registration Hierarchy ..............................   20
5.1.1.2.2. The Containment Hierarchy ..............................   20
5.1.1.2.3. The Inheritance Hierarchy ..............................   22
5.1.2. The Internet SMI ...........................................   22
5.2. The Management Information Base ..............................   23



Warrier & Besaw                                                 [Page 1]

RFC 1095                          CMOT                        April 1989


5.3. An Interpretation of the Internet SMI ........................   24
5.3.1. Object Class and Attributes ................................   25
5.3.1.1. Object Class .............................................   25
5.3.1.2. Attribute Identifier .....................................   26
5.3.2. Management Information Hierarchies .........................   26
5.3.2.1. The Registration Hierarchy ...............................   26
5.3.2.2. The Containment Hierarchy ................................   26
5.3.2.3. The Inheritance Hierarchy ................................   28
5.4. Scoping, Filtering, and Synchronization ......................   28
5.4.1. Scoping ....................................................   28
5.4.2. Filtering ..................................................   29
5.4.3. Synchronization ............................................   29
5.4.4. Linked Replies .............................................   29
5.5. Accessing Tables .............................................   29
5.5.1. Accessing Whole Tables .....................................   30
5.5.2. Accessing Table Entries ....................................   30
Part II: Protocol Agreements ......................................   32
6. CMOT Protocol Overview .........................................   32
6.1. The CMOT Protocol Suite ......................................   32
6.2. Conformance Requirements .....................................   33
6.3. Abstract Syntax Notation .....................................   33
7. Common Management Information Service Element ..................   34
7.1. CMIS Services ................................................   34
7.1.1. CMIS Services Overview .....................................   34
7.1.2. Functional Units ...........................................   34
7.1.3. Functional Unit Groups .....................................   36
7.1.4. M-INITIALISE Parameters ....................................   37
7.1.4.1. Functional Units .........................................   37
7.1.4.2. User Information .........................................   39
7.1.4.3. Access Control ...........................................   39
7.2. Supporting Services ..........................................   39
7.3. CMIP Agreements ..............................................   39
7.3.1. Invoke Identifier ..........................................   39
7.3.2. Object Class ...............................................   40
7.3.3. Object Instance ............................................   40
7.3.4. Access Control .............................................   41
7.3.5. Synchronization ............................................   41
7.3.6. Scope ......................................................   41
7.3.7. Filter .....................................................   41
7.3.8. Attribute Identifier .......................................   42
7.3.9. Event Type Identifier ......................................   42
7.3.10. Action Type Identifier ....................................   42
7.3.11. Time Fields ...............................................   43
7.3.12. Response PDUs .............................................   43
7.3.13. Error PDUs ................................................   43
8. Association Control Service Element ............................   43
8.1. ACSE Services ................................................   44
8.2. Supporting Services ..........................................   44



Warrier & Besaw                                                 [Page 2]

RFC 1095                          CMOT                        April 1989


8.3. ACSE Protocol ................................................   45
8.3.1. Application Context Name ...................................   45
8.3.2. User Information ...........................................   45
8.3.3. Presentation Service Parameters ............................   46
9. Remote Operations Service Element ..............................   46
9.1. ROSE Services ................................................   46
9.2. Supporting Services ..........................................   47
9.3. ROSE Protocol ................................................   47
9.3.1. Operation Class ............................................   47
9.3.2. Priority ...................................................   48
10. Lightweight Presentation ......................................   48
10.1. Lightweight Presentation Services ...........................   48
10.2. Supporting Services .........................................   48
10.3. Lightweight Presentation Protocol ...........................   49
11. Acknowledgements ..............................................   49
12. References ....................................................   49
Appendix A - The CMOT Group .......................................   52
Appendix B - Management Information Summary .......................   53
Appendix C - Sample Protocol Exchanges ............................   60

1.  Status of this Memo

  This memo defines a network management architecture that uses the
  International Organization for Standardization's (ISO) Common
  Management Information Services/Common Management Information
  Protocol (CMIS/CMIP) in a TCP/IP environment.  This architecture
  provides a means by which control and monitoring information can be
  exchanged between a manager and a remote network element.  In
  particular, this memo defines the means for implementing the Draft
  International Standard (DIS) version of CMIS/CMIP on top of Internet
  transport protocols for the purpose of carrying management
  information defined in the Internet-standard management information
  base.  DIS CMIS/CMIP is suitable for deployment in TCP/IP networks
  while CMIS/CMIP moves toward becoming an International Standard.
  Together with the relevant ISO standards and the companion RFCs that
  describe the initial structure of management information and
  management information base, these documents provide the basis for a
  comprehensive architecture and system for managing TCP/IP-based
  internets, and in particular the Internet.

  The Internet Activities Board (IAB) has designated two different
  network management protocols with the same status of "Draft Standard"
  and "Recommended".

  The two protocols are the Common Management Information Services and
  Protocol over TCP/IP (CMOT) (this memo) and the Simple Network
  Management Protocol (SNMP) [4].




Warrier & Besaw                                                 [Page 3]

RFC 1095                          CMOT                        April 1989


  The IAB intends each of these two protocols to receive the attention
  of implementers and experimenters.  The IAB seeks reports of
  experience with these two protocols from system builders and users.

  By this action, the IAB recommends that all IP and TCP
  implementations be network manageable (e.g., implement the Internet
  MIB [3], and that implementations that are network manageable are
  expected to adopt and implement at least one of these two Internet
  Draft Standards.

  Distribution of this memo is unlimited.

2.  Introduction

  As reported in RFC 1052, "IAB Recommendations for the Development of
  Internet Network Management Standards" [1], the Internet Activities
  Board (IAB) has directed the Internet Engineering Task Force (IETF)
  to coordinate the work of three working groups in the area of network
  management. First, the MIB working group was charged with the
  specification and definition of elements to be included in the
  Management Information Base (MIB).  Second, the SNMP working group
  was charged with defining the modifications to the Simple Network
  Management Protocol (SNMP) necessary to accommodate the short-term
  needs of the network vendor and operations communities.  Third, the
  Netman working group was directed to meet the longer-term needs of
  the Internet community by developing a network management system
  based on ISO CMIS/CMIP.  Both the Netman working group and the SNMP
  working group were directed to align their work with the output of
  the MIB working group in order to ensure compatibility of management
  information between the short-term and long-term approaches to the
  management of TCP/IP-based internets.  This will enable a smooth
  transition from the short-term protocol (SNMP) to the long-term
  protocol (CMIP).

  The MIB working group has produced two memos.  RFC 1065 [2] defines
  the Structure of Management Information (SMI) that is necessary for
  naming and defining managed objects in the MIB.  RFC 1066 [3] defines
  the list of managed objects contained in the initial TCP/IP MIB.  The
  SNMP working group has produced a memo [4] giving the protocol
  specification for SNMP and providing the SNMP protocol-specific
  interpretation of the Internet-standard MIB defined in RFC 1066.

  This memo is the output of the Netman working group.  As directed by
  the IAB in RFC 1052, it addresses the need for a long-term network
  management system based on ISO CMIS/CMIP.  The network management
  approach of using ISO protocols in a TCP/IP environment to manage
  TCP/IP networks can be described as "CMIP Over TCP/IP" (CMOT).  This
  memo specifies the CMOT architecture and the protocol agreements



Warrier & Besaw                                                 [Page 4]

RFC 1095                          CMOT                        April 1989


  necessary to implement CMIP and accompanying ISO protocols over the
  TCP and UDP transport protocols.  In addition, this memo provides an
  interpretation of RFC 1066 that makes it possible to use CMIP to
  convey management information defined in the Internet-standard MIB.

  There is widespread vendor support for the CMOT approach to network
  management.  This is amply shown by the Netman demonstration of
  prototype CMOT implementations at the Interop '88 TCP/IP
  Interoperability Conference.  The demonstration also showed the
  feasibility and power of the CMIS/CMIP framework for multivendor
  network management.  Now that CMIS/CMIP has been voted a Draft
  International Standard (DIS), many vendors feel that the ISO standard
  has become a stable basis for product development.  The clear need to
  standardize this development has led to the present profile of CMIP.
  It is expected that this profile will not change while the ISO
  standard moves from DIS status to International Standard (IS) status.
  If, however, the standard does change unexpectedly, the Netman
  working group will review such changes for appropriate action.

  Another rationale for the CMOT approach is that it will facilitate
  the early use of ISO network management standards in large
  operational networks.  This will make it possible for the Internet
  community to make valuable recommendations to ISO in the language of
  OSI management based on actual experience with the use and
  implementation of these standards.  There is continuing network
  management standards development work in ISO where such contributions
  would be valuable.

  The CMOT architecture is based on the Open Systems Interconnection
  (OSI) management framework and models developed by ISO.  This memo
  contains a set of protocol agreements for implementing a network
  management system based on this architecture. The protocol agreement
  sections of this memo must be read in conjunction with ISO and
  Internet documents defining specific protocol standards.  Documents
  defining the following ISO standards are required for the
  implementor: Abstract Syntax Notation One (ASN.1) [5, 6], Association
  Control (ACSE) [7, 8], Remote Operations (ROSE) [9, 10], Common
  Management Information Services (CMIS) [11], and Common Management
  Information Protocol (CMIP) [12].  RFC 1085 [13] is required for the
  specification of a lightweight presentation layer protocol used in
  this profile.  In addition, RFC 1065 [2] and RFC 1066 [3] are
  required for a definition of the initial SMI and MIB to be used with
  the CMOT management system.

  This memo is divided into two main parts.  The first part presents
  concepts and models; the second part contains the protocol agreements
  necessary for implementation of the CMOT network management system.
  The first part of the memo is divided into three sections: section 3



Warrier & Besaw                                                 [Page 5]

RFC 1095                          CMOT                        April 1989


  contains tutorial information on the OSI management framework;
  section 4 defines the basic CMOT approach; and section 5 discusses
  the area of management information and specifies how the abstract
  management information defined in the Internet-standard SMI and MIB
  map into CMIP.  The second part of this memo is divided into sections
  for each of the protocols for which implementors' agreements are
  needed: CMISE, ACSE, ROSE, and the lightweight presentation protocol.
  The protocol profile defined in this part draws on the technical work
  of the OSI Network Management Forum [14] and the Network Management
  Special Interest Group (NMSIG) of the National Institute of Standards
  and Technology (NIST) (formerly the National Bureau of Standards).
  Wherever possible, an attempt has been made to remain consistent with
  the protocol agreements reached by these groups.






































Warrier & Besaw                                                 [Page 6]

RFC 1095                          CMOT                        April 1989


                       Part I: Concepts and Models

3.  The OSI Management Framework

  The OSI management framework [15] presents the basic concepts and
  models required for developing network management standards.  OSI
  management provides the ability to monitor and control network
  resources, which are represented as "managed objects." The following
  elements are essential for the description of a network management
  architecture and the standardization of a network management system:
  a model or set of models for understanding management; a common
  structure of management information for registering, identifying, and
  defining managed objects; detailed specifications of the managed
  objects; and a set of services and related protocols for performing
  remote management operations.

3.1.  Architectural Overview

  The basic concepts underlying OSI network management are quite simple
  [16].  There reside application processes called "managers" on
  managing systems (or management stations).  There reside application
  processes called "agents" on managed systems (or network elements
  being managed).  Network management occurs when managers and agents
  conspire (via protocols and a shared conceptual schema) to exchange
  monitoring and control information useful to the management of a
  network and its components.  The terms "manager" and "agent" are also
  used in a loose and popular sense to refer to the managing and
  managed system, respectively.

  The shared conceptual schema mentioned above is a priori knowledge
  about "managed objects" concerning which information is exchanged.
  Managed objects are system and networking resources (e.g., a modem, a
  protocol entity, an IP routing table, a TCP connection) that are
  subject to management. Management activities are effected through the
  manipulation of managed objects in the managed systems.  Using the
  management services and protocol, the manager can direct the agent to
  perform an operation on a managed object for which it is responsible.
  Such operations might be to return certain values associated with a
  managed object (read a variable), to change certain values associated
  with a managed object (set a variable), or perform an action (such as
  self-test) on the managed object.  In addition, the agent may also
  forward notifications generated asynchronously by managed objects to
  the manager (events or traps).

  The terms "manager" and "agent" are used to denote the asymmetric
  relationship between management application processes in which the
  manager plays the superior role and the agent plays the subordinate.




Warrier & Besaw                                                 [Page 7]

RFC 1095                          CMOT                        April 1989


  However, the specification of the management protocol (CMIP) defines
  a peer protocol relationship that makes no assumptions concerning
  which end opens or closes a connection, or the direction of
  management data transfer.  The protocol mechanisms provided are fully
  symmetric between the manager and the agent; CMIS operations can
  originate at either the manager or agent, as far as the protocol is
  concerned.  This allows the possibility of symmetric as well as
  asymmetric relationships between management processes.  Most devices
  will contain management applications that can only assume the agent
  role.  Applications on managing systems, however, may well be able to
  play both roles at the same time.  This makes possible "manager to
  manager" communication and the ability of one manager to manage
  another.

3.2.  Management Models

  Network management may be modeled in different ways.  Three models
  are typically used to describe OSI management [17, 18].  An
  organizational model describes ways in which management can be
  administratively distributed.  The functional model describes the
  management functions and their relationships.  The information model
  provides guidelines for describing managed objects and their
  associated management information.

3.2.1.  The Organizational Model

  The organizational model introduces the concept of a management
  "domain." A domain is an administrative partition of a network or
  internet for the purpose of network management.  Domains may be
  useful for reasons of scale, security, or administrative autonomy.
  Each domain may have one or more managers monitoring and controlling
  agents in that domain.  In addition, both managers and agents may
  belong to more than one management domain.  Domains allow the
  construction of both strict hierarchical and fully cooperative and
  distributed network management systems.

3.2.2.  The Functional Model

  The OSI Management Framework [15] defines five facilities or
  functional areas to meet specific management needs. This has proved
  to be a helpful way of partitioning the network management problem
  from an application point of view.  These facilities have come to be
  known as the Specific Management Functional Areas (SMFAs): fault
  management, configuration management, performance management,
  accounting management, and security management.  Fault management
  provides the ability to detect, isolate, and correct network
  problems.  Configuration management enables network managers to
  change the configuration of remote network elements.  Performance



Warrier & Besaw                                                 [Page 8]

RFC 1095                          CMOT                        April 1989


  management provides the facilities to monitor and evaluate the
  performance of the network.  Accounting management makes it possible
  to charge users for network resources used and to limit the use of
  those resources.  Finally, security management is concerned with
  managing access control, authentication, encryption, key management,
  and so on.

3.2.3.  The Information Model

  The OSI Management Framework considers all information relevant to
  network management to reside in a Management Information Base (MIB),
  which is a "conceptual repository of management information."
  Information within a system that can be referenced by the management
  protocol (CMIP) is considered to be part of the MIB.  Conventions for
  describing and uniquely identifying the MIB information allow
  specific MIB information to be referenced and operated on by the
  management protocol.  These conventions are called the Structure of
  Management Information (SMI).  The information model is described
  more fully in section 5.

3.3.  ISO Application Protocols

  The following ISO application services and protocols are necessary
  for doing network management using the OSI framework: ACSE, ROSE, and
  CMIS/CMIP.  All three of these protocols are defined using ASN.1 [5].
  The ASN.1 modules defining each of these protocols are found in the
  relevant standards documents.  The encoding rules for ASN.1 [6]
  provide a machine-independent network representation for data.

  A brief overview of the terminology associated with the OSI
  application layer structure is presented here.  A complete treatment
  of the subject can be found in the OSI Application Layer Structure
  document [22].

  In the OSI environment, communication between "application processes"
  is modeled by communication between application entities.  An
  "application entity" represents the communication functions of an
  application process.  There may be multiple sets of OSI communication
  functions in an application process, so a single application process
  may be represented by multiple application entities.  However, each
  application entity represents a single application process.  An
  application entity contains a set of communication capabilities
  called "application service elements." An application service element
  is a coherent set of integrated functions.  These application service
  elements may be used independently or in combination.  Examples of
  application service elements are X.400, FTAM, ACSE, ROSE, and CMISE.

  When communication is required between two application entities, one



Warrier & Besaw                                                 [Page 9]

RFC 1095                          CMOT                        April 1989


  or more "application associations" are established between them.
  Such an association can be viewed as a connection at the level of the
  application layer.  An "application context" defines the set of
  application service elements which may be invoked by the user of an
  application association.  The application context may prescribe one
  or more application service elements.

  Generally, an "application layer protocol" is realized by the use of
  the functionality of a number of application service elements.  This
  functionality is provided by the specification of a set of
  application protocol data units (APDUs) and the procedures governing
  their use.  In general, the operation of an application layer
  protocol may require the combination of APDUs from different
  application service elements.  The application entity makes direct
  use of presentation context identifiers for the specification and
  identification of APDUs.

3.3.1.  ACSE

  The Association Control Service Element (ACSE) is used to establish
  and release associations between application entities. Before any
  management operations can be performed using CMIP, it is necessary
  for the two application entities involved to form an association.
  Either the manager or the agent can initiate association
  establishment.  ACSE allows the manager and agent to exchange
  application entity titles for the purpose of identification and
  application context names to establish an application context. As
  stated above, an application context defines what service elements
  (for instance, ROSE and CMISE) may be used over the association.
  After the association is established, ACSE is not used again until
  the association is released by the manager or agent.

3.3.2.  ROSE

  The Remote Operation Service Element (ROSE) is the ISO equivalent of
  remote procedure call.  ROSE allows the invocation of an operation to
  be performed on a remote system.  The Remote Operation protocol
  contains an invoke identifier for correlating requests and responses,
  an operation code, and an argument field for parameters specific to
  the operation.  ROSE can only be invoked once an application
  association has been established.  CMIP uses the transaction-oriented
  services provided by ROSE for all its requests and responses.  CMIP
  also uses the error response facilities provided by ROSE.

3.3.3.  CMISE

  The Common Management Information Service Element (CMISE) is the
  service element that provides the basic management services.  The



Warrier & Besaw                                                [Page 10]

RFC 1095                          CMOT                        April 1989


  CMISE is a user of both ROSE and ACSE.  The CMISE provides both
  confirmed and unconfirmed services for reporting events and
  retrieving and manipulating management data. These services are used
  by manager and agent application entities to exchange management
  information.  Table 1 provides a list of the CMISE services.  In
  addition, the CMISE also provides the ability to issue a series of
  (multiple) linked replies in response to a single request.


          +-----------------+-------------------------+
          |    Service      |     Type                |
          +-----------------+-------------------------+
          |  M-INITIALISE   | confirmed               |
          |  M-TERMINATE    | confirmed               |
          |  M-ABORT        | non-confirmed           |
          |  M-EVENT-REPORT | confirmed/non-confirmed |
          |  M-GET          | confirmed               |
          |  M-SET          | confirmed/non-confirmed |
          |  M-ACTION       | confirmed/non-confirmed |
          |  M-CREATE       | confirmed               |
          |  M-DELETE       | confirmed               |
          +-----------------+-------------------------+

               Table 1.  CMISE Service Summary


  CMIS services can be divided into two main classes: management
  association services and information transfer services.  Furthermore,
  there are two types of information transfer services: management
  notification services and management operation services.  In addition
  to the other CMIS services, the CMISE provides facilities that enable
  multiple responses to confirmed operations to be linked to the
  operation by the use of a linked identification parameter.

3.3.3.1.  Management Association Services

  CMIS provides services for the establishment and release of
  application associations.  These services control the establishment
  and normal and abnormal release of a management association. These
  services are simply pass-throughs to ACSE.

  The M-INITIALISE service is invoked by a CMISE-service-user to
  establish an association with a remote CMISE-service-user for the
  purpose of exchanging management information. A reply is expected.
  (A CMISE-service-user is that part of an application process that
  makes use of the CMISE.)

  The M-TERMINATE service is invoked by a CMISE-service-user to release



Warrier & Besaw                                                [Page 11]

RFC 1095                          CMOT                        April 1989


  an association with a remote CMISE-service-user in an orderly manner.
  A reply is expected.

  The M-ABORT service is invoked by a CMISE-service-user or a CMISE-
  service-provider to release an association with a remote CMISE-
  service-user in an abrupt manner.

3.3.3.2.  Management Notification Services

  The definition of notification and the consequent behavior of the
  communicating entities is dependent upon the specification of the
  managed object which generated the notification and is outside the
  scope of CMIS.  CMIS provides the following service to convey
  management information applicable to notifications.

  The M-EVENT-REPORT service is invoked by a CMISE-service-user to
  report an event about a managed object to a remote CMISE-service-
  user.  The service may be requested in a confirmed or a non-confirmed
  mode.  In the confirmed mode, a reply is expected.

3.3.3.3.  Management Operation Services

  The definition of the operation and the consequent behavior of the
  communicating entities is dependent upon the specification of the
  managed object at which the operation is directed and is outside the
  scope of CMIS.  However, certain operations are used frequently
  within the scope of management and CMIS provides the following
  definitions of the common services that may be used to convey
  management information applicable to the operations.

  The M-GET service is invoked by a CMISE-service-user to request the
  retrieval of management information from a remote CMISE-service-user.
  The service may only be requested in a confirmed mode.  A reply is
  expected.

  The M-SET service is invoked by a CMISE-service-user to request the
  modification of management information by a remote CMISE-service-
  user.  The service may be requested in a confirmed or a non-confirmed
  mode.  In the confirmed mode, a reply is expected.

  The M-ACTION service is invoked by a CMISE-service-user to request a
  remote CMISE-service-user to perform an action.  The service may be
  requested in a confirmed or a non-confirmed mode.  In the confirmed
   mode, a reply is expected.

  The M-CREATE service is invoked by a CMISE-service-user to request a
  remote CMISE-service-user to create another instance of a managed
  object.  The service may only be requested in a confirmed mode.  A



Warrier & Besaw                                                [Page 12]

RFC 1095                          CMOT                        April 1989


  reply is expected.

  The M-DELETE service is invoked by a CMISE-service-user to request a
  remote CMISE-service-user to delete an instance of a managed object.
  The service may only be requested in a confirmed mode.  A reply is
  expected.

4.  The CMOT Architecture

  The CMOT (CMIP Over TCP/IP) architecture is based on the OSI
  management framework [15] and the models, services, and protocols
  developed by ISO for network management.  The CMOT architecture
  demonstrates how the OSI management framework can be applied to a
  TCP/IP environment and used to manage objects in a TCP/IP network.
  The use of ISO protocols for the management of widely deployed TCP/IP
  networks will facilitate the ultimate migration from TCP/IP to ISO
  protocols.  The concept of proxy management is introduced as a useful
  extension to the architecture.  Proxy management provides the ability
  to manage network elements that either are not addressable by means
  of an Internet address or use a network management protocol other
  than CMIP.

  The CMOT architecture specifies all the essential components of a
  network management architecture.  The OSI management framework and
  models are used as the foundation for network management.  A
  protocol-dependent interpretation of the Internet SMI [2] is used for
  defining management information.  The Internet MIB [3] provides an
  initial list of managed objects.  Finally, a means is defined for
  using ISO management services and protocols on top of TCP/IP
  transport protocols.  Management applications themselves are not
  included within the scope of the CMOT architecture.  What is
  currently standardized in this architecture is the minimum required
  for building an interoperable multivendor network management system.
  Applications are explicitly left as a competitive issue for network
  developers and providers.

4.1.  Management Models

  The following sections indicate how the CMOT architecture applies the
  OSI managements models and point out any limitations the CMOT
  architecture has as it is currently defined in this memo.

4.1.1.  The Organizational Model

  It is beyond the scope of this memo to define the relations and
  interactions between different management domains.  The current CMOT
  architecture concerns itself only with the operations and
  characteristics of a single domain of management.  The extension of



Warrier & Besaw                                                [Page 13]

RFC 1095                          CMOT                        April 1989


  the mechanisms defined here to include multiple domains is left for
  further study.

4.1.2.  The Functional Model

  The CMOT architecture provides the foundation for carrying out
  management in the five functional areas (fault, configuration,
  performance, accounting, and security), but does not address
  specifically how any of these types of management are accomplished.
  It is anticipated that most functional requirements can be satisfied
  by CMIS.  The greatest impact of the functional requirements in the
  various areas will likely be on the definition of managed objects.

4.1.3.  The Information Model

  There are two different SMI specifications that are important to the
  CMOT architecture. The first is the SMI currently being defined by
  ISO [19].  This SMI is important to the CMOT approach because the ISO
  management protocol CMIP has been designed with the ISO model of
  management information in mind.  The second SMI of importance is the
  that defined by the IETF MIB working group for use in defining the
  Internet MIB [3].  This Internet SMI, which is loosely based on a
  simplified version of the ISO SMI, is important because the managed
  objects defined for TCP/IP networks to be used by CMOT are defined in
  terms of it.  Thus, in order to make the CMOT architecture complete,
  it will be necessary to show how the Internet SMI maps into CMIP in
  such a way as to enable it to convey the management information
  defined in the Internet MIB.  This is done in the section devoted to
  management information (section 5).

4.2.  Protocol Architecture

  The objective of the CMOT protocol architecture is to map the OSI
  management protocol architecture into the TCP/IP environment.  The
  model presented here follows the OSI model at the application layer,
  while using Internet protocols at the transport layer.  The ISO
  application protocols used for network management are ACSE, ROSE, and
  CMIP.  Instead of implementing these protocols on top of the ISO
  presentation, session, and transport layer protocols, the protocol
  data units (PDUs) for ACSE, ROSE, and CMIP are carried using the
  Internet transport protocols UDP [20] and TCP [21].  This is made
  possible by means of the lightweight presentation protocol defined in
  RFC 1085 [13] that maps ROSE and ACSE onto TCP/UDP/IP.  The use of
  Internet transport protocols is transparent to network management
  applications, since they are presented with real ISO services.






Warrier & Besaw                                                [Page 14]

RFC 1095                          CMOT                        April 1989


4.2.1.  The Lightweight Presentation Layer

  Given that it is desired to put ISO application protocols on top of
  TCP/IP, how is this best accomplished?  It is necessary somehow to
  fill the "gap" between the ISO protocols (ACSE and ROSE) and the
  Internet protocols (UDP and TCP).  Two basic approaches were
  considered.

  One possible approach [23] is to extend the ISO portion of the
  protocol stack down to the transport layer.  The ISO Transport
  Protocol Class 0 (TP 0) then uses TCP instead of an ISO network
  protocol.  Effectively, this treats TCP as a reliable network
  connection analogous to X.25.  This approach allows us to operate
  "standard" ISO applications over TCP regardless of their service
  requirements, since all ISO services are provided.  In this case,
  network management is just another such application.  The major
  drawback with this approach is that full ISO presentation, session,
  and transport layers are expensive to implement (both in terms of
  processing time and memory).

  Another approach is presented in RFC 1085.  Since the service
  elements required for network management (ACSE, ROSE, CMISE) do not
  require the use of full ISO presentation layer services, it is
  possible to define a "streamlined" presentation layer that provides
  only the services required.  This lightweight presentation protocol
  (LPP) allows the use of ISO presentation services over both TCP and
  UDP.  This approach eliminates the necessity of implementing ISO
  presentation, session, and transport protocols for the sake of doing
  ISO network management in a TCP/IP environment.  This minimal
  approach is justified because this non-ISO presentation protocol used
  is very small and very simple.  Thus, the LPP defined in RFC 1085
  provides a compact and easy to implement solution to the problem.
  The resulting CMOT protocol stack is shown in Figure 1.


















Warrier & Besaw                                                [Page 15]

RFC 1095                          CMOT                        April 1989


                  Manager                              Agent
          +-----------------------+           +-----------------------+
          |                       |           |                       |
          | +----+ +----+ +-----+ | <-------> | +----+ +----+ +-----+ |
          | |ACSE| |ROSE| |CMISE| |    CMIP   | |ACSE| |ROSE| |CMISE| |
          | +----+ +----+ +-----+ |           | +----+ +----+ +-----+ |
          |                       |           |                       |
          +-----------------------+           +-----------------------+
          |         LPP           |           |         LPP           |
          +-----------------------+           +-----------------------+
          |   TCP    |    UDP     |           |   TCP    |   UDP      |
          +-----------------------+           +-----------------------+
          |         IP            |           |         IP            |
          +-----------------------+           +-----------------------+
          |         Link          |           |         Link          |
          +-----------------------+           +-----------------------+
                     |                                   |
                     |                                   |
                     |                                   |
          =========================================================
                                 Network
          =========================================================

                    Figure 1.  The CMOT Protocol Architecture


  It is important to note that the presentation services provided by
  the LPP are "real" (but minimal) ISO presentation services [24].
  This provides a clear migration path to "full ISO" in the future.
  Such a migration would be accomplished by substituting ISO protocols
  for the Internet protocols TCP, UDP, and IP [25], and replacing the
  LPP with ISO presentation and session protocols.  No changes will be
  required in the ISO application layer protocols.  For this reason,
  investments in application development will be well preserved.

4.2.2.  The Quality of Transport Service

  The quality of transport service needed for network management
  applications is an issue that has caused much controversy, yet it has
  never been resolved.  There are two basic approaches: datagram-
  oriented and connection-oriented.  There are advantages and
  disadvantages to both of these two approaches. While the datagram-
  oriented approach is simple, requires minimal code space, and can
  operate under conditions where connections may not be possible, the
  connection-oriented approach offers data reliability and provides
  guaranteed and consistent service to the driving application.

  This memo does not take sides on this issue.  Rather it passes such



Warrier & Besaw                                                [Page 16]

RFC 1095                          CMOT                        April 1989


  resolution to the network management applications, which are
  ultimately the point where the requirements from the underlying
  service need to be determined.  As such, the CMOT protocol
  architecture provides both services.  The presentation layer service
  allows the application to select either high or low quality service
  for the underlying transport.  Depending on this choice, the LPP will
  use either UDP (low quality) or TCP (high quality) to establish the
  application association and carry the application data.  It is
  important, however, for the application to be aware of the quality of
  service that it is using: low quality means low quality!  The use of
  an unreliable transport like UDP necessarily puts more burden on the
  application.

4.3.  Proxy Management

  Proxy is a term that originated in the legal community to indicate an
  entity empowered to perform actions on behalf of another.  In our
  context, a proxy is a manager empowered to perform actions on behalf
  of another manager.  This may be necessary because the manager cannot
  communicate directly with the managed devices either for security or
  other administrative reasons or because of incompatible communication
  mechanisms or protocols.  In either case, the proxy assumes the agent
  role with respect to the requesting manager and the manager role with
  respect to the managed device.

  Some network elements, such as modems or bridges, may not be able to
  support CMIP and all the associated protocols.  In addition, such
  devices may not have Internet addresses.  Such devices are called
  "limited systems".  It may be possible to manage these devices using
  proprietary mechanisms or other standard protocols (such as the IEEE
  802.1 management protocol for managing bridges).  In cases where it
  is desirable to integrate the management of such devices with the
  overall CMOT management of an internet, it is necessary to use proxy
  management.  Some network elements that are not "limited systems" as
  described above may still benefit from the use of proxy management.
  If the management protocol supported by such a system is proprietary
  or some standard protocol other than CMIP (such as SNMP), then CMOT
  proxy management can be used to integrate the management of such
  systems.

  A proxy operates in the following manner.  When a CMOT manager wants
  to send a request to a managed device that it cannot communicate with
  directly, it routes the request to the proxy.  The proxy maps the
  CMIP request into the information schema understood by the managed
  device and sends the appropriate request to the managed device using
  the native management protocol of the device.  When the proxy
  receives the response from the managed device, it uses CMIP to return
  the information to the manager that made the original request.



Warrier & Besaw                                                [Page 17]

RFC 1095                          CMOT                        April 1989


  The use of proxy management can be largely transparent to the
  requesting manager, which appears to be exchanging information
  directly with the selected device.  The only thing that is known to
  the manager is that additional "instance" information is required to
  select a particular device managed by the proxy.  Each proxy may
  support many managed devices, using the "instance" information to
  multiplex CMIP requests and responses among them.  The mapping
  between a specific instance and an actual managed device is a local
  matter.  (The use of the CMIP Object Instance field to select a
  particular system to manage by proxy is explained below in section
  5.3.2.2.)

  A proxy may also serve as an "intermediate manager" in another less
  transparent sense.  The proxy manager may be requested to calculate
  summary statistics on information gathered from many different
  managed systems (e.g., the average number of PDUs transmitted or the
  distribution of PDUs transmitted over time).  The proxy may be
  requested to log events transmitted by the managed systems under its
  control and to send to the requesting manager only those events of
  specific types.  When this use of proxy management is made, the
  conceptual schema for managed objects known to both the requesting
  manager and proxy must include definitions of these aggregate managed
  objects (i.e., objects that do not belong to any one managed system).
  How the aggregate statistics would be calculated and logging
  performed based on information from the different devices managed by
  the proxy would be part of the definition of these aggregate managed
  objects.

4.4.  Directory Service

  RFC 1085 specifies the use of a minimal (or "stub") directory
  service.  It specifies how the service name for an OSI application
  entity is converted into an "application entity title." The
  application entity title is then mapped into a presentation address.
  The form of a service name, an application entity title, and a
  presentation address can be found in RFC 1085.

5.  Management Information

  The description of management information has two aspects.  First, a
  structure of management information (SMI) defines the logical
  structure of management information and how it is identified and
  described.  Second, the management information base (MIB), which is
  specified using the SMI, defines the actual objects to be managed.
  The purpose of this section is to show how CMIP is used in the CMOT
  architecture to convey information defined in the Internet MIB.





Warrier & Besaw                                                [Page 18]

RFC 1095                          CMOT                        April 1989


5.1.  The Structure of Management Information

  The SMI supplies the model for understanding management information,
  as well as templates and ASN.1 macros that can be used for defining
  actual management information.  The following sections discuss the
  ISO SMI, the Internet SMI, and a way of interpreting the Internet SMI
  in terms of the ISO SMI so that CMIP can be used to carry management
  information defined in terms of the Internet SMI.

5.1.1.  The ISO SMI

  The ISO SMI [19] is based on the abstraction of a "managed object"
  and the various kinds of relationships objects can be involved in.
  The following discussion does not purport to be a complete and
  accurate description of the latest ISO SMI work.  It is intended to
  be a clear presentation of the basic ISO SMI concepts essential for
  understanding the CMIP-specific interpretation of the Internet SMI
  presented in section 5.3.

5.1.1.1.  Managed Objects and Attributes

  Management Information is modeled using object-oriented techniques.
  All "things" in the network that are to be managed are represented in
  terms of managed objects.  A "managed object" is an abstraction (or
  logical view) for the purposes of network management of a
  "manageable" physical or logical resource of the network.  In this
  context, "manageable" means that a particular resource can be managed
  by using CMIP.  Examples of managed objects are protocol entities,
  modems, and connections.

  Each managed object belongs to a particular object class.  An "object
  class" represents a collection of managed objects with the same, or
  similar, properties.  A particular managed object existing in a
  particular network is defined as an "object instance" of the object
  class to which it belongs.  Thus, an object instance represents an
  actual realization of an object class (i.e., a managed object of a
  particular class bound to specific values).  An example of an object
  class is "transport connection." In an actual network, there are a
  number of managed objects (specific transport connections) that are
  instances of this class.  In summary, a managed object type, which is
  called an "object class," is the collection of all actual and
  potential instances of that type.

  Managed objects are fully defined by specifying the "attributes" or
  properties the object has, the CMIS operations that can be performed
  on the object (e.g., M-SET, M-CREATE) and any constraints on those
  operations, specific actions (e.g., self-test) that can be performed
  on the object, events that the object can generate, and information



Warrier & Besaw                                                [Page 19]

RFC 1095                          CMOT                        April 1989


  about various relationships the object may be involved in.  All of
  this information relevant to a managed object is typically provided
  by filling in an object template.

  Managed objects contain properties that are referred to as
  attributes.  Attributes are atomic items of information that can only
  be manipulated as a whole.  An example of an attribute is a counter
  providing a specific piece of information, such as the number of
  packets retransmitted.

  Each object class and attribute is assigned a unique identifier (an
  ASN.1 OBJECT IDENTIFIER) for purposes of naming by a registration
  authority.

5.1.1.2.  Management Information Hierarchies

  Managed objects participate in relationships with each other.  There
  are two relationships that are of particular importance for
  management information: the containment relationship and the
  inheritance relationship.  These relationships can be used to
  construct hierarchies of managed objects.  In addition, there is
  another hierarchy defined by the registration process for registering
  identifiers for object classes and attributes.

5.1.1.2.1.  The Registration Hierarchy

  The registration hierarchy is determined by the ASN.1 registration
  tree [5] for assigning OBJECT IDENTIFIERs.  An OBJECT IDENTIFIER is
  an administratively assigned name composed of a series of integers
  traversing a path from the root of the ASN.1 registration tree to the
  node or leaf to be identified.  For example, the sequence of integers
  { iso(1) standard(0) ips-osi-mips(9596) cmip(2) } (1.0.9596.2) can be
  used to uniquely identify the CMIP standard.  Each node of this tree
  has an associated registration authority that determines how numbers
  in the subtree defined by that node are allocated.  In the context of
  management, these OBJECT IDENTIFIERs are used for identifying object
  classes and attributes.  The registration hierarchy is not based on
  any particular relationship between managed objects or between
  managed objects and their attributes.  It is independent of both the
  inheritance and containment relationships described below.  Its
  purpose is simply to generate universally unique identifiers.

5.1.1.2.2.  The Containment Hierarchy

  The containment hierarchy is constructed by applying the relationship
  "is contained in" to objects and attributes.  Objects of one class
  may contain objects of the same or different class.  Objects may also
  contain attributes.  Attributes cannot contain objects or other



Warrier & Besaw                                                [Page 20]

RFC 1095                          CMOT                        April 1989


  attributes.  For example, objects of the class "transport entity" may
  contain objects of the class "transport connection"; an object of the
  class "management domain" may contain objects of the class "node." An
  object class that contains another object class is called the
  "superior" object class; an object class that is contained in another
  object class is called the "subordinate" object class.  The
  containment relationships that an object may participate in are part
  of the definition of the object class to which that managed object
  belongs.  All object classes (except the topmost) must have at least
  one possible superior in the containment tree.  The definition of a
  class may permit it to have more than one such superior.  However,
  individual instances of such a class are nevertheless contained in
  only one instance of a possible containing class.

  The containment hierarchy is important because it can be used for
  identifying instances of a managed object.  For example, assume there
  is an object class "domain" that contains an object class "node" that
  contains an object class "transport entity" that contains an object
  class "transport connection." A particular instance of a transport
  connection can be identified by the concatenation of "instance
  information" for each object class in the containment path: {
  domain="organization," node="herakles," transport entity=tp4,
  transport connection=<TSAP-AddressA, TSAP-AddressB> }.

  What constitutes appropriate "instance information" for each object
  class is part of the definition of that object class and is known as
  the "distinguished attribute(s)." A distinguished attribute is
  composed of an OBJECT IDENTIFIER naming the attribute and the value
  of the attribute.  For each object class, the distinguished
  attributes that differentiate instances of that class are
  collectively called the "relative distinguished name." A sequence of
  relative distinguished names (one for each class in the containment
  path) is the "distinguished name" of a managed object.  The example
  given above represents the distinguished name of a transport
  connection.  The containment hierarchy is sometimes referred to as
  the "naming tree", because it is used to "name" a particular instance
  of a managed object.

  The containment relationship also defines an existence dependency
  among its components; an object or attribute can "exist" only if the
  containing object also "exists." Deletion of an object may result in
  deletion of all objects and attributes contained within it.
  Alternately, depending on the definition of the managed object,
  deletion may be refused until all contained managed objects have been
  deleted.






Warrier & Besaw                                                [Page 21]

RFC 1095                          CMOT                        April 1989


5.1.1.2.3.  The Inheritance Hierarchy

  The inheritance hierarchy is constructed by applying the relationship
  "inherits properties of" to object classes.  An object class may
  inherit properties of another object class; refinement is obtained by
  adding additional properties.  In this relationship, the parent class
  is called the "superclass" and the inheriting class the "subclass."
  For example, the class "layer entity" may be a superclass of "network
  entity," which in turn is a superclass of "X.25 network entity."
  Attributes defined for "network entity" (e.g., the number of packets
  sent) are automatically defined for "X.25 network entity" without
  having to explicitly include them in the definition for the class
  "X.25 network entity." Thus, inheritance serves as a shorthand for
  defining object classes using object-oriented methodology.  Each
  class (except the topmost) has at least one superclass, but may have
  zero, one, or many subclasses.  Subclasses may in turn have further
  subclasses, to any degree.  A special object called "top" is the
  ultimate superclass.  It has no properties of its own.

  The inheritance hierarchy has no relevance to the naming of object
  instances.  It is useful only insofar as it leads to a manageable and
  extensible technique for the definition of object classes.

5.1.2.  The Internet SMI

  The Internet SMI [2] is designed to be a protocol-independent SMI
  that can be used with both SNMP and CMIP.  For this reason, it is
  necessary for any management protocol that uses this SMI to show how
  it is to be interpreted in a protocol-specific manner.  This is done
  for CMIP in this memo.

  The Internet SMI indicates both how to identify managed objects and
  how to define them.  The Internet SMI defines a registration subtree
  rooted at { iso(1) org(3) dod(6) internet(1) } for the sake of
  registering OBJECT IDENTIFIERs to be used for uniquely identifying
  managed objects.  The current Internet SMI specifies the format for
  defining objects in terms of an "object type" template and an
  associated OBJECT-TYPE ASN.1 macro.  An object type definition
  contains five fields: a textual name, along with its corresponding
  OBJECT IDENTIFIER; an ASN.1 syntax; a definition of the semantics of
  the object type; an access (read-only, read-write, write-only, or
  not-accessible); and a status (mandatory, optional, or obsolete).
  The current Internet SMI does not provide any mechanism for defining
  actions or events associated with a managed object.

  In describing management information, the current Internet SMI does
  not use the notions of "object class" and "attribute" found in the
  ISO SMI.  Only the concepts of "object type" and "object instance"



Warrier & Besaw                                                [Page 22]

RFC 1095                          CMOT                        April 1989


  are used.  The Internet SMI shows how to define object types; it
  leaves the specification of object instances as a protocol-specific
  matter.  The current Internet structure of management information is
  simpler and less rich than the corresponding ISO structure. The ISO
  SMI makes a distinction between simple "attributes," which can be
  viewed as "leaf objects" that are the lowest elements of the
  containment hierarchy, and composite "managed objects" that belong to
  an "object class" and have a structure associated with them (that is,
  can contain attributes).  The Internet SMI does not draw this
  distinction; both simple and composite "objects" are defined as
  "object types." What structure is associated with objects in the
  Internet SMI is defined through the deliberate attempt to structure
  the lower part of the Internet registration tree according to
  containment principles.  (Objects that are considered "attributes" of
  other containing objects are defined directly below them in the
  object registration tree.) This results in a certain lack of
  flexibility, since the registration hierarchy is implicitly used to
  define the containment hierarchy.  This means that the Internet SMI
  does not contain a mechanism for defining containment relationships
  that do not happen to coincide with the registration hierarchy.  In
  interpreting the Internet SMI for use with CMIP, it is necessary to
  overcome this limitation.

5.2.  The Management Information Base

  The Management Information Base (MIB) is a "conceptual repository of
  management information." It is an abstract view of all the objects in
  the network that can be managed.  Note that the MIB is conceptual in
  that it does not carry any implications whatsoever about the physical
  storage (main memory, files, databases, etc.) of management
  information.  The SMI provides the guidelines for defining objects
  contained in the MIB.

  The CMOT approach will use the Internet MIB based on the Internet SMI
  described above.  The first version of the Internet MIB, which is the
  product of the IETF MIB working group, is defined in RFC 1066 [3].
  It contains objects divided into eight groups: system, interfaces,
  address translation, IP, ICMP, TCP, UDP, and EGP.  In addition, the
  Internet SMI provides for future versions of the Internet MIB and a
  means for otherwise extending the MIB through the registration of
  managed objects under "private" and "experimental" branches of the
  object registration tree.  Appendix B provides a protocol-specific
  interpretation of the first version of the TCP/IP MIB defined in [3]
  so that it can be used with CMOT.  This interpretation is based on a
  straightforward mapping of the current Internet SMI to the ISO SMI
  (section 5.3).

  The initial version of the Internet MIB concentrates on defining



Warrier & Besaw                                                [Page 23]

RFC 1095                          CMOT                        April 1989


  objects associated with various Internet protocols.  It is expected
  that future versions of the Internet MIB and various extensions will
  provide a much richer set of objects to manage, including management
  information about a variety of network devices and systems.  Thus, an
  expanded MIB will allow wide-ranging and powerful management using
  the CMOT approach.

5.3.  An Interpretation of the Internet SMI

  In order to use CMIP to convey information defined in terms of the
  Internet SMI, it is necessary to show how object instances are
  specified and to provide the necessary structure for differentiating
  object class and attributes.  These objectives are both met by
  separating the containment hierarchy used for naming objects from the
  registration hierarchy and by imposing an "object class" structure on
  the Internet SMI.  Using the technique of imposing an object class
  structure does not replace or redefine the object definitions in the
  Internet MIB; it merely provides a necessary gloss or commentary on a
  MIB defined in terms of the Internet SMI.  For example, Appendix B
  references the "object type" definitions found in [3], but imposes
  additional structure on them.

  This object class definition derives from a simplified version of the
  OBJECT-CLASS macro defined in the ISO SMI [19].  The more complex
  definition is not needed for present purposes.  (The object class
  definition presented here could be extended in the future to show
  what actions and events are associated with a managed object.) The
  object class definition has the following fields:

  OBJECT CLASS:
  ------------
     A textual name, termed the OBJECT CLASS DESCRIPTOR, for the object
     class, along with its corresponding OBJECT IDENTIFIER.

  Definition:
     A textual description of the object class.

  Subclass Of:
     The OBJECT CLASS DESCRIPTOR of the object class that is the
     superclass of this object class. This field is used for indicating
     the inheritance relationship.

  Superiors:
     A list of OBJECT CLASS DESCRIPTORs of the possible superior object
     classes of this object class. This field is used for indicating
     the containment relationship.





Warrier & Besaw                                                [Page 24]

RFC 1095                          CMOT                        April 1989


  Names:
     A list of OBJECT DESCRIPTORs identifying the OBJECT TYPES that are
     the distinguished attributes of this object class. (The OBJECT-
     TYPE macro is defined in RFC 1065). Attributes listed here will
     normally be present in the Attribute field of the object class
     definition.  This field is used for indicating what attributes
     must be present in the relative distinguished name that indicates
     an instance of this object class.

  Attributes:
     A list of OBJECT DESCRIPTORs identifying the OBJECT TYPES that are
     attributes of this object class. (The OBJECT-TYPE macro is defined
     in RFC 1065). This field is used for indicating the attributes
     that are contained in this object class.

     This object class definition satisfies our objectives for
     interpreting the Internet SMI for use by CMIP.  The Attributes
     field shows what attributes are contained in this object class;
     this makes the necessary distinction between object classes and
     attributes required by CMIP.  Instead of referencing an
     "attribute" def inition (as is done in the ISO SMI), the
     Attributes field references the "object type" definition found in
     RFC 1065 and used to define the Internet-standard MIB in RFC 1066.
     The name, syntax, and access information required for attributes
     is contained in the "object type" definition.  Two things are
     required for specifying an instance of a managed object: a
     containment relationship determining a sequence of object classes
     and a means for specifying the distinguished attributes for an
     object class.  The Superiors field makes the containment
     relationship explicit; it is no longer merely a function of the
     registration tree.  The Names field makes it possible to indicate
     the distinguished attributes for an object class required for
     giving instance information.  Thus, the object class definition
     makes it possible to specify an object instance using CMIP.

5.3.1.  Object Class and Attributes

  The mapping of management information to the CMIS parameters Managed
  Object Class and Attribute Identifier List now becomes apparent.

5.3.1.1.  Object Class

  The CMIS Managed Object Class parameter is the OBJECT IDENTIFIER
  assigned to the particular object class.  For example, the Managed
  Object Class for the object class "ip" (as defined in Appendix B) is

       { mib 4 } = 1.3.6.1.2.1.4.




Warrier & Besaw                                                [Page 25]

RFC 1095                          CMOT                        April 1989


5.3.1.2.  Attribute Identifier

  The CMIS Attribute Identifier List parameter is a list of Attribute
  Identifiers.  An Attribute Identifier can be either global or local.
  If it is global, then it is the OBJECT IDENTIFIER assigned to the
  attribute (i.e., "object type") that is being indicated.  For
  example, the global Attribute Identifier for the attribute
  "ipForwarding" (as defined in [3]) is

       { ip 1 } = 1.3.6.1.2.1.4.1.

  If the Attribute Identifier is local, it is an integer that is the
  last component in the OBJECT IDENTIFIER identifying the object.  For
  ipForwarding, the local Attribute Identifier is 1.  In the case where
  the local identifier is used, the leading components of the OBJECT
  IDENTIFIER for the attribute must be the OBJECT IDENTIFIER of the
  containing object class.  This is true for the interpreted Internet
  MIB defined in Appendix B, but may not be true generally.  The local
  identifier is intended to be interpreted relative to the Managed
  Object Class field of the CMIP PDU.  When a local Attribute
  Identifier is encountered in a CMIP PDU, the global form of the
  identifier is formed by prepending the OBJECT IDENTIFIER in the
  Managed Object Class field to the local identifier.  This is valid
  only when scoping is not used (i.e., scoping is "baseObject").  If
  scoping is used, then the global form of the Attribute Identifier
  must be used instead of the local form.

5.3.2.  Management Information Hierarchies

  The following sections show how the three management information
  hierarchies are to be understood for the interpreted Internet SMI.

5.3.2.1.  The Registration Hierarchy

  The registration hierarchy is the global object registration tree
  described in [2].  It is used merely for assigning identifiers for
  object classes and attributes (i.e., "object types" in RFC 1065).

5.3.2.2.  The Containment Hierarchy

  As described above, the containment hierarchy is used to specify an
  object instance.  The Names field of the object class definition
  contains the distinguished attributes for the object class.  The
  OBJECT IDENTIFIER naming the "attribute" together with its value is
  called an attribute value assertion.  A set of attribute value
  assertions (one for each distinguished attribute) is the relative
  distinguished name associated with that object class.  The sequence
  of relative distinguished names for each of the object classes in the



Warrier & Besaw                                                [Page 26]

RFC 1095                          CMOT                        April 1989


  containment hierarchy to which a managed object belongs is the
  distinguished name of the object.  An object instance is fully
  specified by a distinguished name.

  Let us take a concrete example from Appendix B.  How would we
  represent an instance of an entry in the IP routing table?  We begin
  by examining the object class in question (ipRouteEntry) and use the
  Superiors field to find the superior class in the containment
  hierarchy (ipRoutingTable).  This process continues until we
  construct the following containment path of object classes: system,
  ip, ipRoutingTable, ipRouteEntry.  Now for each of these object
  classes, we inspect the Names field to find the distinguished
  attribute for that object class.  If no Names field is present (as is
  the case for "ip" and "ipRoutingTable"), then no instance information
  is required at that level.  Both "system" and "ipRouteEntry" have
  Name fields to show what information is expected at that level.  With
  this information, we can construct the following distinguished name
  specifying an instance of an IP routing table entry:


                 baseManagedObjectInstance {
                    distinguishedName {
                       relativeDistinguishedName {    -- system
                          attributeValueAssertion {
                             attributeType { cmotSystemID }
                             attributeValue "gateway1.acme.com"
                          }
                       },
                       relativeDistinguishedName {    -- ipRouteEntry
                          attributeValueAssertion {
                             attributeType { ipRouteDest }
                             attributeValue 10.0.0.51
                          }
                       }
                    }
                 }


  If the system instance information is not present, then it is assumed
  to be the system with which the management association is established
  (i.e., the system receiving the request).

  Note that the object instance tree can contain components of the
  distinguished name that are outside the managed system (node).  This
  enables referencing of objects across management domains (there could
  be an object class "domain") and across a collection of nodes.  In a
  network where several intermediate managers may be involved in a
  request, each intermediate manager can use the "system" portion of



Warrier & Besaw                                                [Page 27]

RFC 1095                          CMOT                        April 1989


  the name to determine where to send a request or result.  This
  technique of naming treats each intermediate managing system as a
  proxy manager.  The proxy manager resolves the address of the next
  node in the chain and may use a different protocol to transfer the
  request or result.  Thus, the "system" instance information can be
  used to name devices being managed by proxy.

5.3.2.3.  The Inheritance Hierarchy

  The Internet SMI does not use the inheritance relationship. The
  "Subclass Of" field is present in the object class definition to show
  how the inheritance relationship would be represented and to allow
  for future extensibility.  It is not used for any of the object
  classes defined in Appendix B.

5.4.  Scoping, Filtering, and Synchronization

  Within some services, CMIS provides additional capabilities that are
  related to the SMI.  These are the scoping, filtering,
  synchronization, and linked-reply facilities.  The presence of these
  facilities are indicated by the Multiple Object Selection Functional
  Unit defined in CMIS [11].

  These facilities provide the manager with the ability to operate on a
  collection of managed objects, rather than a single object.  The
  selection of multiple objects occurs in two phases: scoping and
  filtering.  Scoping is used to identify the managed objects to which
  a filter is to be applied.  Then filtering is used to select a subset
  of managed objects that satisfy certain conditions.  If scoping is
  not used, only the "base" managed object indicated by the CMIS
  Managed Object Class parameter is implied.  An example of the use of
  scoping and filtering for selecting a particular managed object (a
  table entry) is given in one of the sample protocol exchanges found
  in Appendix C.

5.4.1.  Scoping

  Scoping is meant to be understood in terms of the containment
  hierarchy.  A position at a certain level of the containment tree is
  defined by the CMIS Managed Object Class parameter.  The CMIS Scope
  parameter is then interpreted relative to this "base" managed object
  (defined by both object class and object instance).  The Scope
  parameter can be used to select the base object alone, all managed
  objects in the entire subtree (of the containment tree) below the
  base object, or all managed objects in the "n"th level (n = 1, 2,
  3,...) below the base object.





Warrier & Besaw                                                [Page 28]

RFC 1095                          CMOT                        April 1989


5.4.2.  Filtering

  Within the objects selected as a result of the scope parameter, it is
  possible to further refine the selection of managed objects through
  the use of filtering.  Filtering provides the ability to select a
  subset of these objects based on conditions applied to attributes
  (e.g., IP routing table entries with the "ipRouteAge > 100") and
  logical operations (and, or, not).

5.4.3.  Synchronization

  When multiple managed objects have been selected using scoping and
  filtering, the question of synchronization across object instances
  (such as multiple IP routing table entries) arises.  The two possible
  choices are "best effort" and "atomic." If "best effort"
  synchronization is selected, the failure to apply an operation (e.g.,
  M-SET) to one instance of an object does not affect the effort to
  apply this operation to other instances of the object.  If "atomic"
  synchronization is selected, then the operation is either performed
  on all object instances selected or none.  The default
  synchronization is best effort.

5.4.4.  Linked Replies

  If the reply to a single request for a set of managed objects results
  in more than one managed object being returned, all of these managed
  objects cannot be returned together in a single CMIP response PDU.
  The reason for this is that the structure of the CMIP response PDU
  only has a single field for containing object instance information.
  Since each managed object has its own instance information, each
  managed object must be returned in a separate CMIP PDU.  In such a
  case, the CMIP Linked Reply PDU is used.  The Linked Reply PDU
  provides a means of associating each of the multiple replies with the
  original request that generated them.  Thus, a single CMIP Get
  Request PDU that uses scoping and filtering would result in zero or
  more CMIP Linked Reply PDUs being returned before a final CMIP Get
  Result PDU.

  A linked reply can also be used to segment a CMIP response pertaining
  to a single managed object.  This would only be necessary if UDP is
  being used as the underlying transport and it is not possible to
  return all the information requested about the managed object in a
  single response PDU subject to the size limitations described in
  section 10.2.

5.5.  Accessing Tables

  This section explains how to use the interpreted Internet SMI and MIB



Warrier & Besaw                                                [Page 29]

RFC 1095                          CMOT                        April 1989


  to access tables.

5.5.1.  Accessing Whole Tables

  A whole table is accessed by specifying the object class of the
  table, indicating a scoping level of one, and not providing an
  attribute identifier list. The CMIS standard [11] specifies that if
  the attribute identifier parameter is not present, then all attribute
  identifiers are assumed.  The following CMIS parameters would be used
  to return the entire TCP connection table:

       Object Class: { tcpConnTable }
       Object Instance: "empty" (unless proxy management is used)
       Scope: oneLevel(1)
       Filter: not present
       Attribute Identifier List: not present

  By scoping one level below "tcpConnTable," all managed objects of the
  class "tcpConnEntry" are selected.  (The object class "tcpConnEntry"
  is the only object class one level below the object class
  "tcpConnTable" in the containment hierarchy.) The absence of an
  attribute identifier list signals that all attributes of the managed
  object are to be returned (i.e., all fields of the TCP connection
  table entry).

  In reply to this request, each entry of the table will be returned in
  a separate CMIP PDU (either a Linked Reply PDU or a Get Result PDU).
  Each reply CMIP PDU will specify the Object Class "tcpConnEntry" and
  the appropriate Object Instance information for that entry, as well
  as an Attribute List giving the values of each of the fields of the
  table entry.

5.5.2.  Accessing Table Entries

  An entire table entry is accessed by specifying the object class of
  the table entry, providing a distinguished name specifying the
  instance of the table entry, and not providing an attribute
  identifier list. As seen above, the absence of the attribute
  identifier list parameter indicates that all attributes are assumed.
  The absence of a scope parameter indicates that the base managed
  object class is intended.  The following CMIS parameters would be
  used to return the entire IP routing table entry for which the field
  "ipRouteDest" has the value 10.0.0.51:

       Object Class: { ipRouteEntry }
       Object Instance: { ipRouteDest, 10.0.0.51 }
       Scope: not present
       Filter: not present



Warrier & Besaw                                                [Page 30]

RFC 1095                          CMOT                        April 1989


       Attribute Identifier List: not present

  The result is returned in a single CMIP Get Result PDU with an
  attribute list consisting of all of the attributes (i.e., fields) of
  the table entry and their corresponding values.

  If the object class field refers to a table entry and no instance
  information is provided to select a particular entry, then a
  "noSuchObjectInstance" CMIP error should be returned.










































Warrier & Besaw                                                [Page 31]

RFC 1095                          CMOT                        April 1989


                      Part II: Protocol Agreements

6.  CMOT Protocol Overview

  This part of the document is a specification of the protocols of the
  CMOT architecture. Contained herein are the agreements required to
  implement interoperable network management systems using these
  protocols.  The protocol suite defined by these implementors'
  agreements will facilitate communication between equipment of
  different vendors, suppliers, and networks.  This will allow the
  emergence of powerful multivendor network management based on ISO
  models and protocols.

  The choice of a set of protocol standards together with further
  agreements needed to implement those standards is commonly referred
  to as a "profile." The selection policy for the CMOT profile is to
  use existing standards from the international standards community
  (ISO and CCITT) and the Internet community.  Existing ISO standards
  and draft standards in the area of OSI network management form the
  basis of this CMOT profile.  Other ISO application layer standards
  (ROSE and ACSE) are used to support the ISO management protocol
  (CMIP).  To ensure interoperability, certain choices and restrictions
  are made here concerning various options and parameters provided by
  these standards.   Internet standards are used to provide the
  underlying network transport.  These agreements provide a precise
  statement of the implementation choices made for implementing ISO
  network management standards in TCP/IP-based internets.

  In addition to the Netman working group, there are at least two other
  bodies actively engaged in defining profiles for interoperable OSI
  network management: the National Institute of Science and Technology
  (NIST) Network Management Special Interest Group (NMSIG) and the OSI
  Network Management Forum.  Both of these groups are similar to the
  Netman working group in that they are each defining profiles for
  using ISO standards for network management.  Both differ in that they
  are specifying the use of underlying ISO protocols, while the Netman
  working group is concerned with using OSI management in TCP/IP
  networks.  In the interest of greater future compatibility, the
  Netman working group has attempted to make the CMOT profile conform
  as closely as possible to the ongoing work of these two bodies.

6.1.  The CMOT Protocol Suite

  The following seven protocols compose the CMOT protocol suite: ISO
  ACSE, ISO DIS ROSE, ISO DIS CMIP, the lightweight presentation
  protocol (LPP), UDP, TCP, and IP.  The relation of these protocols to
  each other is briefly summarized in Figure 2.




Warrier & Besaw                                                [Page 32]

RFC 1095                          CMOT                        April 1989


                +----------------------------------------------+
                |       Management Application Processes       |
                +----------------------------------------------+

                            +-------------------+
                            |       CMISE       |
                            | ISO DIS 9595/9596 |
                            +-------------------+

                +------------------+       +--------------------+
                |        ACSE      |       |        ROSE        |
                | ISO IS 8649/8650 |       | ISO DIS 9072-1/2   |
                +------------------+       +--------------------+

                +-----------------------------------------------+
                |     Lightweight Presentation Protocol (LPP)   |
                |                   RFC 1085                    |
                +-----------------------------------------------+

                +------------------+       +--------------------+
                |       TCP        |       |        UDP         |
                |     RFC 793      |       |      RFC 768       |
                +------------------+       +--------------------+

                +-----------------------------------------------+
                |                     IP                        |
                |                   RFC 791                     |
                +-----------------------------------------------+

                     Figure 2.  The CMOT Protocol Suite

6.2.  Conformance Requirements

  A CMOT-conformant system must implement the following protocols:
  ACSE, ROSE, CMIP, LPP, and IP.  A conformant system must support the
  use of the LPP over either UDP or TCP.  The use of the LPP over both
  UDP and TCP on the same system may be supported.  A conformant system
  need not support all CMIS operations.  A conformant system must,
  however, support at least one of the functional unit groups
  (indicating a set of supported services) defined in section 7.1.3.
  The service and protocol selections are described in greater detail
  in the following sections.

6.3.  Abstract Syntax Notation

  The abstract syntax notation for all of the application service
  elements of the CMOT protocol suite is Abstract Syntax Notation One
  (ASN.1) [5].  The LPP is also defined using ASN.1.  The basic



Warrier & Besaw                                                [Page 33]

RFC 1095                          CMOT                        April 1989


  encoding rules used for ASN.1 are specified in [6].  Both definite-
  length and indefinite-length encodings are expressly permitted.

7.  Common Management Information Service Element

  The Common Management Information Service Element (CMISE) is
  specified in two ISO documents.  The service definition for the
  Common Management Information Service (CMIS) is given in ISO DIS
  9595-2 [11].  The protocol specification for the Common Management
  Information Protocol (CMIP) is found in ISO DIS 9596-2 [12].

7.1.  CMIS Services

7.1.1.  CMIS Services Overview

  All of the CMIS services listed in Table 1 are allowed with the CMOT
  approach: M-INITIALISE, M-TERMINATE, M-ABORT, M-EVENT-REPORT, M-GET,
  M-SET, M-ACTION, M-CREATE, and M-DELETE.  The specific services
  supported by a system will be determined by the functional unit group
  or groups to which a system belongs.

7.1.2.  Functional Units

  The CMIS services supported are designated in terms of functional
  units [11].  Each functional unit corresponds to the invoker or
  performer aspect of a particular service.  (The terms "invoker" and
  "performer" are taken from ROSE and refer to the caller of and
  responder to a remote operation, respectively.) The "stand alone"
  functional units associated with each of the management services are
  given in Table 2 as functional units 0-17.  The number following the
  name of each functional unit in the table is defined by CMIP [12] to
  identify that particular functional unit.  The functional units are
  used by the CMISE-service-user at the time of association
  establishment to indicate which services it is willing to support.

















Warrier & Besaw                                                [Page 34]

RFC 1095                          CMOT                        April 1989


  +---------------------------------+------------------------+------+
  | Functional Unit                 | Service Primitives     | Mode |
  +---------------------------------+------------------------+------+
  | conf. event report invoker(0)   | M-EVENT-REPORT Req/Conf| C    |
  | conf. event report performer(1) | M-EVENT-REPORT Ind/Rsp | C    |
  | event report invoker(2)         | M-EVENT-REPORT Req     | U    |
  | event report performer(3)       | M-EVENT-REPORT Ind     | U    |
  | confirmed get invoker(4)        | M-GET Req/Conf         | N/A  |
  | confirmed get performer(5)      | M-GET Ind/Rsp          | N/A  |
  | confirmed set invoker(6)        | M-SET Req/Conf         | C    |
  | confirmed set performer(7)      | M-SET Ind/Rsp          | C    |
  | set invoker(8)                  | M-SET Req              | U    |
  | set performer(9)                | M-SET Ind              | U    |
  | confirmed action invoker(10)    | M-ACTION Req/Conf      | C    |
  | confirmed action performer(11)  | M-ACTION Ind/Rsp       | C    |
  | action invoker(12)              | M-ACTION Req           | U    |
  | action performer(13)            | M-ACTION Ind           | U    |
  | confirmed create invoker(14)    | M-CREATE Req/Conf      | N/A  |
  | confirmed create performer(15)  | M-CREATE Ind/Rsp       | N/A  |
  | confirmed delete invoker(16)    | M-DELETE Req/Conf      | N/A  |
  | confirmed delete performer(17)  | M-DELETE Ind/Rsp       | N/A  |
  | multiple reply(18)              | Linked Identification  | N/A  |
  | multiple object selection(19)   | Scope, Filter, Sync.   | N/A  |
  | extended service(20)            | Extended Presentation  | N/A  |
  +---------------------------------+------------------------+------+
   C = confirmed, U = non-confirmed, N/A = not applicable

                         Table 2.  Functional Units

  In addition to the stand alone functional units, there are three
  additional functional units.  If any of these additional functional
  units are selected, then at least one of the stand alone functional
  units must be selected.  The multiple reply functional unit makes
  available the use of the linked identification parameter in the
  selected stand alone functional units.  This makes possible the use
  of linked reply (multiple CMIP PDU responses to a single request).
  The multiple object selection functional unit makes available the use
  of the scope, filter, and synchronization parameters in the selected
  stand alone functional units.  If the multiple object selection
  functional unit is selected, then the multiple reply functional unit
  must also be selected.  The extended services functional unit makes
  available presentation layer services in addition to the P-DATA
  service.  Selecting this functional unit has no effect in the context
  of CMOT, since the lightweight presentation layer provides only
  minimal ISO presentation services.






Warrier & Besaw                                                [Page 35]

RFC 1095                          CMOT                        April 1989


7.1.3.  Functional Unit Groups

  In order to assist in the reduction of code size and complexity for
  different types of devices, a number of "functional unit groups" have
  been defined.  Each of these groups indicates a set of services
  defined for either a manager or an agent.  The "negotiation"
  concerning which functional unit groups are supported is done by
  means of the Functional Units parameter of the M-INITIALISE service
  (see section 7.1.4.1).  There are five functional unit groups for
  managers: Event Monitor, Monitoring Manager, Simple Manager,
  Controlling Manager, and Full Manager.  Each functional unit group is
  a superset of the preceding group.  There are five functional unit
  groups for agents: Event Sender, Monitored Agent, Simple Agent,
  Controlled Agent, and Full Agent.  Again, each functional unit group
  is a superset of the preceding group.  The operations supported for
  each functional unit group are summarized in Table 3.


  +--------------------+------+-----+-----+-------+------+-----+------+
  |                    |Event | Get | Set |Create/|Action|Mult.|Mult. |
  |Functional Unit     |Report|     |     |Delete |      |Reply|Object|
  |Groups              |      |     |     |       |      |     |Select|
  +--------------------+------+-----+-----+-------+------+-----+------+
  | 1. Event Monitor   | U    | no  | no  | no    | no   | no  | no   |
  | 2. Event Sender    | U    | no  | no  | no    | no   | no  | no   |
  | 3. Monitoring Mgr. | U    | yes | no  | no    | no   | no  | no   |
  | 4. Monitored Agent | U    | yes | no  | no    | no   | no  | no   |
  | 5. Simple Manager  | U    | yes | C   | no    | no   | yes | no*  |
  | 6. Simple Agent    | U    | yes | C   | no    | no   | yes | no*  |
  | 7. Controlling Mgr.| U    | yes | U/C | yes   | no   | yes | yes  |
  | 8. Controlled Agent| U    | yes | U/C | yes   | no   | yes | yes  |
  | 9. Full Manager    | U/C  | yes | U/C | yes   | U/C  | yes | yes  |
  |10. Full Agent      | U/C  | yes | U/C | yes   | U/C  | yes | yes  |
  +--------------------+------+-----+-----+-------+------+-----+------+
   C = confirmed, U = non-confirmed
   * Simple Managers and Agents must support "oneLevel" scoping for all
     and only those cases where it is required to access a whole table
     and may support synchronization other than "best effort"; no support
     for filtering is required.

                      Table 3.  Functional Unit Groups


  A conformant system must support at least one of these functional
  unit groups.  A system may support both a manager group and an agent
  group.  A system only needs to implement the services and service
  primitives required for the groups that it supports.  In addition, a
  system may support services that are not required by any group that



Warrier & Besaw                                                [Page 36]

RFC 1095                          CMOT                        April 1989


  it supports.

7.1.4.  M-INITIALISE Parameters

  The M-INITIALISE service is provided by the ACSE A-ASSOCIATE service.
  The parameters for the M-INITIALISE service are defined in [11] and
  summarized in Table 4.


                +-------------------+-----------+-----------+
                | Parameter Name    | Req/Ind   | Rsp/Conf  |
                +-------------------+-----------+-----------+
                | Functional Units  | Mandatory | Mandatory |
                | User Information  | Optional  | Optional  |
                | Access Control    | Optional  | Optional  |
                +-------------------+-----------+-----------+

                      Table 4. M-INITIALISE Parameters


  Notice that the further agreement has been made that the Functional
  Units parameter is mandatory at all times.  The M-INITIALISE
  parameters are conveyed as ACSE user information in the ACSE request
  PDU.

7.1.4.1.  Functional Units

  The exchange of functional units between the initiating CMISE-
  service-user and the responding CMISE-service-user is required.  This
  allows the CMIS-service-users to inform each other which functional
  units are supported.  CMIP [12] defines a 21-bit BIT STRING to
  communicate which functional units are supported.  A functional unit
  is supported if the corresponding bit in this bit string is one.  The
  correspondence between functional units and functional unit groups is
  given in Table 5.  The left column gives the functional unit
  corresponding to a particular bit position. The numbers along the top
  of the table indicate the functional unit group (the numbers of the
  functional unit groups are given in Table 3).  The various columns
  indicate the value of each bit for a particular functional unit
  group.











Warrier & Besaw                                                [Page 37]

RFC 1095                          CMOT                        April 1989


+------------------------------+---+---+---+---+---+---+---+---+---+---+
|Functional Unit               | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10|
+------------------------------+---+---+---+---+---+---+---+---+---+---+
|conf. event report invoker(0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
|conf. event report perf.(1)   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
|event report invoker(2)       | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
|event report performer(3)     | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
|confirmed get invoker(4)      | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
|confirmed get performer(5)    | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
|confirmed set invoker(6)      | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
|confirmed set performer(7)    | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
|set invoker(8)                | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
|set performer(9)              | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
|confirmed action invoker(10)  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
|confirmed action performer(11)| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
|action invoker(12)            | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
|action performer(13)          | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
|confirmed create invoker(14)  | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
|confirmed create performer(15)| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
|confirmed delete invoker(16)  | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
|confirmed delete performer(17)| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
|multiple reply(18)            | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
|multiple object selection(19) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
|extended service(20)          | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+------------------------------+---+---+---+---+---+---+---+---+---+---+
|                              | M | A | M | A | M | A | M | A | M | A |
+------------------------------+---+---+---+---+---+---+---+---+---+---+
       1 = supported, 0 = not supported, M = manager, A = agent

                    Table 5.  Functional Unit Group Values


  The "negotiation" using functional units proceeds as follows.  The
  initiating CMISE-service-user (manager or agent) sends the functional
  units representing the functional unit group to which it belongs.
  The responding CMISE-service-user sends the functional units
  representing the functional unit group to which it belongs.  (If an
  application process belongs to both a manager and an agent functional
  unit group, then both functional unit groups are indicated using the
  same functional unit bit string.) If the functional unit groups
  supported by the two application entities do not allow meaningful
  communication, then either entity may refuse the association.
  Meaningful communication is defined as the ability of the entity to
  invoke or perform at least one CMIS operation supported by the other
  entity (i.e., some "complementary" set of functional units exists).
  After an association has been established, a system must provide the
  proper response for functional units that it has indicated it can
  support and should gracefully refuse other requests in accordance



Warrier & Besaw                                                [Page 38]

RFC 1095                          CMOT                        April 1989


  with the protocol.

7.1.4.2.  User Information

  The User Information parameter is optional.  No entity is required to
  send this parameter, but all entities are expected to tolerate
  receipt of it.

  One possible use of the User Information parameter is to convey
  information describing MIB extensions supported by the manager or
  agent.  This can be viewed as a further way of refining the
  application context.  The mechanism for doing this is not defined at
  this time.

7.1.4.3.  Access Control

  The CMIS M-INITIALISE Access Control parameter is optional.  Access
  control is supported on a per association basis using ACSE.  It is
  recommended (but not required) that the access control parameter be
  used for each A-ASSOCIATE request (via M-INITIALISE).

  Access control is also possible on a per request basis with the CMIS
  Access Control parameter. This parameter might be used to implement
  security similar to the community access rights mechanism provided by
  SNMP [4].  It is expected that the Access Control parameter will be
  used to implement the standard TCP/IP authentication mechanism once
  this has been defined.

7.2.  Supporting Services

  The M-INITIALISE, M-TERMINATE, and M-ABORT services assume the use of
  ACSE.  The following ACSE services are required: A-ASSOCIATE, A-
  RELEASE, A-ABORT, and A-P-ABORT.  The rest of the CMIP protocol uses
  the RO-INVOKE, RO-RESULT, RO-ERROR, and RO-REJECT services of ROSE.

7.3.  CMIP Agreements

  The following sections contain specific CMIP agreements in addition
  to those specified in the CMIP standard [12].

7.3.1.  Invoke Identifier

  It is required that there be a unique invoke identifier (present in
  the ROSE PDU) for successive invocations on the same association.
  The invoke identifier is provided by the invoking CMISE-service-user.
  Invoke identifiers should increase monotonically during the lifetime
  of an association.  Semantically, the invoke identifier is a Counter
  as defined in [2].  Unique identifiers will allow the detection of



Warrier & Besaw                                                [Page 39]

RFC 1095                          CMOT                        April 1989


  lost and duplicate requests.

7.3.2.  Object Class

  The object class field of all CMIP PDUs shall be limited to the
  "globalForm" choice:


          ObjectClass ::=
               CHOICE {
                    globalForm    [0] IMPLICIT OBJECT IDENTIFIER
               }


7.3.3.  Object Instance

  The object instance field of all CMIP PDUs is limited to the
  "distinguishedName" choice:


          ObjectInstance ::=
               CHOICE {
                    distinguishedName  [2] IMPLICIT DistinguishedName
               }


  The definition for DistinguishedName is imported from CCITT X.500 and
  ISO DIS 9594-2 [26]:

  DistinguishedName ::= RDNSequence
  RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
  RelativeDistinguishedName ::= SET OF AttributeValueAssertion

  The definition for AttributeValueAssertion is contained in CMIP [12]:

  AttributeValueAssertion ::= SEQUENCE { AttributeId, AttributeValue }
  AttributeId ::=
       CHOICE {
             globalId   [0] IMPLICIT OBJECT IDENTIFIER
             localId    [1] IMPLICIT INTEGER
       }
  AttributeValue ::= ANY DEFINED BY attributeId

  Those attributes to be used as the distinguished attributes of a
  managed object are defined at the time of registration of the object
  class and are identified in the NAMES clause of the OBJECT-CLASS
  macro.




Warrier & Besaw                                                [Page 40]

RFC 1095                          CMOT                        April 1989


  When there is no instance information to convey about a managed
  object, then the following "empty" object instance shall be used: The
  "distinguishedName" choice of ObjectInstance shall be an RDNSequence
  consisting of a SEQUENCE of one RelativeDistinguishedName. That
  RelativeDistinguishedName shall be an empty SET of
  AttributeValueAssertions.

7.3.4.  Access Control

  The access control parameter is optional.  The receipt of this
  parameter must be tolerated (i.e., gracefully accepted), but a
  receiving entity is free to ignore this information.  The Access
  Control field is defined in [12] as EXTERNAL.  Until a more
  sophisticated access control mechanism is defined, simple
  authentication can be accomplished by using an unencrypted password
  in the access control field.  The definition of this EXTERNAL is the
  same as that for the ACSE Access Control field (section 8.3.2).

7.3.5.  Synchronization

  Support for "best effort" synchronization is required.  Atomic
  synchronization may also be supported, but is not required.

7.3.6.  Scope

  Scoping is supported if the multiple object selection functional unit
  is selected.  If scoping is supported, all values of the scope field
  shall be supported.

7.3.7.  Filter

  Filtering is supported if the multiple object selection functional
  unit is selected.  If filtering is supported, it is not required that
  all features of filtering be supported.  The following are the
  minimal filtering requirements for any system that supports
  filtering.  In the CMIP field CMISFilter, at least two instances of
  the binary operators ("and," "or") must be supported.  Support for
  additional instances of these operators is not required.  Double
  "not" need not be supported.  In FilterItem, the arithmetic
  operations ("equality", "greaterOrEqual," "lessOrEqual") must be
  supported.  The "present" choice of FilterItem must also be
  supported.  It is not required to support string operations (namely,
  the "substrings" choice of the FilterItem type).  Thus, the minimal
  requirements for filtering yield this restricted definition of
  FilterItem:






Warrier & Besaw                                                [Page 41]

RFC 1095                          CMOT                        April 1989


             FilterItem ::=
                  CHOICE {
                       equality       [0] AttributeValueAssertion,
                       greaterOrEqual [2] AttributeValueAssertion,
                       lessOrEqual    [3] AttributeValueAssertion,
                       present        [4] AttributeID
                  }


7.3.8.  Attribute Identifier

  Both choices for the CMIP AttributeId field are allowed:


             AttributeId ::=
                  CHOICE {
                       globalId  [0] IMPLICIT OBJECT IDENTIFIER,
                       localId   [1] IMPLICIT INTEGER
                  }


  The "globalId" form of AttributeId is required if scoping is used
  (i.e., the value of the scope field is other than "baseObject").

7.3.9.  Event Type Identifier

  Both choices for the CMIP EventTypeId field are allowed:


             EventTypeId ::=
                  CHOICE {
                       globalId  [6] IMPLICIT OBJECT IDENTIFIER,
                       localId   [7] IMPLICIT INTEGER
                  }


7.3.10.  Action Type Identifier

  Both choices for the CMIP ActionTypeId field are allowed:


             ActionTypeId ::=
                  CHOICE {
                       globalId  [2] IMPLICIT OBJECT IDENTIFIER,
                       localId   [3] IMPLICIT INTEGER
                  }





Warrier & Besaw                                                [Page 42]

RFC 1095                          CMOT                        April 1989


  The "globalId" form of ActionTypeId is required if scoping is used
  (i.e., the value of the scope field is other than "baseObject").

7.3.11.  Time Fields

  The "eventTime" field of the m-EventReport Invoke PDU and the m-
  EventConfirmedReport Invoke PDU must be present.

  The "currentTime" field of the following PDUs must be present: the
  m-EventReport Confirmed Result PDU, the m-Get Result PDU, the m-Set
  Result PDU, the m-Action Confirmed Result PDU, the m-Create Result
  PDU, the m-Delete Result PDU, the GetListError Error PDU, and the
  SetListError Error PDU.

  All CMIP time fields shall use the ASN.1 GeneralizedTime type defined
  in [5] with 1 millisecond granularity.

  If the system generating the PDU does not have the current time, yet
  does have the time since last boot, then GeneralizedTime can be used
  to encode this information.  The time since last boot will be added
  to the base time "0001 Jan 1 00:00:00.00" using the Gregorian
  calendar algorithm.  (In the Gregorian calendar, all years have 365
  days except those divisible by 4 and not by 400, which have 366.) The
  use of the year 1 as the base year will prevent any confusion with
  current time.

  If no meaningful time is available, then the year 0 shall be used in
  GeneralizedTime to indicate this fact.

7.3.12.  Response PDUs

  Both the "managedObjectClass" and "managedObjectInstance" fields must
  be present in the following CMIP response PDUs: the m-EventReport
  Confirmed Result PDU, the m-Get Result PDU, the m-Set Result PDU, the
  m-Action Confirmed Result PDU, the m-Create Result PDU, the m-Delete
  Result PDU, the GetListError Error PDU, and the SetListError Error
  PDU.  The "managedObjectInstance" field must be present in the
  ProcessingFailure Error PDU.  The "managedObjectClass" field must be
  present in the NoSuchArgument Error PDU.

7.3.13.  Error PDUs

  The "globalId" form of AttributeId is required for the
  NoSuchAttributeId Error PDU and the InvalidAttributeValue Error PDU.

8.  Association Control Service Element

  The Association Control Service Element (ACSE), which is necessary



Warrier & Besaw                                                [Page 43]

RFC 1095                          CMOT                        April 1989


  for establishing and releasing application associations, is defined
  in [7] and [8].

8.1.  ACSE Services

  The ACSE service description is detailed in ISO 8649 [7].  All of the
  defined ACSE services are mandatory:

      o  A-ASSOCIATE: This confirmed service is used to initiate an
         application association between application entities.

      o  A-RELEASE: This confirmed service is used to release an
         application association between application entities without
         loss of information.

      o  A-ABORT: This unconfirmed service causes the abnormal release
         of an association with a possible loss of information.

      o  A-P-ABORT: This provider-initiated service indicates the
         abnormal release of an application association by the
         underlying presentation service with a possible loss of
         information.

  Mappings of the ACSE services to presentation services and ACSE APDUs
  are shown in Table 6, along with a section reference to ISO 8649 [7].


     +-------------+------------+----------------------+-------------+
     |    ACSE     |  ISO 8649  |        Related       |  Associated |
     |   Service   |  Reference | Presentation Service |    APDUs    |
     +-------------+------------+----------------------+-------------+
     | A-ASSOCIATE |     9.1    |       P-CONNECT      | AARQ, AARE  |
     | A-RELEASE   |     9.2    |       P-RELEASE      | RLRQ, RLRE  |
     | A-ABORT     |     9.3    |       P-U-ABORT      | ABRT        |
     | A-P-ABORT   |     9.4    |       P-P-ABORT      | (none)      |
     +-------------+------------+----------------------+-------------+

                    Table 6.  Mapping of ACSE Services


8.2.  Supporting Services

  ACSE will make use of the following ISO presentation layer services:
  P-CONNECT, P-RELEASE, P-U-ABORT, and P-P-ABORT.  These presentation
  services will be provided by the LPP [13].






Warrier & Besaw                                                [Page 44]

RFC 1095                          CMOT                        April 1989


8.3.  ACSE Protocol

  The ACSE protocol specification is found in ISO 8650 [8]. All five
  ACSE APDUs specified in the standard are mandatory.

8.3.1.  Application Context Name

  The Application Context Name takes the form of an OBJECT IDENTIFIER.
  The value of this OBJECT IDENTIFIER includes both the version of CMOT
  being used for this association and the version number of the highest
  version of the Internet-standard MIB supported by the manager or
   agent.  The application context name has the following generic form:


                { iso(1) org(3) dod(6) internet(1) mgmt(2) mib(n)
                  cmot(9) cmotVersion(1) version-number(v) }

                where n = highest MIB version supported and
                      v = version of CMOT supported


  For the version of CMOT defined in these agreements, "version-number"
  has the value of one (1). This version of CMOT implies the versions
  of the ISO protocols specified in this memo (see Figure 2).

8.3.2.  User Information

  The following CMIS M-INITIALISE parameters are all mapped onto the
  ACSE User Information parameter: Functional Units, User Information,
  and Access Control.  (See section 7.1.4 for more information on the
  CMIS M-INITIALISE parameters.) ACSE User Information is defined in
  ISO 8650 as follows:

             Association-information ::= SEQUENCE OF EXTERNAL

  The ASN.1 defined type EXTERNAL, which is defined in section 35 of
  ISO 8824 [5], requires both an OBJECT IDENTIFIER for identification
  and an associated ASN.1 encoding.

  The OBJECT IDENTIFIER and syntax associated with the ACSE Functional
  Units EXTERNAL definition are found in [12]. The OBJECT IDENTIFIER is
  defined as { iso(1) standard(0) ips-osi-mips(9596) cmip(2) version(1)
  acse(0) functional-units(0) } and the syntax is a BIT STRING.

  The EXTERNAL definition for User Information is left unspecified at
  this time; it will be defined in a future memo.

  If some form of access control is required, a simple unencrypted



Warrier & Besaw                                                [Page 45]

RFC 1095                          CMOT                        April 1989


  password can be used.  The EXTERNAL for this simple access control
  will use the OBJECT IDENTIFIER { cmotAcseAccessControl } (Appendix A)
  and the syntax OCTET STRING. A more sophisticated authentication
  mechanism will be defined with another EXTERNAL definition in a
  future memo.

8.3.3.  Presentation Service Parameters

  The values and defaults of parameters to the ACSE primitives that are
  given to the presentation service are specified in RFC 1085 [13].

  For the Presentation Context Definition List parameter to the P-
  CONNECT service [13, p. 10], the value of the Abstract Syntax Name
  associated with the Presentation Context Identifier of value one (1)
  shall be identical to the OBJECT IDENTIFIER used for the Application
  Context Name (section 8.3.1).

  The Quality of Service parameter shall have the value of either
  "tcp-based" or "udp-based."

9.  Remote Operations Service Element

  The Remote Operations Service Element (ROSE), which provides the
  ability to invoke remote operations, is specified in ISO 9072-1 [9]
  and 9072-2 [10].  ROSE can only be used once an association has been
  established between two application entities.  ROSE is used to
  support CMISE; it is not intended to be used directly by management
  application processes.

9.1.   ROSE Services

  The ROSE service definition is detailed in ISO 9072-1 [9].  All of
  the defined ROSE services are mandatory:

      o  RO-INVOKE: This unconfirmed service is used by an invoking
         ROSE-user to cause the invocation of an operation to be
         performed by an invoked ROSE-user.

      o  RO-RESULT: This unconfirmed service is used by an invoked
         ROSE-user to reply to a previous RO-INVOKE indication in the
         case of a successfully performed operation.

      o  RO-ERROR: This unconfirmed service is used by an invoked
         ROSE-user to reply to a previous RO-INVOKE indication in the
         case of an unsuccessfully performed operation.

      o  RO-REJECT-U: This unconfirmed service is used by a ROSE-user
         to reject a request (RO-INVOKE indication) of the other



Warrier & Besaw                                                [Page 46]

RFC 1095                          CMOT                        April 1989


         ROSE-user if it has detected a problem.  It may also be used
         by a ROSE-user to (optionally) reject a reply (RO-RESULT
         indication, RO-ERROR indication) from the other ROSE-user.

      o  RO-REJECT-P: This provider-initiated service is used to advise
         a ROSE-user of a problem detected by the ROSE-provider.

  Mappings of ROSE services to ISO presentation services and ROSE APDUs
  are shown in Table 7, along with a section reference to ISO 9072-1
  [9].


     +-------------+------------+----------------------+-------------+
     |    ROSE     | ISO 9072-1 |        Related       |  Associated |
     |   Service   | Reference  | Presentation Service |    APDUs    |
     +-------------+------------+----------------------+-------------+
     | RO-INVOKE   |    10.1    |        P-DATA        |    ROIV     |
     | RO-RESULT   |    10.2    |        P-DATA        |    RORS     |
     | RO-ERROR    |    10.3    |        P-DATA        |    ROER     |
     | RO-REJECT-U |    10.4    |        P-DATA        |    RORJ     |
     | RO-REJECT-P |    10.5    |        P-DATA        |    RORJ     |
     +-------------+------------+----------------------+-------------+


  Table 7.  Mapping of ROSE Services


9.2.  Supporting Services

  ROSE will only make use of the presentation layer service P-DATA.
  This service is provided by the LPP.  The following restrictions are
  a consequence of the use of the LPP: First, mappings to the Reliable
  Transfer Service Element (RTSE) are not possible, since no RTSE is
  present.  Second, no data token is used with the presentation
  services.

9.3.  ROSE Protocol

  The protocol specification for ROSE shall follow ISO 9072-2 [10].
  All four APDUs specified in the standard are mandatory.  In addition,
  the ability to support the correct origination and reception of the
  linked-id protocol element is required if the multiple reply
  functional unit has been selected (section 7.1.2).

9.3.1.  Operation Class

  Since no turn management is required by ROSE, the Operation Class
  parameter may be ignored.



Warrier & Besaw                                                [Page 47]

RFC 1095                          CMOT                        April 1989


9.3.2.  Priority

  ROSE will deliver each APDU in a "first in, first out" manner.  Since
  no turn management is required by ROSE, the Priority parameter may be
  ignored.

10.  Lightweight Presentation

  The specification for the lightweight presentation protocol (LPP) is
  contained in RFC 1085, "ISO Presentation Services on top of TCP/IP-
  based internets" [13].  The services defined in that memo are the
  minimal set of ISO presentation services required to support ACSE and
  ROSE.  The protocol specified to provide these services is a
  replacement for the ISO presentation protocol.

10.1.  Lightweight Presentation Services

  All of the ISO presentation services provided by the LPP are
  mandatory: P-CONNECT, P-RELEASE, P-U-ABORT, P-P-ABORT, and P-DATA.

10.2.  Supporting Services

  Depending on the quality of service indicated in the P-CONNECT
  request, the LPP will use either UDP (low quality) or TCP (high
  quality) as the underlying transport protocol.  UDP provides an
  unreliable datagram service, while TCP provides a reliable
  connection-oriented transport service.

  Practically speaking, there are two ways to discover whether a remote
  system supports the LPP over UDP or TCP.  The first is to use some
  undefined form of directory service. This might be nothing more than
  a local table.  The second way is simply to attempt to establish an
  association with the remote application entity using the desired
  quality of service.  If the transport for that service is unavailable
  on the remote system, then the local presentation-service-provided
  will issue a negative P-CONNECT.CONFIRMATION primitive.  This will be
  interpreted by ACSE as a failure to establish an association with the
  desired quality of service.

  The following well-known UDP and TCP port numbers are defined:

            cmot manager     163/tcp
            cmot manager     163/udp
            cmot agent       164/tcp
            cmot agent       164/udp

  When UDP is used, an implementation need not accept a lightweight
  presentation PDU whose length exceeds 484.  The purpose of this



Warrier & Besaw                                                [Page 48]

RFC 1095                          CMOT                        April 1989


  restriction is to ensure that CMIP requests and responses can be
  transmitted in a single unfragmented IP datagram.

10.3.  Lightweight Presentation Protocol

  No further agreements are needed for the lightweight presentation
  protocol defined in RFC 1085.

11.  Acknowledgements

  This RFC is the work of many people.  The following members of the
  IETF Netman working group and other interested individuals made
  important contributions:

            Amatzia Ben-Artzi, 3Com
            Asheem Chandna, AT&T Bell Laboratories
            Ken Chapman, Digital Equipment Corporation
            Anthony Chung, Sytek
            George Cohn, Ungermann-Bass
            Gabriele Cressman, Sun Microsystems
            Pranati Kapadia, Hewlett-Packard
            Lee LaBarre, The MITRE Corporation (chair)
            Dave Mackie, 3Com
            Keith McCloghrie, The Wollongong Group
            Jim Robertson, 3Com
            Milt Roselinsky, CMC
            Marshall Rose, The Wollongong Group
            John Scott, Data General
            Lou Steinberg, IBM

12.  References

    [1]  Cerf, V., "IAB Recommendations for the Development of Internet
         Network Management Standards", RFC 1052, April 1988.

    [2]  Rose, M., and K. McCloghrie, "Structure and Identification of
         Management Information for TCP/IP-based internets", RFC 1065,
         August 1988.

    [3]  McCloghrie, K., and M. Rose, "Management Information Base for
         Network Management of TCP/IP-based internets", RFC 1066,
         August 1988.

    [4]  Case, J., M. Fedor, M. Schoffstall, and J. Davin, "A Simple
         Network Management Protocol (SNMP)", RFC 1098, (Obsoletes
         RFC 1067), April 1989.

    [5]  ISO 8824: "Information processing systems - Open Systems



Warrier & Besaw                                                [Page 49]

RFC 1095                          CMOT                        April 1989


         Interconnection, Specification of Abstract Syntax Notation One
         (ASN.1)", Geneva, March 1988.

    [6]  ISO 8825: "Information processing systems - Open Systems
         Interconnection, Specification of Basic Encoding Rules for
         Abstract Notation One (ASN.1)", Geneva, March 1988.

    [7]  ISO 8649: "Information processing systems - Open Systems
         Interconnection, Service Definition for Association Control
         Service Element".

    [8]  ISO 8650: "Information processing systems - Open Systems
         Interconnection, Protocol Specification for Association
         Control Service Element".

    [9]  CCITT Recommendation X.219, Working Document for ISO 9072-1:
         "Information processing systems - Text Communication, Remote
         Operations: Model, Notation and Service Definition",
         Gloucester, November 1987.

    [10]  CCITT Recommendation X.229, Working Document for ISO 9072-2:
          "Information processing systems - Text Communication, Remote
          Operations: Protocol Specification", Gloucester,
          November 1987.

    [11]  ISO DIS 9595-2: "Information processing systems - Open
          Systems Interconnection, Management Information Service
          Definition - Part 2: Common Management Information
          Service", 22 December 1988.

    [12]  ISO DIS 9596-2: "Information Processing Systems - Open
          Systems Interconnection, Management Information Protocol
          Specification - Part 2: Common Management Information
          Protocol", 22 December 1988.

    [13]  Rose, M., "ISO Presentation Services on top of TCP/IP-based
          internets", RFC 1085, December 1988.

    [14]  OSI Network Management Forum, "Forum Interoperable Interface
          Protocols", September 1988.

    [15]  ISO DIS 7498-4: "Information processing systems - Open
          Systems Interconnection, Basic Reference Model - Part 4:
          OSI Management Framework".

    [16]  ISO/IEC JTC1/SC21/WG4 N571: "Information processing systems -
          Open Systems Interconnection, Systems Management: Overview",
          London, July 1988.



Warrier & Besaw                                                [Page 50]

RFC 1095                          CMOT                        April 1989


    [17]  Klerer, S. Mark, "The OSI Management Architecture: An
          Overview", IEEE Network Magazine, March 1988.

    [18]  Ben-Artzi, A., "Network Management for TCP/IP Networks: An
          Overview", Internet Engineering Task Force working note,
          April 1988.

    [19]  ISO/IEC JTC1/SC21/WG4 N3324: "Information processing
          systems - Open Systems Interconnection, Management
          Information Services - Structure of Management
          Information - Part I: Management Information Model",
          Sydney, December 1988.

    [20]  Postel, J., "User Datagram Protocol", RFC 768, August 1980.

    [21]  Postel, J., "Transmission Control Protocol", RFC 793,
          September 1981.

    [22]  ISO DP 9534: "Information processing systems - Open Systems
          Interconnection, Application Layer Structure", 10 March 1987.

    [23]  Rose, M., "ISO Transport Services on top of the TCP",
          RFC 1006, May 1987.

    [24]  ISO 8822: "Information processing systems - Open Systems
          Interconnection, Connection Oriented Presentation Service
          Definition", June 1987.

    [25]  Postel, J., "Internet Protocol", RFC 791, September 1981.

    [26]  CCITT Draft Recommendation X.500, ISO DIS 9594/1-8: "The
          Directory", Geneva, March 1988.



















Warrier & Besaw                                                [Page 51]

RFC 1095                          CMOT                        April 1989


Appendix A - The CMOT Group

  CMOT DEFINITIONS ::= BEGIN

  IMPORTS OBJECT-TYPE FROM RFC1065-SMI;

  IMPORTS mib FROM RFC1066-MIB;

    cmot  OBJECT IDENTIFIER ::= { mib 9 }

    -- The following assignments are made for the purpose of
    -- identification within CMOT and do not refer to MIB objects.

    cmotVersion              OBJECT IDENTIFIER ::= { cmot 1 }

    cmotAcseInfo             OBJECT IDENTIFIER ::= { cmot 2 }
    cmotAcseAccessControl    OBJECT IDENTIFIER ::= { cmotAcseInfo 1 }

    -- The following definition is made for use in referencing a
    -- managed system (for the purpose of proxy management) in the
    -- CMIP Object Instance field. It does not represent a MIB
    -- object.

    cmotSystemID OBJECT-TYPE
            SYNTAX  CmotSystemID
            ACCESS  not-accessible
            STATUS  optional
            ::= { cmot 3 }

    CmotSystemID ::= CHOICE {
            arbitrary     [0] IMPLICIT OCTET STRING,
            proxyIndex    [1] IMPLICIT INTEGER,
            inetAddr      [2] IMPLICIT IpAddress,
            domainName    [3] IMPLICIT OCTET STRING,
            mac802Addr    [4] IMPLICIT OCTET STRING,
            x121Addr      [5] IMPLICIT OCTET STRING,
            nsap          [6] IMPLICIT OCTET STRING,
            netbiosName   [7] IMPLICIT OCTET STRING,
            snaName       [8] IMPLICIT OCTET STRING,
            adminId       [9] IMPLICIT OBJECT IDENTIFIER
    }

     -- All addresses should be conveyed in network-byte order.

  END






Warrier & Besaw                                                [Page 52]

RFC 1095                          CMOT                        April 1989


Appendix B - Management Information Summary

  RFC1066-MIB-INTERPRETATION

         { iso org(3) dod(6) internet(1) mgmt(2) 1 }

             DEFINITIONS ::= BEGIN

             IMPORTS mgmt, OBJECT-TYPE FROM RFC1065-SMI;

               mib        OBJECT IDENTIFIER ::= { mgmt 1 }

               system     OBJECT IDENTIFIER ::= { mib 1 }
               interfaces OBJECT IDENTIFIER ::= { mib 2 }
               at         OBJECT IDENTIFIER ::= { mib 3 }
               ip         OBJECT IDENTIFIER ::= { mib 4 }
               icmp       OBJECT IDENTIFIER ::= { mib 5 }
               tcp        OBJECT IDENTIFIER ::= { mib 6 }
               udp        OBJECT IDENTIFIER ::= { mib 7 }
               egp        OBJECT IDENTIFIER ::= { mib 8 }


        -- definition of object class

        OBJECT-CLASS MACRO  ::=
        BEGIN
          TYPE NOTATION  ::= SubClassOf Superiors Names Attributes
          VALUE NOTATION ::= value(VALUE OBJECT IDENTIFIER)

          SubClassOf     ::= "SUBCLASS OF" value(OBJECT-CLASS)
                                           | empty
          Superiors      ::= "SUPERIORS" "{" SuperiorList "}"
                                           | empty
          Names          ::= "NAMES" "{" AttributeList "}"
                                           | empty
          Attributes     ::= "CONTAINS" "{" AttributeList "}"
                                           | empty

          SuperiorList   ::= Superior | Superior "," SuperiorList
          Superior       ::= value(OBJECT-CLASS)

          AttributeList  ::= Attribute | Attribute "," AttributeList
          Attribute      ::= value(OBJECT-TYPE)

        END

        -- the System group




Warrier & Besaw                                                [Page 53]

RFC 1095                          CMOT                        April 1989


        system OBJECT-CLASS
                NAMES  { cmotSystemID }   -- Appendix A
                CONTAINS  {
                        sysDescr,
                        sysObjectID,
                        sysUpTime
                }
                ::= { mib 1 }

        -- the Interfaces group

        interfaces OBJECT-CLASS
                SUPERIORS  { system }
                CONTAINS  { ifNumber }
                ::= { mib 2 }

        ifTable OBJECT-CLASS
                SUPERIORS  { interfaces }
                ::= { interfaces 2 }

        ifEntry OBJECT-CLASS
                SUPERIORS  { ifTable }
                NAMES { ifIndex }
                CONTAINS  {
                        ifIndex,
                        ifDescr,
                        ifType,
                        ifMtu,
                        ifSpeed,
                        ifPhysAddress,
                        ifAdminStatus,
                        ifOperStatus,
                        ifLastChange,
                        ifInOctets,
                        ifInUcastPkts,
                        ifInNUcastPkts,
                        ifInDiscards,
                        ifInErrors,
                        ifInUnknownProtos,
                        ifOutOctets,
                        ifOutUcastPkts,
                        ifOutNUcastPkts,
                        ifOutDiscards,
                        ifOutErrors,
                        ifOutQLen
                }
                ::= { ifTable 1 }




Warrier & Besaw                                                [Page 54]

RFC 1095                          CMOT                        April 1989


        -- the Address Translation group

        at OBJECT-CLASS
                SUPERIORS  { system }
                ::= { mib 3 }

        atTable OBJECT-CLASS
                SUPERIORS  { at }
                ::= { at 1 }

        atEntry OBJECT-CLASS
                SUPERIORS  { atTable }
                NAMES  {
                        atIfIndex,
                        atNetAddress
                }
                CONTAINS  {
                        atIfIndex,
                        atPhysAddress,
                        atNetAddress
                }
                ::= { atTable 1 }

        -- the IP group

        ip OBJECT-CLASS
                SUPERIORS  { system }
                CONTAINS  {
                        ipForwarding,
                        ipDefaultTTL,
                        ipInReceives,
                        ipInHdrErrors,
                        ipInAddrErrors,
                        ipForwDatagrams,
                        ipInUnknownProtos,
                        ipInDiscards,
                        ipInDelivers,
                        ipOutRequests,
                        ipOutDiscards,
                        ipOutNoRoutes,
                        ipReasmTimeout,
                        ipReasmReqds,
                        ipReasmOKs,
                        ipReasmFails,
                        ipFragOKs,
                        ipFragFails,
                        ipFragCreates
                }



Warrier & Besaw                                                [Page 55]

RFC 1095                          CMOT                        April 1989


                ::= { mib 4 }

        -- the IP Interface table

        ipAddrTable OBJECT-CLASS
                SUPERIORS  { ip }
                ::= { ip 20 }

        ipAddrEntry OBJECT-CLASS
                SUPERIORS  { ipAddrTable }
                NAMES  { ipAdEntAddr }
                CONTAINS  {
                        ipAdEntAddr,
                        ipAdEntIfIndex,
                        ipAdEntNetMask,
                        ipAdEntBcastAddr
                }
                ::= { ipAddrTable 1 }

        -- the IP Routing table

        ipRoutingTable OBJECT-CLASS
                SUPERIORS  { ip }
                ::= { ip 21 }

        ipRouteEntry OBJECT-CLASS
                SUPERIORS  { ipRoutingTable }
                NAMES  { ipRouteDest }
                CONTAINS  {
                        ipRouteDest,
                        ipRouteIfIndex,
                        ipRouteMetric1,
                        ipRouteMetric2,
                        ipRouteMetric3,
                        ipRouteMetric4,
                        ipRouteNextHop,
                        ipRouteType,
                        ipRouteProto,
                        ipRouteAge
                }
                ::= { ipRoutingTable 1 }

        -- the ICMP group

        icmp OBJECT-CLASS
                SUPERIORS  { system }
                CONTAINS  {
                        icmpInMsgs,



Warrier & Besaw                                                [Page 56]

RFC 1095                          CMOT                        April 1989


                        icmpInErrors,
                        icmpInDestUnreachs,
                        icmpInTimeExcds,
                        icmpInParmProbs,
                        icmpInSrcQuenchs,
                        icmpInRedirects,
                        icmpInEchos,
                        icmpInEchoReps,
                        icmpInTimestamps,
                        icmpInTimestampReps,
                        icmpInAddrMasks,
                        icmpInAddrMaskReps,
                        icmpOutMsgs,
                        icmpOutErrors,
                        icmpOutDestUnreachs,
                        icmpOutTimeExcds,
                        icmpOutParmProbs,
                        icmpOutSrcQuenchs,
                        icmpOutRedirects,
                        icmpOutEchos,
                        icmpOutEchoReps,
                        icmpOutTimestamps,
                        icmpOutTimestampReps,
                        icmpOutAddrMasks,
                        icmpOutAddrMaskReps
                }
                ::= { mib 5 }

        -- the TCP group

        tcp OBJECT-CLASS
                SUPERIORS  { system }
                CONTAINS  {
                        tcpRtoAlgorithm,
                        tcpRtoMin,
                        tcpRtoMax,
                        tcpMaxConn,
                        tcpActiveOpens,
                        tcpPassiveOpens,
                        tcpAttemptFails,
                        tcpEstabResets,
                        tcpCurrEstab,
                        tcpInSegs,
                        tcpOutSegs,
                        tcpRetransSegs
                }
                ::= { mib 6 }




Warrier & Besaw                                                [Page 57]

RFC 1095                          CMOT                        April 1989


        -- the TCP connections table

        tcpConnTable OBJECT-CLASS
                SUPERIORS  { tcp }
                ::= { tcp 13 }

        tcpConnEntry OBJECT-CLASS
                SUPERIORS  { tcpConnTable }
                NAMES  {
                        tcpConnLocalAddress,
                        tcpConnLocalPort,
                        tcpConnRemAddress,
                        tcpConnRemPort
                }
                CONTAINS  {
                        tcpConnState,
                        tcpConnLocalAddress,
                        tcpConnLocalPort,
                        tcpConnRemAddress,
                        tcpConnRemPort
                }
                ::= { tcpConnTable 1 }

        -- the UDP group

       udp OBJECT-CLASS
                SUPERIORS  { system }
                CONTAINS  {
                        udpInDatagrams,
                        udpNoPorts,
                        udpInErrors,
                        udpOutDatagrams
                }
                ::= { mib 7 }


        -- the EGP group

         egp OBJECT-CLASS
                SUPERIORS  { system }
                CONTAINS  {
                        egpInMsgs,
                        egpInErrors,
                        egpOutMsgs,
                        egpOutErrors
                }
                ::= { mib 8 }




Warrier & Besaw                                                [Page 58]

RFC 1095                          CMOT                        April 1989


         -- the EGP Neighbor table

         egpNeighTable OBJECT-CLASS
                SUPERIORS  { egp }
                ::= { egp 5 }

        egpNeighEntry OBJECT-CLASS
                SUPERIORS  { egpNeighTable }
                NAMES  { egpNeighAddr }
                CONTAINS  {
                        egpNeighState,
                        egpNeighAddr
                }
                ::= { egpNeighTable 1 }


        END


































Warrier & Besaw                                                [Page 59]

RFC 1095                          CMOT                        April 1989


Appendix C - Sample Protocol Exchanges

  The following are sample protocol exchanges between a manager and an
  agent.  The manager establishes an association with the agent,
  requests the number of IP address and header errors, requests the
  type of route corresponding to the destination address 10.0.0.51,
  requests the TCP connection with the well-known port for FTP, and
  then releases the association.  All of these samples show the
  lightweight presentation protocol being used over TCP.

  --
  -- the manager sends an ACSE association request carried in a
  -- presentation connect request PDU
  --

  {
     connectRequest {                             -- LPP
        version version-1,
        reference {
           callingSSUserReference "sri-nic.arpa",
           commonReference "880821222531Z"
        },
        asn 1.3.6.1.2.1.9.1.1,
        user-data {                               -- ACSE
           protocol-version version1,
           application-context-name 1.3.6.1.2.1.9.1.1,
           user-information {
              functionalUnits {
                 direct-reference 1.0.9596.2.1.0.0,
                 encoding {
                    single-ASN1-type '010110101010101010110B'
                                                        -- Full Manager
                 }
              }
           }
        }
     }
  }


  --
  -- the agent sends an ACSE association response carried in a
  -- presentation connect response PDU
  --

  {
     connectResponse {                           -- LPP
        user-data {



Warrier & Besaw                                                [Page 60]

RFC 1095                          CMOT                        April 1989


           user-information {                    -- ACSE
              functionalUnits {
                 direct-reference 1.0.9596.2.1.0.0,
                 encoding {
                    single-ASN1-type '101001010101010101110B'
                                                          -- Full Agent
                 }
              }
           }
        }
     }
  }


  --
  -- the manager sends a get request to read the values of
  -- ipInHdrErrors and ipInAddrErrors
  --

  {
     userData {                                   -- LPP
        ro-Invoke {                               -- ROSE
           invokeID 10,
           operation-value m-Get(3),
           argument {                             -- CMIP
              baseManagedObjectClass {
                 globalForm ip { 1.3.6.1.2.1.4 }
              },
              baseManagedObjectInstance {
                 distinguishedName {
                    relativeDistinguishedName {}
                 }
              },
              attributeIdList {
                 attributeId {
                    localID 4                     -- ipInHdrErrors
                 },
                 attributeId {
                    localID 5                     -- ipInAddrErrors
                 }
              }
           }
        }
     }
  }






Warrier & Besaw                                                [Page 61]

RFC 1095                          CMOT                        April 1989


  --
  -- the agent replies with a get response indicating that
  -- ipInHdrErrors = 0 and ipInAddrErrors = 2
  --

  {
     userData {                                   -- LPP
        ro-Result {                               -- ROSE
           invokeID 10,
           {
              operation-value m-Get(3),
              argument {                          -- CMIP
                 baseManagedObjectClass {
                    globalForm ip { 1.3.6.1.2.1.4 }
                 },
                 baseManagedObjectInstance {
                    distinguishedName {
                       relativeDistinguishedName {}
                    }
                 },
                 currentTime "19880821222541.300000Z",
                 attributeList {
                    attribute {
                       attributeId {
                          localID 4               -- ipInHdrErrors
                       },
                       attributeValue 0
                    },
                    attribute {
                       attributeId {
                          localID 5               -- ipInAddrErrors
                       },
                       attributeValue 2
                    }
                 }
              }
           }
        }
     }
  }


  --
  -- the manager sends a get request to discover the ipRouteType for
  -- the IP routing entry with ipRouteDest = 10.0.0.51
  --





Warrier & Besaw                                                [Page 62]

RFC 1095                          CMOT                        April 1989


  {
     userData {                                   -- LPP
        ro-Invoke {                               -- ROSE
           invokeID 11,
           operation-value m-Get (3),
           argument {                             -- CMIP
              baseManagedObjectClass {
                 globalForm ipRouteEntry { 1.3.6.1.2.1.4.21.1 }
              },
              baseManagedObjectInstance {
                 distinguishedName {
                    relativeDistinguishedName {
                       attributeValueAssertion {
                          attributeType ipRouteDest
                                       { 1.3.6.1.2.1.4.21.1.1 },
                          attributeValue 10.0.0.51
                       }
                    }
                 }
              },
              attributeIdList {
                 attributeId {
                    localID 8                     -- ipRouteType
                 }
              }
           }
        }
     }
  }


  --
  -- the agent replies with a get response indicating the appropriate
  -- route type
  --

  {
     userData {                                   -- LPP
        ro-Result {                               -- ROSE
           invokeID 11,
           {
              operation-value m-Get(3),
              argument {                          -- CMIP
                 baseManagedObjectClass {
                    globalForm ipRouteEntry { 1.3.6.1.2.1.4.21.1 }
                 },
                 baseManagedObjectInstance {
                    distinguishedName {



Warrier & Besaw                                                [Page 63]

RFC 1095                          CMOT                        April 1989


                       relativeDistinguishedName {
                          attributeValueAssertion {
                             attributeType ipRouteDest
                                          { 1.3.6.1.2.1.4.21.1.1 },
                             attributeValue 10.0.0.51
                          }
                       }
                    }
                 },
                 currentTime "19880821222613.780000Z",
                 attributeList {
                    attribute {
                       attributeId {
                          localID 8               -- ipRouteType
                       },
                       attributeValue "direct"
                    }
                 }
              }
           }
        }
     }
  }


  --
  -- the manager sends a get request to read the TCP connection with
  -- the well-known port for FTP.
  --

  {
     userData {                                   -- LPP
        ro-Invoke {                               -- ROSE
           invokeID 12,
           operation-value m-Get(3),
           argument {                             -- CMIP
              baseManagedObjectClass {
                 globalForm tcpConnTable { 1.3.6.1.2.1.6.13 }
              },

              baseManagedObjectInstance {
                 distinguishedName {
                    relativeDistinguishedName { }
                 }
              },
              scope oneLevel(1),
              filter {
                 item {



Warrier & Besaw                                                [Page 64]

RFC 1095                          CMOT                        April 1989


                    equality {
                       attributeType tcpConnLocalPort
                             { 1.3.6.1.2.1.6.13.1.3 }
                       attributeValue 21           -- ftp
                    }
                 }
              }
              attributeIdList { } -- an empty list means all attributes
           }
        }
     }
  }


  --
  -- the agent replies with a get response providing the desired TCP
  -- connection information. If more than one TCP connection had
  -- satisfied the filter condition, a series of one or more linked
  -- reply PDUs would have been returned before the final get response.
  --

  {
     userData {                                   -- LPP
        ro-Result {                               -- ROSE
           invokeID 12,
           {
              operation-value m-Get(3),
              argument {                          -- CMIP
                 baseManagedObjectClass {
                    globalForm tcpConnEntry { 1.3.6.1.2.1.6.13.1 }
                 },
                 baseManagedObjectInstance {
                    distinguishedName {
                       relativeDistinguishedName {
                          attributeValueAssertion {
                             attributeType  { tcpConnLocalAddress },
                             attributeValue 128.10.0.34
                          },
                          attributeValueAssertion {
                             attributeType  { tcpConnLocalPort },
                             attributeValue 21
                          },
                          attributeValueAssertion {
                             attributeType  { tcpConnRemAddress },
                             attributeValue 0.0.0.0
                          },
                          attributeValueAssertion {
                             attributeType  { tcpConnRemPort },



Warrier & Besaw                                                [Page 65]

RFC 1095                          CMOT                        April 1989


                             attributeValue 0
                          },
                       }
                    }
                 },
                 currentTime "19880821222541.300000Z",
                 attributeList {
                    attribute {
                       attributeId {
                          localId 1              -- tcpConnState
                       },
                       attributeValue LISTEN
                    },
                    attribute {
                       attributeId {
                          localId 2              -- tcpConnLocalAddress
                       },
                       attributeValue 128.10.0.34
                    },
                    attribute {
                       attributeId {
                          localId 3              -- tcpConnLocalPort
                       },
                       attributeValue 21
                    },
                    attribute {
                       attributeId {
                          localId 4              -- tcpConnRemAddress
                       },
                       attributeValue 0.0.0.0
                    },
                    attribute {
                       attributeId {
                          localId 5              -- tcpConnRemPort
                       },
                       attributeValue 0
                    }
                 }
              }
           }
        }
     }
  }








Warrier & Besaw                                                [Page 66]

RFC 1095                          CMOT                        April 1989


  --
  -- the manager sends a presentation release request
  --

  {
     releaseRequest {                             -- LPP
        user-data {                               -- ACSE
           reason normal
        }
     }
  }


  --
  -- the agent sends a presentation release response
  --

  {
     releaseResponse {                            -- LPP
        user-data {                               -- ACSE
           reason normal
        }
     }
  }


Authors' Addresses

  Unnikrishnan S. Warrier
  Unisys Corporation
  2400 Colorado  MS #42-13
  Santa Monica, CA 90406

  Phone: (213) 453-5196

  Email: [email protected]


  Larry Besaw
  Hewlett-Packard
  3404 East Harmony Road
  Fort Collins, CO 80525

  Phone: (303) 229-6022

  Email: lmb%[email protected]





Warrier & Besaw                                                [Page 67]