United States General Accounting Office
 ____________________________________________________________________________
 GAO                         Report to Congressional Requesters

 ____________________________________________________________________________

 July 1991                   HIGH-PERFORMANCE
                             COMPUTING



                             Industry Uses of
                             Supercomputers and
                             High-Speed Networks








   Note:     This report uses the # character to represent a fat line
             over the top of major headings.  The upper ASCII 220
             character would draw a better fat line that would be
             more like the line in the printed report.  You can use
             your word processor to search for 21 #'s and replace them
             with 21 ASCII 220 characters.  If you change the #'s
             your printer must be able to print the ASCII 220
             character.  This report represents an effort to make it
             appear as close to the printed version as ASCII will allow.
             To obtain a printed copy of this report call call GAO
             report distribution at 202/275-6241 (7:30 a.m.-5:30 p.m. EST)
             or write to GAO, P.O. Box 6015, Gaithersburg, MD 20877.






















 ____________________________________________________________________________

 GAO/IMTEC-91-58



        This U.S. General Accounting Office (GAO) report is
        available over the Internet as part of a test to determine
        whether there is sufficient interest within this community to
        warrant making all GAO reports available over the Internet.
        The file REPORTS in the Anonymous FTP directory GAO.REPORTS at
        NIH lists additional reports; the file A-LIST contains a list of
        reports issued from September 1991.

        So that we can keep a count of report recipients, and your
        reaction, please send an E-Mail message to [email protected] and
        include, along with your E-Mail address, the following
        information:

             1)   Your organization.

             2)   Your position/title and name (optional).

             3)   The title/report number of the above reports you have
                  retrieved electronically or ordered by mail or phone.

             4)   Whether you have ever obtained a GAO report before.

             5)   Whether you have copied a report onto another bulletin
                  board--if so, which report and bulletin board.

             6)   Other GAO report subjects you would be interested in.
                  GAO's reports cover a broad range of subjects such as
                  major weapons systems, energy, financial institutions,
                  and pollution control.

             7)   Any additional comments or suggestions.

        Thank you for your time.


        Sincerely,

        Jack L. Brock, Jr.
        Director,
        Government Information and Financial
        Management Issues
        Information Management and Technology Division

                             i


 _____________________________________________________________________________
 GAO                    United States
                        General Accounting Office
                        Washington, D.C. 20548
                        ______________________________________________________
                        Information Management and
                        Technology Division

                        B-244488

                        July 30, 1991

                        The Honorable Ernest F. Hollings
                        Chairman, Senate Committee on Commerce,
                          Science, and Transportation

                        The Honorable Al Gore
                        Chairman, Subcommittee on Science,
                          Technology, and Space
                        Senate Committee on Commerce, Science,
                          and Transportation

                        The Honorable George E. Brown, Jr.
                        Chairman, House Committee on Science,
                          Space, and Technology

                        The Honorable Robert S. Walker
                        Ranking Minority Member
                        House Committee on Science, Space,
                          and Technology

                        The Honorable Tim Valentine
                        Chairman, Subcommittee on Technology
                          and Competitiveness
                        House Committee on Science, Space,
                          and Technology

                        The Honorable Tom Lewis
                        Ranking Minority Member
                        Subcommittee on Technology
                          and Competitiveness
                        House Committee on Science, Space,
                          and Technology

                        This report responds to your October 2, 1990, and
                        March 11, 1991, requests for information on
                        supercomputers and high-speed networks.  You
                        specifically asked that we

                      - provide examples of how various industries are using
                        supercomputers to improve products, reduce costs, save
                        time, and provide other benefits;
                      - identify barriers preventing the increased use of
                        supercomputers; and







 Page 1                 GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        B-244488

 _____________________________________________________________________________
                      - provide examples of how certain industries are using
                        and benefitting from high-speed networks.

                        As agreed with the Senate Committee on Commerce,
                        Science, and Transportation, and Subcommittee on
                        Science, Technology, and Space, our review of
                        supercomputers examined five industries--oil,
                        aerospace, automobile, and chemical and
                        pharmaceutical.  These industries are known for using
                        supercomputers to solve complex problems for which
                        solutions might otherwise be unattainable.  Appendixes
                        II through V provide detailed accounts--drawn from 24
                        companies contacted within these industries--of how
                        supercomputers are used to improve products and
                        provide other benefits.  We also obtained information
                        from 10 companies in the oil, automobile, and computer
                        industries concerning how they are using and
                        benefitting from high-speed computer networks.  We did
                        not verify the accuracy of the examples of benefits
                        provided by the various companies.  Appendixes I, VI,
                        and VII, respectively, provide additional information
                        on the objectives, scope, and methodology of our
                        review, and identify the companies examined to assess
                        uses of supercomputers and high-speed networks.

 #####################________________________________________________________
 RESULTS IN BRIEF       Supercomputers contribute significantly to the oil,
                        automobile, aerospace, and chemical and
                        pharmaceutical industries' ability to solve complex
                        problems.  They enable companies within these
                        industries to design new and better products in less
                        time, and to simulate product tests that would have
                        been impossible without spending months developing and
                        experimenting with expensive product models.  Some
                        companies have attributed significant cost savings to
                        the use of supercomputers.  For example, although
                        exact figures were not always available,
                        representatives of some automobile and aerospace
                        companies estimated that millions of dollars have been
                        saved on specific models or vehicle parts because of
                        reduced manufacturing or testing costs.  In addition,
                        one oil company representative estimated that over the
                        last 10 years, supercomputer use has resulted in
                        increased production of oil worth between $5 billion
                        and $10 billion from two of the largest U.S. oil
                        fields.

                        Despite widespread use of supercomputers for certain
                        applications, representatives of these companies told
                        us that several key barriers currently hinder their
                        greater use.  These barriers include (1) the high cost
                        of supercomputers, (2) a lack of application
                        software, (3) the cultural resistance to the shift
                        from physical experiments to an increased reliance on


 Page 2                 GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        B-244488

 _____________________________________________________________________________
                        computational experiments, and (4) a lack of
                        supercomputing education and training.

                        High-speed networks contribute to improved
                        productivity by enabling industries to more
                        efficiently share information and resources and
                        collaborate on product development over distances.
                        Companies within the oil, automobile, and computer
                        industries, for example, rely on high-speed networks
                        to transfer large graphics and data files, and access
                        computers worldwide.  In many cases these companies
                        must use high-speed networks (as opposed to those
                        operating at lower speeds) because (1) the
                        applications in use require high transmission speeds,
                        for example to provide instant images for interactive
                        videoconferencing, (2) high volumes of traffic in one
                        or more applications are being transmitted, or (3)
                        fast response is needed for such applications as data
                        base queries.  Several companies reported that they
                        would not be able to develop products in a timely
                        manner without high-speed networks.

 #####################________________________________________________________
 BACKGROUND             A supercomputer, by its most basic definition, is the
                        most powerful computer available at a given time.
                        Current supercomputers, costing from about $1 million
                        to $30 million, are capable of performing billions of
                        calculations each second.  Computations requiring
                        hours or days on conventional computers may be
                        accomplished in a few minutes or seconds on a
                        supercomputer.

                        Although the term supercomputer does not refer to a
                        particular design or type of computer, supercomputers
                        generally use vector or parallel processing.  With
                        vector processing, a supercomputer lines up billions
                        of calculations and then uses one or several large
                        processors to perform these calculations.  In parallel
                        processing, many smaller processors work on multiple
                        parts of a program concurrently.  The trend in
                        supercomputer design is to add more processors to
                        achieve greater performance.  Massively parallel
                        supercomputers consisting of between 1,000 and 64,000
                        processors now exist.

                        The unique computational power of supercomputers
                        makes it possible to solve critical scientific and
                        engineering problems that cannot be dealt with
                        satisfactorily by theoretical, analytical, or
                        experimental means.  Scientists and engineers in many
                        fields--including aerospace, petroleum exploration,
                        automobile design and testing, chemistry, materials
                        science, and electronics--emphasize the value of
                        supercomputers in solving complex problems.  Much of
                        this work involves the use of workstations for

 Page 3                 GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        B-244488

 _____________________________________________________________________________
                        scientific visualization--a technique allowing
                        researchers to convert masses of data into three-
                        dimensional images of objects or systems under study.
                        These images enable researchers to comprehend more
                        readily what data reveal and facilitate the
                        understanding of problems by different types of
                        scientists and engineers.

                        While supercomputers are still relatively limited in
                        use, the number of supercomputers has risen
                        dramatically in the last decade.  In the early 1980s,
                        most of the 20 to 30 supercomputers in existence were
                        operated by government agencies for such purposes as
                        weapons research and weather modeling.  Today, about
                        280 supercomputers#1 are in use worldwide.  The
                        Government (including defense-related industry)
                        remains the largest user, although private industry
                        has been the fastest growing user segment for the past
                        few years, and is projected to remain so.

                        A high-speed network is generally defined as a
                        network operating at speeds of T1--1.544 million bits
                        per second--or higher.  Prior to 1977, high-speed
                        networks were employed exclusively by the telephone
                        companies.  By the early 1980s, however, these
                        services had become widely available to commercial
                        customers.

                        Today, thousands of high-speed networks exist, fueled
                        by demands for a variety of applications, such as
                        electronic mail, data file transfer, and distributed
                        data base access.  Networks operating at T1-speeds are
                        common and provide sufficient capability to meet most
                        application needs.  However, there is a growing demand
                        for higher-speed networks, such as those operating at
                        T3-speeds (45 million bits per second) or greater, to
                        transmit multiple low-speed applications to many users
                        at the same time.  In addition, many industries now
                        look to such networks as a means of transmitting more
                        advanced applications that result from the use of
                        supercomputers and other sophisticated technologies.
                        The growth of T1 and T3 lines is expected to be great,
                        according to Northern Business Information/Datapro, a
                        research company and industry analyst, which projected
                        that revenues for T1 and T3 will increase three-fold
                        between 1990 and 1994.



                        ______________________________________________________
                             1  This figure includes only high-end
                        supercomputers such as those manufactured by Cray
                        Research, Inc.  Including International Business
                        Machines (IBM) mainframes with vector facilities would
                        about double this number.

 Page 4                 GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        B-244488

 _____________________________________________________________________________

 #####################________________________________________________________
 INDUSTRIES BENEFIT     Supercomputers provide the five selected
 FROM SUPERCOMPUTING    industries with the ability to develop new and better
                        products more quickly.  Although most companies within
                        these industries could not provide precise figures to
                        quantify the extent of gains realized, nearly all
                        believed that supercomputers have enabled them to
                        perform previously impossible tasks, or achieve
                        significant cost reductions or time savings.
                        Moreover, industry representatives believed that
                        greater benefits would be realized in the future, as
                        these companies move toward using more powerful
                        supercomputers with thousands of processors.  Of the
                        21 companies that commented on the issue, 19 said that
                        they will be using massively parallel supercomputers
                        to a greater extent in the future.#2  Details on each
                        industry's use of supercomputers are in appendixes II
                        through V.
 _____________________________________________________________________________
 The Oil Industry       As an early user of supercomputers, the oil industry
                        has realized substantial benefits from supercomputer
                        applications.  By using two key applications for
                        processing seismic data#3 and simulating reservoirs,
                        oil companies have improved their ability to determine
                        the location of reservoirs and to maximize recovery of
                        oil and gas from those reservoirs.  This ability has
                        become increasingly important because of the low
                        probability of discovering large oil fields in the
                        continental U.S.  New oil fields are often small and
                        located in harsh environments, making exploration and
                        production difficult.  Several industry
                        representatives estimated that the use of
                        supercomputers reduces the number of dry wells drilled
                        (at a cost of $.5 million to over $50 million per
                        well) by about 10 percent.  In addition, an Atlantic
                        Richfield Company (ARCO) representative estimated that
                        supercomputer use has led to increased oil production
                        worth billions of dollars at two large fields.

 _____________________________________________________________________________
 The Aerospace          Engineers and researchers in the aerospace industry
 Industry               have used supercomputers since the early 1980s to
                        design, develop, and test aerospace vehicles and
                        related components.  Supercomputers, for example, have
                        enabled engineers to analyze aircraft structural
                        composition for design flaws and to simulate their

                        ______________________________________________________
                             2  Three out of 24 representatives did not
                        comment on the issue for proprietary reasons.

                             3  Seismic data reveal characteristics about the
                        earth and are gathered using sound recording devices
                        to measure the speed that vibrations travel through
                        the earth.

 Page 5                 GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        B-244488

 _____________________________________________________________________________
                        performance in wind tunnels.  This ability is
                        important because wind tunnels are expensive to build
                        and maintain, and cannot reliably detect certain
                        airflow phenomena.  Simulation permits a reduction in
                        physical model testing, and substantial savings in
                        time and money.  As a major user of supercomputers,
                        McDonnell Douglas estimates that supercomputer
                        simulations saved about a year in the design and
                        testing of its new C-17 military aircraft.

 _____________________________________________________________________________
 The Automobile         Since 1984, automobile manufacturers have
 Industry               increasingly relied on supercomputers to design
                        vehicles that are safer, lighter, more economical, and
                        better built.  By the late 1980s, the world's 12
                        largest automobile companies had acquired
                        supercomputers.  A primary supercomputer application--
                        crash analysis--is used to simulate how vehicle
                        structures collapse on impact and how fast passengers
                        move forward.  These simulations provide more precise
                        engineering information than was possible from
                        physically crashing pre-prototype vehicles.  They also
                        reduce the number of vehicles required for these tests
                        by about 20 to 30 percent.  Consequently, companies
                        have been able to save millions of dollars annually.
                        According to General Motors Corporation
                        representatives, for example, supercomputers enabled
                        the company to crash 100 fewer vehicles when
                        developing some of its 1992 models, than it did in
                        1987.  Each test vehicle costs from $50,000 to
                        $750,000, depending on whether a production vehicle or
                        prototype is used.

 _____________________________________________________________________________
 The Chemical and       Supercomputers also play a growing role in the
 Pharmaceutical         chemical and pharmaceutical industries,
 Industries             although their use is still in its infancy.
                        From computer-assisted molecular design to synthetic
                        materials research, these companies increasingly rely
                        on supercomputers to study critical design parameters
                        and more quickly and accurately interpret and refine
                        experimental results.  Industry representatives told
                        us that the use of supercomputers will result in new
                        discoveries that otherwise may not have been
                        possible.  Du Pont, for example, is developing
                        replacements for chlorofluorocarbons, compounds used
                        as coolants for air conditioners, that are thought to
                        contribute to the depletion of ozone in the
                        atmosphere.  In designing a new process to produce
                        substitute compounds, Du Pont is using a supercomputer
                        to make certain calculations needed for this process.





 Page 6                 GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        B-244488

 _____________________________________________________________________________
                        These calculations, on a supercomputer, require a few
                        days at a cost of between $2,000 to $5,000.
                        Previously, however, such tests cost about $50,000 and
                        required up to 3 months to conduct.

 #####################________________________________________________________
 BARRIERS IMPEDE        Although supercomputers have yielded highly
 GREATER USE OF         visible contributions in the selected
 SUPERCOMPUTERS         industries, representatives told us that many
                        aspects of supercomputer use remain untapped, because
                        of the following significant barriers.

                        High cost:  Currently, supercomputers cost between $1
                        million and $30 million, not including the cost of
                        software development, maintenance, or trained staff.

                        Lack of software:  While the evolution of software for
                        vector supercomputers has accelerated over the past
                        decade, little reliable software has been developed
                        for parallel supercomputers.  This is in part due to
                        the lack of software tools for developing new
                        parallel software and converting vector software so
                        that it can be used on massively parallel
                        supercomputers.

                        Cultural resistance:  Many companies or industries,
                        particularly the chemical and pharmaceutical
                        industries, rely more heavily on physical
                        experimentation than necessary, according to
                        representatives.  Many scientists and managers see the
                        use of computational science as a dramatic break with
                        past practice, and  such a major shift in research
                        methodology is difficult to accept.

                        Lack of supercomputer training and education:  Before
                        1985, university students and professors performed
                        little of their research on supercomputers.  Thus, for
                        many years industry hired students from universities
                        who did not bring supercomputing skills and experience
                        to their jobs.   According to Du Pont and Eli Lilly
                        representatives, universities are still not providing
                        a sufficient number of students skilled in the use of
                        supercomputers.  A Ford Motor Company representative
                        also noted that there is a scarcity of trained staff
                        in computational fluid dynamics, an important
                        application to the automobile industry.  Currently,
                        formal supercomputer education is primarily limited to
                        the National Science Foundation (NSF) university
                        supercomputer centers.

 #####################________________________________________________________
 INDUSTRY USES OF       Like supercomputers, high-speed networks are
 HIGH-SPEED NETWORKS    making valuable contributions to many industries.
                        Companies in the oil, automobile, and computer
                        industries, for example, increasingly rely on high-

 Page 7                 GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        B-244488

 _____________________________________________________________________________
                        speed networks to share resources and provide various
                        types of person-to-person communications.  Many oil
                        company representatives, in particular, reported
                        network traffic increases, ranging from 10 to more
                        than 100-fold over the past 5 years.  Many companies
                        thought that significant benefits--including monetary
                        savings, reduced time-to-market, and improved product
                        quality--have resulted from their use of high-speed
                        networks.

                        The companies we contacted primarily use high-speed
                        networks operating at T1-speeds (1.544 million bits
                        per second).  A significantly smaller, although
                        growing, number of companies also use higher-speed T3
                        networks of 45 million bits per second.  These
                        networks generally consist of private lines, leased
                        exclusively for each company's use, although many are
                        connected to outside commercial and private networks.

                        Companies we contacted use high-speed networks for a
                        variety of reasons.  In some cases, these networks are
                        used for individual applications that require high
                        transmission speeds, such as interactive
                        videoconferencing.  Most companies also used these
                        networks as a more cost-effective way of transmitting
                        large volumes of aggregated traffic from lower-speed
                        applications.  These applications include voice
                        communication, remote computer access, and electronic
                        mail.

                        Landmark Graphics Corporation, a company that
                        develops seismic data processing software for oil
                        exploration, for example, uses an extensive T1 network
                        to support a variety of applications.  This network
                        supports up to four voice lines (at 64,000 bits per
                        second each), while providing electronic mail access
                        to hundreds of network users.  This network also
                        allows users across the country to work simultaneously
                        on the development of the same software by accessing
                        and sharing files via high performance workstations,
                        and to routinely transfer voluminous files to backup
                        the file system.  A Landmark representative said that
                        network use has provided more coordinated and
                        consistent control of product development among the
                        company's different offices, and ultimately, a
                        shortened product development life-cycle.

                        The Amoco Corporation uses a high-speed network to
                        transmit very large (100 million bit to 1 billion bit)
                        files between its foreign and domestic sites.  The
                        files contain large volumes of data such as images of
                        sections of the earth, which measure about 400 square
                        miles wide by 3 miles deep.  These data are critical
                        to improving Amoco's ability to locate oil reservoirs.
                        Because of the volume of the data, Amoco

 Page 8                 GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        B-244488

 _____________________________________________________________________________
                        representatives said it would be impossible to
                        transmit these files to each work site without high-
                        speed networks.  If they did not have the networks,
                        the data would have to be duplicated at each site,
                        resulting in higher costs.  Moreover, according to an
                        Amoco representative, access to the supercomputer via
                        the high-speed network enabled them to make a major
                        oil discovery--the details of which are proprietary.

                        Within the automobile industry, a General Motors (GM)
                        Corporation representative reported that high-speed
                        networks primarily benefit them by reducing costs and
                        increasing productivity.  For example, the network
                        permits resource sharing, reducing duplicate hardware
                        and software purchases.  One group reported saving
                        $90,000 by using university software over the network,
                        rather than purchasing it.  Another group reported
                        that it did not have to buy a parallel supercomputer
                        because it accessed one at a university via the
                        network.  In addition, a corporate networking group
                        projected a $2.3 million cost avoidance for 1991
                        because the use of a high-speed network enabled them
                        to make large data and graphics files more readily
                        available to remote sites.

 _____________________________________________________________________________
                        We discussed the information in this report with
                        industry representatives and experts, and
                        incorporated their comments where appropriate.  Our
                        work was performed between October 1990 and May 1991.

                        As agreed with your office, unless you publicly
                        announce the contents of this report earlier, we plan
                        no further distribution until 30 days from the date of
                        this letter.  We will then send copies to interested
                        congressional committees and others upon request.
                        Please contact me at (202) 275-3195 if you have any
                        questions concerning this report.  The major
                        contributors to this report are listed in appendix
                        VIII.




                        Jack L. Brock, Jr.
                        Director
                        Government Information
                          and Financial Management







 Page 9                 GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
 CONTENTS

 #####################________________________________________________________
 LETTER                                                                      1
 #####################________________________________________________________
 Appendix I                                                                 12
 OBJECTIVES, SCOPE,
 AND METHODOLOGY
 #####################________________________________________________________
 Appendix II                                                                13
 THE OIL INDUSTRY       Seismic Data Processing                             13
                        Reservoir Simulation                                15
 #####################________________________________________________________
 Appendix III                                                               17
 THE AEROSPACE          Computational Fluid Dynamics                        18
 INDUSTRY               Structural Analysis                                 19
                        Computational Electromagnetics                      20
 #####################________________________________________________________
 Appendix IV                                                                21
 THE AUTOMOBILE         Automobile Crash Analysis                           22
 INDUSTRY               Structural Analysis                                 23
                        Computational Fluid Dynamics                        23
 #####################________________________________________________________
 Appendix V                                                                 25
 THE CHEMICAL AND       Molecular Modeling                                  26
 PHARMACEUTICAL         Structural Analysis                                 27
 INDUSTRIES             Computational Fluid Dynamics                        27
 #####################________________________________________________________
 Appendix VI                                                                28
 COMPANIES
 INTERVIEWED REGARDING
 SUPERCOMPUTER USE
 #####################________________________________________________________
 Appendix VII                                                               29
 COMPANIES
 INTERVIEWED REGARDING
 HIGH-SPEED NETWORK USE
 #####################________________________________________________________
 Appendix VIII                                                              30
 MAJOR CONTRIBUTORS TO
 THIS REPORT

                        ______________________________________________________
                                            Abbreviations

                        ARCO    Atlantic Richfield Company
                        GAO     General Accounting Office
                        GM      General Motors Corporation
                        IBM     International Business Machines Corporation
                        IMTEC   Information Management and Technology Division
                        NASA    National Aeronautics and Space Administration
                        NSF     National Science Foundation








 Page 10                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 Appendix I
 _____________________________________________________________________________
 OBJECTIVES, SCOPE, AND METHODOLOGY

 _____________________________________________________________________________
                        At the request of the Senate Subcommittee on Science,
                        Technology, and Space, the Senate Committee on
                        Commerce, Science, and Transportation; the House
                        Subcommittee on Technology and Competitiveness; and
                        the House Committee on Science, Space, and Technology;
                        we reviewed various industries' use of supercomputers
                        and high-speed networks.  The purpose of our review
                        was to (1) illustrate how the automobile, aerospace,
                        petroleum, and chemical and pharmaceutical industries
                        are using supercomputers to improve products, reduce
                        costs, save time, or provide other benefits; (2)
                        describe barriers that inhibit the increased use of
                        supercomputers; and (3) provide examples of how
                        certain industries use high-speed networks and their
                        associated benefits.

                        To illustrate how industries are using and
                        benefitting from supercomputers and identify barriers
                        to their increased use, we interviewed managers,
                        scientists, and engineers from the 24 companies listed
                        in appendix VI.  We selected these companies on the
                        basis of recommendations from various experts
                        knowledgeable about industrial supercomputer use.
                        Most of the companies we selected are Fortune 500
                        companies, largely because of the resources required
                        to purchase, maintain, and use supercomputers.

                        We also interviewed and obtained background
                        information on supercomputers and on industry
                        applications and future trends from industry analysts
                        and consultants, hardware vendors, and government
                        officials.  The industry analysts and consultants
                        included those from Research Consortium, Inc.,
                        Dataquest, The Superperformance Computing Service,
                        Gartner Group, Inc., and the Institute for
                        Supercomputing Research Recruit Co., Ltd.  The
                        hardware vendors included Cray Research, Inc.,
                        International Business Machines Corporation, Thinking
                        Machines Corporation, and Silicon Graphics, Inc.  The
                        government officials included those from the Office of
                        Science and Technology Policy, International Trade
                        Administration, Department of Commerce, Lawrence
                        Livermore National Laboratory, Department of Energy,
                        and National Aeronautics and Space Administration Ames
                        Research Center, National Science Foundation (NSF),
                        and NSF supercomputer centers--San Diego Supercomputer
                        Center, National Center for Supercomputing
                        Applications at the University of Illinois at Urbana-
                        Champaign, Cornell Theory Center, and Pittsburgh







 Page 11                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        Appendix I
                        Objectives, Scope, and Methodology

 _____________________________________________________________________________
                        Supercomputing Center.  We also interviewed and
                        obtained documents from representatives of the
                        Institute of Electrical and Electronics Engineers,
                        Inc., and the American Petroleum Institute.

                        To assess how industries use high-speed computer
                        networks, we collected information from companies in
                        various industries and procured the services of Texas
                        Internet Consulting, a firm that designs and
                        implements networks for large corporations.  This firm
                        subsequently interviewed the ten computer, automobile,
                        and oil companies listed in appendix VII to determine
                        how these companies use and benefit from high-speed
                        networks.  These companies had been selected based on
                        the recommendation of experts as being frequent users
                        of high-speed networks.  Texas Internet Consulting
                        also provided background information on high-speed
                        networks and related applications.

                        We discussed the information in this report with
                        scientists, engineers, and other experts from 14 oil,
                        aerospace, automobile, chemical and pharmaceutical,
                        and computer companies and have incorporated their
                        views as appropriate.  However, we did not verify the
                        validity or accuracy of the examples of dollar savings
                        and productivity improvements provided to us by the
                        various companies.  In some cases, we were unable to
                        obtain such information because it was considered
                        proprietary and could not be released.  In other
                        cases, company representatives said they had not
                        performed the extensive analysis necessary to quantify
                        such benefits.

                        Our review was conducted from October 1990 to May 1991
                        primarily in Washington, D.C., and other locations
                        listed in appendix VI.



















 Page 12                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 Appendix II
 _____________________________________________________________________________
 THE OIL INDUSTRY

 _____________________________________________________________________________
                        Many large oil companies worldwide--including
                        American, British, French, and Middle Eastern
                        companies--use supercomputers to better determine the
                        location of oil and gas reservoirs, and to maximize
                        the output from these reservoirs.  The oil industry is
                        among the early users of supercomputers, with ARCO
                        being the first company to purchase a Cray
                        supercomputer, in 1980, to model the largest oil
                        reservoir in the U.S.--Prudhoe Bay, Alaska.  Since
                        that time, the oil industry has invested hundreds of
                        millions of dollars in developing software for
                        supercomputer applications.  In addition, the industry
                        uses off-the-shelf, consultant-developed and
                        university-developed software.

                        The oil industry is now looking at massively parallel
                        processing to achieve the next-order-of-magnitude
                        improvement in speed.  The industry has many large
                        computational problems--such as modeling entire
                        reservoirs in greater detail--that cannot be
                        practically attempted on today's supercomputers.  Many
                        companies are experimenting with parallel
                        supercomputers and are converting vector software to
                        parallel software.  According to an ARCO
                        representative, such conversion is time-consuming and
                        expensive because programs are extremely large.
                        Despite industry movement toward parallel
                        supercomputers, most representatives thought that
                        vector supercomputers would continue to be used to a
                        great extent.  The oil industry uses two key
                        supercomputer applications--seismic data processing
                        and reservoir simulation--to aid in oil and gas
                        exploration and production.  Most representatives from
                        the eight companies we contacted said that
                        supercomputers have greatly helped them reduce costs.
                        They also stated that supercomputers have greatly
                        enabled them to (1) perform previously impossible
                        tasks and (2) improve the quality and timeliness of
                        their simulations.

 #####################________________________________________________________
 SEISMIC DATA           Seismic data processing is used to produce images of
 PROCESSING             subsurface geology through calculations involving
                        large volumes of seismic data.  Analysis of these
                        images increases the probability of determining the
                        location of oil reservoirs.  This is important because
                        the vast majority of holes drilled (ranging in cost
                        from $.5 million to over $50 million) are dry and this
                        is the most reliable way of determining the presence
                        of oil or gas without drilling.  While two
                        representatives mentioned that seismic data processing





 Page 13                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        Appendix II
                        The Oil Industry

 _____________________________________________________________________________
                        had been critical in making significant oil and gas
                        discoveries, the details on these finds are
                        proprietary.

                        Although most representatives indicated difficulties
                        in estimating the economic benefits derived from using
                        supercomputers for seismic data processing, various
                        industry representatives said that it reduces the
                        number of dry wells drilled by about 10 percent,
                        saving hundreds of millions of dollars over the last 5
                        years.  Chevron Corporation representatives stated
                        that it reduces drilling of dry off-shore wells by
                        about 50 percent.  Drilling costs for the oil industry
                        are significant, totaling over $200 billion over the
                        past decade.

                        Using a supercomputer for seismic data processing also
                        permits a faster payoff for millions of dollars in
                        property, equipment, data collection, and other up-
                        front investments.  An ARCO representative estimated
                        that it saves about a half million dollars per
                        development well (a well located in a known oil field)
                        because oil is located and recovered more quickly.

                        Representatives said it would be impractical to run
                        their seismic data processing applications on less
                        powerful computers.  They said that supercomputers
                        increased the speed of results from 3 to 100 times
                        that of other computers, depending on the amount of
                        data being processed.  This permits them to run more
                        iterations of a seismic image, which in turn improves
                        the image, and the quality of their drilling
                        decisions.

                        In addition, supercomputers enable these companies to
                        perform more complex seismic data processing tasks
                        than would be possible on other computers.  Depth
                        migration and modeling reservoirs located around salt
                        domes are two such tasks that require massive
                        computations.  Depth migration is a process that
                        removes some of the distortion of seismic images
                        caused by layers of rocks acting as lenses.  Companies
                        are continually improving this method to provide more
                        accurate images, particularly of areas where rocks are
                        layered, such as in the foothills of the Rocky
                        Mountains.

                        Another recently developed process that can only be
                        run on supercomputers--producing accurate images
                        through salt--is being used by several companies to
                        improve their ability to discover oil in areas with
                        salt domes.  This process is important because salt
                        domes are likely traps for oil.  Yet, it is difficult
                        to get a clear view of what lies under salt domes


 Page 14                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        Appendix II
                        The Oil Industry

 _____________________________________________________________________________
                        because salt absorbs sound waves and distorts seismic
                        images.  In 1987, Oryx Energy Company used a Cray X-MP
                        to better understand the shape of salt domes.  While
                        they had previously thought the domes were
                        cylindrical, supercomputer simulations revealed that
                        they were smaller and mushroom-shaped.  Understanding
                        their shape enabled Oryx to change their drilling path
                        and discover oil in a well in the Mississippi Salt
                        Basin.

 #####################________________________________________________________
 RESERVOIR SIMULATION   Reservoir simulation, an important tool used to
                        increase the amount of oil and gas that can be
                        extracted from a reservoir, allows engineers to
                        "experiment" on a field by trying out various
                        recovery methods and sizes and types of facilities
                        (i.e., equipment used in extraction).  By analyzing
                        the alternatives, the most cost-beneficial development
                        methods for a field can be identified before the
                        actual production work is undertaken.  The importance
                        of reservoir simulation derives from the need for
                        long-term optimization of recovery of the world's
                        limited fuel resources.

                        Although representatives said that it is difficult to
                        estimate the economic benefits derived from
                        supercomputing in reservoir simulation, various
                        representatives said that it permits increased oil
                        yield, which one representative estimated to be worth
                        $10 million annually to their company.  One Amoco
                        Production Company representative estimated that the
                        increased yield due to reservoir simulation was about
                        25 percent for some wells.  Simulation also reduces
                        the risk of losing the oil in a reservoir during
                        production--if the oil in a well is produced too fast,
                        it may move to another area of the reservoir and be
                        lost beyond recovery.  Using supercomputers for
                        reservoir simulation also reduces the amount of money
                        spent on unnecessary recovery methods and facilities
                        and equipment.  These methods and facilities are
                        expensive--recovery methods cost from about $1 to $25
                        per barrel, while surface facilities and equipment for
                        a very large field can cost billions of dollars.
                        Investment in the wrong recovery methods and
                        facilities can break a company.

                        Supercomputers have enabled the industry to perform
                        reservoir simulations of entire large fields,
                        previously considered too impractical or costly.
                        Full-field models of Prudhoe Bay and Kuparuk, Alaska--
                        the largest and third largest on-shore fields in the
                        U.S.--were used to improve recovery methods.  An ARCO
                        representative estimated, conservatively, that
                        reservoir simulation used for these oil fields has

 Page 15                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        Appendix II
                        The Oil Industry

 _____________________________________________________________________________
                        resulted in about a 500 million barrel increase in
                        production, worth between $5 billion and $10 billion.





















































 Page 16                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 Appendix III
 _____________________________________________________________________________
 THE AEROSPACE INDUSTRY

 _____________________________________________________________________________
                        Aerospace companies were among the earliest users of
                        supercomputers, which are regarded as essential tools
                        in the design, development, and testing of aircraft,
                        missiles, and other aerospace vehicles and components.
                        Furthermore, representatives generally consider
                        supercomputing critical to competing for advanced
                        military and other contracts.  Of the six American
                        companies we contacted, four began using vector
                        supercomputers in the early 1980s, and by the late
                        1980s all had at least one supercomputer.

                        Most of the aerospace software applications were
                        initially developed in federal government
                        laboratories.  For example, NASTRAN, one of the early
                        software programs for analyzing the structure and
                        shape of an object, was developed through research
                        sponsored by the National Aeronautics and Space
                        Administration (NASA) in the mid-1960s.  Supercomputer
                        software is commercially available for some aerospace
                        applications, but companies also use software
                        programs developed by government facilities, and
                        develop or modify software for proprietary use.
                        Since 1987, five of the six companies have begun
                        experimenting with massively parallel supercomputers
                        to determine how to best use them and to develop
                        application software.  One of the companies has a
                        massively parallel supercomputer dedicated to
                        classified military projects.  Company representatives
                        indicated that in the future, their companies expect
                        to use massively parallel supercomputers to a greater
                        extent, primarily for computational fluid dynamics--an
                        application that permits engineers to simulate wind
                        tunnels.  However, the lack of software is currently
                        limiting use of this technology.

                        The major supercomputer applications used by the
                        aerospace industry are computational fluid dynamics,
                        structural analysis, and computational
                        electromagnetics.  Most companies we contacted
                        reported that these applications allowed them to
                        perform previously impossible tasks, improve the
                        quality of products, and reduce the time required to
                        make products commercially available.  For example, a
                        Lockheed Aerospace representative said that
                        supercomputers allow engineers to perform analyses in
                        areas of fluid dynamics, in which it is impossible to
                        conduct physical tests.  A McDonnell Douglas
                        representative stated that supercomputers help


 Page 17                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        Appendix III
                        The Aerospace Industry

 _____________________________________________________________________________
                        engineers improve product quality by permitting them
                        to perform analyses and simulations much faster and
                        over a broader range of parameters.

 #####################________________________________________________________
 COMPUTATIONAL FLUID    Computational fluid dymanics models enable aerospace
 DYNAMICS               engineers to simulate the flow of air and fluid
                        around and through proposed structures and components.
                        For instance, engineers can simulate the performance
                        of aircraft and other aerospace vehicles in a wind
                        tunnel.  In addition, the performance of other
                        components, such as engines and electrical systems,
                        are simulated using this application.  Prior to
                        supercomputers, engineers primarily evaluated
                        aerodynamic designs by testing physical models in wind
                        tunnels and assessing the aircraft during actual
                        flight tests.  However, by using a supercomputer,
                        engineers can determine the effectiveness of an
                        aerodynamic design and make modifications before
                        constructing physical models.

                        Boeing Aircraft Company, for example, used
                        computational fluid dynamics extensively in the
                        design of its newest commercial airplane, the Boeing
                        777.#4  The company's chief researcher in
                        aerodynamics attributes a faster and more efficient
                        design of this airplane to using computational fluid
                        dynamics on a supercomputer.  Those engineers
                        designing the shape of the airplane and those studying
                        its aerodynamics were able to work on the same model
                        simultaneously prior to constructing physical models.
                        Before the use of a supercomputer, these two efforts
                        were done sequentially, relying on physical models and
                        actual wind tunnel tests, which added months to the
                        process.

                        Boeing was also able to make a computer-generated
                        model of the Boeing 777, rather than a physical model,
                        available to potential customers during the design
                        process.  As a result, customer requests for changes
                        were more easily accommodated.  For example, one
                        request made during the design phase caused Boeing to
                        redesign a fold in the airplane's wings so that the
                        wing tips would raise, allowing the airplane to fit
                        through existing airport gates.  Using computational
                        fluid dynamics on a Cray Y-MP supercomputer, Boeing
                        engineers quickly evaluated three potential designs
                        and identified the configuration with the right

                        ______________________________________________________
                             4  Boeing announced the development of the 777
                        aircraft in 1990 and plans to make its first delivery
                        in 1995.

 Page 18                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        Appendix III
                        The Aerospace Industry

 _____________________________________________________________________________
                        balance of aerodynamic efficiency, structural weight,
                        and cost.  Boeing's confidence in the results is
                        evidenced by the fact that it committed the wing
                        design to production before conducting physical wind
                        tunnel tests.

                        In addition, Lockheed Aeronautical Systems Company
                        used computational fluid dynamics on a Cray X-MP
                        supercomputer to develop a computer model of the
                        Advanced Tactical Fighter for the U.S. Air Force.  In
                        about 5 hours of processing time, Lockheed simulated
                        the fighter's performance using a full-vehicle
                        computer model to obtain aerodynamic data that is
                        normally only provided through actual wind tunnel
                        testing.  By using the supercomputer simulations,
                        Lockheed shortened the development phase of the
                        prototype fighter by several months and reduced the
                        amount of traditional wind tunnel testing by 80 hours.
                        The latter resulted in savings of about a half
                        million dollars.

                        McDonnell Douglas found that using computational
                        fluid dynamics on a supercomputer to simulate the
                        performance of the C-17 military aircraft reduced
                        design and wind tunnel testing time.  Engineers used
                        this application to analyze 76 potential wing
                        configurations and identify the best three designs.
                        Thus, they only had to conduct traditional wind tunnel
                        tests on the final three designs.  This complete
                        process required 9 months and 350 hours of wind tunnel
                        testing.  In contrast, designing the wings of the DC-
                        10 commercial airplane without using this
                        supercomputer application, took 2 years and required
                        1,200 hours of wind tunnel testing on more than 50
                        designs.

 #####################________________________________________________________
 STRUCTURAL ANALYSIS    Aerospace companies also use supercomputers to
                        analyze the structure of aircraft and other aerospace
                        vehicles and components to determine optimum weight,
                        shape, and composition.  Structural analysis
                        applications simulate the stresses and strains on a
                        given object that result from applied pressure or
                        loads.  The structure of an object, such as an
                        aircraft, is first defined as a grid of elements
                        representing its shape and composition.  Engineers can
                        then use the model to ascertain the effects of
                        pressure and loads on each element of the structure
                        (e.g., metal fatigue).  The supercomputer permits the
                        analysis to be done quicker and more often than
                        performing physical tests on actual structures.



 Page 19                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        Appendix III
                        The Aerospace Industry

 _____________________________________________________________________________
                        McDonnell Douglas engineers, for example, uncovered
                        and corrected a helicopter fan design flaw in 2 days
                        on their Cray X-MP supercomputer, after spending 6
                        weeks trying to uncover the problem using other
                        computers.  The design flaw concerned the level and
                        location of stress experienced within the helicopter
                        fan hub when spinning.  (A fan hub looks similar to a
                        wheel on an automobile and generates air flow inside
                        the tail of a helicopter.)  Using structural
                        analysis, engineers were able to identify the fan
                        hub's high-stress areas and make the necessary design
                        modifications.

 #####################________________________________________________________
 COMPUTATIONAL          Supercomputers have also been used to simulate
 ELECTROMAGNETICS       the electromagnetic characteristics of military
                        aircraft to make them more difficult to detect using
                        radar.  The supercomputer models the chemical
                        composition of the aircraft's outer surface, the
                        geometry of the aircraft, and the reflections of
                        electromagnetic waves off the aircraft's outer
                        surface.

                        Lockheed Aeronautical Systems Company, for example,
                        reduced the radar signature (the size of an image
                        appearing on a radar display) of a low-observable,
                        stealth-like military aircraft, using computational
                        electromagnetics on Cray X-MP and Cray Y-MP
                        supercomputers.  This reduced the signature
                        substantially beyond what had been previously obtained
                        using other means.  As a result, Lockheed was able to
                        construct fewer physical models and conduct fewer
                        physical electromagnetic tests at a savings of $4.4
                        million and $1.5 million, respectively.




















 Page 20                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 Appendix IV
 _____________________________________________________________________________
 THE AUTOMOBILE INDUSTRY

 _____________________________________________________________________________
                        Automobile manufacturers have been using
                        supercomputers increasingly since 1984 as a design
                        tool to make cars safer, lighter, more economical, and
                        better built, with significant time and dollar
                        savings.  By 1989, each of the 12 largest automobile
                        companies worldwide had acquired one or more Cray
                        supercomputers.  These supercomputers are enabling
                        automotive engineers to create increasingly
                        sophisticated and realistic simulation models to
                        design and test future vehicles.  It would be
                        impractical to perform many of these simulations, such
                        as large three-dimensional models, on anything less
                        powerful than a supercomputer.

                        Although commercial supercomputer software is
                        available for most automotive applications, much of
                        this software originated from federally-supported
                        research.  For example, KIVA, a computer program
                        developed at Los Alamos National Laboratory, is used
                        to model, in three dimensions, the interactions of air
                        and liquids flowing through an engine.  NASTRAN,
                        developed under the sponsorship of NASA, is used to
                        analyze various automobile structures.  DYNA3D,
                        developed at Lawrence Livermore National Laboratory,
                        is used to simulate car crashes.  Commercial vendors
                        and the automobile companies have also modified these
                        applications to meet specific needs of the automobile
                        industry.

                        Although no companies reported owning massively
                        parallel supercomputers, some of these companies were
                        exploring the potential of this new technology.  Some
                        company representatives indicated that massively
                        parallel supercomputers will be important in order to
                        process larger and more complex models, particularly
                        for crash analysis and computational fluid dynamics.

                        The primary applications used by the automobile
                        industry are automobile crash analysis, structural
                        analysis, and computational fluid dynamics.  The five
                        companies we contacted--both American and Japanese--
                        reported that these applications have had a moderate
                        to great impact on improving product quality, reducing
                        costs, and performing previously intractable tasks.
                        According to a Ford Motor Company representative, the
                        intense competitiveness of the industry has made it
                        necessary to use a supercomputer.  A Nissan Motor
                        Company representative also stated that Nissan would

 Page 21                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        Appendix IV
                        The Automobile Industry

 _____________________________________________________________________________
                        not consider developing automobiles without a
                        supercomputer.

 #####################________________________________________________________
 AUTOMOBILE CRASH       Crash analysis is one of the primary applications for
 ANALYSIS               supercomputers in the automotive industry because it
                        provides an alternative to physically crashing test
                        vehicles.  The primary advantage of modeling a crash
                        on a supercomputer is that more data about the crash
                        is produced at a cost and within a time frame that
                        would be otherwise impossible to achieve.  For
                        example, crash simulations can show how the vehicle
                        structure will collapse during a crash, how fast the
                        driver and passengers will move forward during impact,
                        and when air bag sensors will be activated.

                        Initially, vehicle crash simulations involved
                        modeling a half-car frontal crash.  Today's models
                        have become more complex, involving full vehicle
                        crashes, two full vehicle crashes, and side impact
                        crashes.  Using these models, companies can then
                        compare many more designs and optimize a vehicle's
                        structure for weight, stiffness, and strength before a
                        full prototype vehicle is crash tested.

                        Physical crash tests require prototype vehicles,
                        which are time- consuming and expensive to
                        manufacture.  According to one automobile company,
                        each test costs between $50,000 and $750,000,
                        depending on whether a production vehicle or a
                        prototype is used.  In addition, a prototype vehicle
                        can take as long as 8 months to manufacture.  In
                        contrast, full car crash simulations can be processed
                        on a supercomputer in less than 20 hours.

                        According to General Motors Corporation (GM)
                        representatives, crash testing prototype vehicles has
                        been substantially reduced as a result of
                        supercomputing.  In testing passenger restraint
                        devices, such as seat belts, during the development of
                        some of its 1992 automobiles, GM crashed about 100
                        fewer vehicles than it did in 1987.  According to
                        company representatives, the reduction was largely due
                        to crash simulations on a Cray supercomputer.

                        In addition, the Saturn Corporation, a subsidiary of
                        GM, estimated that they performed over 100 vehicle
                        crash simulations on a supercomputer between 1986 and
                        1990.  Data obtained from these simulations were then
                        used to modify the design of the vehicles.  As a
                        result, Saturn reported a savings of more than $2
                        million in development and test costs.



 Page 22                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        Appendix IV
                        The Automobile Industry

 _____________________________________________________________________________

 #####################________________________________________________________
 STRUCTURAL ANALYSIS    Automobile companies use structural analysis
                        models to simulate the physical structure of an
                        automobile, including parts and components, to
                        improve functionality and reduce manufacturing costs.
                        The simulations help engineers design stronger parts
                        that are lighter and less susceptible to problems
                        caused by vibration and stress.  Lighter parts also
                        contribute to improvements in fuel economy.

                        Chrysler Corporation improved the design of a small
                        car's body structure and a convertible's floor
                        structure by modeling them on a Cray X-MP
                        supercomputer.  The stiffness of the small car body
                        structure was improved by 10 percent, while its weight
                        was reduced by 45 pounds.  The improvement in body
                        stiffness on the small car made the vehicle easier to
                        handle and gave it a better ride.  The floor of the
                        convertible was lengthened by 8 percent, yet reduced
                        in weight by 9 pounds.  Chrysler estimates that it
                        will save about $3.9 million annually in reduced raw
                        materials to manufacture both vehicles.

                        Chrysler was also able to eliminate the need for a
                        dash board bracket in a new minivan by modeling the
                        dash board structure on a Cray X-MP supercomputer.
                        The model showed that the remaining dash board
                        brackets were sufficient to hold the dash board
                        structure in place.  Chrysler estimates that the
                        elimination of the $2 bracket will save about $940,000
                        annually in the cost of parts to manufacture the
                        vehicle.

                        In addition, Chrysler improved the design of a new 2.0
                        liter engine by modeling its structure on a Cray X-MP
                        supercomputer.  The stiffness, or rigidity, of the
                        engine structure was increased by 3 percent, thus
                        contributing to a smoother running engine.  In
                        addition, its overall weight was reduced by 9 pounds.
                        Chrysler estimates that it will save about $1.8
                        million annually in reduced raw materials to
                        manufacture the engine.

 #####################________________________________________________________
 COMPUTATIONAL FLUID    Computational fluid dynamic models are used to
 DYNAMICS               simulate the flow of air or liquids around or through
                        automobile parts or structures.  Specifically, models
                        simulate the exterior flow of air around a vehicle,
                        the flow of air within the vehicle, and the flow of
                        air and liquids within the engine, cooling system, and
                        air conditioning system.

                        At Chrysler Corporation, for example, engineers used a
                        Cray X-MP supercomputer to simulate the flow of

 Page 23                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        Appendix IV
                        The Automobile Industry

 _____________________________________________________________________________
                        liquids through the cooling system of one of its
                        vehicles.  This analysis helped determine which design
                        was most efficient in cooling the vehicle's engine.
                        Thus, the design of the system was optimized to
                        improve its cooling efficiency while reducing the
                        number of needed parts.  Chrysler estimates that this
                        reduction will reduce manufacturing costs by about 5
                        percent, saving about $1.6 million annually.















































 Page 24                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 Appendix V
 _____________________________________________________________________________
 THE CHEMICAL AND PHARMACEUTICAL INDUSTRIES

 _____________________________________________________________________________
                        The chemical and pharmaceutical industries are the
                        fastest-growing group of industrial supercomputer
                        users, although their use is still in its infancy.
                        The impetus for these industries to begin using
                        supercomputers was a combination of recent advances in
                        theoretical chemistry and three-dimensional
                        visualization techniques.  Du Pont became the first
                        company in these industries to buy a vector
                        supercomputer in 1986.  Since then, several other
                        American and Japanese companies have begun using
                        supercomputers.  Two companies--Dow Chemical Company
                        and Eli Lilly & Company--are now experimenting with
                        massively parallel supercomputers.  Lilly is using a
                        supercomputer at the National Center for
                        Supercomputing Applications--a NSF supercomputer
                        center at the University of Illinois--to develop code
                        to be used on massively parallel supercomputers.

                        Some of the important chemical software applications
                        used today were derived from applications developed at
                        government laboratories, such as NASA Ames Research
                        Center.  However, little application software has been
                        available until very recently, because the chemical
                        industry only recently began using supercomputers.  In
                        order to develop sophisticated application software on
                        a reduced, shared-cost basis, Cray Research, Inc.,
                        other vendors, chemical companies, and government
                        laboratories have formed a chemical software
                        consortium.  Member companies include Lilly, Monsanto
                        Company, Exxon Research and Engineering, Du Pont, and
                        3M Corporation.

                        The major supercomputer applications in the chemical
                        and pharmaceutical industries include molecular
                        modeling, structural analysis, and computational fluid
                        dynamics, and are used in basic research, product
                        development, manufacturing process design,
                        manufacturing plant design, environmental impact
                        assessment, and waste disposal.  Thus, supercomputing
                        affects many stages of the industry's product lines.
                        These product lines number in the thousands and
                        include industrial chemicals, polymers,#5 and
                        biological materials for agriculture and medicine.
                        All company representatives reported that the use of







                        ______________________________________________________
                             5  A chemical compound or mixture of compounds
                        containing repeated structural units of the same
                        original molecules, such as Nylon.

 Page 25                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        Appendix V
                        The Chemical and Pharmaceutical Industries

 _____________________________________________________________________________
                        supercomputers greatly helps them perform previously
                        intractable tasks--such as the study of complex
                        molecules.  Several representatives also said that
                        supercomputers helped them reduce cost and time to
                        market, improve quality, and develop a greater variety
                        of products.

 #####################________________________________________________________
 MOLECULAR MODELING     Molecular simulations enable scientists to study the
                        molecular properties of chemical compounds used in the
                        development of drugs and other products.  One of the
                        keys to understanding molecules lies in gaining a
                        clear appreciation of their three-dimensional shape.
                        Unlike the rigid "ball and stick" models that
                        scientists built in the past, the atomic positions in
                        a molecule are constantly changing.  Using
                        supercomputers in conjunction with workstations,
                        scientists are able to construct images, such as
                        those of large, complex human proteins and enzymes.
                        Scientists can then rotate these images to gain clues
                        on biological activity and reactions to various drug
                        candidates.

                        The use of molecular modeling has also been
                        important, from an economic perspective, in the
                        development of new drugs.  A Du Pont scientist
                        estimated that about 30,000 compounds are
                        synthesized--at a cost of about $5,000 per synthesis
                        and initial screening--for every new drug that is
                        developed.  As such, as much as $150 million can be
                        invested in discovering a drug, even before clinical
                        testing, federal government approval, and
                        manufacturing and development costs are added.  By
                        making this drug discovery process more "rational,"
                        with less trial and error, a Du Pont representative
                        estimates that millions of dollars can be saved.

                        Du Pont is currently developing replacements for
                        chlorofluorocarbons, compounds used as coolants for
                        refrigerators and air conditioners, and as cleansing
                        agents for electronic parts.  These compounds are
                        being phased out because they are thought to
                        contribute to the depletion of ozone in the
                        atmosphere.  Du Pont is designing a new process to
                        produce substitute compounds safely and cost-
                        effectively.  These substitutes will be more reactive
                        in the atmosphere and will decompose faster.  Du Pont
                        is using a supercomputer to calculate the
                        thermodynamic data needed for developing this process.
                        These calculations can be completed by the
                        supercomputer in a matter of days, at an approximate
                        cost of $2,000 to $5,000.  Previously, such tests were
                        conducted in a laboratory, and required up to 3 months
                        to conduct, at a cost of about $50,000.  Both the

 Page 26                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 _____________________________________________________________________________
                        Appendix V
                        The Chemical and Pharmaceutical Industries

 _____________________________________________________________________________
                        cost and time required for such traditional methods
                        would have substantially limited the amount of testing
                        that is now being done.

 #####################________________________________________________________
 STRUCTURAL ANALYSIS    Computer-based structural analysis techniques are used
                        in the chemical and pharmaceutical industries to
                        determine stress and durability of both products and
                        processing equipment.  For example, Du Pont engineers
                        used structural analysis to optimize the design of a
                        mold used in a new process for manufacturing Corian#6
                        sinks.  This enabled them to quickly determine the
                        wall thicknesses, ribbing, and reinforcements
                        necessary to withstand the molding pressure while
                        minimizing its weight.  Thus, this application enabled
                        them to develop the manufacturing process 6 to 12
                        months sooner than would have been possible using a
                        series of prototype molds.  This saved development
                        costs and increased revenue by getting the new process
                        in operation faster.

 #####################________________________________________________________
 COMPUTATIONAL FLUID    The chemical and pharmaceutical industries use
 DYNAMICS               computational fluid dynamics to model products and
                        product performance, and to aid in the design of
                        manufacturing processes and plants.  These models
                        predict how fluids flow through equipment and can
                        simulate processes, such as mixing, drying, cooling,
                        and separation.  For example, Du Pont has successfully
                        used this application on a Cray Y-MP supercomputer to
                        model manufacturing processes for sheet products, such
                        as film and plastic wrappers.  These products,
                        particularly X-ray film, must be uniform in thickness
                        to meet the required quality standard.  Thus,
                        computational fluid dynamics provides Du Pont with an
                        additional design tool to improve sheet product
                        thickness uniformity, without increasing manufacturing
                        time.

                        Du Pont also models the manufacturing process for
                        Nylon, one of its major products.  Computational fluid
                        dynamics solutions to these models accurately quantify
                        the flow through the processing equipment and locates
                        where clogging is most likely to occur.  Clogging is a
                        major problem in Nylon plants, causing periodic
                        shutdowns.  By modeling the process, Du Pont has been
                        able to reduce the number of shutdowns.




                        ______________________________________________________
                             6  Corian is a registered trademark of E.I. du
                        Pont de Nemours and Company.

 Page 27                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 Appendix VI
 _____________________________________________________________________________
 COMPANIES INTERVIEWED REGARDING
 SUPERCOMPUTER USE

 _____________________________________________________________________________
 Aerospace Companies    The Boeing Company, Seattle, Washington
                        General Dynamics Corporation, Fort Worth, Texas
                        Grumman Corporation, Bethpage, New York
                        Lockheed Corporation, Calabasas, California
                        McDonnell Douglas Corporation, Hazelwood,    Missouri
                        Pratt & Whitney, United Technologies   Corporation,
                        East Hartford, Connecticut

 _____________________________________________________________________________
 Automobile Companies   Chrysler Corporation, Highland Park, Michigan
                        Ford Motor Company, Dearborn, Michigan
                        General Motors Corporation, Warren, Michigan
                        Honda Motor Company, Ltd., Tokyo, Japan
                        Nissan Motor Company, Ltd., Tokyo, Japan

 _____________________________________________________________________________
 Chemical and           Dow Chemical Company, Champaign, Illinois
 Pharmaceutical         E.I. du Pont de Nemours and Company, Wilmington,
 Companies              Delaware
                        Eli Lilly & Company, Indianapolis, Indiana
                        Merck & Company, Rahway, New Jersey
                        Monsanto Company, St. Louis, Missouri

 _____________________________________________________________________________
 Petroleum Companies    Amoco Production Company, Tulsa, Oklahoma
                        Atlantic Richfield Company (ARCO), Plano, Texas
                        British Petroleum (BP), Houston, Texas
                        Chevron Corporation, Houston, Texas
                        Exxon Production Research Company, Houston, Texas
                        Oryx Energy Company, Dallas, Texas
                        Phillips Petroleum Company (Phillips 66),
                        Bartlesville, Oklahoma
                        Shell Oil Company, Houston, Texas






















 Page 28                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 Appendix VII
 _____________________________________________________________________________
 COMPANIES INTERVIEWED REGARDING HIGH-SPEED
 NETWORK USE

 _____________________________________________________________________________
                        Amoco Production Company, Houston, Texas
                        Apple Computer, Inc., Cupertino, California
                        General Motors Research Corporation, Warren, Michigan
                        Hewlett-Packard Company, Cupertino, California
                        Intel Corporation, San Jose, California
                        International Business Machines Corporation, Austin,
                          Texas
                        Landmark Graphics Corporation, Houston, Texas
                        Schlumberger Well Services, Houston, Texas
                        Sun Microsystems, Inc., Milpitas, California
                        Tandem Computers, Inc., Cupertino, California












































 Page 29                GAO/IMTEC-91-58 Supercomputers and High-Speed Networks

 Appendix VIII
 _____________________________________________________________________________
 MAJOR CONTRIBUTORS TO THIS REPORT



 #####################________________________________________________________
 INFORMATION            Linda D. Koontz, Assistant Director
 MANAGEMENT AND         Valerie C. Melvin, Assignment Manager
 TECHNOLOGY DIVISION,   Beverly A. Peterson, Evaluator-in-Charge
 WASHINGTON, D.C.       Nancy M. Kamita, Computer Scientist

 #####################________________________________________________________
 LOS ANGELES REGIONAL   Allan Roberts, Assistant Director
 OFFICE                 Ambrose A. McGraw, Regional Assignment Manager
                        Benjamin H. Mannen, Senior Evaluator
                        Shawnalynn R. Smith, Staff Evaluator

 #####################________________________________________________________
 SAN FRANCISCO          Frank Graves, Regional Assignment Manager
 REGIONAL OFFICE        Don Porteous, Staff Evaluator







































    (510626)
    Page 30            GAO/IMTEC-91-58 Supercomputers and High-Speed Networks