Network Working Group                                       E. Rescorla
Request for Comments: 2818                                   RTFM, Inc.
Category: Informational                                        May 2000


                            HTTP Over TLS

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard of any kind.  Distribution of this
  memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

  This memo describes how to use TLS to secure HTTP connections over
  the Internet. Current practice is to layer HTTP over SSL (the
  predecessor to TLS), distinguishing secured traffic from insecure
  traffic by the use of a different server port. This document
  documents that practice using TLS. A companion document describes a
  method for using HTTP/TLS over the same port as normal HTTP
  [RFC2817].

Table of Contents

  1. Introduction  . . . . . . . . . . . . . . . . . . . . . . 2
  1.1. Requirements Terminology  . . . . . . . . . . . . . . . 2
  2. HTTP Over TLS . . . . . . . . . . . . . . . . . . . . . . 2
  2.1. Connection Initiation . . . . . . . . . . . . . . . . . 2
  2.2. Connection Closure  . . . . . . . . . . . . . . . . . . 2
  2.2.1. Client Behavior . . . . . . . . . . . . . . . . . . . 3
  2.2.2. Server Behavior . . . . . . . . . . . . . . . . . . . 3
  2.3. Port Number . . . . . . . . . . . . . . . . . . . . . . 4
  2.4. URI Format  . . . . . . . . . . . . . . . . . . . . . . 4
  3. Endpoint Identification . . . . . . . . . . . . . . . . . 4
  3.1. Server Identity . . . . . . . . . . . . . . . . . . . . 4
  3.2. Client Identity . . . . . . . . . . . . . . . . . . . . 5
  References . . . . . . . . . . . . . . . . . . . . . . . . . 6
  Security Considerations  . . . . . . . . . . . . . . . . . . 6
  Author's Address . . . . . . . . . . . . . . . . . . . . . . 6
  Full Copyright Statement . . . . . . . . . . . . . . . . . . 7






Rescorla                     Informational                      [Page 1]

RFC 2818                     HTTP Over TLS                      May 2000


1.  Introduction

  HTTP [RFC2616] was originally used in the clear on the Internet.
  However, increased use of HTTP for sensitive applications has
  required security measures. SSL, and its successor TLS [RFC2246] were
  designed to provide channel-oriented security. This document
  describes how to use HTTP over TLS.

1.1.  Requirements Terminology

  Keywords "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT" and
  "MAY" that appear in this document are to be interpreted as described
  in [RFC2119].

2.  HTTP Over TLS

  Conceptually, HTTP/TLS is very simple. Simply use HTTP over TLS
  precisely as you would use HTTP over TCP.

2.1.  Connection Initiation

  The agent acting as the HTTP client should also act as the TLS
  client.  It should initiate a connection to the server on the
  appropriate port and then send the TLS ClientHello to begin the TLS
  handshake. When the TLS handshake has finished. The client may then
  initiate the first HTTP request.  All HTTP data MUST be sent as TLS
  "application data".  Normal HTTP behavior, including retained
  connections should be followed.

2.2.  Connection Closure

  TLS provides a facility for secure connection closure. When a valid
  closure alert is received, an implementation can be assured that no
  further data will be received on that connection.  TLS
  implementations MUST initiate an exchange of closure alerts before
  closing a connection. A TLS implementation MAY, after sending a
  closure alert, close the connection without waiting for the peer to
  send its closure alert, generating an "incomplete close".  Note that
  an implementation which does this MAY choose to reuse the session.
  This SHOULD only be done when the application knows (typically
  through detecting HTTP message boundaries) that it has received all
  the message data that it cares about.

  As specified in [RFC2246], any implementation which receives a
  connection close without first receiving a valid closure alert (a
  "premature close") MUST NOT reuse that session.  Note that a
  premature close does not call into question the security of the data
  already received, but simply indicates that subsequent data might



Rescorla                     Informational                      [Page 2]

RFC 2818                     HTTP Over TLS                      May 2000


  have been truncated. Because TLS is oblivious to HTTP
  request/response boundaries, it is necessary to examine the HTTP data
  itself (specifically the Content-Length header) to determine whether
  the truncation occurred inside a message or between messages.

2.2.1.  Client Behavior

  Because HTTP uses connection closure to signal end of server data,
  client implementations MUST treat any premature closes as errors and
  the data received as potentially truncated.  While in some cases the
  HTTP protocol allows the client to find out whether truncation took
  place so that, if it received the complete reply, it may tolerate
  such errors following the principle to "[be] strict when sending and
  tolerant when receiving" [RFC1958], often truncation does not show in
  the HTTP protocol data; two cases in particular deserve special note:

    A HTTP response without a Content-Length header. Since data length
    in this situation is signalled by connection close a premature
    close generated by the server cannot be distinguished from a
    spurious close generated by an attacker.

    A HTTP response with a valid Content-Length header closed before
    all data has been read. Because TLS does not provide document
    oriented protection, it is impossible to determine whether the
    server has miscomputed the Content-Length or an attacker has
    truncated the connection.

  There is one exception to the above rule. When encountering a
  premature close, a client SHOULD treat as completed all requests for
  which it has received as much data as specified in the Content-Length
  header.

  A client detecting an incomplete close SHOULD recover gracefully.  It
  MAY resume a TLS session closed in this fashion.

  Clients MUST send a closure alert before closing the connection.
  Clients which are unprepared to receive any more data MAY choose not
  to wait for the server's closure alert and simply close the
  connection, thus generating an incomplete close on the server side.

2.2.2.  Server Behavior

  RFC 2616 permits an HTTP client to close the connection at any time,
  and requires servers to recover gracefully.  In particular, servers
  SHOULD be prepared to receive an incomplete close from the client,
  since the client can often determine when the end of server data is.
  Servers SHOULD be willing to resume TLS sessions closed in this
  fashion.



Rescorla                     Informational                      [Page 3]

RFC 2818                     HTTP Over TLS                      May 2000


  Implementation note: In HTTP implementations which do not use
  persistent connections, the server ordinarily expects to be able to
  signal end of data by closing the connection. When Content-Length is
  used, however, the client may have already sent the closure alert and
  dropped the connection.

  Servers MUST attempt to initiate an exchange of closure alerts with
  the client before closing the connection. Servers MAY close the
  connection after sending the closure alert, thus generating an
  incomplete close on the client side.

2.3.  Port Number

  The first data that an HTTP server expects to receive from the client
  is the Request-Line production. The first data that a TLS server (and
  hence an HTTP/TLS server) expects to receive is the ClientHello.
  Consequently, common practice has been to run HTTP/TLS over a
  separate port in order to distinguish which protocol is being used.
  When HTTP/TLS is being run over a TCP/IP connection, the default port
  is 443. This does not preclude HTTP/TLS from being run over another
  transport. TLS only presumes a reliable connection-oriented data
  stream.

2.4.  URI Format

  HTTP/TLS is differentiated from HTTP URIs by using the 'https'
  protocol identifier in place of the 'http' protocol identifier. An
  example URI specifying HTTP/TLS is:

    https://www.example.com/~smith/home.html

3.  Endpoint Identification

3.1.  Server Identity

  In general, HTTP/TLS requests are generated by dereferencing a URI.
  As a consequence, the hostname for the server is known to the client.
  If the hostname is available, the client MUST check it against the
  server's identity as presented in the server's Certificate message,
  in order to prevent man-in-the-middle attacks.

  If the client has external information as to the expected identity of
  the server, the hostname check MAY be omitted. (For instance, a
  client may be connecting to a machine whose address and hostname are
  dynamic but the client knows the certificate that the server will
  present.) In such cases, it is important to narrow the scope of
  acceptable certificates as much as possible in order to prevent man




Rescorla                     Informational                      [Page 4]

RFC 2818                     HTTP Over TLS                      May 2000


  in the middle attacks.  In special cases, it may be appropriate for
  the client to simply ignore the server's identity, but it must be
  understood that this leaves the connection open to active attack.

  If a subjectAltName extension of type dNSName is present, that MUST
  be used as the identity. Otherwise, the (most specific) Common Name
  field in the Subject field of the certificate MUST be used. Although
  the use of the Common Name is existing practice, it is deprecated and
  Certification Authorities are encouraged to use the dNSName instead.

  Matching is performed using the matching rules specified by
  [RFC2459].  If more than one identity of a given type is present in
  the certificate (e.g., more than one dNSName name, a match in any one
  of the set is considered acceptable.) Names may contain the wildcard
  character * which is considered to match any single domain name
  component or component fragment. E.g., *.a.com matches foo.a.com but
  not bar.foo.a.com. f*.com matches foo.com but not bar.com.

  In some cases, the URI is specified as an IP address rather than a
  hostname. In this case, the iPAddress subjectAltName must be present
  in the certificate and must exactly match the IP in the URI.

  If the hostname does not match the identity in the certificate, user
  oriented clients MUST either notify the user (clients MAY give the
  user the opportunity to continue with the connection in any case) or
  terminate the connection with a bad certificate error. Automated
  clients MUST log the error to an appropriate audit log (if available)
  and SHOULD terminate the connection (with a bad certificate error).
  Automated clients MAY provide a configuration setting that disables
  this check, but MUST provide a setting which enables it.

  Note that in many cases the URI itself comes from an untrusted
  source. The above-described check provides no protection against
  attacks where this source is compromised. For example, if the URI was
  obtained by clicking on an HTML page which was itself obtained
  without using HTTP/TLS, a man in the middle could have replaced the
  URI.  In order to prevent this form of attack, users should carefully
  examine the certificate presented by the server to determine if it
  meets their expectations.

3.2.  Client Identity

  Typically, the server has no external knowledge of what the client's
  identity ought to be and so checks (other than that the client has a
  certificate chain rooted in an appropriate CA) are not possible. If a
  server has such knowledge (typically from some source external to
  HTTP or TLS) it SHOULD check the identity as described above.




Rescorla                     Informational                      [Page 5]

RFC 2818                     HTTP Over TLS                      May 2000


References

  [RFC2459] Housley, R., Ford, W., Polk, W. and D. Solo, "Internet
            Public Key Infrastructure: Part I: X.509 Certificate and
            CRL Profile", RFC 2459, January 1999.

  [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
            L., Leach, P. and T. Berners-Lee, "Hypertext Transfer
            Protocol, HTTP/1.1", RFC 2616, June 1999.

  [RFC2119] Bradner, S., "Key Words for use in RFCs to indicate
            Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol", RFC 2246,
            January 1999.

  [RFC2817] Khare, R. and S. Lawrence, "Upgrading to TLS Within
            HTTP/1.1", RFC 2817, May 2000.

Security Considerations

  This entire document is about security.

Author's Address

  Eric Rescorla
  RTFM, Inc.
  30 Newell Road, #16
  East Palo Alto, CA 94303

  Phone: (650) 328-8631
  EMail: [email protected]



















Rescorla                     Informational                      [Page 6]

RFC 2818                     HTTP Over TLS                      May 2000


Full Copyright Statement

  Copyright (C) The Internet Society (2000).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Rescorla                     Informational                      [Page 7]