Internet Engineering Task Force (IETF)                           T. Saad
Request for Comments: 8960                              Juniper Networks
Category: Standards Track                                        K. Raza
ISSN: 2070-1721                                                R. Gandhi
                                                    Cisco Systems, Inc.
                                                                 X. Liu
                                                         Volta Networks
                                                              V. Beeram
                                                       Juniper Networks
                                                          December 2020


                   A YANG Data Model for MPLS Base

Abstract

  This document contains a specification of the MPLS base YANG data
  model.  The MPLS base YANG data model serves as a base framework for
  configuring and managing an MPLS switching subsystem on an MPLS-
  enabled router.  It is expected that other MPLS YANG data models
  (e.g., MPLS Label Switched Path (LSP) static, LDP, or RSVP-TE YANG
  data models) will augment the MPLS base YANG data model.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8960.

Copyright Notice

  Copyright (c) 2020 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction
    1.1.  Terminology
    1.2.  Acronyms and Abbreviations
  2.  MPLS Base Model
    2.1.  Model Overview
    2.2.  Model Organization
    2.3.  Model Design
    2.4.  Model Tree Diagram
    2.5.  MPLS Base YANG Module
  3.  IANA Considerations
  4.  Security Considerations
  5.  References
    5.1.  Normative References
    5.2.  Informative References
  Appendix A.  Data Tree Instance Example
  Acknowledgments
  Contributors
  Authors' Addresses

1.  Introduction

  A core routing YANG data model is defined in [RFC8349]; it provides a
  basis for the development of routing data models for specific Address
  Families (AFs).  Specifically, [RFC8349] defines a model for a
  generic Routing Information Base (RIB) that is AF agnostic.
  [RFC8349] also defines two instances of RIBs based on the generic RIB
  model for IPv4 and IPv6 AFs.

  The MPLS base model defined in this document augments the generic RIB
  model defined in [RFC8349] with additional data that enables MPLS
  forwarding for one or more specific destination prefixes present in
  one or more AF RIBs, as described in the MPLS architecture document
  [RFC3031].

  The MPLS base model also defines a new instance of the generic RIB
  YANG data model as defined in [RFC8349] to store native MPLS routes.
  The native MPLS RIB instance stores one or more routes that are not
  associated with other AF instance RIBs (such as IPv4 or IPv6 instance
  RIBs) but are enabled for MPLS forwarding.  Examples of such native
  MPLS routes are routes programmed by RSVP on one or more transit MPLS
  routers along the path of a Label Switched Path (LSP).  Other
  examples are MPLS routes that cross-connect to specific Layer 2
  adjacencies, such as Layer 2 Attachment Circuits (ACs); or Layer 3
  adjacencies, such as Segment Routing (SR) Adjacency Segments (Adj-
  SIDs) as described in [RFC8402].

  The MPLS base YANG data model serves as a basis for future
  development of MPLS YANG data models covering MPLS features and
  subsystems that are more sophisticated.  The main purpose is to
  provide essential building blocks for other YANG data models
  involving different control-plane protocols and MPLS functions.

  To this end, it is expected that the MPLS base data model will be
  augmented by a number of other YANG modules developed by the IETF
  (e.g., by the TEAS and MPLS Working Groups).

  The YANG module defined in this document conforms to the Network
  Management Datastore Architecture (NMDA) [RFC8342].

1.1.  Terminology

  The terminology for describing YANG data models is found in
  [RFC7950].

1.2.  Acronyms and Abbreviations

  MPLS:  Multiprotocol Label Switching

  RIB:  Routing Information Base

  LSP:  Label Switched Path

  LSR:  Label Switching Router

  NHLFE:  Next Hop Label Forwarding Entry

2.  MPLS Base Model

  This document describes the "ietf-mpls" YANG module, which provides
  base components of the MPLS data model.  It is expected that other
  MPLS YANG modules will augment the "ietf-mpls" YANG module for other
  MPLS extensions to provision LSPs (e.g., MPLS static, MPLS LDP, or
  MPLS RSVP-TE LSPs).

2.1.  Model Overview

  This document models MPLS-labeled routes as an augmentation of the
  generic routing RIB data model as defined in [RFC8349].  For example,
  IP prefix routes (e.g., routes stored in IPv4 or IPv6 RIBs) are
  augmented to carry additional data to enable them for MPLS
  forwarding.

  This document also defines a new instance of the generic RIB model
  defined in [RFC8349] to store one or more native MPLS routes
  (described further in Section 2.3) by extending the identity
  "address-family" defined in [RFC8349] with a new "mpls" identity; see
  Section 3 of [RFC8349].

2.2.  Model Organization

    Routing          +---------------+    v: import
    YANG module      | ietf-routing  |    o: augment
                     +---------------+
                         o
                         |
                         v
    MPLS base        +-----------+    v: import
    YANG module      | ietf-mpls |    o: augment
                     +-----------+
                        o      o------+
                        |              \
                        v               v
                +-------------------+ +---------------------+
    MPLS static | ietf-mpls-static@ | | ietf-mpls-ldp.yang@ | . .
    LSP YANG    +-------------------+ +---------------------+
    module

          @: not in this document; shown for illustration only

               Figure 1: Relationship between MPLS Modules

  The "ietf-mpls" YANG module defines the following identities:

  mpls:
     Identity that extends the "address-family" identity of RIB
     instances, as defined in [RFC8349], to represent the native MPLS
     RIB instance.

  label-block-alloc-mode:
     A base YANG identity for one or more supported label-block
     allocation modes.

  The "ietf-mpls" YANG module contains the following high-level types
  and groupings:

  mpls-operations-type:
     An enumeration type that represents support for possible MPLS
     operation types (impose-and-forward, pop-and-forward, pop-impose-
     and-forward, and pop-and-lookup).

  nhlfe-role:
     An enumeration type that represents the role of the Next Hop Label
     Forwarding Entry (NHLFE).

  nhlfe-single-contents:
     A YANG grouping that describes a single NHLFE and its associated
     parameters as described in the MPLS architecture document
     [RFC3031].  This grouping is specific to the case when a single
     next hop is associated with the route.

  The NHLFE is used when forwarding a labeled packet.  It contains the
  following information:

  1.  The packet's next hop.  For "nhlfe-single-contents", only a
      single next hop is expected, while for "nhlfe-multiple-contents",
      multiple next hops are possible.

  2.  The operation to perform on the packet's label stack.  This can
      be one of the following operations:

      a.  Replace the label at the top of the label stack with one or
          more specified new labels.

      b.  Pop the label stack.

      c.  Replace the label at the top of the label stack with a
          specified new label, and then push one or more specified new
          labels onto the label stack.

      d.  Push one or more labels onto an unlabeled packet.

  The NHLFE may also contain:

  1.  The data-link encapsulation to use when transmitting the packet.

  2.  The way to encode the label stack when transmitting the packet.

  3.  Any other information needed in order to properly dispose of the
      packet.

  nhlfe-multiple-contents:
     A YANG grouping that describes a set of NHLFEs and their
     associated parameters as described in the MPLS architecture
     document [RFC3031].  This grouping is used when multiple next hops
     are associated with the route.

  interfaces-mpls:
     A YANG grouping that describes the list of MPLS-enabled interfaces
     on a device.

  label-blocks:
     A YANG grouping that describes the list of assigned MPLS label
     blocks and their properties.

  rib-mpls-properties:
     A YANG grouping for the augmentation of the generic RIB with MPLS
     label forwarding data as defined in [RFC3031].

  rib-active-route-mpls-input:
     A YANG grouping for the augmentation to the "active-route" RPC
     that is specific to the MPLS RIB instance.

2.3.  Model Design

  The MPLS routing model is based on the core routing data model
  defined in [RFC8349].  Figure 2 shows the extensions introduced by
  the MPLS base model on defined RIBs.

                               +-----------------+
                               | MPLS base model |
                               +-----------------+
                             ____/  |  |_____  |________
                            /       |        \          \
                           /        |         \          \
                          o         o          o          +
                   +---------+  +---------+  +--------+ +-----------+
                   | RIB(v4) |  | RIB(v6) |  | RIB(x) | | RIB(mpls) |
                   +---------+  +---------+  +--------+ +-----------+

          +: created by the MPLS base model
          o: augmented by the MPLS base model

       Figure 2: Relationship between MPLS Model and RIB Instances

  As shown in Figure 2, the MPLS base YANG data model augments defined
  instances of AF RIBs with additional data that enables MPLS
  forwarding for destination prefixes stored in such RIBs.  For
  example, an IPv4 prefix stored in RIB(v4) is augmented to carry an
  MPLS local label and one or more per-next-hop remote labels to enable
  MPLS forwarding for such a prefix.

  The MPLS base model also creates a separate instance of the generic
  RIB model defined in [RFC8349] to store one or more MPLS native
  routes that are enabled for MPLS forwarding but are not stored in one
  or more other AF RIBs.

  Some examples of such native MPLS routes are:

  *  Routes programmed by RSVP on Label Switching Routers (LSRs) along
     the path of an LSP,

  *  Routes that cross-connect an MPLS local label to a Layer 2 or
     Layer 3 Virtual Routing and Forwarding (VRF) entity,

  *  Routes that cross-connect an MPLS local label to a specific Layer
     2 adjacency or interface, such as Layer 2 Attachment Circuits
     (ACs), or

  *  Routes that cross-connect an MPLS local label to a Layer 3
     adjacency or interface, such as MPLS Segment Routing (SR)
     Adjacency Segments (Adj-SIDs) or SR MPLS Binding SIDs as defined
     in [RFC8402].

2.4.  Model Tree Diagram

  The MPLS base tree diagram, which follows the notation defined in
  [RFC8340], is shown in Figure 3.

  module: ietf-mpls
    augment /rt:routing:
      +--rw mpls
         +--rw ttl-propagate?       boolean
         +--rw mpls-label-blocks
         |  +--rw mpls-label-block* [index]
         |     +--rw index                    string
         |     +--rw start-label?             rt-types:mpls-label
         |     +--rw end-label?               rt-types:mpls-label
         |     +--rw block-allocation-mode?   identityref
         |     +--ro inuse-labels-count?      yang:gauge32
         +--rw interfaces
            +--rw interface* [name]
               +--rw name                      if:interface-ref
               +--rw mpls-enabled?             boolean
               +--rw maximum-labeled-packet?   uint32
    augment /rt:routing/rt:ribs/rt:rib/rt:routes/rt:route:
      +--ro mpls-enabled?         boolean
      +--ro mpls-local-label?     rt-types:mpls-label
      +--ro destination-prefix?   -> ../mpls-local-label
      +--ro route-context?        string
    augment /rt:routing/rt:ribs/rt:rib/rt:routes/rt:route/rt:next-hop
              /rt:next-hop-options/rt:simple-next-hop:
      +--ro mpls-label-stack
         +--ro entry* [id]
            +--ro id               uint8
            +--ro label?           rt-types:mpls-label
            +--ro ttl?             uint8
            +--ro traffic-class?   uint8
    augment /rt:routing/rt:ribs/rt:rib/rt:routes/rt:route/rt:next-hop
              /rt:next-hop-options/rt:next-hop-list/rt:next-hop-list
              /rt:next-hop:
      +--ro index?              string
      +--ro backup-index?       string
      +--ro loadshare?          uint16
      +--ro role?               nhlfe-role
      +--ro mpls-label-stack
         +--ro entry* [id]
            +--ro id               uint8
            +--ro label?           rt-types:mpls-label
            +--ro ttl?             uint8
            +--ro traffic-class?   uint8
    augment /rt:routing/rt:ribs/rt:rib/rt:active-route/rt:input:
      +---w destination-address?   -> ../mpls-local-label
      +---w mpls-local-label?      rt-types:mpls-label
    augment /rt:routing/rt:ribs/rt:rib/rt:active-route/rt:output
              /rt:route/rt:next-hop/rt:next-hop-options
              /rt:simple-next-hop:
      +-- mpls-label-stack
         +-- entry* [id]
            +-- id               uint8
            +-- label?           rt-types:mpls-label
            +-- ttl?             uint8
            +-- traffic-class?   uint8
    augment /rt:routing/rt:ribs/rt:rib/rt:active-route/rt:output
              /rt:route/rt:next-hop/rt:next-hop-options
              /rt:next-hop-list/rt:next-hop-list/rt:next-hop:
      +-- index?              string
      +-- backup-index?       string
      +-- loadshare?          uint16
      +-- role?               nhlfe-role
      +-- mpls-label-stack
         +-- entry* [id]
            +-- id               uint8
            +-- label?           rt-types:mpls-label
            +-- ttl?             uint8
            +-- traffic-class?   uint8

                     Figure 3: MPLS Base Tree Diagram

2.5.  MPLS Base YANG Module

  This section describes the "ietf-mpls" YANG module, which provides
  base components of the MPLS data model.  Other YANG modules may
  import and augment the MPLS base module to add feature-specific data.

  The "ietf-mpls" YANG module imports the following YANG modules:

  *  "ietf-routing" as defined in [RFC8349]

  *  "ietf-routing-types" as defined in [RFC8294]

  *  "ietf-yang-types" as defined in [RFC6991]

  *  "ietf-interfaces" as defined in [RFC8343]

  This YANG module also references the following RFCs in defining the
  types, YANG groupings, and other features of the YANG module:
  [RFC3031], [RFC3032], [RFC4090], [RFC5714], and [RFC7424].

  <CODE BEGINS> file "[email protected]"
  module ietf-mpls {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-mpls";

    prefix mpls;

    import ietf-routing {
      prefix rt;
      reference
        "RFC 8349: A YANG Data Model for Routing Management
         (NMDA Version)";
    }
    import ietf-routing-types {
      prefix rt-types;
      reference
        "RFC 8294: Common YANG Data Types for the Routing Area";
    }
    import ietf-yang-types {
      prefix yang;
      reference
        "RFC 6991: Common YANG Data Types";
    }
    import ietf-interfaces {
      prefix if;
      reference
        "RFC 8343: A YANG Data Model for Interface Management";
    }

    organization
      "IETF MPLS Working Group";
    contact
      "WG Web:   <https://datatracker.ietf.org/wg/mpls/>
       WG List:  <mailto:[email protected]>

       Editor:   Tarek Saad
                 <mailto:[email protected]>

       Editor:   Kamran Raza
                 <mailto:[email protected]>

       Editor:   Rakesh Gandhi
                 <mailto:[email protected]>

       Editor:   Xufeng Liu
                 <mailto:[email protected]>

       Editor:   Vishnu Pavan Beeram
                 <mailto:[email protected]>";
    description
      "This YANG module defines the essential components for the
       management of the MPLS subsystem.  The model fully conforms
       to the Network Management Datastore Architecture (NMDA).

       Copyright (c) 2020 IETF Trust and the persons identified as
       authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or
       without modification, is permitted pursuant to, and subject to
       the license terms contained in, the Simplified BSD License set
       forth in Section 4.c of the IETF Trust's Legal Provisions
       Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC 8960; see the
       RFC itself for full legal notices.";

    revision 2020-12-18 {
      description
        "Initial revision.";
      reference
        "RFC 8960: A YANG Data Model for MPLS Base";
    }

    /* Identities */

    identity mpls {
      base rt:address-family;
      description
        "This identity represents the MPLS address family.";
    }

    identity mpls-unicast {
      base mpls:mpls;
      description
        "This identity represents the MPLS unicast address family.";
    }

    identity label-block-alloc-mode {
      description
        "Base identity for label-block allocation mode.";
    }

    identity label-block-alloc-mode-manager {
      base label-block-alloc-mode;
      description
        "Label-block allocation on the reserved block
         is managed by the label manager.";
    }

    identity label-block-alloc-mode-application {
      base label-block-alloc-mode;
      description
        "Label-block allocation on the reserved block
         is managed by the application.";
    }

    /**
     * Typedefs
     */

    typedef mpls-operations-type {
      type enumeration {
        enum impose-and-forward {
          description
            "Operation to impose one or more outgoing labels and
             forward to the next hop.";
        }
        enum pop-and-forward {
          description
            "Operation to pop the incoming label and forward to the
             next hop.";
        }
        enum pop-impose-and-forward {
          description
            "Operation to pop the incoming label, impose one or more
             outgoing labels, and forward to the next hop.";
        }
        enum swap-and-forward {
          description
            "Operation to swap the incoming label with the outgoing
             label and forward to the next hop.";
        }
        enum pop-and-lookup {
          description
            "Operation to pop the incoming label and perform
             a lookup.";
        }
      }
      description
        "Types of MPLS operations.";
    }

    typedef nhlfe-role {
      type enumeration {
        enum primary {
          description
            "The next hop acts as the primary for carrying traffic.";
        }
        enum backup {
          description
            "The next hop acts as the backup.";
        }
        enum primary-and-backup {
          description
            "The next hop simultaneously acts as both the primary and
             the backup for carrying traffic.";
        }
      }
      description
        "Role of the next hop.";
    }

    grouping nhlfe-single-contents {
      description
        "A grouping that describes a single Next Hop Label Forwarding
         Entry (NHLFE) and its associated parameters as described in
         the MPLS architecture.  This grouping is specific to the case
         when a single next hop is associated with the route.";
      uses rt-types:mpls-label-stack;
    }

    grouping nhlfe-multiple-contents {
      description
        "A grouping that describes a set of NHLFEs and their
         associated parameters as described in the MPLS
         architecture.  This grouping is used when multiple next hops
         are associated with the route.";
      leaf index {
        type string;
        description
          "A user-specified identifier utilized to uniquely
           reference the next-hop entry in the next-hop list.
           The value of this index has no semantic meaning
           other than for referencing the entry.";
      }
      leaf backup-index {
        type string;
        description
          "A user-specified identifier utilized to uniquely
           reference the backup next-hop entry in the NHLFE list.
           The value of this index has no semantic meaning
           other than for referencing the entry.";
        reference
          "RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels
           RFC 5714: IP Fast Reroute Framework";
      }
      leaf loadshare {
        type uint16;
        default "1";
        description
          "This value is used to compute a load share to perform
           unequal load balancing when multiple outgoing next hops are
           specified.  A share is computed as a ratio of this number to
           the total under all next hops.";
        reference
          "RFC 3031: Multiprotocol Label Switching Architecture,
           Sections 3.11 and 3.12
           RFC 7424: Mechanisms for Optimizing Link Aggregation Group
           (LAG) and Equal-Cost Multipath (ECMP) Component Link
           Utilization in Networks, Section 5.4";
      }
      leaf role {
        type nhlfe-role;
        description
          "Role of the NHLFE.";
      }
      uses nhlfe-single-contents;
    }

    grouping interfaces-mpls {
      description
        "List of MPLS interfaces.";
      container interfaces {
        description
          "List of MPLS-enabled interfaces.";
        list interface {
          key "name";
          description
            "MPLS-enabled interface entry.";
          leaf name {
            type if:interface-ref;
            description
              "A reference to the name of an interface in the system
               that is to be enabled for MPLS.";
          }
          leaf mpls-enabled {
            type boolean;
            default "false";
            description
              "'true' if MPLS encapsulation is enabled on the
               interface.
               'false' if MPLS encapsulation is disabled on the
               interface.";
          }
          leaf maximum-labeled-packet {
            type uint32;
            units "octets";
            description
              "Maximum labeled packet size.";
            reference
              "RFC 3032: MPLS Label Stack Encoding, Section 3.2";
          }
        }
      }
    }

    grouping globals {
      description
        "MPLS global configuration grouping.";
      leaf ttl-propagate {
        type boolean;
        default "true";
        description
          "Propagate TTL between IP and MPLS.";
      }
    }

    grouping label-blocks {
      description
        "Label-block allocation grouping.";
      container mpls-label-blocks {
        description
          "Label-block allocation container.";
        list mpls-label-block {
          key "index";
          description
            "List of MPLS label blocks.";
          leaf index {
            type string;
            description
              "A user-specified identifier utilized to uniquely
               reference an MPLS label block.";
          }
          leaf start-label {
            type rt-types:mpls-label;
            must '. <= ../end-label' {
              error-message "'start-label' must be less than or equal "
                          + "to 'end-label'";
            }
            description
              "Label-block start.";
          }
          leaf end-label {
            type rt-types:mpls-label;
            must '. >= ../start-label' {
              error-message "'end-label' must be greater than or "
                          + "equal to 'start-label'";
            }
            description
              "Label-block end.";
          }
          leaf block-allocation-mode {
            type identityref {
              base label-block-alloc-mode;
            }
            description
              "Label-block allocation mode.";
          }
          leaf inuse-labels-count {
            when "derived-from-or-self(../block-allocation-mode, "
               + "'mpls:label-block-alloc-mode-manager')";
            type yang:gauge32;
            config false;
            description
              "Number of labels in use in the label block.";
          }
        }
      }
    }

    grouping rib-mpls-properties {
      description
        "A grouping of native MPLS RIB properties.";
      leaf destination-prefix {
        type leafref {
          path "../mpls-local-label";
        }
        description
          "MPLS destination prefix.";
      }
      leaf route-context {
        type string;
        description
          "A context associated with the native MPLS route.";
      }
    }

    grouping rib-active-route-mpls-input {
      description
        "A grouping applicable to native MPLS RIB 'active-route'
         RPC input augmentation.";
      leaf destination-address {
        type leafref {
          path "../mpls-local-label";
        }
        description
          "MPLS native 'active-route' destination.";
      }
      leaf mpls-local-label {
        type rt-types:mpls-label;
        description
          "MPLS local label.";
      }
    }

    augment "/rt:routing" {
      description
        "MPLS augmentation.";
      container mpls {
        description
          "MPLS container to be used as an augmentation target node
           for the configuration of other MPLS sub-features, e.g.,
           MPLS static Label Switched Paths (LSPs), MPLS LDP LSPs,
           and Traffic Engineering MPLS LSP Tunnels.";
        uses globals;
        uses label-blocks;
        uses interfaces-mpls;
      }
    }

    /* Augmentation of MPLS routes */

    augment "/rt:routing/rt:ribs/rt:rib/rt:routes/rt:route" {
      description
        "This augmentation is applicable to all MPLS routes.";
      leaf mpls-enabled {
        type boolean;
        default "false";
        description
          "Indicates whether MPLS is enabled for this route.";
      }
      leaf mpls-local-label {
        when "../mpls-enabled = 'true'";
        type rt-types:mpls-label;
        description
          "MPLS local label associated with the route.";
      }
      uses rib-mpls-properties {
        /* MPLS Address Family (AF) augmentation to the
           native MPLS RIB */
        when "derived-from-or-self(../../rt:address-family, "
           + "'mpls:mpls')" {
          description
            "This augment is valid only for routes of the native MPLS
             RIB.";
        }
      }
    }

    /* MPLS simple-next-hop augmentation */

    augment "/rt:routing/rt:ribs/rt:rib/rt:routes/rt:route/"
          + "rt:next-hop/rt:next-hop-options/rt:simple-next-hop" {
      description
        "Augments the 'simple-next-hop' case in IP unicast routes.";
      uses nhlfe-single-contents {
        when "/rt:routing/rt:ribs/rt:rib/rt:routes/rt:route"
           + "/mpls:mpls-enabled = 'true'";
      }
    }

    /* MPLS next-hop-list augmentation */

    augment "/rt:routing/rt:ribs/rt:rib/rt:routes/rt:route/"
          + "rt:next-hop/rt:next-hop-options/rt:next-hop-list/"
          + "rt:next-hop-list/rt:next-hop" {
      description
        "This leaf augments the 'next-hop-list' case of IP unicast
         routes.";
      uses nhlfe-multiple-contents {
        when "/rt:routing/rt:ribs/rt:rib/rt:routes/rt:route"
           + "/mpls:mpls-enabled = 'true'";
      }
    }

    /* MPLS RPC input augmentation */

    augment "/rt:routing/rt:ribs/rt:rib/rt:active-route/rt:input" {
      description
        "Input MPLS augmentation for the 'active-route' action
         statement.";
      uses rib-active-route-mpls-input {
        /* MPLS AF augmentation to the native MPLS RIB */
        when "derived-from-or-self(../rt:address-family, "
           + "'mpls:mpls')" {
          description
            "This augment is valid only for routes of the native MPLS
             RIB.";
        }
      }
    }

    /* MPLS RPC output augmentation */

    augment "/rt:routing/rt:ribs/rt:rib/rt:active-route/"
          + "rt:output/rt:route/"
          + "rt:next-hop/rt:next-hop-options/rt:simple-next-hop" {
      description
        "Output MPLS augmentation for the 'active-route' action
         statement.";
      uses nhlfe-single-contents;
    }

    augment "/rt:routing/rt:ribs/rt:rib/rt:active-route/"
          + "rt:output/rt:route/"
          + "rt:next-hop/rt:next-hop-options/rt:next-hop-list/"
          + "rt:next-hop-list/rt:next-hop" {
      description
        "Output MPLS augmentation for the 'active-route' action
         statement.";
      uses nhlfe-multiple-contents;
    }
  }
  <CODE ENDS>

                     Figure 4: MPLS Base YANG Module

3.  IANA Considerations

  This document registers the following URI in the "ns" subregistry of
  the "IETF XML Registry" [RFC3688].

  URI:  urn:ietf:params:xml:ns:yang:ietf-mpls
  Registrant Contact:  The MPLS WG of the IETF.
  XML:  N/A; the requested URI is an XML namespace.

  This document registers the following YANG module in the "YANG Module
  Names" registry [RFC6020].

  Name:  ietf-mpls
  Namespace:  urn:ietf:params:xml:ns:yang:ietf-mpls
  Prefix:  mpls
  Reference:  RFC 8960

4.  Security Considerations

  The YANG module specified in this document defines a schema for data
  that is designed to be accessed via network management protocols such
  as NETCONF [RFC6241] or RESTCONF [RFC8040].  The lowest NETCONF layer
  is the secure transport layer, and the mandatory-to-implement secure
  transport is Secure Shell (SSH) [RFC6242].  The lowest RESTCONF layer
  is HTTPS, and the mandatory-to-implement secure transport is TLS
  [RFC8446].

  The Network Configuration Access Control Model (NACM) [RFC8341]
  provides the means to restrict access for particular NETCONF or
  RESTCONF users to a preconfigured subset of all available NETCONF or
  RESTCONF protocol operations and content.

  There are a number of data nodes defined in this YANG module that are
  writable/creatable/deletable (i.e., config true, which is the
  default).  These data nodes may be considered sensitive or vulnerable
  in some network environments.  Write operations (e.g., edit-config)
  to these data nodes without proper protection can have a negative
  effect on network operations.  These are the subtrees and data nodes
  and their sensitivity/vulnerability:

  "/rt:routing/mpls:mpls/mpls:label-blocks":
     There are data nodes under this path that are writable, such as
     "start-label" and "end-label".  Write operations to those data
     nodes may result in disruption to existing traffic.

  Some of the readable data nodes in this YANG module may be considered
  sensitive or vulnerable in some network environments.  It is thus
  important to control read access (e.g., via get, get-config, or
  notification) to these data nodes.  These are the subtrees and data
  nodes and their sensitivity/vulnerability:

  "/rt:routing/rt:ribs/rt:rib/rt:routes/rt:route/rt:next-hop/
  rt:next-hop-options/rt:next-hop-list/rt:next-hop-list/rt:next-hop"
  and "/rt:routing/rt:ribs/rt:rib/rt:active-
  route/rt:output/rt:route/rt:next-hop/rt:next-hop-options/
  rt:simple-next-hop":
     These two paths are augmented by additional MPLS leafs defined in
     this model.  Access to this information may disclose the next-hop
     information for the prefix route and/or other information.

  Some of the RPC operations in this YANG module may be considered
  sensitive or vulnerable in some network environments.  It is thus
  important to control access to these operations.  These are the
  operations and their sensitivity/vulnerability:

  "/rt:routing/rt:ribs/rt:rib/rt:active-route/rt:input" and
  "/rt:routing/rt:ribs/rt:rib/rt:active-route/rt:output/rt:route":
     These two paths are augmented by additional MPLS data nodes that
     are defined in this model.  Access to those paths may disclose
     information about per-prefix routes and/or other information; such
     disclosure may be used for further attacks.

  The security considerations spelled out in [RFC3031] and [RFC3032]
  apply for this document as well.

5.  References

5.1.  Normative References

  [RFC3032]  Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
             Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
             Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,
             <https://www.rfc-editor.org/info/rfc3032>.

  [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
             DOI 10.17487/RFC3688, January 2004,
             <https://www.rfc-editor.org/info/rfc3688>.

  [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
             the Network Configuration Protocol (NETCONF)", RFC 6020,
             DOI 10.17487/RFC6020, October 2010,
             <https://www.rfc-editor.org/info/rfc6020>.

  [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
             and A. Bierman, Ed., "Network Configuration Protocol
             (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
             <https://www.rfc-editor.org/info/rfc6241>.

  [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
             Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
             <https://www.rfc-editor.org/info/rfc6242>.

  [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
             RFC 6991, DOI 10.17487/RFC6991, July 2013,
             <https://www.rfc-editor.org/info/rfc6991>.

  [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
             RFC 7950, DOI 10.17487/RFC7950, August 2016,
             <https://www.rfc-editor.org/info/rfc7950>.

  [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
             Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
             <https://www.rfc-editor.org/info/rfc8040>.

  [RFC8294]  Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
             "Common YANG Data Types for the Routing Area", RFC 8294,
             DOI 10.17487/RFC8294, December 2017,
             <https://www.rfc-editor.org/info/rfc8294>.

  [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
             BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
             <https://www.rfc-editor.org/info/rfc8340>.

  [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
             Access Control Model", STD 91, RFC 8341,
             DOI 10.17487/RFC8341, March 2018,
             <https://www.rfc-editor.org/info/rfc8341>.

  [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
             and R. Wilton, "Network Management Datastore Architecture
             (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
             <https://www.rfc-editor.org/info/rfc8342>.

  [RFC8343]  Bjorklund, M., "A YANG Data Model for Interface
             Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
             <https://www.rfc-editor.org/info/rfc8343>.

  [RFC8349]  Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for
             Routing Management (NMDA Version)", RFC 8349,
             DOI 10.17487/RFC8349, March 2018,
             <https://www.rfc-editor.org/info/rfc8349>.

  [RFC8402]  Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
             Decraene, B., Litkowski, S., and R. Shakir, "Segment
             Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
             July 2018, <https://www.rfc-editor.org/info/rfc8402>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.

5.2.  Informative References

  [RFC3031]  Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
             Label Switching Architecture", RFC 3031,
             DOI 10.17487/RFC3031, January 2001,
             <https://www.rfc-editor.org/info/rfc3031>.

  [RFC4090]  Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast
             Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090,
             DOI 10.17487/RFC4090, May 2005,
             <https://www.rfc-editor.org/info/rfc4090>.

  [RFC5714]  Shand, M. and S. Bryant, "IP Fast Reroute Framework",
             RFC 5714, DOI 10.17487/RFC5714, January 2010,
             <https://www.rfc-editor.org/info/rfc5714>.

  [RFC7424]  Krishnan, R., Yong, L., Ghanwani, A., So, N., and B.
             Khasnabish, "Mechanisms for Optimizing Link Aggregation
             Group (LAG) and Equal-Cost Multipath (ECMP) Component Link
             Utilization in Networks", RFC 7424, DOI 10.17487/RFC7424,
             January 2015, <https://www.rfc-editor.org/info/rfc7424>.

  [RFC7951]  Lhotka, L., "JSON Encoding of Data Modeled with YANG",
             RFC 7951, DOI 10.17487/RFC7951, August 2016,
             <https://www.rfc-editor.org/info/rfc7951>.

Appendix A.  Data Tree Instance Example

  A simple network setup is shown in Figure 5.  R1 runs the IS-IS
  routing protocol and learns about the reachability of two IPv4
  prefixes (P1: 198.51.100.1/32 and P2: 198.51.100.2/32) and two IPv6
  prefixes (P3: 2001:db8:0:10::1/128 and P4: 2001:db8:0:10::2/128).  We
  also assume that R1 learns about local and remote MPLS label bindings
  for each prefix using IS-IS (e.g., using Segment Routing (SR)
  extensions).

  State on R1:
  ============
      IPv4 Prefix           MPLS Label
  P1: 198.51.100.1/32       16001
  P2: 198.51.100.2/32       16002

      IPv6 Prefix           MPLS Label
  P3: 2001:db8:0:10::1/128  16003
  P4: 2001:db8:0:10::2/128  16004

  RSVP MPLS LSPv4-Tunnel:
   Source:        198.51.100.3
   Destination:   198.51.100.4
   Tunnel-ID:     10
   LSP-ID:        1
                                 192.0.2.5/30
                                 2001:db8:0:1::1/64
                                eth0
                                +---
                               /
                          +-----+
                          | R1  |
                          +-----+
                               \
                                +---
                                eth1
                                 192.0.2.13/30
                                 2001:db8:0:2::1/64

                Figure 5: Example of Network Configuration

  The instance data tree could then be illustrated as shown in
  Figure 6, using JSON format [RFC7951]:

  {
    "ietf-routing:routing":{
      "ribs":{
        "rib":[
          {
            "name":"RIB-V4",
            "address-family":
            "ietf-ipv4-unicast-routing:v4ur:ipv4-unicast",
            "routes":{
              "route":[
                {
                  "next-hop":{
                    "outgoing-interface":"eth0",
                    "ietf-mpls:mpls-label-stack":{
                      "entry":[
                        {
                          "id":1,
                          "label":16001,
                          "ttl":255
                        }
                      ]
                    },
                    "ietf-ipv4-unicast-routing:next-hop-address":
                    "192.0.2.5"
                  },
                  "source-protocol":"ietf-isis:isis",
                  "ietf-mpls:mpls-enabled":true,
                  "ietf-mpls:mpls-local-label":16001,
                  "ietf-ipv4-unicast-routing:destination-prefix":
                  "198.51.100.1/32",
                  "ietf-mpls:route-context":"SID-IDX:1"
                },
                {
                  "next-hop":{
                    "next-hop-list":{
                      "next-hop":[
                        {
                          "outgoing-interface":"eth0",
                          "ietf-mpls:index":"1",
                          "ietf-mpls:backup-index":"2",
                          "ietf-mpls:role":"primary-and-backup",
                          "ietf-mpls:mpls-label-stack":{
                            "entry":[
                              {
                                "id":1,
                                "label":16002,
                                "ttl":255
                              }
                            ]
                          },
                          "ietf-ipv4-unicast-routing:address":
                          "192.0.2.5"
                        },
                        {
                          "outgoing-interface":"eth1",
                          "ietf-mpls:index":"2",
                          "ietf-mpls:backup-index":"1",
                          "ietf-mpls:role":"primary-and-backup",
                          "ietf-mpls:mpls-label-stack":{
                            "entry":[
                              {
                                "id":1,
                                "label":16002,
                                "ttl":255
                              }
                            ]
                          },
                          "ietf-ipv4-unicast-routing:address":
                          "192.0.2.13"
                        }
                      ]
                    }
                  },
                  "source-protocol":"ietf-isis:isis",
                  "ietf-mpls:mpls-enabled":true,
                  "ietf-mpls:mpls-local-label":16002,
                  "ietf-ipv4-unicast-routing:destination-prefix":
                  "198.51.100.2/32",
                  "ietf-mpls:route-context":"SID-IDX:2"
                }
              ]
            }
          },
          {
            "name":"RIB-V6",
            "address-family":
            "ietf-ipv6-unicast-routing:v6ur:ipv6-unicast",
            "routes":{
              "route":[
                {
                  "next-hop":{
                    "outgoing-interface":"eth0",
                    "ietf-mpls:mpls-label-stack":{
                      "entry":[
                        {
                          "id":1,
                          "label":16003,
                          "ttl":255
                        }
                      ]
                    },
                    "ietf-ipv6-unicast-routing:next-hop-address":
                    "2001:db8:0:1::1"
                  },
                  "source-protocol":"ietf-isis:isis",
                  "ietf-mpls:mpls-enabled":true,
                  "ietf-mpls:mpls-local-label":16003,
                  "ietf-ipv6-unicast-routing:destination-prefix":
                  "2001:db8:0:10::1/128",
                  "ietf-mpls:route-context":"SID-IDX:3"
                },
                {
                  "next-hop":{
                    "next-hop-list":{
                      "next-hop":[
                        {
                          "outgoing-interface":"eth0",
                          "ietf-mpls:index":"1",
                          "ietf-mpls:backup-index":"2",
                          "ietf-mpls:role":"primary-and-backup",
                          "ietf-mpls:mpls-label-stack":{
                            "entry":[
                              {
                                "id":1,
                                "label":16004,
                                "ttl":255
                              }
                            ]
                          },
                          "ietf-ipv6-unicast-routing:address":
                          "2001:db8:0:1::1"
                        },
                        {
                          "outgoing-interface":"eth1",
                          "ietf-mpls:index":"2",
                          "ietf-mpls:backup-index":"1",
                          "ietf-mpls:role":"primary-and-backup",
                          "ietf-mpls:mpls-label-stack":{
                            "entry":[
                              {
                                "id":1,
                                "label":16004,
                                "ttl":255
                              }
                            ]
                          },
                          "ietf-ipv6-unicast-routing:address":
                          "2001:db8:0:2::1"
                        }
                      ]
                    }
                  },
                  "source-protocol":"ietf-isis:isis",
                  "ietf-mpls:mpls-enabled":true,
                  "ietf-mpls:mpls-local-label":16004,
                  "ietf-ipv6-unicast-routing:destination-prefix":
                  "2001:db8:0:10::2/128",
                  "ietf-mpls:route-context":"SID-IDX:4"
                }
              ]
            }
          },
          {
            "name":"RIB-MPLS",
            "address-family":"ietf-mpls:mpls:mpls",
            "routes":{
              "route":[
                {
                  "next-hop":{
                    "outgoing-interface":"eth0",
                    "ietf-mpls:mpls-label-stack":{
                      "entry":[
                        {
                          "id":1,
                          "label":24002,
                          "ttl":255
                        }
                      ]
                    },
                    "ietf-ipv4-unicast-routing:next-hop-address":
                    "192.0.2.5"
                  },
                  "source-protocol":"ietf-rsvp:rsvp",
                  "ietf-mpls:mpls-enabled":true,
                  "ietf-mpls:mpls-local-label":24001,
                  "ietf-mpls:destination-prefix":"24001",
                  "ietf-mpls:route-context":
                  "RSVP Src:198.51.100.3,Dst:198.51.100.4,T:10,L:1"
                }
              ]
            }
          }
        ]
      },
      "ietf-mpls:mpls":{
        "mpls-label-blocks":{
          "mpls-label-block":[
            {
             "index":"mpls-srgb-label-block",
             "start-label":16000,
             "end-label":16500,
             "block-allocation-mode":
             "ietf-mpls:label-block-alloc-mode-manager"
            }
          ]
        },
        "interfaces":{
          "interface":[
            {
              "name":"eth0",
              "mpls-enabled":true,
              "maximum-labeled-packet":1488
            },
            {
              "name":"eth1",
              "mpls-enabled":true,
              "maximum-labeled-packet":1488
            }
          ]
        }
      }
    }
  }

                   Figure 6: Instance Data Tree Example

Acknowledgments

  The authors would like to thank Xia Chen for her contributions to the
  early draft revisions of this document.

Contributors

  Igor Bryskin
  Huawei Technologies

  Email: [email protected]


  Himanshu Shah
  Ciena

  Email: [email protected]


Authors' Addresses

  Tarek Saad
  Juniper Networks

  Email: [email protected]


  Kamran Raza
  Cisco Systems, Inc.

  Email: [email protected]


  Rakesh Gandhi
  Cisco Systems, Inc.

  Email: [email protected]


  Xufeng Liu
  Volta Networks

  Email: [email protected]


  Vishnu Pavan Beeram
  Juniper Networks

  Email: [email protected]