Network Working Group                                          S. Knight
Request for Comments: 2338                                     D. Weaver
Category: Standards Track                    Ascend Communications, Inc.
                                                             D. Whipple
                                                        Microsoft, Inc.
                                                              R. Hinden
                                                              D. Mitzel
                                                                P. Hunt
                                                                  Nokia
                                                           P. Higginson
                                                               M. Shand
                                                Digital Equipment Corp.
                                                              A. Lindem
                                                        IBM Corporation
                                                             April 1998


                  Virtual Router Redundancy Protocol

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

Abstract

  This memo defines the Virtual Router Redundancy Protocol (VRRP).
  VRRP specifies an election protocol that dynamically assigns
  responsibility for a virtual router to one of the VRRP routers on a
  LAN.  The VRRP router controlling the IP address(es) associated with
  a virtual router is called the Master, and forwards packets sent to
  these IP addresses.  The election process provides dynamic fail over
  in the forwarding responsibility should the Master become
  unavailable.  This allows any of the virtual router IP addresses on
  the LAN to be used as the default first hop router by end-hosts.  The
  advantage gained from using VRRP is a higher availability default
  path without requiring configuration of dynamic routing or router
  discovery protocols on every end-host.






Knight, et. al.             Standards Track                     [Page 1]

RFC 2338                          VRRP                        April 1998


Table of Contents

  1.  Introduction...............................................2
  2.  Required Features..........................................5
  3.  VRRP Overview..............................................6
  4.  Sample Configurations......................................8
  5.  Protocol...................................................9
     5.1  VRRP Packet Format....................................10
     5.2  IP Field Descriptions.................................10
     5.3  VRRP Field Descriptions...............................11
  6.  Protocol State Machine....................................13
     6.1  Parameters............................................13
     6.2  Timers................................................15
     6.3  State Transition Diagram..............................15
     6.4  State Descriptions....................................15
  7.  Sending and Receiving VRRP Packets........................18
     7.1  Receiving VRRP Packets................................18
     7.2  Transmitting Packets..................................19
     7.3  Virtual MAC Address...................................19
  8.  Operational Issues........................................20
     8.1  ICMP Redirects........................................20
     8.2  Host ARP Requests.....................................20
     8.3  Proxy ARP.............................................20
  9.  Operation over FDDI and Token Ring........................21
     9.1  Operation over FDDI...................................21
     9.2  Operation over Token Ring.............................21
  10. Security Considerations...................................23
     10.1  No Authentication....................................23
     10.2  Simple Text Password.................................23
     10.3  IP Authentication Header.............................24
  11. Acknowledgments...........................................24
  12. References................................................24
  13. Authors' Addresses........................................25
  14. Full Copyright Statement..................................27

1.  Introduction

  There are a number of methods that an end-host can use to determine
  its first hop router towards a particular IP destination.  These
  include running (or snooping) a dynamic routing protocol such as
  Routing Information Protocol [RIP] or OSPF version 2 [OSPF], running
  an ICMP router discovery client [DISC] or using a statically
  configured default route.

  Running a dynamic routing protocol on every end-host may be
  infeasible for a number of reasons, including administrative
  overhead, processing overhead, security issues, or lack of a protocol
  implementation for some platforms.  Neighbor or router discovery



Knight, et. al.             Standards Track                     [Page 2]

RFC 2338                          VRRP                        April 1998


  protocols may require active participation by all hosts on a network,
  leading to large timer values to reduce protocol overhead in the face
  of large numbers of hosts.  This can result in a significant delay in
  the detection of a lost (i.e., dead) neighbor, which may introduce
  unacceptably long "black hole" periods.

  The use of a statically configured default route is quite popular; it
  minimizes configuration and processing overhead on the end-host and
  is supported by virtually every IP implementation.  This mode of
  operation is likely to persist as dynamic host configuration
  protocols [DHCP] are deployed, which typically provide configuration
  for an end-host IP address and default gateway.  However, this
  creates a single point of failure.  Loss of the default router
  results in a catastrophic event, isolating all end-hosts that are
  unable to detect any alternate path that may be available.

  The Virtual Router Redundancy Protocol (VRRP) is designed to
  eliminate the single point of failure inherent in the static default
  routed environment.  VRRP specifies an election protocol that
  dynamically assigns responsibility for a virtual router to one of the
  VRRP routers on a LAN.  The VRRP router controlling the IP
  address(es) associated with a virtual router is called the Master,
  and forwards packets sent to these IP addresses.  The election
  process provides dynamic fail-over in the forwarding responsibility
  should the Master become unavailable.  Any of the virtual router's IP
  addresses on a LAN can then be used as the default first hop router
  by end-hosts.  The advantage gained from using VRRP is a higher
  availability default path without requiring configuration of dynamic
  routing or router discovery protocols on every end-host.

  VRRP provides a function similar to a Cisco Systems, Inc. proprietary
  protocol named Hot Standby Router Protocol (HSRP) [HSRP] and to a
  Digital Equipment Corporation, Inc. proprietary protocol named IP
  Standby Protocol [IPSTB].

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC 2119].

  The IESG/IETF take no position regarding the validity or scope of any
  intellectual property right or other rights that might be claimed to
  pertain to the implementation or use of the technology, or the extent
  to which any license under such rights might or might not be
  available.  See the IETF IPR web page at http://www.ietf.org/ipr.html
  for additional information.






Knight, et. al.             Standards Track                     [Page 3]

RFC 2338                          VRRP                        April 1998


1.1  Scope

  The remainder of this document describes the features, design goals,
  and theory of operation of VRRP.  The message formats, protocol
  processing rules and state machine that guarantee convergence to a
  single Virtual Router Master are presented.  Finally, operational
  issues related to MAC address mapping, handling of ARP requests,
  generation of ICMP redirect messages, and security issues are
  addressed.

  This protocol is intended for use with IPv4 routers only.  A separate
  specification will be produced if it is decided that similar
  functionality is desirable in an IPv6 environment.

1.2  Definitions

  VRRP Router            A router running the Virtual Router Redundancy
                         Protocol.  It may participate in one or more
                         virtual routers.

  Virtual Router         An abstract object managed by VRRP that acts
                         as a default router for hosts on a shared LAN.
                         It consists of a Virtual Router Identifier and
                         a set of associated IP address(es) across a
                         common LAN.  A VRRP Router may backup one or
                         more virtual routers.

  IP Address Owner       The VRRP router that has the virtual router's
                         IP address(es) as real interface address(es).
                         This is the router that, when up, will respond
                         to packets addressed to one of these IP
                         addresses for ICMP pings, TCP connections,
                         etc.

  Primary IP Address     An IP address selected from the set of real
                         interface addresses.  One possible selection
                         algorithm is to always select the first
                         address.  VRRP advertisements are always sent
                         using the primary IP address as the source of
                         the IP packet.

  Virtual Router Master  The VRRP router that is assuming the
                         responsibility of forwarding packets sent to
                         the IP address(es) associated with the virtual
                         router, and answering ARP requests for these
                         IP addresses.  Note that if the IP address
                         owner is available, then it will always become
                         the Master.



Knight, et. al.             Standards Track                     [Page 4]

RFC 2338                          VRRP                        April 1998


  Virtual Router Backup  The set of VRRP routers available to assume
                         forwarding responsibility for a virtual router
                         should the current Master fail.

2.0 Required Features

  This section outlines the set of features that were considered
  mandatory and that guided the design of VRRP.

2.1 IP Address Backup

  Backup of IP addresses is the primary function of the Virtual Router
  Redundancy Protocol.  While providing election of a Virtual Router
  Master and the additional functionality described below, the protocol
  should strive to:

   - Minimize the duration of black holes.
   - Minimize the steady state bandwidth overhead and processing
     complexity.
   - Function over a wide variety of multiaccess LAN technologies
     capable of supporting IP traffic.
   - Provide for election of multiple virtual routers on a network for
     load balancing
   - Support of multiple logical IP subnets on a single LAN segment.

2.2 Preferred Path Indication

  A simple model of Master election among a set of redundant routers is
  to treat each router with equal preference and claim victory after
  converging to any router as Master.  However, there are likely to be
  many environments where there is a distinct preference (or range of
  preferences) among the set of redundant routers.  For example, this
  preference may be based upon access link cost or speed, router
  performance or reliability, or other policy considerations.  The
  protocol should allow the expression of this relative path preference
  in an intuitive manner, and guarantee Master convergence to the most
  preferential router currently available.

2.3 Minimization of Unnecessary Service Disruptions

  Once Master election has been performed then any unnecessary
  transitions between Master and Backup routers can result in a
  disruption in service.  The protocol should ensure after Master
  election that no state transition is triggered by any Backup router
  of equal or lower preference as long as the Master continues to
  function properly.





Knight, et. al.             Standards Track                     [Page 5]

RFC 2338                          VRRP                        April 1998


  Some environments may find it beneficial to avoid the state
  transition triggered when a router becomes available that is more
  preferential than the current Master.  It may be useful to support an
  override of the immediate convergence to the preferred path.

2.4 Extensible Security

  The virtual router functionality is applicable to a wide range of
  internetworking environments that may employ different security
  policies.  The protocol should require minimal configuration and
  overhead in the insecure operation, provide for strong authentication
  when increased security is required, and allow integration of new
  security mechanisms without breaking backwards compatible operation.

2.5 Efficient Operation over Extended LANs

  Sending IP packets on a multiaccess LAN requires mapping from an IP
  address to a MAC address.  The use of the virtual router MAC address
  in an extended LAN employing learning bridges can have a significant
  effect on the bandwidth overhead of packets sent to the virtual
  router.  If the virtual router MAC address is never used as the
  source address in a link level frame then the station location is
  never learned, resulting in flooding of all packets sent to the
  virtual router.  To improve the efficiency in this environment the
  protocol should: 1) use the virtual router MAC as the source in a
  packet sent by the Master to trigger station learning; 2) trigger a
  message immediately after transitioning to Master to update the
  station learning; and 3) trigger periodic messages from the Master to
  maintain the station learning cache.

3.0 VRRP Overview

  VRRP specifies an election protocol to provide the virtual router
  function described earlier.  All protocol messaging is performed
  using IP multicast datagrams, thus the protocol can operate over a
  variety of multiaccess LAN technologies supporting IP multicast.
  Each VRRP virtual router has a single well-known MAC address
  allocated to it.  This document currently only details the mapping to
  networks using the IEEE 802 48-bit MAC address.  The virtual router
  MAC address is used as the source in all periodic VRRP messages sent
  by the Master router to enable bridge learning in an extended LAN.

  A virtual router is defined by its virtual router identifier (VRID)
  and a set of IP addresses.  A VRRP router may associate a virtual
  router with its real addresses on an interface, and may also be
  configured with additional virtual router mappings and priority for
  virtual routers it is willing to backup.  The mapping between VRID
  and addresses must be coordinated among all VRRP routers on a LAN.



Knight, et. al.             Standards Track                     [Page 6]

RFC 2338                          VRRP                        April 1998


  However, there is no restriction against reusing a VRID with a
  different address mapping on different LANs.  The scope of each
  virtual router is restricted to a single LAN.

  To minimize network traffic, only the Master for each virtual router
  sends periodic VRRP Advertisement messages.  A Backup router will not
  attempt to pre-empt the Master unless it has higher priority.  This
  eliminates service disruption unless a more preferred path becomes
  available.  It's also possible to administratively prohibit all pre-
  emption attempts.  The only exception is that a VRRP router will
  always become Master of any virtual router associated with addresses
  it owns.  If the Master becomes unavailable then the highest priority
  Backup will transition to Master after a short delay, providing a
  controlled transition of the virtual router responsibility with
  minimal service interruption.

  VRRP defines three types of authentication providing simple
  deployment in insecure environments, added protection against
  misconfiguration, and strong sender authentication in security
  conscious environments.  Analysis of the protection provided and
  vulnerability of each mechanism is deferred to Section 10.0 Security
  Considerations.  In addition new authentication types and data can be
  defined in the future without affecting the format of the fixed
  portion of the protocol packet, thus preserving backward compatible
  operation.

  The VRRP protocol design provides rapid transition from Backup to
  Master to minimize service interruption, and incorporates
  optimizations that reduce protocol complexity while guaranteeing
  controlled Master transition for typical operational scenarios.  The
  optimizations result in an election protocol with minimal runtime
  state requirements, minimal active protocol states, and a single
  message type and sender.  The typical operational scenarios are
  defined to be two redundant routers and/or distinct path preferences
  among each router.  A side effect when these assumptions are violated
  (i.e., more than two redundant paths all with equal preference) is
  that duplicate packets may be forwarded for a brief period during
  Master election.  However, the typical scenario assumptions are
  likely to cover the vast majority of deployments, loss of the Master
  router is infrequent, and the expected duration in Master election
  convergence is quite small ( << 1 second ).  Thus the VRRP
  optimizations represent significant simplifications in the protocol
  design while incurring an insignificant probability of brief network
  degradation.







Knight, et. al.             Standards Track                     [Page 7]

RFC 2338                          VRRP                        April 1998


4.  Sample Configurations

4.1  Sample Configuration 1

  The following figure shows a simple network with two VRRP routers
  implementing one virtual router.  Note that this example is provided
  to help understand the protocol, but is not expected to occur in
  actual practice.

                 +-----+      +-----+
                 | MR1 |      | BR1 |
                 |     |      |     |
                 |     |      |     |
    VRID=1       +-----+      +-----+
    IP A ---------->*            *<--------- IP B
                    |            |
                    |            |
                    |            |
  ------------------+------------+-----+--------+--------+--------+--
                                       ^        ^        ^        ^
                                       |        |        |        |
                                     (IP A)   (IP A)   (IP A)   (IP A)
                                       |        |        |        |
                                    +--+--+  +--+--+  +--+--+  +--+--+
                                    |  H1 |  |  H2 |  |  H3 |  |  H4 |
                                    +-----+  +-----+  +--+--+  +--+--+

 Legend:
          ---+---+---+--  =  Ethernet, Token Ring, or FDDI
                       H  =  Host computer
                      MR  =  Master Router
                      BR  =  Backup Router
                       *  =  IP Address
                    (IP)  =  default router for hosts

  The above configuration shows a very simple VRRP scenario.  In this
  configuration, the end-hosts install a default route to the IP
  address of virtual router #1 (IP A) and both routers run VRRP.  The
  router on the left becomes the Master for virtual router #1 (VRID=1)
  and the router on the right is the Backup for virtual router #1.  If
  the router on the left should fail, the other router will take over
  virtual router #1 and its IP addresses, and provide uninterrupted
  service for the hosts.

  Note that in this example, IP B is not backed up by the router on the
  left.  IP B is only used by the router on the right as its interface
  address.  In order to backup IP B, a second virtual router would have
  to be configured.  This is shown in the next section.



Knight, et. al.             Standards Track                     [Page 8]

RFC 2338                          VRRP                        April 1998


4.2  Sample Configuration 2

  The following figure shows a configuration with two virtual routers
  with the hosts spitting their traffic between them.  This example is
  expected to be very common in actual practice.

                 +-----+      +-----+
                 | MR1 |      | MR2 |
                 |  &  |      |  &  |
                 | BR2 |      | BR1 |
    VRID=1       +-----+      +-----+         VRID=2
    IP A ---------->*            *<---------- IP B
                    |            |
                    |            |
                    |            |
  ------------------+------------+-----+--------+--------+--------+--
                                       ^        ^        ^        ^
                                       |        |        |        |
                                     (IP A)   (IP A)   (IP B)   (IP B)
                                       |        |        |        |
                                    +--+--+  +--+--+  +--+--+  +--+--+
                                    |  H1 |  |  H2 |  |  H3 |  |  H4 |
                                    +-----+  +-----+  +--+--+  +--+--+

 Legend:
          ---+---+---+--  =  Ethernet, Token Ring, or FDDI
                       H  =  Host computer
                      MR  =  Master Router
                      BR  =  Backup Router
                       *  =  IP Address
                    (IP)  =  default router for hosts

  In the above configuration, half of the hosts install a default route
  to virtual router #1's IP address (IP A), and the other half of the
  hosts install a default route to virtual router #2's IP address (IP
  B).  This has the effect of load balancing the outgoing traffic,
  while also providing full redundancy.

5.0  Protocol

  The purpose of the VRRP packet is to communicate to all VRRP routers
  the priority and the state of the Master router associated with the
  Virtual Router ID.

  VRRP packets are sent encapsulated in IP packets.  They are sent to
  the IPv4 multicast address assigned to VRRP.





Knight, et. al.             Standards Track                     [Page 9]

RFC 2338                          VRRP                        April 1998


5.1  VRRP Packet Format

  This section defines the format of the VRRP packet and the relevant
  fields in the IP header.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Version| Type  | Virtual Rtr ID|   Priority    | Count IP Addrs|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Auth Type   |   Adver Int   |          Checksum             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         IP Address (1)                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                            .                                  |
     |                            .                                  |
     |                            .                                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         IP Address (n)                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Authentication Data (1)                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Authentication Data (2)                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

5.2  IP Field Descriptions

5.2.1  Source Address

  The primary IP address of the interface the packet is being sent
  from.

5.2.2  Destination Address

  The IP multicast address as assigned by the IANA for VRRP is:

      224.0.0.18

  This is a link local scope multicast address.  Routers MUST NOT
  forward a datagram with this destination address regardless of its
  TTL.

5.2.3  TTL

  The TTL MUST be set to 255.  A VRRP router receiving a packet with
  the TTL not equal to 255 MUST discard the packet.





Knight, et. al.             Standards Track                    [Page 10]

RFC 2338                          VRRP                        April 1998


5.2.4  Protocol

  The IP protocol number assigned by the IANA for VRRP is 112
  (decimal).

5.3 VRRP Field Descriptions

5.3.1  Version

  The version field specifies the VRRP protocol version of this packet.
  This document defines version 2.

5.3.2  Type

  The type field specifies the type of this VRRP packet.  The only
  packet type defined in this version of the protocol is:

      1      ADVERTISEMENT

  A packet with unknown type MUST be discarded.

5.3.3  Virtual Rtr ID (VRID)

  The Virtual Router Identifier (VRID) field identifies the virtual
  router this packet is reporting status for.

5.3.4  Priority

  The priority field specifies the sending VRRP router's priority for
  the virtual router.  Higher values equal higher priority.  This field
  is an 8 bit unsigned integer field.

  The priority value for the VRRP router that owns the IP address(es)
  associated with the virtual router MUST be 255 (decimal).

  VRRP routers backing up a virtual router MUST use priority values
  between 1-254 (decimal).  The default priority value for VRRP routers
  backing up a virtual router is 100 (decimal).

  The priority value zero (0) has special meaning indicating that the
  current Master has stopped participating in VRRP.  This is used to
  trigger Backup routers to quickly transition to Master without having
  to wait for the current Master to timeout.

5.3.5  Count IP Addrs

  The number of IP addresses contained in this VRRP advertisement.




Knight, et. al.             Standards Track                    [Page 11]

RFC 2338                          VRRP                        April 1998


5.3.6  Authentication Type

  The authentication type field identifies the authentication method
  being utilized.  Authentication type is unique on a per interface
  basis.  The authentication type field is an 8 bit unsigned integer.
  A packet with unknown authentication type or that does not match the
  locally configured authentication method MUST be discarded.

  The authentication methods currently defined are:

      0 - No Authentication
      1 - Simple Text Password
      2 - IP Authentication Header

5.3.6.1 No Authentication

  The use of this authentication type means that VRRP protocol
  exchanges are not authenticated.  The contents of the Authentication
  Data field should be set to zero on transmission and ignored on
  reception.

5.3.6.2 Simple Text Password

  The use of this authentication type means that VRRP protocol
  exchanges are authenticated by a clear text password.  The contents
  of the Authentication Data field should be set to the locally
  configured password on transmission.  There is no default password.
  The receiver MUST check that the Authentication Data in the packet
  matches its configured authentication string.  Packets that do not
  match MUST be discarded.

  Note that there are security implications to using Simple Text
  password authentication, and one should see the Security
  Consideration section of this document.

5.3.6.3 IP Authentication Header

  The use of this authentication type means the VRRP protocol exchanges
  are authenticated using the mechanisms defined by the IP
  Authentication Header [AUTH] using "The Use of HMAC-MD5-96 within ESP
  and AH" [HMAC].  Keys may be either configured manually or via a key
  distribution protocol.

  If a packet is received that does not pass the authentication check
  due to a missing authentication header or incorrect message digest,
  then the packet MUST be discarded.  The contents of the
  Authentication Data field should be set to zero on transmission and
  ignored on reception.



Knight, et. al.             Standards Track                    [Page 12]

RFC 2338                          VRRP                        April 1998


5.3.7 Advertisement Interval (Adver Int)

  The Advertisement interval indicates the time interval (in seconds)
  between ADVERTISEMENTS.  The default is 1 second.  This field is used
  for troubleshooting misconfigured routers.

5.3.8 Checksum

  The checksum field is used to detect data corruption in the VRRP
  message.

  The checksum is the 16-bit one's complement of the one's complement
  sum of the entire VRRP message starting with the version field.  For
  computing the checksum, the checksum field is set to zero.

5.3.9  IP Address(es)

  One or more IP addresses that are associated with the virtual router.
  The number of addresses included is specified in the "Count IP Addrs"
  field.  These fields are used for troubleshooting misconfigured
  routers.

5.3.10  Authentication Data

  The authentication string is currently only utilized for simple text
  authentication, similar to the simple text authentication found in
  the Open Shortest Path First routing protocol [OSPF].  It is up to 8
  characters of plain text.  If the configured authentication string is
  shorter than 8 bytes, the remaining space MUST be zero-filled.  Any
  VRRP packet received with an authentication string that does not
  match the locally configured authentication string MUST be discarded.
  The authentication string is unique on a per interface basis.

  There is no default value for this field.

6.  Protocol State Machine

6.1 Parameters

6.1.1 Parameters per Interface


  Authentication_Type     Type of authentication being used.  Values
                          are defined in section 5.3.6.

  Authentication_Data     Authentication data specific to the
                          Authentication_Type being used.




Knight, et. al.             Standards Track                    [Page 13]

RFC 2338                          VRRP                        April 1998


6.1.2 Parameters per Virtual Router

  VRID                    Virtual Router Identifier.  Configured item
                          in the range 1-255 (decimal).  There is no
                          default.

  Priority                Priority value to be used by this VRRP
                          router in Master election for this virtual
                          router.  The value of 255 (decimal) is
                          reserved for the router that owns the IP
                          addresses associated with the virtual
                          router.  The value of 0 (zero) is reserved
                          for Master router to indicate it is
                          releasing responsibility for the virtual
                          router.  The range 1-254 (decimal) is
                          available for VRRP routers backing up the
                          virtual router.  The default value is 100
                          (decimal).

  IP_Addresses            One or more IP addresses associated with
                          this virtual router.  Configured item.  No
                          default.

  Advertisement_Interval  Time interval between ADVERTISEMENTS
                          (seconds).  Default is 1 second.

  Skew_Time               Time to skew Master_Down_Interval in
                          seconds.  Calculated as:

                             ( (256 - Priority) / 256 )

  Master_Down_Interval    Time interval for Backup to declare Master
                          down (seconds).  Calculated as:

                             (3 * Advertisement_Interval) + Skew_time

  Preempt_Mode            Controls whether a higher priority Backup
                          router preempts a lower priority Master.
                          Values are True to allow preemption and
                          False to not prohibit preemption.  Default
                          is True.

                          Note: Exception is that the router that owns
                          the IP address(es) associated with the
                          virtual router always pre-empts independent
                          of the setting of this flag.





Knight, et. al.             Standards Track                    [Page 14]

RFC 2338                          VRRP                        April 1998


6.2 Timers

  Master_Down_Timer       Timer that fires when ADVERTISEMENT has not
                          been heard for Master_Down_Interval.

  Adver_Timer             Timer that fires to trigger sending of
                          ADVERTISEMENT based on
                          Advertisement_Interval.

6.3  State Transition Diagram

                         +---------------+
              +--------->|               |<-------------+
              |          |  Initialize   |              |
              |   +------|               |----------+   |
              |   |      +---------------+          |   |
              |   |                                 |   |
              |   V                                 V   |
      +---------------+                       +---------------+
      |               |---------------------->|               |
      |    Master     |                       |    Backup     |
      |               |<----------------------|               |
      +---------------+                       +---------------+

6.4  State Descriptions

  In the state descriptions below, the state names are identified by
  {state-name}, and the packets are identified by all upper case
  characters.

  A VRRP router implements an instance of the state machine for each
  virtual router election it is participating in.

6.4.1   Initialize

  The purpose of this state is to wait for a Startup event.  If a
  Startup event is received, then:

   - If the Priority = 255 (i.e., the router owns the IP address(es)
     associated with the virtual router)

      o Send an ADVERTISEMENT
      o Broadcast a gratuitous ARP request containing the virtual
        router MAC address for each IP address associated with the
        virtual router.
      o Set the Adver_Timer to Advertisement_Interval
      o Transition to the {Master} state




Knight, et. al.             Standards Track                    [Page 15]

RFC 2338                          VRRP                        April 1998


     else

      o Set the Master_Down_Timer to Master_Down_Interval
      o Transition to the {Backup} state

     endif

6.4.2   Backup

  The purpose of the {Backup} state is to monitor the availability and
  state of the Master Router.

  While in this state, a VRRP router MUST do the following:

   - MUST NOT respond to ARP requests for the IP address(s) associated
     with the virtual router.

   - MUST discard packets with a destination link layer MAC address
     equal to the virtual router MAC address.

   - MUST NOT accept packets addressed to the IP address(es) associated
     with the virtual router.

   - If a Shutdown event is received, then:

      o Cancel the Master_Down_Timer
      o Transition to the {Initialize} state

     endif

   - If the Master_Down_Timer fires, then:

      o Send an ADVERTISEMENT
      o Broadcast a gratuitous ARP request containing the virtual
        router MAC address for each IP address associated with the
        virtual router
      o Set the Adver_Timer to Advertisement_Interval
      o Transition to the {Master} state

     endif

   - If an ADVERTISEMENT is received, then:

        If the Priority in the ADVERTISEMENT is Zero, then:

         o Set the Master_Down_Timer to Skew_Time

        else:



Knight, et. al.             Standards Track                    [Page 16]

RFC 2338                          VRRP                        April 1998


           If Preempt_Mode is False, or If the Priority in the
           ADVERTISEMENT is greater than or equal to the local
           Priority, then:

            o Reset the Master_Down_Timer to Master_Down_Interval

           else:

            o Discard the ADVERTISEMENT

           endif
        endif
     endif

6.4.3   Master

  While in the {Master} state the router functions as the forwarding
  router for the IP address(es) associated with the virtual router.

  While in this state, a VRRP router MUST do the following:

   - MUST respond to ARP requests for the IP address(es) associated
     with the virtual router.

   - MUST forward packets with a destination link layer MAC address
     equal to the virtual router MAC address.

   - MUST NOT accept packets addressed to the IP address(es) associated
     with the virtual router if it is not the IP address owner.

   - MUST accept packets addressed to the IP address(es) associated
     with the virtual router if it is the IP address owner.

   - If a Shutdown event is received, then:

      o Cancel the Adver_Timer
      o Send an ADVERTISEMENT with Priority = 0
      o Transition to the {Initialize} state

     endif

   - If the Adver_Timer fires, then:

      o Send an ADVERTISEMENT
      o Reset the Adver_Timer to Advertisement_Interval

     endif




Knight, et. al.             Standards Track                    [Page 17]

RFC 2338                          VRRP                        April 1998


   - If an ADVERTISEMENT is received, then:

        If the Priority in the ADVERTISEMENT is Zero, then:

         o Send an ADVERTISEMENT
         o Reset the Adver_Timer to Advertisement_Interval

        else:

           If the Priority in the ADVERTISEMENT is greater than the
           local Priority,
           or
           If the Priority in the ADVERTISEMENT is equal to the local
           Priority and the primary IP Address of the sender is greater
           than the local primary IP Address, then:

            o Cancel Adver_Timer
            o Set Master_Down_Timer to Master_Down_Interval
            o Transition to the {Backup} state

           else:

            o Discard ADVERTISEMENT

           endif
        endif
     endif

7.  Sending and Receiving VRRP Packets

7.1  Receiving VRRP Packets

  Performed the following functions when a VRRP packet is received:

     - MUST verify that the IP TTL is 255.
     - MUST verify the VRRP version
     - MUST verify that the received packet length is greater than or
       equal to the VRRP header
     - MUST verify the VRRP checksum
     - MUST perform authentication specified by Auth Type

  If any one of the above checks fails, the receiver MUST discard the
  packet, SHOULD log the event and MAY indicate via network management
  that an error occurred.

     - MUST verify that the VRID is valid on the receiving interface

  If the above check fails, the receiver MUST discard the packet.



Knight, et. al.             Standards Track                    [Page 18]

RFC 2338                          VRRP                        April 1998


     - MAY verify that the IP address(es) associated with the VRID are
       valid

  If the above check fails, the receiver SHOULD log the event and MAY
  indicate via network management that a misconfiguration was detected.
  If the packet was not generated by the address owner (Priority does
  not equal 255 (decimal)), the receiver MUST drop the packet,
  otherwise continue processing.

     - MUST verify that the Adver Interval in the packet is the same as
       the locally configured for this virtual router

  If the above check fails, the receiver MUST discard the packet,
  SHOULD log the event and MAY indicate via network management that a
  misconfiguration was detected.

7.2 Transmitting VRRP Packets

  The following operations MUST be performed when transmitting a VRRP
  packet.

     - Fill in the VRRP packet fields with the appropriate virtual
       router configuration state
     - Compute the VRRP checksum
     - Set the source MAC address to Virtual Router MAC Address
     - Set the source IP address to interface primary IP address
     - Set the IP protocol to VRRP
     - Send the VRRP packet to the VRRP IP multicast group

  Note: VRRP packets are transmitted with the virtual router MAC
  address as the source MAC address to ensure that learning bridges
  correctly determine the LAN segment the virtual router is attached
  to.

7.3 Virtual Router MAC Address

  The virtual router MAC address associated with a virtual router is an
  IEEE 802 MAC Address in the following format:

     00-00-5E-00-01-{VRID} (in hex in internet standard bit-order)

  The first three octets are derived from the IANA's OUI.  The next two
  octets (00-01) indicate the address block assigned to the VRRP
  protocol.  {VRID} is the VRRP Virtual Router Identifier.  This
  mapping provides for up to 255 VRRP routers on a network.






Knight, et. al.             Standards Track                    [Page 19]

RFC 2338                          VRRP                        April 1998


8.  Operational Issues

8.1 ICMP Redirects

  ICMP Redirects may be used normally when VRRP is running between a
  group of routers.  This allows VRRP to be used in environments where
  the topology is not symmetric.

  The IP source address of an ICMP redirect should be the address the
  end host used when making its next hop routing decision.  If a VRRP
  router is acting as Master for virtual router(s) containing addresses
  it does not own, then it must determine which virtual router the
  packet was sent to when selecting the redirect source address.  One
  method to deduce the virtual router used is to examine the
  destination MAC address in the packet that triggered the redirect.

  It may be useful to disable Redirects for specific cases where VRRP
  is being used to load share traffic between a number of routers in a
  symmetric topology.

8.2  Host ARP Requests

  When a host sends an ARP request for one of the virtual router IP
  addresses, the Master virtual router MUST respond to the ARP request
  with the virtual MAC address for the virtual router.  The Master
  virtual router MUST NOT respond with its physical MAC address.  This
  allows the client to always use the same MAC address regardless of
  the current Master router.

  When a VRRP router restarts or boots, it SHOULD not send any ARP
  messages with its physical MAC address for the IP address it owns, it
  should only send ARP messages that include Virtual MAC addresses.
  This may entail:

   - When configuring an interface, VRRP routers should broadcast a
     gratuitous ARP request containing the virtual router MAC address
     for each IP address on that interface.

   - At system boot, when initializing interfaces for VRRP operation;
     delay gratuitous ARP requests and ARP responses until both the IP
     address and the virtual router MAC address are configured.

8.3 Proxy ARP

  If Proxy ARP is to be used on a VRRP router, then the VRRP router
  must advertise the Virtual Router MAC address in the Proxy ARP
  message.  Doing otherwise could cause hosts to learn the real MAC
  address of the VRRP router.



Knight, et. al.             Standards Track                    [Page 20]

RFC 2338                          VRRP                        April 1998


9.  Operation over FDDI and Token Ring

9.1 Operation over FDDI

  FDDI interfaces remove from the FDDI ring frames that have a source
  MAC address matching the device's hardware address.  Under some
  conditions, such as router isolations, ring failures, protocol
  transitions, etc., VRRP may cause there to be more than one Master
  router.  If a Master router installs the virtual router MAC address
  as the hardware address on a FDDI device, then other Masters'
  ADVERTISEMENTS will be removed from the ring during the Master
  convergence, and convergence will fail.

  To avoid this an implementation SHOULD configure the virtual router
  MAC address by adding a unicast MAC filter in the FDDI device, rather
  than changing its hardware MAC address.  This will prevent a Master
  router from removing any ADVERTISEMENTS it did not originate.

9.2  Operation over Token Ring

  Token ring has several characteristics which make running VRRP
  difficult. These include:

   - In order to switch to a new master located on a different bridge
     token ring segment from the previous master when using source
     route bridges, a mechanism is required to update cached source
     route information.

   - No general multicast mechanism supported across old and new token
     ring adapter implementations. While many newer token ring adapters
     support group addresses, token ring functional address support is
     the only generally available multicast mechanism. Due to the
     limited number of token ring functional addresses these may
     collide with other usage of the same token ring functional
     addresses.

  Due to these difficulties, the preferred mode of operation over token
  ring will be to use a token ring functional address for the VRID
  virtual MAC address. Token ring functional addresses have the two
  high order bits in the first MAC address octet set to B'1'.  They
  range from 03-00-00-00-00-80 to 03-00-02-00-00-00 (canonical format).
  However, unlike multicast addresses, there is only one unique
  functional address per bit position. The functional addresses
  addresses  03-00-00-10-00-00 through 03-00-02-00-00-00 are reserved
  by the Token Ring Architecture [TKARCH] for user-defined
  applications.  However, since there are only 12 user-defined token
  ring functional addresses, there may be other non-IP protocols using
  the same functional address. Since the Novell IPX [IPX] protocol uses



Knight, et. al.             Standards Track                    [Page 21]

RFC 2338                          VRRP                        April 1998


  the 03-00-00-10-00-00 functional address, operation of VRRP over
  token ring will avoid use of this functional address. In general,
  token ring VRRP users will be responsible for resolution of other
  user-defined token ring functional address conflicts.

  VRIDs are mapped directly to token ring functional addresses. In
  order to decrease the likelihood of functional address conflicts,
  allocation will begin with the largest functional address. Most non-
  IP protocols use the first or first couple user-defined functional
  addresses and it is expected that VRRP users will choose VRIDs
  sequentially starting with 1.

  VRID      Token Ring Functional Address
  ----      -----------------------------
     1             03-00-02-00-00-00
     2             03-00-04-00-00-00
     3             03-00-08-00-00-00
     4             03-00-10-00-00-00
     5             03-00-20-00-00-00
     6             03-00-40-00-00-00
     7             03-00-80-00-00-00
     8             03-00-00-01-00-00
     9             03-00-00-02-00-00
    10             03-00-00-04-00-00
    11             03-00-00-08-00-00

  Or more succinctly, octets 3 and 4 of the functional address are
  equal to (0x4000 >> (VRID - 1)) in non-canonical format.

  Since a functional address cannot be used used as a MAC level source
  address, the real MAC address is used as the MAC source address in
  VRRP advertisements. This is not a problem for bridges since packets
  addressed to functional addresses will be sent on the spanning-tree
  explorer path [802.1D].

  The functional address mode of operation MUST be implemented by
  routers supporting VRRP on token ring.

  Additionally, routers MAY support unicast mode of operation to take
  advantage of newer token ring adapter implementations which support
  non-promiscuous reception for multiple unicast MAC addresses and to
  avoid both the multicast traffic and usage conflicts associated with
  the use of token ring functional addresses. Unicast mode uses the
  same mapping of VRIDs to virtual MAC addresses as Ethernet.  However,
  one important difference exists. ARP request/reply packets contain
  the virtual MAC address as the source MAC address. The reason for
  this is that some token ring driver implementations keep a cache of
  MAC address/source routing information independent of the ARP cache.



Knight, et. al.             Standards Track                    [Page 22]

RFC 2338                          VRRP                        April 1998


  Hence, these implementations need have to receive a packet with the
  virtual MAC address as the source address in order to transmit to
  that MAC address in a source-route bridged network.

  Unicast mode on token ring has one limitation which should be
  considered.  If there are VRID routers on different source-route
  bridge segments and there are host implementations which keep their
  source-route information in the ARP cache and do not listen to
  gratuitous ARPs, these hosts will not update their ARP source-route
  information correctly when a switch-over occurs. The only possible
  solution is to put all routers with the same VRID on the same source-
  bridge segment and use techniques to prevent that bridge segment from
  being a single point of failure. These techniques are beyond the
  scope this document.

  For both the multicast and unicast mode of operation, VRRP
  advertisements sent to 224.0.0.18 should be encapsulated as described
  in [RFC1469].

10. Security Considerations

  VRRP is designed for a range of internetworking environments that may
  employ different security policies.  The protocol includes several
  authentication methods ranging from no authentication, simple clear
  text passwords, and strong authentication using IP Authentication
  with MD5 HMAC.  The details on each approach including possible
  attacks and recommended environments follows.

  Independent of any authentication type VRRP includes a mechanism
  (setting TTL=255, checking on receipt) that protects against VRRP
  packets being injected from another remote network.  This limits most
  vulnerabilities to local attacks.

10.1 No Authentication

  The use of this authentication type means that VRRP protocol
  exchanges are not authenticated.  This type of authentication SHOULD
  only be used in environments were there is minimal security risk and
  little chance for configuration errors (e.g., two VRRP routers on a
  LAN).

10.2 Simple Text Password

  The use of this authentication type means that VRRP protocol
  exchanges are authenticated by a simple clear text password.






Knight, et. al.             Standards Track                    [Page 23]

RFC 2338                          VRRP                        April 1998


  This type of authentication is useful to protect against accidental
  misconfiguration of routers on a LAN.  It protects against routers
  inadvertently backing up another router.  A new router must first be
  configured with the correct password before it can run VRRP with
  another router.  This type of authentication does not protect against
  hostile attacks where the password can be learned by a node snooping
  VRRP packets on the LAN.  The Simple Text Authentication combined
  with the TTL check makes it difficult for a VRRP packet to be sent
  from another LAN to disrupt VRRP operation.

  This type of authentication is RECOMMENDED when there is minimal risk
  of nodes on a LAN actively disrupting VRRP operation.  If this type
  of authentication is used the user should be aware that this clear
  text password is sent frequently, and therefore should not be the
  same as any security significant password.

10.3 IP Authentication Header

  The use of this authentication type means the VRRP protocol exchanges
  are authenticated using the mechanisms defined by the IP
  Authentication Header [AUTH] using "The Use of HMAC-MD5-96 within ESP
  and AH", [HMAC].  This provides strong protection against
  configuration errors, replay attacks, and packet
  corruption/modification.

  This type of authentication is RECOMMENDED when there is limited
  control over the administration of nodes on a LAN.  While this type
  of authentication does protect the operation of VRRP, there are other
  types of attacks that may be employed on shared media links (e.g.,
  generation of bogus ARP replies) which are independent from VRRP and
  are not protected.

11. Acknowledgments

  The authors would like to thank Glen Zorn, and Michael Lane, Clark
  Bremer, Hal Peterson, Tony Li, Barbara Denny, Joel Halpern, Steve
  Bellovin, and Thomas Narten for their comments and suggestions.

12.  References

  [802.1D]  International Standard ISO/IEC 10038: 1993, ANSI/IEEE Std
            802.1D, 1993 edition.

  [AUTH]    Kent, S., and R. Atkinson, "IP Authentication Header",
            Work in Progress.

  [DISC]    Deering, S., "ICMP Router Discovery Messages", RFC 1256,
            September 1991.



Knight, et. al.             Standards Track                    [Page 24]

RFC 2338                          VRRP                        April 1998


  [DHCP]    Droms, R., "Dynamic Host Configuration Protocol", RFC 2131,
            March 1997.

  [HMAC]    Madson, C., and R. Glenn, "The Use of HMAC-MD5-96 within
            ESP and AH", Work in Progress.

  [HSRP]    Li, T., Cole, B., Morton, P., and D. Li, "Cisco Hot Standby
            Router Protocol (HSRP)", RFC 2281, March 1998.

  [IPSTB]   Higginson, P., M. Shand, "Development of Router Clusters to
            Provide Fast Failover in IP Networks", Digital Technical
            Journal, Volume 9 Number 3, Winter 1997.

  [IPX]     Novell Incorporated., "IPX Router Specification", Version
            1.10, October 1992.

  [OSPF]    Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

  [RIP]     Hedrick, C., "Routing Information Protocol", RFC 1058,
            June 1988.

  [RFC1469] Pusateri, T., "IP over Token Ring LANs", RFC 1469, June
            1993.

  [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119, March 1997.

  [TKARCH]  IBM Token-Ring Network, Architecture Reference, Publication
            SC30-3374-02, Third Edition, (September, 1989).

13. Authors' Addresses

  Steven Knight                        Phone: +1 612 943-8990
  Ascend Communications                EMail: [email protected]
  High Performance Network Division
  10250 Valley View Road, Suite 113
  Eden Prairie, MN USA 55344
  USA

  Douglas Weaver                       Phone: +1 612 943-8990
  Ascend Communications                EMail: [email protected]
  High Performance Network Division
  10250 Valley View Road, Suite 113
  Eden Prairie, MN USA 55344
  USA






Knight, et. al.             Standards Track                    [Page 25]

RFC 2338                          VRRP                        April 1998


  David Whipple                        Phone: +1 206 703-3876
  Microsoft Corporation                EMail: [email protected]
  One Microsoft Way
  Redmond, WA USA 98052-6399
  USA

  Robert Hinden                        Phone: +1 408 990-2004
  Nokia                                EMail: [email protected]
  232 Java Drive
  Sunnyvale, CA 94089
  USA

  Danny Mitzel                         Phone: +1 408 990-2037
  Nokia                                EMail: [email protected]
  232 Java Drive
  Sunnyvale, CA 94089
  USA

  Peter Hunt                           Phone: +1 408 990-2093
  Nokia                                EMail: [email protected]
  232 Java Drive
  Sunnyvale, CA 94089
  USA

  P. Higginson                         Phone: +44 118 920 6293
  Digital Equipment Corp.              EMail: [email protected]
  Digital Park
  Imperial Way
  Reading
  Berkshire
  RG2 0TE
  UK

  M. Shand                             Phone: +44 118 920 4424
  Digital Equipment Corp.              EMail: [email protected]
  Digital Park
  Imperial Way
  Reading
  Berkshire
  RG2 0TE
  UK

  Acee Lindem                          Phone: 1-919-254-1805
  IBM Corporation                      E-Mail: [email protected]
  P.O. Box 12195
  Research Triangle Park, NC  27709
  USA




Knight, et. al.             Standards Track                    [Page 26]

RFC 2338                          VRRP                        April 1998


14.  Full Copyright Statement

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
























Knight, et. al.             Standards Track                    [Page 27]