Network Working Group                                           A. Conta
Request for Comments: 4443                                    Transwitch
Obsoletes: 2463                                               S. Deering
Updates: 2780                                              Cisco Systems
Category: Standards Track                                  M. Gupta, Ed.
                                                        Tropos Networks
                                                             March 2006


              Internet Control Message Protocol (ICMPv6)
       for the Internet Protocol Version 6 (IPv6) Specification

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2006).

Abstract

  This document describes the format of a set of control messages used
  in ICMPv6 (Internet Control Message Protocol).  ICMPv6 is the
  Internet Control Message Protocol for Internet Protocol version 6
  (IPv6).





















Conta, et al.               Standards Track                     [Page 1]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


Table of Contents


  1. Introduction ....................................................2
  2. ICMPv6 (ICMP for IPv6) ..........................................3
     2.1. Message General Format .....................................3
     2.2. Message Source Address Determination .......................5
     2.3. Message Checksum Calculation ...............................5
     2.4. Message Processing Rules ...................................5
  3. ICMPv6 Error Messages ...........................................8
     3.1. Destination Unreachable Message ............................8
     3.2. Packet Too Big Message ....................................10
     3.3. Time Exceeded Message .....................................11
     3.4. Parameter Problem Message .................................12
  4. ICMPv6 Informational Messages ..................................13
     4.1. Echo Request Message ......................................13
     4.2. Echo Reply Message ........................................14
  5. Security Considerations ........................................15
     5.1. Authentication and Confidentiality of ICMP Messages .......15
     5.2. ICMP Attacks ..............................................16
  6. IANA Considerations ............................................17
     6.1. Procedure for New ICMPV6 Type and Code Value Assignments ..17
     6.2. Assignments for This Document .............................18
  7. References .....................................................19
     7.1. Normative References ......................................19
     7.2. Informative References ....................................19
  8. Acknowledgements ...............................................20
  Appendix A - Changes since RFC 2463................................21

1. Introduction

  The Internet Protocol version 6 (IPv6) uses the Internet Control
  Message Protocol (ICMP) as defined for IPv4 [RFC-792], with a number
  of changes.  The resulting protocol is called ICMPv6 and has an IPv6
  Next Header value of 58.

  This document describes the format of a set of control messages used
  in ICMPv6.  It does not describe the procedures for using these
  messages to achieve functions like Path MTU discovery; these
  procedures are described in other documents (e.g., [PMTU]).  Other
  documents may also introduce additional ICMPv6 message types, such as
  Neighbor Discovery messages [IPv6-DISC], subject to the general rules
  for ICMPv6 messages given in Section 2 of this document.

  Terminology defined in the IPv6 specification [IPv6] and the IPv6
  Routing and Addressing specification [IPv6-ADDR] applies to this
  document as well.




Conta, et al.               Standards Track                     [Page 2]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


  This document obsoletes RFC 2463 [RFC-2463] and updates RFC 2780
  [RFC-2780].

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC-2119].

2. ICMPv6 (ICMP for IPv6)

  ICMPv6 is used by IPv6 nodes to report errors encountered in
  processing packets, and to perform other internet-layer functions,
  such as diagnostics (ICMPv6 "ping").  ICMPv6 is an integral part of
  IPv6, and the base protocol (all the messages and behavior required
  by this specification) MUST be fully implemented by every IPv6 node.

2.1.  Message General Format

  Every ICMPv6 message is preceded by an IPv6 header and zero or more
  IPv6 extension headers.  The ICMPv6 header is identified by a Next
  Header value of 58 in the immediately preceding header.  (This is
  different from the value used to identify ICMP for IPv4.)

  The ICMPv6 messages have the following general format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |     Code      |          Checksum             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                         Message Body                          +
     |                                                               |

  The type field indicates the type of the message.  Its value
  determines the format of the remaining data.

  The code field depends on the message type.  It is used to create an
  additional level of message granularity.

  The checksum field is used to detect data corruption in the ICMPv6
  message and parts of the IPv6 header.

  ICMPv6 messages are grouped into two classes: error messages and
  informational messages.  Error messages are identified as such by a
  zero in the high-order bit of their message Type field values.  Thus,
  error messages have message types from 0 to 127; informational
  messages have message types from 128 to 255.




Conta, et al.               Standards Track                     [Page 3]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


  This document defines the message formats for the following ICMPv6
  messages:

     ICMPv6 error messages:

         1    Destination Unreachable      (see Section 3.1)
         2    Packet Too Big               (see Section 3.2)
         3    Time Exceeded                (see Section 3.3)
         4    Parameter Problem            (see Section 3.4)

         100  Private experimentation
         101  Private experimentation

         127  Reserved for expansion of ICMPv6 error messages

     ICMPv6 informational messages:

         128  Echo Request                 (see Section 4.1)
         129  Echo Reply                   (see Section 4.2)

         200  Private experimentation
         201  Private experimentation

         255  Reserved for expansion of ICMPv6 informational messages

  Type values 100, 101, 200, and 201 are reserved for private
  experimentation.  They are not intended for general use.  It is
  expected that multiple concurrent experiments will be done with the
  same type values.  Any wide-scale and/or uncontrolled usage should
  obtain real allocations as defined in Section 6.

  Type values 127 and 255 are reserved for future expansion of the type
  value range if there is a shortage in the future.  The details of
  this are left for future work.  One possible way of doing this that
  would not cause any problems with current implementations is that if
  the type equals 127 or 255, the code field should be used for the new
  assignment.  Existing implementations would ignore the new
  assignments as specified in Section 2.4, (b).  The new messages using
  these expanded type values could assign fields in the message body
  for its code values.

  Sections 3 and 4 describe the message formats for the ICMPv6 error
  message types 1 through 4 and informational message types 128 and
  129.







Conta, et al.               Standards Track                     [Page 4]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


  Inclusion of, at least, the start of the invoking packet is intended
  to allow the originator of a packet that has resulted in an ICMPv6
  error message to identify the upper-layer protocol and process that
  sent the packet.

2.2.  Message Source Address Determination

  A node that originates an ICMPv6 message has to determine both the
  Source and Destination IPv6 Addresses in the IPv6 header before
  calculating the checksum.  If the node has more than one unicast
  address, it MUST choose the Source Address of the message as follows:

  (a) If the message is a response to a message sent to one of the
      node's unicast addresses, the Source Address of the reply MUST be
      that same address.

  (b) If the message is a response to a message sent to any other
      address, such as

      - a multicast group address,
      - an anycast address implemented by the node, or
      - a unicast address that does not belong to the node

     the Source Address of the ICMPv6 packet MUST be a unicast address
     belonging to the node.  The address SHOULD be chosen according to
     the rules that would be used to select the source address for any
     other packet originated by the node, given the destination address
     of the packet.  However, it MAY be selected in an alternative way
     if this would lead to a more informative choice of address
     reachable from the destination of the ICMPv6 packet.

2.3.  Message Checksum Calculation

  The checksum is the 16-bit one's complement of the one's complement
  sum of the entire ICMPv6 message, starting with the ICMPv6 message
  type field, and prepended with a "pseudo-header" of IPv6 header
  fields, as specified in [IPv6, Section 8.1].  The Next Header value
  used in the pseudo-header is 58.  (The inclusion of a pseudo-header
  in the ICMPv6 checksum is a change from IPv4; see [IPv6] for the
  rationale for this change.)

  For computing the checksum, the checksum field is first set to zero.

2.4.  Message Processing Rules

  Implementations MUST observe the following rules when processing
  ICMPv6 messages (from [RFC-1122]):




Conta, et al.               Standards Track                     [Page 5]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


  (a) If an ICMPv6 error message of unknown type is received at its
      destination, it MUST be passed to the upper-layer process that
      originated the packet that caused the error, where this can be
      identified (see Section 2.4, (d)).

  (b) If an ICMPv6 informational message of unknown type is received,
      it MUST be silently discarded.

  (c) Every ICMPv6 error message (type < 128) MUST include as much of
      the IPv6 offending (invoking) packet (the packet that caused the
      error) as possible without making the error message packet exceed
      the minimum IPv6 MTU [IPv6].

  (d) In cases where the internet-layer protocol is required to pass an
      ICMPv6 error message to the upper-layer process, the upper-layer
      protocol type is extracted from the original packet (contained in
      the body of the ICMPv6 error message) and used to select the
      appropriate upper-layer process to handle the error.

      In cases where it is not possible to retrieve the upper-layer
      protocol type from the ICMPv6 message, the ICMPv6 message is
      silently dropped after any IPv6-layer processing.  One example of
      such a case is an ICMPv6 message with an unusually large amount
      of extension headers that does not have the upper-layer protocol
      type due to truncation of the original packet to meet the minimum
      IPv6 MTU [IPv6] limit.  Another example is an ICMPv6 message with
      an ESP extension header for which it is not possible to decrypt
      the original packet due to either truncation or the
      unavailability of the state necessary to decrypt the packet.

  (e) An ICMPv6 error message MUST NOT be originated as a result of
      receiving the following:

      (e.1) An ICMPv6 error message.

      (e.2) An ICMPv6 redirect message [IPv6-DISC].

      (e.3) A packet destined to an IPv6 multicast address.  (There are
            two exceptions to this rule: (1) the Packet Too Big Message
            (Section 3.2) to allow Path MTU discovery to work for IPv6
            multicast, and (2) the Parameter Problem Message, Code 2
            (Section 3.4) reporting an unrecognized IPv6 option (see
            Section 4.2 of [IPv6]) that has the Option Type highest-
            order two bits set to 10).

      (e.4) A packet sent as a link-layer multicast (the exceptions
            from e.3 apply to this case, too).




Conta, et al.               Standards Track                     [Page 6]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


      (e.5) A packet sent as a link-layer broadcast (the exceptions
            from e.3 apply to this case, too).

      (e.6) A packet whose source address does not uniquely identify a
            single node -- e.g., the IPv6 Unspecified Address, an IPv6
            multicast address, or an address known by the ICMP message
            originator to be an IPv6 anycast address.

  (f) Finally, in order to limit the bandwidth and forwarding costs
      incurred by originating ICMPv6 error messages, an IPv6 node MUST
      limit the rate of ICMPv6 error messages it originates.  This
      situation may occur when a source sending a stream of erroneous
      packets fails to heed the resulting ICMPv6 error messages.

      Rate-limiting of forwarded ICMP messages is out of scope of this
      specification.

      A recommended method for implementing the rate-limiting function
      is a token bucket, limiting the average rate of transmission to
      N, where N can be either packets/second or a fraction of the
      attached link's bandwidth, but allowing up to B error messages to
      be transmitted in a burst, as long as the long-term average is
      not exceeded.

      Rate-limiting mechanisms that cannot cope with bursty traffic
      (e.g., traceroute) are not recommended; for example, a simple
      timer-based implementation, allowing an error message every T
      milliseconds (even with low values for T), is not reasonable.

      The rate-limiting parameters SHOULD be configurable.  In the case
      of a token-bucket implementation, the best defaults depend on
      where the implementation is expected to be deployed (e.g., a
      high-end router vs. an embedded host).  For example, in a
      small/mid-size device, the possible defaults could be B=10,
      N=10/s.

  NOTE: THE RESTRICTIONS UNDER (e) AND (f) ABOVE TAKE PRECEDENCE OVER
  ANY REQUIREMENT ELSEWHERE IN THIS DOCUMENT FOR ORIGINATING ICMP ERROR
  MESSAGES.

  The following sections describe the message formats for the above
  ICMPv6 messages.









Conta, et al.               Standards Track                     [Page 7]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


3. ICMPv6 Error Messages

3.1.  Destination Unreachable Message

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |     Code      |          Checksum             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                             Unused                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    As much of invoking packet                 |
     +                as possible without the ICMPv6 packet          +
     |                exceeding the minimum IPv6 MTU [IPv6]          |

  IPv6 Fields:

  Destination Address

                 Copied from the Source Address field of the invoking
                 packet.

  ICMPv6 Fields:

  Type           1

  Code           0 - No route to destination
                 1 - Communication with destination
                       administratively prohibited
                 2 - Beyond scope of source address
                 3 - Address unreachable
                 4 - Port unreachable
                 5 - Source address failed ingress/egress policy
                 6 - Reject route to destination

  Unused         This field is unused for all code values.
                 It must be initialized to zero by the originator
                 and ignored by the receiver.
  Description

  A Destination Unreachable message SHOULD be generated by a router, or
  by the IPv6 layer in the originating node, in response to a packet
  that cannot be delivered to its destination address for reasons other
  than congestion.  (An ICMPv6 message MUST NOT be generated if a
  packet is dropped due to congestion.)

  If the reason for the failure to deliver is lack of a matching entry
  in the forwarding node's routing table, the Code field is set to 0.



Conta, et al.               Standards Track                     [Page 8]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


  (This error can occur only in nodes that do not hold a "default
  route" in their routing tables.)

  If the reason for the failure to deliver is administrative
  prohibition (e.g., a "firewall filter"), the Code field is set to 1.

  If the reason for the failure to deliver is that the destination is
  beyond the scope of the source address, the Code field is set to 2.
  This condition can occur only when the scope of the source address is
  smaller than the scope of the destination address (e.g., when a
  packet has a link-local source address and a global-scope destination
  address) and the packet cannot be delivered to the destination
  without leaving the scope of the source address.

  If the reason for the failure to deliver cannot be mapped to any of
  other codes, the Code field is set to 3.  Example of such cases are
  an inability to resolve the IPv6 destination address into a
  corresponding link address, or a link-specific problem of some sort.

  One specific case in which a Destination Unreachable message is sent
  with a code 3 is in response to a packet received by a router from a
  point-to-point link, destined to an address within a subnet assigned
  to that same link (other than one of the receiving router's own
  addresses).  In such a case, the packet MUST NOT be forwarded back
  onto the arrival link.

  A destination node SHOULD originate a Destination Unreachable message
  with Code 4 in response to a packet for which the transport protocol
  (e.g., UDP) has no listener, if that transport protocol has no
  alternative means to inform the sender.

  If the reason for the failure to deliver is that the packet with this
  source address is not allowed due to ingress or egress filtering
  policies, the Code field is set to 5.

  If the reason for the failure to deliver is that the route to the
  destination is a reject route, the Code field is set to 6.  This may
  occur if the router has been configured to reject all the traffic for
  a specific prefix.

  Codes 5 and 6 are more informative subsets of code 1.

  For security reasons, it is recommended that implementations SHOULD
  allow sending of ICMP destination unreachable messages to be
  disabled, preferably on a per-interface basis.






Conta, et al.               Standards Track                     [Page 9]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


  Upper Layer Notification

  A node receiving the ICMPv6 Destination Unreachable message MUST
  notify the upper-layer process if the relevant process can be
  identified (see Section 2.4, (d)).

3.2.  Packet Too Big Message

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |     Code      |          Checksum             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                             MTU                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    As much of invoking packet                 |
     +               as possible without the ICMPv6 packet           +
     |               exceeding the minimum IPv6 MTU [IPv6]           |

  IPv6 Fields:

  Destination Address

                 Copied from the Source Address field of the invoking
                 packet.

  ICMPv6 Fields:

  Type           2

  Code           Set to 0 (zero) by the originator and ignored by the
                 receiver.

  MTU            The Maximum Transmission Unit of the next-hop link.

  Description

  A Packet Too Big MUST be sent by a router in response to a packet
  that it cannot forward because the packet is larger than the MTU of
  the outgoing link.  The information in this message is used as part
  of the Path MTU Discovery process [PMTU].

  Originating a Packet Too Big Message makes an exception to one of the
  rules as to when to originate an ICMPv6 error message.  Unlike other
  messages, it is sent in response to a packet received with an IPv6
  multicast destination address, or with a link-layer multicast or
  link-layer broadcast address.




Conta, et al.               Standards Track                    [Page 10]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


  Upper Layer Notification

  An incoming Packet Too Big message MUST be passed to the upper-layer
  process if the relevant process can be identified (see Section 2.4,
  (d)).

3.3.  Time Exceeded Message

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |     Code      |          Checksum             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                             Unused                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    As much of invoking packet                 |
     +               as possible without the ICMPv6 packet           +
     |               exceeding the minimum IPv6 MTU [IPv6]           |

  IPv6 Fields:

  Destination Address
                 Copied from the Source Address field of the invoking
                 packet.

  ICMPv6 Fields:

  Type           3

  Code           0 - Hop limit exceeded in transit
                 1 - Fragment reassembly time exceeded

  Unused         This field is unused for all code values.
                 It must be initialized to zero by the originator
                 and ignored by the receiver.

  Description

  If a router receives a packet with a Hop Limit of zero, or if a
  router decrements a packet's Hop Limit to zero, it MUST discard the
  packet and originate an ICMPv6 Time Exceeded message with Code 0 to
  the source of the packet.  This indicates either a routing loop or
  too small an initial Hop Limit value.

  An ICMPv6 Time Exceeded message with Code 1 is used to report
  fragment reassembly timeout, as specified in [IPv6, Section 4.5].





Conta, et al.               Standards Track                    [Page 11]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


  Upper Layer Notification

  An incoming Time Exceeded message MUST be passed to the upper-layer
  process if the relevant process can be identified (see Section 2.4,
  (d)).

3.4.  Parameter Problem Message

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |     Code      |          Checksum             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                            Pointer                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    As much of invoking packet                 |
     +               as possible without the ICMPv6 packet           +
     |               exceeding the minimum IPv6 MTU [IPv6]           |

  IPv6 Fields:

  Destination Address

                 Copied from the Source Address field of the invoking
                 packet.

  ICMPv6 Fields:

  Type           4

  Code           0 - Erroneous header field encountered
                 1 - Unrecognized Next Header type encountered
                 2 - Unrecognized IPv6 option encountered

  Pointer        Identifies the octet offset within the
                 invoking packet where the error was detected.

                 The pointer will point beyond the end of the ICMPv6
                 packet if the field in error is beyond what can fit
                 in the maximum size of an ICMPv6 error message.

  Description

  If an IPv6 node processing a packet finds a problem with a field in
  the IPv6 header or extension headers such that it cannot complete
  processing the packet, it MUST discard the packet and SHOULD
  originate an ICMPv6 Parameter Problem message to the packet's source,
  indicating the type and location of the problem.



Conta, et al.               Standards Track                    [Page 12]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


  Codes 1 and 2 are more informative subsets of Code 0.

  The pointer identifies the octet of the original packet's header
  where the error was detected.  For example, an ICMPv6 message with a
  Type field of 4, Code field of 1, and Pointer field of 40 would
  indicate that the IPv6 extension header following the IPv6 header of
  the original packet holds an unrecognized Next Header field value.

  Upper Layer Notification

  A node receiving this ICMPv6 message MUST notify the upper-layer
  process if the relevant process can be identified (see Section 2.4,
  (d)).

4. ICMPv6 Informational Messages

4.1.  Echo Request Message

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |     Code      |          Checksum             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           Identifier          |        Sequence Number        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Data ...
     +-+-+-+-+-

  IPv6 Fields:

  Destination Address

                 Any legal IPv6 address.

  ICMPv6 Fields:

  Type           128

  Code           0

  Identifier     An identifier to aid in matching Echo Replies
                 to this Echo Request.  May be zero.









Conta, et al.               Standards Track                    [Page 13]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


  Sequence Number

                 A sequence number to aid in matching Echo Replies
                 to this Echo Request.  May be zero.

  Data           Zero or more octets of arbitrary data.

  Description

  Every node MUST implement an ICMPv6 Echo responder function that
  receives Echo Requests and originates corresponding Echo Replies.  A
  node SHOULD also implement an application-layer interface for
  originating Echo Requests and receiving Echo Replies, for diagnostic
  purposes.

  Upper Layer Notification

  Echo Request messages MAY be passed to processes receiving ICMP
  messages.

4.2.  Echo Reply Message

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |     Code      |          Checksum             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           Identifier          |        Sequence Number        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Data ...
     +-+-+-+-+-

  IPv6 Fields:

  Destination Address

                 Copied from the Source Address field of the invoking
                 Echo Request packet.

  ICMPv6 Fields:

  Type           129

  Code           0

  Identifier     The identifier from the invoking Echo Request message.





Conta, et al.               Standards Track                    [Page 14]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


  Sequence Number

                 The sequence number from the invoking Echo Request
                 message.

  Data           The data from the invoking Echo Request message.

  Description

  Every node MUST implement an ICMPv6 Echo responder function that
  receives Echo Requests and originates corresponding Echo Replies.  A
  node SHOULD also implement an application-layer interface for
  originating Echo Requests and receiving Echo Replies, for diagnostic
  purposes.

  The source address of an Echo Reply sent in response to a unicast
  Echo Request message MUST be the same as the destination address of
  that Echo Request message.

  An Echo Reply SHOULD be sent in response to an Echo Request message
  sent to an IPv6 multicast or anycast address.  In this case, the
  source address of the reply MUST be a unicast address belonging to
  the interface on which the Echo Request message was received.

  The data received in the ICMPv6 Echo Request message MUST be returned
  entirely and unmodified in the ICMPv6 Echo Reply message.

  Upper Layer Notification

  Echo Reply messages MUST be passed to the process that originated an
  Echo Request message.  An Echo Reply message MAY be passed to
  processes that did not originate the Echo Request message.

  Note that there is no limitation on the amount of data that can be
  put in Echo Request and Echo Reply Messages.

5. Security Considerations

5.1.  Authentication and Confidentiality of ICMP Messages

  ICMP protocol packet exchanges can be authenticated using the IP
  Authentication Header [IPv6-AUTH] or IP Encapsulating Security
  Payload Header [IPv6-ESP].  Confidentiality for the ICMP protocol
  packet exchanges can be achieved using the IP Encapsulating Security
  Payload Header [IPv6-ESP].

  [SEC-ARCH] describes the IPsec handling of ICMP traffic in detail.




Conta, et al.               Standards Track                    [Page 15]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


5.2.  ICMP Attacks

  ICMP messages may be subject to various attacks.  A complete
  discussion can be found in the IP Security Architecture [IPv6-SA].  A
  brief discussion of these attacks and their prevention follows:

  1. ICMP messages may be subject to actions intended to cause the
     receiver to believe the message came from a different source from
     that of the message originator.  The protection against this
     attack can be achieved by applying the IPv6 Authentication
     mechanism [IPv6-AUTH] to the ICMP message.

  2. ICMP messages may be subject to actions intended to cause the
     message or the reply to it to go to a destination different from
     that of the message originator's intention.  The protection
     against this attack can be achieved by using the Authentication
     Header [IPv6-AUTH] or the Encapsulating Security Payload Header
     [IPv6-ESP].  The Authentication Header provides the protection
     against change for the source and the destination address of the
     IP packet.  The Encapsulating Security Payload Header does not
     provide this protection, but the ICMP checksum calculation
     includes the source and the destination addresses, and the
     Encapsulating Security Payload Header protects the checksum.
     Therefore, the combination of ICMP checksum and the Encapsulating
     Security Payload Header provides protection against this attack.
     The protection provided by the Encapsulating Security Payload
     Header will not be as strong as the protection provided by the
     Authentication Header.

  3. ICMP messages may be subject to changes in the message fields, or
     payload.  The authentication [IPv6-AUTH] or encryption [IPv6-ESP]
     of the ICMP message protects against such actions.

  4. ICMP messages may be used to attempt denial-of-service attacks by
     sending back to back erroneous IP packets.  An implementation that
     correctly followed Section 2.4, paragraph (f), of this
     specification, would be protected by the ICMP error rate limiting
     mechanism.

  5. The exception number 2 of rule e.3 in Section 2.4 gives a
     malicious node the opportunity to cause a denial-of-service attack
     to a multicast source.  A malicious node can send a multicast
     packet with an unknown destination option marked as mandatory,
     with the IPv6 source address of a valid multicast source.  A large
     number of destination nodes will send an ICMP Parameter Problem
     Message to the multicast source, causing a denial-of-service
     attack.  The way multicast traffic is forwarded by the multicast
     routers requires that the malicious node be part of the correct



Conta, et al.               Standards Track                    [Page 16]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


     multicast path, i.e., near to the multicast source.  This attack
     can only be avoided by securing the multicast traffic.  The
     multicast source should be careful while sending multicast traffic
     with the destination options marked as mandatory, because they can
     cause a denial-of-service attack to themselves if the destination
     option is unknown to a large number of destinations.

  6. As the ICMP messages are passed to the upper-layer processes, it
     is possible to perform attacks on the upper layer protocols (e.g.,
     TCP) with ICMP [TCP-attack].  It is recommended that the upper
     layers perform some form of validation of ICMP messages (using the
     information contained in the payload of the ICMP message) before
     acting upon them.  The actual validation checks are specific to
     the upper layers and are out of the scope of this specification.
     Protecting the upper layer with IPsec mitigates these attacks.

     ICMP error messages signal network error conditions that were
     encountered while processing an internet datagram.  Depending on
     the particular scenario, the error conditions being reported might
     or might not get solved in the near term.  Therefore, reaction to
     ICMP error messages may depend not only on the error type and code
     but also on other factors, such as the time at which the error
     messages are received, previous knowledge of the network error
     conditions being reported, and knowledge of the network scenario
     in which the receiving host is operating.

6. IANA Considerations

6.1.  Procedure for New ICMPV6 Type and Code Value Assignments

  The IPv6 ICMP header defined in this document contains the following
  fields that carry values assigned from IANA-managed name spaces: Type
  and Code.  Code field values are defined relative to a specific Type
  value.

  Values for the IPv6 ICMP Type fields are allocated using the
  following procedure:

  1. The IANA should allocate and permanently register new ICMPv6 type
     codes from IETF RFC publication.  This is for all RFC types,
     including standards track, informational, and experimental status,
     that originate from the IETF and have been approved by the IESG
     for publication.

  2. IETF working groups with working group consensus and area director
     approval can request reclaimable ICMPV6 type code assignments from
     the IANA.  The IANA will tag the values as "reclaimable in
     future".



Conta, et al.               Standards Track                    [Page 17]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


     The "reclaimable in the future" tag will be removed when an RFC is
     published that documents the protocol as defined in 1.  This will
     make the assignment permanent and update the reference on the IANA
     web pages.

     At the point where the ICMPv6 type values are 85% assigned, the
     IETF will review the assignments tagged "reclaimable in the
     future" and inform the IANA which ones should be reclaimed and
     reassigned.

  3. Requests for new ICMPv6 type value assignments from outside the
     IETF are only made through the publication of an IETF document,
     per 1 above.  Note also that documents published as "RFC Editor
     contributions" [RFC-3978] are not considered IETF documents.

  The assignment of new Code values for the Type values defined in this
  document require standards action or IESG approval.  The policy for
  assigning Code values for new IPv6 ICMP Types not defined in this
  document should be defined in the document defining the new Type
  values.

6.2.  Assignments for This Document

  The following has updated assignments located at:

     http://www.iana.org/assignments/icmpv6-parameters

  The IANA has reassigned ICMPv6 type 1 "Destination Unreachable" code
  2, which was unassigned in [RFC-2463], to:

        2 - Beyond scope of source address

  The IANA has assigned the following two new codes values for ICMPv6
  type 1 "Destination Unreachable":

        5 - Source address failed ingress/egress policy
        6 - Reject route to destination

  The IANA has assigned the following new type values:

        100  Private experimentation
        101  Private experimentation

        127  Reserved for expansion of ICMPv6 error messages

        200  Private experimentation
        201  Private experimentation




Conta, et al.               Standards Track                    [Page 18]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


        255  Reserved for expansion of ICMPv6 informational messages

7. References

7.1.  Normative References

  [IPv6]       Deering, S. and R. Hinden, "Internet Protocol, Version 6
               (IPv6) Specification", RFC 2460, December 1998.

  [IPv6-DISC]  Narten, T., Nordmark, E., and W. Simpson, "Neighbor
               Discovery for IP Version 6 (IPv6)", RFC 2461, December
               1998.

  [RFC-792]    Postel, J., "Internet Control Message Protocol", STD 5,
               RFC 792, September 1981.

  [RFC-2463]   Conta, A. and S. Deering, "Internet Control Message
               Protocol (ICMPv6) for the Internet Protocol Version 6
               (IPv6) Specification", RFC 2463, December 1998.

  [RFC-1122]   Braden, R., "Requirements for Internet Hosts -
               Communication Layers", STD 3, RFC 1122, October 1989.

  [RFC-2119]   Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC-3978]   Bradner, S., "IETF Rights in Contributions", BCP 78, RFC
               3978, March 2005.

7.2.  Informative References

  [RFC-2780]   Bradner, S. and V. Paxson, "IANA Allocation Guidelines
               For Values In the Internet Protocol and Related
               Headers", BCP 37, RFC 2780, March 2000.

  [IPv6-ADDR]  Hinden, R. and S. Deering, "Intpernet Protocol Version 6
               (IPv6) Addressing Architecture", RFC 3513, April 2003.

  [PMTU]       McCann, J., Deering, S., and J. Mogul, "Path MTU
               Discovery for IP version 6", RFC 1981, August 1996.

  [IPv6-SA]    Kent, S. and R. Atkinson, "Security Architecture for the
               Internet Protocol", RFC 2401, November 1998.

  [IPv6-AUTH]  Kent, S., "IP Authentication Header", RFC 4302, December
               2005.





Conta, et al.               Standards Track                    [Page 19]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


  [IPv6-ESP]   Kent, S., "IP Encapsulating Security Payload (ESP)", RFC
               4203, December 2005.

  [SEC-ARCH]   Kent, S. and K. Seo, "Security Architecture for the
               Internet Protocol", RFC 4301, December 2005.

  [TCP-attack] Gont, F., "ICMP attacks against TCP", Work in Progress.

8.  Acknowledgements

  The document is derived from previous ICMP documents of the SIPP and
  IPng working group.

  The IPng working group, and particularly Robert Elz, Jim Bound, Bill
  Simpson, Thomas Narten, Charlie Lynn, Bill Fink, Scott Bradner,
  Dimitri Haskin, Bob Hinden, Jun-ichiro Itojun Hagino, Tatuya Jinmei,
  Brian Zill, Pekka Savola, Fred Templin, and Elwyn Davies (in
  chronological order) provided extensive review information and
  feedback.

  Bob Hinden was the document editor for this document.






























Conta, et al.               Standards Track                    [Page 20]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


Appendix A - Changes since RFC 2463

  The following changes were made from RFC 2463:

  - Edited the Abstract to make it a little more elaborate.

  - Corrected typos in Section 2.4, where references to sub-bullet e.2
    were supposed to be references to e.3.

  - Removed the Timer-based and the Bandwidth-based methods from the
    example rate-limiting mechanism for ICMP error messages.  Added
    Token-bucket based method.

  - Added specification that all ICMP error messages shall have exactly
    32 bits of type-specific data, so that receivers can reliably find
    the embedded invoking packet even when they don't recognize the
    ICMP message Type.

  - In the description of Destination Unreachable messages, Code 3,
    added rule prohibiting forwarding of packets back onto point-to-
    point links from which they were received, if their destination
    addresses belong to the link itself ("anti-ping-ponging" rule).

  - Added description of Time Exceeded Code 1 (fragment reassembly
    timeout).

  - Added "beyond scope of source address", "source address failed
    ingress/egress policy", and "reject route to destination" messages
    to the family of "unreachable destination" type ICMP error messages
    (Section 3.1).

  - Reserved some ICMP type values for experimentation.

  - Added a NOTE in Section 2.4 that specifies ICMP message processing
    rules precedence.

  - Added ICMP REDIRECT to the list in Section 2.4, (e) of cases in
    which ICMP error messages are not to be generated.

  - Made minor editorial changes in Section 2.3 on checksum
    calculation, and in Section 5.2.

  - Clarified in Section 4.2, regarding the Echo Reply Message; the
    source address of an Echo Reply to an anycast Echo Request should
    be a unicast address, as in the case of multicast.






Conta, et al.               Standards Track                    [Page 21]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


  - Revised the Security Considerations section.  Added the use of the
    Encapsulating Security Payload Header for authentication.  Changed
    the requirement of an option of "not allowing unauthenticated ICMP
    messages" to MAY from SHOULD.

  - Added a new attack in the list of possible ICMP attacks in Section
    5.2.

  - Separated References into Normative and Informative.

  - Added reference to RFC 2780 "IANA Allocation Guidelines For Values
    In the Internet Protocol and Related Headers".  Also added a note
    that this document updates RFC 2780.

  - Added a procedure for new ICMPv6 Type and Code value assignments in
    the IANA Considerations section.

  - Replaced word "send" with "originate" to make it clear that ICMP
    packets being forwarded are out of scope of this specification.

  - Changed the ESP and AH references to the updated ESP and AH
    documents.

  - Added reference to the updated IPsec Security Architecture
    document.

  - Added a SHOULD requirement for allowing the sending of ICMP
    destination unreachable messages to be disabled.

  - Simplified the source address selection of the ICMPv6 packet.

  - Reorganized the General Message Format (Section 2.1).

  - Removed the general packet format from Section 2.1.  It refers to
    Sections 3 and 4 for packet formats now.

  - Added text about attacks to the transport protocols that could
    potentially be caused by ICMP.













Conta, et al.               Standards Track                    [Page 22]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


Authors' Addresses

  Alex Conta
  Transwitch Corporation
  3 Enterprise Drive
  Shelton, CT 06484
  USA

  EMail: [email protected]


  Stephen Deering
  Cisco Systems, Inc.
  170 West Tasman Drive
  San Jose, CA 95134-1706
  USA


  Mukesh Gupta, Ed.
  Tropos Networks
  555 Del Rey Avenue
  Sunnyvale, CA 94085

  Phone: +1 408-331-6889
  EMail: [email protected]


























Conta, et al.               Standards Track                    [Page 23]

RFC 4443                 ICMPv6 (ICMP for IPv6)               March 2006


Full Copyright Statement

  Copyright (C) The Internet Society (2006).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
  ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
  INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
  INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].

Acknowledgement

  Funding for the RFC Editor function is provided by the IETF
  Administrative Support Activity (IASA).







Conta, et al.               Standards Track                    [Page 24]