[Note that this file is a concatenation of more than one RFC.]





Network Working Group                                   J. Schoenwaelder
Request for Comments: 5343                      Jacobs University Bremen
Updates: 3411                                             September 2008
Category: Standards Track


 Simple Network Management Protocol (SNMP) Context EngineID Discovery

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  The Simple Network Management Protocol (SNMP) version three (SNMPv3)
  requires that an application know the identifier (snmpEngineID) of
  the remote SNMP protocol engine in order to retrieve or manipulate
  objects maintained on the remote SNMP entity.

  This document introduces a well-known localEngineID and a discovery
  mechanism that can be used to learn the snmpEngineID of a remote SNMP
  protocol engine.  The proposed mechanism is independent of the
  features provided by SNMP security models and may also be used by
  other protocol interfaces providing access to managed objects.

  This document updates RFC 3411.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . 2
  2.  Background  . . . . . . . . . . . . . . . . . . . . . . . . . . 2
  3.  Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
    3.1.  Local EngineID  . . . . . . . . . . . . . . . . . . . . . . 4
    3.2.  EngineID Discovery  . . . . . . . . . . . . . . . . . . . . 4
  4.  IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 5
  5.  Security Considerations . . . . . . . . . . . . . . . . . . . . 6
  6.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 7
  7.  References  . . . . . . . . . . . . . . . . . . . . . . . . . . 7
    7.1.  Normative References  . . . . . . . . . . . . . . . . . . . 7
    7.2.  Informative References  . . . . . . . . . . . . . . . . . . 7







Schoenwaelder               Standards Track                     [Page 1]

RFC 5343            SNMP Context EngineID Discovery       September 2008


1.  Introduction

  To retrieve or manipulate management information using the third
  version of the Simple Network Management Protocol (SNMPv3) [RFC3410],
  it is necessary to know the identifier of the remote SNMP protocol
  engine, the so-called snmpEngineID [RFC3411].  While an appropriate
  snmpEngineID can in principle be configured on each management
  application for each SNMP agent, it is often desirable to discover
  the snmpEngineID automatically.

  This document introduces a discovery mechanism that can be used to
  learn the snmpEngineID of a remote SNMP protocol engine.  The
  proposed mechanism is independent of the features provided by SNMP
  security models.  The mechanism has been designed to coexist with
  discovery mechanisms that may exist in SNMP security models, such as
  the authoritative engine identifier discovery of the User-based
  Security Model (USM) of SNMP [RFC3414].

  This document updates RFC 3411 [RFC3411] by clarifying the IANA rules
  for the maintenance of the SnmpEngineID format registry.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

2.  Background

  Within an administrative domain, an SNMP engine is uniquely
  identified by an snmpEngineID value [RFC3411].  An SNMP entity, which
  consists of an SNMP engine and several SNMP applications, may provide
  access to multiple contexts.

  An SNMP context is a collection of management information accessible
  by an SNMP entity.  An item of management information may exist in
  more than one context and an SNMP entity potentially has access to
  many contexts [RFC3411].  A context is identified by the snmpEngineID
  value of the entity hosting the management information (also called a
  contextEngineID) and a context name that identifies the specific
  context (also called a contextName).

  To identify an individual item of management information within an
  administrative domain, a four tuple is used consisting of

  1.  a contextEngineID,

  2.  a contextName,





Schoenwaelder               Standards Track                     [Page 2]

RFC 5343            SNMP Context EngineID Discovery       September 2008


  3.  an object type, and

  4.  its instance identification.

  The last two elements are encoded in an object identifier (OID)
  value.  The contextName is a character string (following the
  SnmpAdminString textual convention of the SNMP-FRAMEWORK-MIB
  [RFC3411]) while the contextEngineID is an octet string constructed
  according to the rules defined as part of the SnmpEngineID textual
  convention of the SNMP-FRAMEWORK-MIB [RFC3411].

  The SNMP protocol operations and the protocol data units (PDUs)
  operate on OIDs and thus deal with object types and instances
  [RFC3416].  The SNMP architecture [RFC3411] introduces the concept of
  a scopedPDU as a data structure containing a contextEngineID, a
  contextName, and a PDU.  The SNMP version 3 (SNMPv3) message format
  uses ScopedPDUs to exchange management information [RFC3412].

  Within the SNMP framework, contextEngineIDs serve as end-to-end
  identifiers.  This becomes important in situations where SNMP proxies
  are deployed to translate between protocol versions or to cross
  middleboxes such as network address translators.  In addition,
  snmpEngineIDs separate the identification of an SNMP engine from the
  transport addresses used to communicate with an SNMP engine.  This
  property can be used to correlate management information easily, even
  in situations where multiple different transports were used to
  retrieve the information or where transport addresses can change
  dynamically.

  To retrieve data from an SNMPv3 agent, it is necessary to know the
  appropriate contextEngineID.  The User-based Security Model (USM) of
  SNMPv3 provides a mechanism to discover the snmpEngineID of the
  remote SNMP engine, since this is needed for security processing
  reasons.  The discovered snmpEngineID can subsequently be used as a
  contextEngineID in a ScopedPDU to access management information local
  to the remote SNMP engine.  Other security models, such as the
  Transport Security Model (TSM) [TSM], lack such a procedure and may
  use the discovery mechanism defined in this memo.

3.  Procedure

  The proposed discovery mechanism consists of two parts, namely (i)
  the definition of a special well-known snmpEngineID value, called the
  localEngineID, which always refers to a local default context, and
  (ii) the definition of a procedure to acquire the snmpEngineID scalar
  of the SNMP-FRAMEWORK-MIB [RFC3411] using the special well-known
  local localEngineID value.




Schoenwaelder               Standards Track                     [Page 3]

RFC 5343            SNMP Context EngineID Discovery       September 2008


3.1.  Local EngineID

  An SNMP command responder implementing this specification MUST
  register their pduTypes using the localEngineID snmpEngineID value
  (defined below) by invoking the registerContextEngineID() Abstract
  Service Interface (ASI) defined in RFC 3412 [RFC3412].  This
  registration is done in addition to the normal registration under the
  SNMP engine's snmpEngineID.  This is consistent with the SNMPv3
  specifications since they explicitly allow registration of multiple
  engineIDs and multiple pduTypes [RFC3412].

  The SnmpEngineID textual convention [RFC3411] defines that an
  snmpEngineID value MUST be between 5 and 32 octets long.  This
  specification proposes to use the variable length format 3) of the
  SnmpEngineID textual convention and to allocate the reserved, unused
  format value 6, using the enterprise ID 0 for the localEngineID.  An
  ASN.1 definition for localEngineID would look like this:

              localEngineID OCTET STRING ::= '8000000006'H

  The localEngineID value always provides access to the default context
  of an SNMP engine.  Note that the localEngineID value is intended to
  be used as a special value for the contextEngineID field in the
  ScopedPDU.  It MUST NOT be used as a value to identify an SNMP
  engine; that is, this value MUST NOT be used in the snmpEngineID.0
  scalar [RFC3418] or in the msgAuthoritativeEngineID field in the
  securityParameters of the User-based Security Model (USM) [RFC3414].

3.2.  EngineID Discovery

  Discovery of the snmpEngineID is done by sending a Read Class
  protocol operation (see Section 2.8 of [RFC3411]) to retrieve the
  snmpEngineID scalar using the localEngineID defined above as a
  contextEngineID value.  Implementations SHOULD only perform this
  discovery step when it is needed.  In particular, if security models
  are used that already discover the remote snmpEngineID (such as USM),
  then no further discovery is necessary.  The same is true in
  situations where the application already knows a suitable
  snmpEngineID value.

  The procedure to discover the snmpEngineID of a remote SNMP engine
  can be described as follows:

  1.  Check whether a suitable contextEngineID value is already known.
      If yes, use the provided contextEngineID value and stop the
      discovery procedure.





Schoenwaelder               Standards Track                     [Page 4]

RFC 5343            SNMP Context EngineID Discovery       September 2008


  2.  Check whether the selected security model supports discovery of
      the remote snmpEngineID (e.g., USM with its discovery mechanism).
      If yes, let the security model perform the discovery.  If the
      remote snmpEngineID value has been successfully determined,
      assign it to the contextEngineID and stop the discovery
      procedure.

  3.  Send a Read Class operation to the remote SNMP engine using the
      localEngineID value as the contextEngineID in order to retrieve
      the scalar snmpEngineID.0 of the SNMP-FRAMEWORK-MIB [RFC3411].
      If successful, set the contextEngineID to the retrieved value and
      stop the discovery procedure.

  4.  Return an error indication that a suitable contextEngineID could
      not be discovered.

  The procedure outlined above is an example and can be modified to
  retrieve more variables in step 3, such as the sysObjectID.0 scalar
  or the snmpSetSerialNo.0 scalar of the SNMPv2-MIB [RFC3418].

4.  IANA Considerations

  RFC 3411 requested that IANA create a registry for SnmpEngineID
  formats.  However, RFC 3411 did not ask IANA to record the initial
  assignments made by RFC 3411 nor did RFC 3411 spell out the precise
  allocation rules.  To address this issue, the following rules are
  hereby established.

  IANA maintains a registry for SnmpEngineID formats.  The first four
  octets of an SnmpEngineID carry an enterprise number, while the fifth
  octet in a variable length SnmpEngineID value, called the format
  octet, indicates how the following octets are formed.  The following
  format values were allocated in [RFC3411]:

    Format    Description                     References
    -------   -----------                     ----------
         0    reserved, unused                 [RFC3411]
         1    IPv4 address                     [RFC3411]
         2    IPv6 address                     [RFC3411]
         3    MAC address                      [RFC3411]
         4    administratively assigned text   [RFC3411]
         5    administratively assigned octets [RFC3411]
      6-127   reserved, unused                 [RFC3411]
    128-255   enterprise specific              [RFC3411]

  IANA can assign new format values out of the originally assigned and
  reserved number space 1-127.  For new assignments in this number




Schoenwaelder               Standards Track                     [Page 5]

RFC 5343            SNMP Context EngineID Discovery       September 2008


  space, a specification is required as per [RFC5226].  The number
  space 128-255 is enterprise specific and is not controlled by IANA.

  Per this document, IANA has made the following assignment:

    Format    Description                     References
    -------   -----------                     ----------
         6    local engine                     [RFC5343]

5.  Security Considerations

  SNMP version 3 (SNMPv3) provides cryptographic security to protect
  devices from unauthorized access.  This specification recommends use
  of the security services provided by SNMPv3.  In particular, it is
  RECOMMENDED to protect the discovery exchange.

  An snmpEngineID can contain information such as a device's MAC
  address, IPv4 address, IPv6 address, or administratively assigned
  text.  An attacker located behind a router / firewall / network
  address translator may not be able to obtain this information
  directly, and he therefore might discover snmpEngineID values in
  order to obtain this kind of device information.

  In many environments, making snmpEngineID values accessible via a
  security level of noAuthNoPriv will benefit legitimate tools that try
  to algorithmically determine some basic information about a device.
  For this reason, the default View-based Access Control Model (VACM)
  configuration in Appendix A of RFC 3415 [RFC3415] gives noAuthNoPriv
  read access to the snmpEngineID.  Furthermore, the USM discovery
  mechanism defined in RFC 3414 [RFC3414] uses unprotected messages and
  reveals snmpEngineID values.

  In highly secure environments, snmpEngineID values can be protected
  by using the discovery mechanism described in this document together
  with a security model that does not exchange cleartext SNMP messages,
  such as the Transport Security Model (TSM) [TSM].

  The isAccessAllowed() abstract service primitive of the SNMP access
  control subsystem does not take the contextEngineID into account when
  checking access rights [RFC3411].  As a consequence, it is not
  possible to define a special view for context engineID discovery.  A
  request with a localEngineID is thus treated like a request with the
  correct snmpEngineID by the access control subsystem.  This is inline
  with the SNMPv3 design where the authenticated identity is the
  securityName (together with the securityModel and securityLevel
  information), and transport addresses or knowledge of contextEngineID
  values do not impact the access-control decision.




Schoenwaelder               Standards Track                     [Page 6]

RFC 5343            SNMP Context EngineID Discovery       September 2008


6.  Acknowledgments

  Dave Perkins suggested the introduction of a "local" contextEngineID
  during the interim meeting of the ISMS (Integrated Security Model for
  SNMP) working group in Boston, 2006.  Joe Fernandez, David
  Harrington, Dan Romascanu, and Bert Wijnen provided helpful review
  and feedback, which helped to improve this document.

7.  References

7.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC3411]  Harrington, D., Presuhn, R., and B. Wijnen, "An
             Architecture for Describing Simple Network Management
             Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
             December 2002.

  [RFC3412]  Case, J., Harrington, D., Presuhn, R., and B. Wijnen,
             "Message Processing and Dispatching for the Simple Network
             Management Protocol (SNMP)", STD 62, RFC 3412,
             December 2002.

  [RFC3414]  Blumenthal, U. and B. Wijnen, "User-based Security Model
             (USM) for version 3 of the Simple Network Management
             Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

  [RFC3416]  Presuhn, R., "Version 2 of the Protocol Operations for the
             Simple Network Management Protocol (SNMP)", STD 62,
             RFC 3416, December 2002.

  [RFC3418]  Presuhn, R., "Management Information Base (MIB) for the
             Simple Network Management Protocol (SNMP)", STD 62,
             RFC 3418, December 2002.

  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             May 2008.

7.2.  Informative References

  [RFC3410]  Case, J., Mundy, R., Partain, D., and B. Stewart,
             "Introduction and Applicability Statements for Internet-
             Standard Management Framework", RFC 3410, December 2002.





Schoenwaelder               Standards Track                     [Page 7]

RFC 5343            SNMP Context EngineID Discovery       September 2008


  [RFC3415]  Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based
             Access Control Model (VACM) for the Simple Network
             Management Protocol (SNMP)", STD 62, RFC 3415,
             December 2002.

  [TSM]      Harrington, D., "Transport Security Model for SNMP", Work
             in Progress, July 2008.

Author's Address

  Juergen Schoenwaelder
  Jacobs University Bremen
  Campus Ring 1
  28725 Bremen
  Germany

  Phone: +49 421 200-3587
  EMail: [email protected]

































Schoenwaelder               Standards Track                     [Page 8]

RFC 5343            SNMP Context EngineID Discovery       September 2008


Full Copyright Statement

  Copyright (C) The IETF Trust (2008).

  This document is subject to the rights, licenses and restrictions
  contained in BCP 78, and except as set forth therein, the authors
  retain all their rights.

  This document and the information contained herein are provided on an
  "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
  OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
  THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
  OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
  THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
  WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

  The IETF takes no position regarding the validity or scope of any
  Intellectual Property Rights or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; nor does it represent that it has
  made any independent effort to identify any such rights.  Information
  on the procedures with respect to rights in RFC documents can be
  found in BCP 78 and BCP 79.

  Copies of IPR disclosures made to the IETF Secretariat and any
  assurances of licenses to be made available, or the result of an
  attempt made to obtain a general license or permission for the use of
  such proprietary rights by implementers or users of this
  specification can be obtained from the IETF on-line IPR repository at
  http://www.ietf.org/ipr.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights that may cover technology that may be required to implement
  this standard.  Please address the information to the IETF at
  [email protected].












Schoenwaelder               Standards Track                     [Page 9]

=========================================================================





Network Working Group                                      D. Harrington
Request for Comments: 5590                     Huawei Technologies (USA)
Updates: 3411, 3412, 3414, 3417                         J. Schoenwaelder
Category: Standards Track                       Jacobs University Bremen
                                                              June 2009


Transport Subsystem for the Simple Network Management Protocol (SNMP)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents in effect on the date of
  publication of this document (http://trustee.ietf.org/license-info).
  Please review these documents carefully, as they describe your rights
  and restrictions with respect to this document.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

Abstract

  This document defines a Transport Subsystem, extending the Simple
  Network Management Protocol (SNMP) architecture defined in RFC 3411.
  This document defines a subsystem to contain Transport Models that is
  comparable to other subsystems in the RFC 3411 architecture.  As work
  is being done to expand the transports to include secure transports,
  such as the Secure Shell (SSH) Protocol and Transport Layer Security



Harrington & Schoenwaelder  Standards Track                     [Page 1]

RFC 5590                SNMP Transport Subsystem               June 2009


  (TLS), using a subsystem will enable consistent design and modularity
  of such Transport Models.  This document identifies and describes
  some key aspects that need to be considered for any Transport Model
  for SNMP.

Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
    1.1.  The Internet-Standard Management Framework . . . . . . . .  3
    1.2.  Conventions  . . . . . . . . . . . . . . . . . . . . . . .  3
    1.3.  Where This Extension Fits  . . . . . . . . . . . . . . . .  4
  2.  Motivation . . . . . . . . . . . . . . . . . . . . . . . . . .  5
  3.  Requirements of a Transport Model  . . . . . . . . . . . . . .  7
    3.1.  Message Security Requirements  . . . . . . . . . . . . . .  7
      3.1.1.  Security Protocol Requirements . . . . . . . . . . . .  7
    3.2.  SNMP Requirements  . . . . . . . . . . . . . . . . . . . .  8
      3.2.1.  Architectural Modularity Requirements  . . . . . . . .  8
      3.2.2.  Access Control Requirements  . . . . . . . . . . . . . 11
      3.2.3.  Security Parameter Passing Requirements  . . . . . . . 12
      3.2.4.  Separation of Authentication and Authorization . . . . 12
    3.3.  Session Requirements . . . . . . . . . . . . . . . . . . . 13
      3.3.1.  No SNMP Sessions . . . . . . . . . . . . . . . . . . . 13
      3.3.2.  Session Establishment Requirements . . . . . . . . . . 14
      3.3.3.  Session Maintenance Requirements . . . . . . . . . . . 15
      3.3.4.  Message Security versus Session Security . . . . . . . 15
  4.  Scenario Diagrams and the Transport Subsystem  . . . . . . . . 16
  5.  Cached Information and References  . . . . . . . . . . . . . . 17
    5.1.  securityStateReference . . . . . . . . . . . . . . . . . . 17
    5.2.  tmStateReference . . . . . . . . . . . . . . . . . . . . . 17
      5.2.1.  Transport Information  . . . . . . . . . . . . . . . . 18
      5.2.2.  securityName . . . . . . . . . . . . . . . . . . . . . 19
      5.2.3.  securityLevel  . . . . . . . . . . . . . . . . . . . . 20
      5.2.4.  Session Information  . . . . . . . . . . . . . . . . . 20
  6.  Abstract Service Interfaces  . . . . . . . . . . . . . . . . . 21
    6.1.  sendMessage ASI  . . . . . . . . . . . . . . . . . . . . . 21
    6.2.  Changes to RFC 3411 Outgoing ASIs  . . . . . . . . . . . . 22
      6.2.1.  Message Processing Subsystem Primitives  . . . . . . . 22
      6.2.2.  Security Subsystem Primitives  . . . . . . . . . . . . 23
    6.3.  The receiveMessage ASI . . . . . . . . . . . . . . . . . . 24
    6.4.  Changes to RFC 3411 Incoming ASIs  . . . . . . . . . . . . 25
      6.4.1.  Message Processing Subsystem Primitive . . . . . . . . 25
      6.4.2.  Security Subsystem Primitive . . . . . . . . . . . . . 26
  7.  Security Considerations  . . . . . . . . . . . . . . . . . . . 27
    7.1.  Coexistence, Security Parameters, and Access Control . . . 27
  8.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 29
  9.  Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 29
  10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 30
    10.1. Normative References . . . . . . . . . . . . . . . . . . . 30



Harrington & Schoenwaelder  Standards Track                     [Page 2]

RFC 5590                SNMP Transport Subsystem               June 2009


    10.2. Informative References . . . . . . . . . . . . . . . . . . 30
  Appendix A.  Why tmStateReference? . . . . . . . . . . . . . . . . 32
    A.1.  Define an Abstract Service Interface . . . . . . . . . . . 32
    A.2.  Using an Encapsulating Header  . . . . . . . . . . . . . . 32
    A.3.  Modifying Existing Fields in an SNMP Message . . . . . . . 32
    A.4.  Using a Cache  . . . . . . . . . . . . . . . . . . . . . . 33

1.  Introduction

  This document defines a Transport Subsystem, extending the Simple
  Network Management Protocol (SNMP) architecture defined in [RFC3411].
  This document identifies and describes some key aspects that need to
  be considered for any Transport Model for SNMP.

1.1.  The Internet-Standard Management Framework

  For a detailed overview of the documents that describe the current
  Internet-Standard Management Framework, please refer to Section 7 of
  RFC 3410 [RFC3410].

1.2.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

  Lowercase versions of the keywords should be read as in normal
  English.  They will usually, but not always, be used in a context
  that relates to compatibility with the RFC 3411 architecture or the
  subsystem defined here but that might have no impact on on-the-wire
  compatibility.  These terms are used as guidance for designers of
  proposed IETF models to make the designs compatible with RFC 3411
  subsystems and Abstract Service Interfaces (ASIs).  Implementers are
  free to implement differently.  Some usages of these lowercase terms
  are simply normal English usage.

  For consistency with SNMP-related specifications, this document
  favors terminology as defined in STD 62, rather than favoring
  terminology that is consistent with non-SNMP specifications that use
  different variations of the same terminology.  This is consistent
  with the IESG decision to not require the SNMPv3 terminology be
  modified to match the usage of other non-SNMP specifications when
  SNMPv3 was advanced to Full Standard.

  This document discusses an extension to the modular RFC 3411
  architecture; this is not a protocol document.  An architectural
  "MUST" is a really sharp constraint; to allow for the evolution of
  technology and to not unnecessarily constrain future models, often a



Harrington & Schoenwaelder  Standards Track                     [Page 3]

RFC 5590                SNMP Transport Subsystem               June 2009


  "SHOULD" or a "should" is more appropriate than a "MUST" in an
  architecture.  Future models MAY express tighter requirements for
  their own model-specific processing.

1.3.  Where This Extension Fits

  It is expected that readers of this document will have read RFCs 3410
  and 3411, and have a general understanding of the functionality
  defined in RFCs 3412-3418.

  The "Transport Subsystem" is an additional component for the SNMP
  Engine depicted in RFC 3411, Section 3.1.

  The following diagram depicts its place in the RFC 3411 architecture.

  +-------------------------------------------------------------------+
  |  SNMP entity                                                      |
  |                                                                   |
  |  +-------------------------------------------------------------+  |
  |  |  SNMP engine (identified by snmpEngineID)                   |  |
  |  |                                                             |  |
  |  |  +------------+                                             |  |
  |  |  | Transport  |                                             |  |
  |  |  | Subsystem  |                                             |  |
  |  |  +------------+                                             |  |
  |  |                                                             |  |
  |  |  +------------+ +------------+ +-----------+ +-----------+  |  |
  |  |  | Dispatcher | | Message    | | Security  | | Access    |  |  |
  |  |  |            | | Processing | | Subsystem | | Control   |  |  |
  |  |  |            | | Subsystem  | |           | | Subsystem |  |  |
  |  |  +------------+ +------------+ +-----------+ +-----------+  |  |
  |  +-------------------------------------------------------------+  |
  |                                                                   |
  |  +-------------------------------------------------------------+  |
  |  |  Application(s)                                             |  |
  |  |                                                             |  |
  |  |  +-------------+  +--------------+  +--------------+        |  |
  |  |  | Command     |  | Notification |  | Proxy        |        |  |
  |  |  | Generator   |  | Receiver     |  | Forwarder    |        |  |
  |  |  +-------------+  +--------------+  +--------------+        |  |
  |  |                                                             |  |
  |  |  +-------------+  +--------------+  +--------------+        |  |
  |  |  | Command     |  | Notification |  | Other        |        |  |
  |  |  | Responder   |  | Originator   |  |              |        |  |
  |  |  +-------------+  +--------------+  +--------------+        |  |
  |  +-------------------------------------------------------------+  |
  |                                                                   |
  +-------------------------------------------------------------------+



Harrington & Schoenwaelder  Standards Track                     [Page 4]

RFC 5590                SNMP Transport Subsystem               June 2009


  The transport mappings defined in RFC 3417 do not provide lower-layer
  security functionality, and thus do not provide transport-specific
  security parameters.  This document updates RFC 3411 and RFC 3417 by
  defining an architectural extension and modifying the ASIs that
  transport mappings (hereafter called "Transport Models") can use to
  pass transport-specific security parameters to other subsystems,
  including transport-specific security parameters that are translated
  into the transport-independent securityName and securityLevel
  parameters.

  The Transport Security Model [RFC5591] and the Secure Shell Transport
  Model [RFC5592] utilize the Transport Subsystem.  The Transport
  Security Model is an alternative to the existing SNMPv1 Security
  Model [RFC3584], the SNMPv2c Security Model [RFC3584], and the User-
  based Security Model [RFC3414].  The Secure Shell Transport Model is
  an alternative to existing transport mappings as described in
  [RFC3417].

2.  Motivation

  Just as there are multiple ways to secure one's home or business, in
  a continuum of alternatives, there are multiple ways to secure a
  network management protocol.  Let's consider three general
  approaches.

  In the first approach, an individual could sit on his front porch
  waiting for intruders.  In the second approach, he could hire an
  employee, schedule the employee, position the employee to guard what
  he wants protected, hire a second guard to cover if the first gets
  sick, and so on.  In the third approach, he could hire a security
  company, tell them what he wants protected, and leave the details to
  them.  Considerations of hiring and training employees, positioning
  and scheduling the guards, arranging for cover, etc., are the
  responsibility of the security company.  The individual therefore
  achieves the desired security, with significantly less effort on his
  part except for identifying requirements and verifying the quality of
  service being provided.

  The User-based Security Model (USM) as defined in [RFC3414] largely
  uses the first approach -- it provides its own security.  It utilizes
  existing mechanisms (e.g., SHA), but provides all the coordination.
  USM provides for the authentication of a principal, message
  encryption, data integrity checking, timeliness checking, etc.

  USM was designed to be independent of other existing security
  infrastructures.  USM therefore uses a separate principal and key
  management infrastructure.  Operators have reported that deploying
  another principal and key management infrastructure in order to use



Harrington & Schoenwaelder  Standards Track                     [Page 5]

RFC 5590                SNMP Transport Subsystem               June 2009


  SNMPv3 is a deterrent to deploying SNMPv3.  It is possible to use
  external mechanisms to handle the distribution of keys for use by
  USM.  The more important issue is that operators wanted to leverage
  existing user management infrastructures that were not specific to
  SNMP.

  A USM-compliant architecture might combine the authentication
  mechanism with an external mechanism, such as RADIUS [RFC2865], to
  provide the authentication service.  Similarly, it might be possible
  to utilize an external protocol to encrypt a message, to check
  timeliness, to check data integrity, etc.  However, this corresponds
  to the second approach -- requiring the coordination of a number of
  differently subcontracted services.  Building solid security between
  the various services is difficult, and there is a significant
  potential for gaps in security.

  An alternative approach might be to utilize one or more lower-layer
  security mechanisms to provide the message-oriented security services
  required.  These would include authentication of the sender,
  encryption, timeliness checking, and data integrity checking.  This
  corresponds to the third approach described above.  There are a
  number of IETF standards available or in development to address these
  problems through security layers at the transport layer or
  application layer, among them are TLS [RFC5246], Simple
  Authentication and Security Layer (SASL) [RFC4422], and SSH [RFC4251]

  From an operational perspective, it is highly desirable to use
  security mechanisms that can unify the administrative security
  management for SNMPv3, command line interfaces (CLIs), and other
  management interfaces.  The use of security services provided by
  lower layers is the approach commonly used for the CLI, and is also
  the approach being proposed for other network management protocols,
  such as syslog [RFC5424] and NETCONF [RFC4741].

  This document defines a Transport Subsystem extension to the RFC 3411
  architecture that is based on the third approach.  This extension
  specifies how other lower-layer protocols with common security
  infrastructures can be used underneath the SNMP protocol and the
  desired goal of unified administrative security can be met.

  This extension allows security to be provided by an external protocol
  connected to the SNMP engine through an SNMP Transport Model
  [RFC3417].  Such a Transport Model would then enable the use of
  existing security mechanisms, such as TLS [RFC5246] or SSH [RFC4251],
  within the RFC 3411 architecture.






Harrington & Schoenwaelder  Standards Track                     [Page 6]

RFC 5590                SNMP Transport Subsystem               June 2009


  There are a number of Internet security protocols and mechanisms that
  are in widespread use.  Many of them try to provide a generic
  infrastructure to be used by many different application-layer
  protocols.  The motivation behind the Transport Subsystem is to
  leverage these protocols where it seems useful.

  There are a number of challenges to be addressed to map the security
  provided by a secure transport into the SNMP architecture so that
  SNMP continues to provide interoperability with existing
  implementations.  These challenges are described in detail in this
  document.  For some key issues, design choices are described that
  might be made to provide a workable solution that meets operational
  requirements and fits into the SNMP architecture defined in
  [RFC3411].

3.  Requirements of a Transport Model

3.1.  Message Security Requirements

  Transport security protocols SHOULD provide protection against the
  following message-oriented threats:

  1.  modification of information

  2.  masquerade

  3.  message stream modification

  4.  disclosure

  These threats are described in Section 1.4 of [RFC3411].  The
  security requirements outlined there do not require protection
  against denial of service or traffic analysis; however, transport
  security protocols should not make those threats significantly worse.

3.1.1.  Security Protocol Requirements

  There are a number of standard protocols that could be proposed as
  possible solutions within the Transport Subsystem.  Some factors
  should be considered when selecting a protocol.

  Using a protocol in a manner for which it was not designed has
  numerous problems.  The advertised security characteristics of a
  protocol might depend on it being used as designed; when used in
  other ways, it might not deliver the expected security
  characteristics.  It is recommended that any proposed model include a
  description of the applicability of the Transport Model.




Harrington & Schoenwaelder  Standards Track                     [Page 7]

RFC 5590                SNMP Transport Subsystem               June 2009


  A Transport Model SHOULD NOT require modifications to the underlying
  protocol.  Modifying the protocol might change its security
  characteristics in ways that could impact other existing usages.  If
  a change is necessary, the change SHOULD be an extension that has no
  impact on the existing usages.  Any Transport Model specification
  should include a description of potential impact on other usages of
  the protocol.

  Since multiple Transport Models can exist simultaneously within the
  Transport Subsystem, Transport Models MUST be able to coexist with
  each other.

3.2.  SNMP Requirements

3.2.1.  Architectural Modularity Requirements

  SNMP version 3 (SNMPv3) is based on a modular architecture (defined
  in Section 3 of [RFC3411]) to allow the evolution of the SNMP
  protocol standards over time and to minimize the side effects between
  subsystems when changes are made.

  The RFC 3411 architecture includes a Message Processing Subsystem for
  permitting different message versions to be handled by a single
  engine, a Security Subsystem for enabling different methods of
  providing security services, Applications to support different types
  of Application processors, and an Access Control Subsystem for
  allowing multiple approaches to access control.  The RFC 3411
  architecture does not include a subsystem for Transport Models,
  despite the fact there are multiple transport mappings already
  defined for SNMP [RFC3417].  This document describes a Transport
  Subsystem that is compatible with the RFC 3411 architecture.  As work
  is being done to use secure transports such as SSH and TLS, using a
  subsystem will enable consistent design and modularity of such
  Transport Models.

  The design of this Transport Subsystem accepts the goals of the RFC
  3411 architecture that are defined in Section 1.5 of [RFC3411].  This
  Transport Subsystem uses a modular design that permits Transport
  Models (which might or might not be security-aware) to be "plugged
  into" the RFC 3411 architecture.  Such Transport Models would be
  independent of other modular SNMP components as much as possible.
  This design also permits Transport Models to be advanced through the
  standards process independently of other Transport Models.

  The following diagram depicts the SNMPv3 architecture, including the
  new Transport Subsystem defined in this document and a new Transport
  Security Model defined in [RFC5591].




Harrington & Schoenwaelder  Standards Track                     [Page 8]

RFC 5590                SNMP Transport Subsystem               June 2009


  +------------------------------+
  |    Network                   |
  +------------------------------+
     ^       ^              ^
     |       |              |
     v       v              v
  +-------------------------------------------------------------------+
  | +--------------------------------------------------+              |
  | |  Transport Subsystem                             |              |
  | | +-----+ +-----+ +-----+ +-----+       +-------+  |              |
  | | | UDP | | TCP | | SSH | | TLS | . . . | other |  |              |
  | | +-----+ +-----+ +-----+ +-----+       +-------+  |              |
  | +--------------------------------------------------+              |
  |              ^                                                    |
  |              |                                                    |
  | Dispatcher   v                                                    |
  | +-------------------+ +---------------------+  +----------------+ |
  | | Transport         | | Message Processing  |  | Security       | |
  | | Dispatch          | | Subsystem           |  | Subsystem      | |
  | |                   | |     +------------+  |  | +------------+ | |
  | |                   | |  +->| v1MP       |<--->| | USM        | | |
  | |                   | |  |  +------------+  |  | +------------+ | |
  | |                   | |  |  +------------+  |  | +------------+ | |
  | |                   | |  +->| v2cMP      |<--->| | Transport  | | |
  | | Message           | |  |  +------------+  |  | | Security   | | |
  | | Dispatch    <--------->|  +------------+  |  | | Model      | | |
  | |                   | |  +->| v3MP       |<--->| +------------+ | |
  | |                   | |  |  +------------+  |  | +------------+ | |
  | | PDU Dispatch      | |  |  +------------+  |  | | Other      | | |
  | +-------------------+ |  +->| otherMP    |<--->| | Model(s)   | | |
  |              ^        |     +------------+  |  | +------------+ | |
  |              |        +---------------------+  +----------------+ |
  |              v                                                    |
  |      +-------+-------------------------+---------------+          |
  |      ^                                 ^               ^          |
  |      |                                 |               |          |
  |      v                                 v               v          |
  | +-------------+   +---------+   +--------------+  +-------------+ |
  | |   COMMAND   |   | ACCESS  |   | NOTIFICATION |  |    PROXY    | |
  | |  RESPONDER  |<->| CONTROL |<->|  ORIGINATOR  |  |  FORWARDER  | |
  | | Application |   |         |   | Applications |  | Application | |
  | +-------------+   +---------+   +--------------+  +-------------+ |
  |      ^                                 ^                          |
  |      |                                 |                          |
  |      v                                 v                          |
  | +----------------------------------------------+                  |
  | |             MIB instrumentation              |      SNMP entity |
  +-------------------------------------------------------------------+



Harrington & Schoenwaelder  Standards Track                     [Page 9]

RFC 5590                SNMP Transport Subsystem               June 2009


3.2.1.1.  Changes to the RFC 3411 Architecture

  The RFC 3411 architecture and the Security Subsystem assume that a
  Security Model is called by a Message Processing Model and will
  perform multiple security functions within the Security Subsystem.  A
  Transport Model that supports a secure transport protocol might
  perform similar security functions within the Transport Subsystem,
  including the translation of transport-security parameters to/from
  Security-Model-independent parameters.

  To accommodate this, an implementation-specific cache of transport-
  specific information will be described (not shown), and the data
  flows on this path will be extended to pass Security-Model-
  independent values.  This document amends some of the ASIs defined in
  RFC 3411; these changes are covered in Section 6 of this document.

  New Security Models might be defined that understand how to work with
  these modified ASIs and the transport-information cache.  One such
  Security Model, the Transport Security Model, is defined in
  [RFC5591].

3.2.1.2.  Changes to RFC 3411 Processing

  The introduction of secure transports affects the responsibilities
  and order of processing within the RFC 3411 architecture.  While the
  steps are the same, they might occur in a different order, and might
  be done by different subsystems.  With the existing RFC 3411
  architecture, security processing starts when the Message Processing
  Model decodes portions of the encoded message to extract parameters
  that identify which Security Model MUST handle the security-related
  tasks.

  A secure transport performs those security functions on the message,
  before the message is decoded.  Some of these functions might then be
  repeated by the selected Security Model.

3.2.1.3.  Passing Information between SNMP Engines

  A secure Transport Model will establish an authenticated and possibly
  encrypted tunnel between the Transport Models of two SNMP engines.
  After a transport-layer tunnel is established, then SNMP messages can
  be sent through the tunnel from one SNMP engine to the other.  While
  the Community Security Models [RFC3584] and the User-based Security
  Model establish a security association for each SNMP message, newer
  Transport Models MAY support sending multiple SNMP messages through
  the same tunnel to amortize the costs of establishing a security
  association.




Harrington & Schoenwaelder  Standards Track                    [Page 10]

RFC 5590                SNMP Transport Subsystem               June 2009


3.2.2.  Access Control Requirements

  RFC 3411 made some design decisions related to the support of an
  Access Control Subsystem.  These include establishing and passing in
  a model-independent manner the securityModel, securityName, and
  securityLevel parameters, and separating message authentication from
  data-access authorization.

3.2.2.1.  securityName and securityLevel Mapping

  SNMP data-access controls are expected to work on the basis of who
  can perform what operations on which subsets of data, and based on
  the security services that will be provided to secure the data in
  transit.  The securityModel and securityLevel parameters establish
  the protections for transit -- whether authentication and privacy
  services will be or have been applied to the message.  The
  securityName is a model-independent identifier of the security
  "principal".

  A Security Model plays a role in security that goes beyond protecting
  the message -- it provides a mapping between the Security-Model-
  specific principal for an incoming message to a Security-Model
  independent securityName that can be used for subsequent processing,
  such as for access control.  The securityName is mapped from a
  mechanism-specific identity, and this mapping must be done for
  incoming messages by the Security Model before it passes securityName
  to the Message Processing Model via the processIncoming ASI.

  A Security Model is also responsible to specify, via the
  securityLevel parameter, whether incoming messages have been
  authenticated and encrypted, and to ensure that outgoing messages are
  authenticated and encrypted based on the value of securityLevel.

  A Transport Model MAY provide suggested values for securityName and
  securityLevel.  A Security Model might have multiple sources for
  determining the principal and desired security services, and a
  particular Security Model might or might not utilize the values
  proposed by a Transport Model when deciding the value of securityName
  and securityLevel.

  Documents defining a new transport domain MUST define a prefix that
  MAY be prepended to all securityNames passed by the Security Model.
  The prefix MUST include one to four US-ASCII alpha-numeric
  characters, not including a ":" (US-ASCII 0x3a) character.  If a
  prefix is used, a securityName is constructed by concatenating the
  prefix and a ":" (US-ASCII 0x3a) character, followed by a non-empty
  identity in an snmpAdminString-compatible format.  The prefix can be
  used by SNMP Applications to distinguish "alice" authenticated by SSH



Harrington & Schoenwaelder  Standards Track                    [Page 11]

RFC 5590                SNMP Transport Subsystem               June 2009


  from "alice" authenticated by TLS.  Transport domains and their
  corresponding prefixes are coordinated via the IANA registry "SNMP
  Transport Domains".

3.2.3.  Security Parameter Passing Requirements

  A Message Processing Model might unpack SNMP-specific security
  parameters from an incoming message before calling a specific
  Security Model to handle the security-related processing of the
  message.  When using a secure Transport Model, some security
  parameters might be extracted from the transport layer by the
  Transport Model before the message is passed to the Message
  Processing Subsystem.

  This document describes a cache mechanism (see Section 5) into which
  the Transport Model puts information about the transport and security
  parameters applied to a transport connection or an incoming message;
  a Security Model might extract that information from the cache.  A
  tmStateReference is passed as an extra parameter in the ASIs between
  the Transport Subsystem and the Message Processing and Security
  Subsystems in order to identify the relevant cache.  This approach of
  passing a model-independent reference is consistent with the
  securityStateReference cache already being passed around in the RFC
  3411 ASIs.

3.2.4.  Separation of Authentication and Authorization

  The RFC 3411 architecture defines a separation of authentication and
  the authorization to access and/or modify MIB data.  A set of model-
  independent parameters (securityModel, securityName, and
  securityLevel) are passed between the Security Subsystem, the
  Applications, and the Access Control Subsystem.

  This separation was a deliberate decision of the SNMPv3 WG, in order
  to allow support for authentication protocols that do not provide
  data-access authorization capabilities, and in order to support data-
  access authorization schemes, such as the View-based access Control
  Model (VACM), that do not perform their own authentication.

  A Message Processing Model determines which Security Model is used,
  either based on the message version (e.g., SNMPv1 and SNMPv2c) or
  possibly by a value specified in the message (e.g., msgSecurityModel
  field in SNMPv3).

  The Security Model makes the decision which securityName and
  securityLevel values are passed as model-independent parameters to an
  Application, which then passes them via the isAccessAllowed ASI to
  the Access Control Subsystem.



Harrington & Schoenwaelder  Standards Track                    [Page 12]

RFC 5590                SNMP Transport Subsystem               June 2009


  An Access Control Model performs the mapping from the model-
  independent security parameters to a policy within the Access Control
  Model that is Access-Control-Model-dependent.

  A Transport Model does not know which Security Model will be used for
  an incoming message, and so cannot know how the securityName and
  securityLevel parameters will be determined.  It can propose an
  authenticated identity (via the tmSecurityName field), but there is
  no guarantee that this value will be used by the Security Model.  For
  example, non-transport-aware Security Models will typically determine
  the securityName (and securityLevel) based on the contents of the
  SNMP message itself.  Such Security Models will simply not know that
  the tmStateReference cache exists.

  Further, even if the Transport Model can influence the choice of
  securityName, it cannot directly determine the authorization allowed
  to this identity.  If two different Transport Models each
  authenticate a transport principal that are then both mapped to the
  same securityName, then these two identities will typically be
  afforded exactly the same authorization by the Access Control Model.

  The only way for the Access Control Model to differentiate between
  identities based on the underlying Transport Model would be for such
  transport-authenticated identities to be mapped to distinct
  securityNames.  How and if this is done is Security-Model-dependent.

3.3.  Session Requirements

  Some secure transports have a notion of sessions, while other secure
  transports provide channels or other session-like mechanisms.
  Throughout this document, the term "session" is used in a broad sense
  to cover transport sessions, transport channels, and other transport-
  layer, session-like mechanisms.  Transport-layer sessions that can
  secure multiple SNMP messages within the lifetime of the session are
  considered desirable because the cost of authentication can be
  amortized over potentially many transactions.  How a transport
  session is actually established, opened, closed, or maintained is
  specific to a particular Transport Model.

  To reduce redundancy, this document describes aspects that are
  expected to be common to all Transport Model sessions.

3.3.1.  No SNMP Sessions

  The architecture defined in [RFC3411] and the Transport Subsystem
  defined in this document do not support SNMP sessions or include a
  session selector in the Abstract Service Interfaces.




Harrington & Schoenwaelder  Standards Track                    [Page 13]

RFC 5590                SNMP Transport Subsystem               June 2009


  The Transport Subsystem might support transport sessions.  However,
  the Transport Subsystem does not have access to the pduType (i.e.,
  the SNMP operation type), and so cannot select a given transport
  session for particular types of traffic.

  Certain parameters of the Abstract Service Interfaces might be used
  to guide the selection of an appropriate transport session to use for
  a given request by an Application.

  The transportDomain and transportAddress identify the transport
  connection to a remote network node.  Elements of the transport
  address (such as the port number) might be used by an Application to
  send a particular PDU type to a particular transport address.  For
  example, the SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB [RFC3413] are
  used to configure notification originators with the destination port
  to which SNMPv2-Trap PDUs or Inform PDUs are to be sent, but the
  Transport Subsystem never looks inside the PDU.

  The securityName identifies which security principal to communicate
  with at that address (e.g., different Network Management System (NMS)
  applications), and the securityLevel might permit selection of
  different sets of security properties for different purposes (e.g.,
  encrypted SET vs. non-encrypted GET operations).

  However, because the handling of transport sessions is specific to
  each Transport Model, some Transport Models MAY restrict selecting a
  particular transport session.  A user application might use a unique
  combination of transportDomain, transportAddress, securityModel,
  securityName, and securityLevel to try to force the selection of a
  given transport session.  This usage is NOT RECOMMENDED because it is
  not guaranteed to be interoperable across implementations and across
  models.

  Implementations SHOULD be able to maintain some reasonable number of
  concurrent transport sessions, and MAY provide non-standard internal
  mechanisms to select transport sessions.

3.3.2.  Session Establishment Requirements

  SNMP Applications provide the transportDomain, transportAddress,
  securityName, and securityLevel to be used to create a new session.

  If the Transport Model cannot provide at least the requested level of
  security, the Transport Model should discard the message and should
  notify the Dispatcher that establishing a session and sending the
  message failed.  Similarly, if the session cannot be established,
  then the message should be discarded and the Dispatcher notified.




Harrington & Schoenwaelder  Standards Track                    [Page 14]

RFC 5590                SNMP Transport Subsystem               June 2009


  Transport session establishment might require provisioning
  authentication credentials at an engine, either statically or
  dynamically.  How this is done is dependent on the Transport Model
  and the implementation.

3.3.3.  Session Maintenance Requirements

  A Transport Model can tear down sessions as needed.  It might be
  necessary for some implementations to tear down sessions as the
  result of resource constraints, for example.

  The decision to tear down a session is implementation-dependent.  How
  an implementation determines that an operation has completed is
  implementation-dependent.  While it is possible to tear down each
  transport session after processing for each message has completed,
  this is not recommended for performance reasons.

  The elements of procedure describe when cached information can be
  discarded, and the timing of cache cleanup might have security
  implications, but cache memory management is an implementation issue.

  If a Transport Model defines MIB module objects to maintain session
  state information, then the Transport Model MUST define what happens
  to the objects when a related session is torn down, since this will
  impact the interoperability of the MIB module.

3.3.4.  Message Security versus Session Security

  A Transport Model session is associated with state information that
  is maintained for its lifetime.  This state information allows for
  the application of various security services to multiple messages.
  Cryptographic keys associated with the transport session SHOULD be
  used to provide authentication, integrity checking, and encryption
  services, as needed, for data that is communicated during the
  session.  The cryptographic protocols used to establish keys for a
  Transport Model session SHOULD ensure that fresh new session keys are
  generated for each session.  This would ensure that a cross-session
  replay attack would be unsuccessful; that is, an attacker could not
  take a message observed on one session and successfully replay it on
  another session.

  A good security protocol would also protect against replay attacks
  within a session; that is, an attacker could not take a message
  observed on a session and successfully replay it later in the same
  session.  One approach would be to use sequence information within
  the protocol, allowing the participants to detect if messages were
  replayed or reordered within a session.




Harrington & Schoenwaelder  Standards Track                    [Page 15]

RFC 5590                SNMP Transport Subsystem               June 2009


  If a secure transport session is closed between the time a request
  message is received and the corresponding response message is sent,
  then the response message SHOULD be discarded, even if a new session
  has been established.  The SNMPv3 WG decided that this should be a
  "SHOULD" architecturally, and it is a Security-Model-specific
  decision whether to REQUIRE this.  The architecture does not mandate
  this requirement in order to allow for future Security Models where
  this might make sense; however, not requiring this could lead to
  added complexity and security vulnerabilities, so most Security
  Models SHOULD require this.

  SNMPv3 was designed to support multiple levels of security,
  selectable on a per-message basis by an SNMP Application, because,
  for example, there is not much value in using encryption for a
  command generator to poll for potentially non-sensitive performance
  data on thousands of interfaces every ten minutes; such encryption
  might add significant overhead to processing of the messages.

  Some Transport Models might support only specific authentication and
  encryption services, such as requiring all messages to be carried
  using both authentication and encryption, regardless of the security
  level requested by an SNMP Application.  A Transport Model MAY
  upgrade the security level requested by a transport-aware Security
  Model, i.e., noAuthNoPriv and authNoPriv might be sent over an
  authenticated and encrypted session.  A Transport Model MUST NOT
  downgrade the security level requested by a transport-aware Security
  Model, and SHOULD discard any message where this would occur.  This
  is a SHOULD rather than a MUST only to permit the potential
  development of models that can perform error-handling in a manner
  that is less severe than discarding the message.  However, any model
  that does not discard the message in this circumstance should have a
  clear justification for why not discarding will not create a security
  vulnerability.

4.  Scenario Diagrams and the Transport Subsystem

  Sections 4.6.1 and 4.6.2 of RFC 3411 provide scenario diagrams to
  illustrate how an outgoing message is created and how an incoming
  message is processed.  RFC 3411 does not define ASIs for the "Send
  SNMP Request Message to Network", "Receive SNMP Response Message from
  Network", "Receive SNMP Message from Network" and "Send SNMP message
  to Network" arrows in these diagrams.

  This document defines two ASIs corresponding to these arrows: a
  sendMessage ASI to send SNMP messages to the network and a
  receiveMessage ASI to receive SNMP messages from the network.  These
  ASIs are used for all SNMP messages, regardless of pduType.




Harrington & Schoenwaelder  Standards Track                    [Page 16]

RFC 5590                SNMP Transport Subsystem               June 2009


5.  Cached Information and References

  When performing SNMP processing, there are two levels of state
  information that might need to be retained: the immediate state
  linking a request-response pair and a potentially longer-term state
  relating to transport and security.

  The RFC 3411 architecture uses caches to maintain the short-term
  message state, and uses references in the ASIs to pass this
  information between subsystems.

  This document defines the requirements for a cache to handle
  additional short-term message state and longer-term transport state
  information, using a tmStateReference parameter to pass this
  information between subsystems.

  To simplify the elements of procedure, the release of state
  information is not always explicitly specified.  As a general rule,
  if state information is available when a message being processed gets
  discarded, the state related to that message should also be
  discarded.  If state information is available when a relationship
  between engines is severed, such as the closing of a transport
  session, the state information for that relationship should also be
  discarded.

  Since the contents of a cache are meaningful only within an
  implementation, and not on-the-wire, the format of the cache is
  implementation-specific.

5.1.  securityStateReference

  The securityStateReference parameter is defined in RFC 3411.  Its
  primary purpose is to provide a mapping between a request and the
  corresponding response.  This cache is not accessible to Transport
  Models, and an entry is typically only retained for the lifetime of a
  request-response pair of messages.

5.2.  tmStateReference

  For each transport session, information about the transport security
  is stored in a tmState cache or datastore that is referenced by a
  tmStateReference.  The tmStateReference parameter is used to pass
  model-specific and mechanism-specific parameters between the
  Transport Subsystem and transport-aware Security Models.

  In general, when necessary, the tmState is populated by the Security
  Model for outgoing messages and by the Transport Model for incoming
  messages.  However, in both cases, the model populating the tmState



Harrington & Schoenwaelder  Standards Track                    [Page 17]

RFC 5590                SNMP Transport Subsystem               June 2009


  might have incomplete information, and the missing information might
  be populated by the other model when the information becomes
  available.

  The tmState might contain both long-term and short-term information.
  The session information typically remains valid for the duration of
  the transport session, might be used for several messages, and might
  be stored in a local configuration datastore.  Some information has a
  shorter lifespan, such as tmSameSecurity and
  tmRequestedSecurityLevel, which are associated with a specific
  message.

  Since this cache is only used within an implementation, and not on-
  the-wire, the precise contents and format of the cache are
  implementation-dependent.  For architectural modularity between
  Transport Models and transport-aware Security Models, a fully-defined
  tmState MUST conceptually include at least the following fields:

     tmTransportDomain

     tmTransportAddress

     tmSecurityName

     tmRequestedSecurityLevel

     tmTransportSecurityLevel

     tmSameSecurity

     tmSessionID

  The details of these fields are described in the following
  subsections.

5.2.1.  Transport Information

  Information about the source of an incoming SNMP message is passed up
  from the Transport Subsystem as far as the Message Processing
  Subsystem.  However, these parameters are not included in the
  processIncomingMsg ASI defined in RFC 3411; hence, this information
  is not directly available to the Security Model.

  A transport-aware Security Model might wish to take account of the
  transport protocol and originating address when authenticating the
  request and setting up the authorization parameters.  It is therefore





Harrington & Schoenwaelder  Standards Track                    [Page 18]

RFC 5590                SNMP Transport Subsystem               June 2009


  necessary for the Transport Model to include this information in the
  tmStateReference cache so that it is accessible to the Security
  Model.

  o  tmTransportDomain: the transport protocol (and hence the Transport
     Model) used to receive the incoming message.

  o  tmTransportAddress: the source of the incoming message.

  The ASIs used for processing an outgoing message all include explicit
  transportDomain and transportAddress parameters.  The values within
  the securityStateReference cache might override these parameters for
  outgoing messages.

5.2.2.  securityName

  There are actually three distinct "identities" that can be identified
  during the processing of an SNMP request over a secure transport:

  o  transport principal: the transport-authenticated identity on whose
     behalf the secure transport connection was (or should be)
     established.  This value is transport-, mechanism-, and
     implementation-specific, and is only used within a given Transport
     Model.

  o  tmSecurityName: a human-readable name (in snmpAdminString format)
     representing this transport identity.  This value is transport-
     and implementation-specific, and is only used (directly) by the
     Transport and Security Models.

  o  securityName: a human-readable name (in snmpAdminString format)
     representing the SNMP principal in a model-independent manner.
     This value is used directly by SNMP Applications, the Access
     Control Subsystem, the Message Processing Subsystem, and the
     Security Subsystem.

  The transport principal might or might not be the same as the
  tmSecurityName.  Similarly, the tmSecurityName might or might not be
  the same as the securityName as seen by the Application and Access
  Control Subsystems.  In particular, a non-transport-aware Security
  Model will ignore tmSecurityName completely when determining the SNMP
  securityName.

  However, it is important that the mapping between the transport
  principal and the SNMP securityName (for transport-aware Security
  Models) is consistent and predictable in order to allow configuration
  of suitable access control and the establishment of transport
  connections.



Harrington & Schoenwaelder  Standards Track                    [Page 19]

RFC 5590                SNMP Transport Subsystem               June 2009


5.2.3.  securityLevel

  There are two distinct issues relating to security level as applied
  to secure transports.  For clarity, these are handled by separate
  fields in the tmStateReference cache:

  o  tmTransportSecurityLevel: an indication from the Transport Model
     of the level of security offered by this session.  The Security
     Model can use this to ensure that incoming messages were suitably
     protected before acting on them.

  o  tmRequestedSecurityLevel: an indication from the Security Model of
     the level of security required to be provided by the transport
     protocol.  The Transport Model can use this to ensure that
     outgoing messages will not be sent over an insufficiently secure
     session.

5.2.4.  Session Information

  For security reasons, if a secure transport session is closed between
  the time a request message is received and the corresponding response
  message is sent, then the response message SHOULD be discarded, even
  if a new session has been established.  The SNMPv3 WG decided that
  this should be a "SHOULD" architecturally, and it is a Security-
  Model-specific decision whether to REQUIRE this.

  o  tmSameSecurity: this flag is used by a transport-aware Security
     Model to indicate whether the Transport Model MUST enforce this
     restriction.

  o  tmSessionID: in order to verify whether the session has changed,
     the Transport Model must be able to compare the session used to
     receive the original request with the one to be used to send the
     response.  This typically needs some form of session identifier.
     This value is only ever used by the Transport Model, so the format
     and interpretation of this field are model-specific and
     implementation-dependent.

  When processing an outgoing message, if tmSameSecurity is true, then
  the tmSessionID MUST match the current transport session; otherwise,
  the message MUST be discarded and the Dispatcher notified that
  sending the message failed.









Harrington & Schoenwaelder  Standards Track                    [Page 20]

RFC 5590                SNMP Transport Subsystem               June 2009


6.  Abstract Service Interfaces

  Abstract service interfaces have been defined by RFC 3411 to describe
  the conceptual data flows between the various subsystems within an
  SNMP entity and to help keep the subsystems independent of each other
  except for the common parameters.

  This document introduces a couple of new ASIs to define the interface
  between the Transport and Dispatcher Subsystems; it also extends some
  of the ASIs defined in RFC 3411 to include transport-related
  information.

  This document follows the example of RFC 3411 regarding the release
  of state information and regarding error indications.

  1) The release of state information is not always explicitly
  specified in a Transport Model.  As a general rule, if state
  information is available when a message gets discarded, the message-
  state information should also be released, and if state information
  is available when a session is closed, the session-state information
  should also be released.  Keeping sensitive security information
  longer than necessary might introduce potential vulnerabilities to an
  implementation.

  2)An error indication in statusInformation will typically include the
  Object Identifier (OID) and value for an incremented error counter.
  This might be accompanied by values for contextEngineID and
  contextName for this counter, a value for securityLevel, and the
  appropriate state reference if the information is available at the
  point where the error is detected.

6.1.  sendMessage ASI

  The sendMessage ASI is used to pass a message from the Dispatcher to
  the appropriate Transport Model for sending.  The sendMessageASI
  defined in this document replaces the text "Send SNMP Request Message
  to Network" that appears in the diagram in Section 4.6.1 of RFC 3411
  and the text "Send SNMP Message to Network" that appears in Section
  4.6.2 of RFC 3411.

  If present and valid, the tmStateReference refers to a cache
  containing Transport-Model-specific parameters for the transport and
  transport security.  How a tmStateReference is determined to be
  present and valid is implementation-dependent.  How the information
  in the cache is used is Transport-Model-dependent and implementation-
  dependent.





Harrington & Schoenwaelder  Standards Track                    [Page 21]

RFC 5590                SNMP Transport Subsystem               June 2009


  This might sound underspecified, but a Transport Model might be
  something like SNMP over UDP over IPv6, where no security is
  provided, so it might have no mechanisms for utilizing a
  tmStateReference cache.

  statusInformation =
  sendMessage(
  IN   destTransportDomain           -- transport domain to be used
  IN   destTransportAddress          -- transport address to be used
  IN   outgoingMessage               -- the message to send
  IN   outgoingMessageLength         -- its length
  IN   tmStateReference              -- reference to transport state
   )

6.2.  Changes to RFC 3411 Outgoing ASIs

  Additional parameters have been added to the ASIs defined in RFC 3411
  that are concerned with communication between the Dispatcher and
  Message Processing Subsystems, and between the Message Processing and
  Security Subsystems.

6.2.1.  Message Processing Subsystem Primitives

  A tmStateReference parameter has been added as an OUT parameter to
  the prepareOutgoingMessage and prepareResponseMessage ASIs.  This is
  passed from the Message Processing Subsystem to the Dispatcher, and
  from there to the Transport Subsystem.

  How or if the Message Processing Subsystem modifies or utilizes the
  contents of the cache is Message-Processing-Model specific.

  statusInformation =          -- success or errorIndication
  prepareOutgoingMessage(
  IN  transportDomain          -- transport domain to be used
  IN  transportAddress         -- transport address to be used
  IN  messageProcessingModel   -- typically, SNMP version
  IN  securityModel            -- Security Model to use
  IN  securityName             -- on behalf of this principal
  IN  securityLevel            -- Level of Security requested
  IN  contextEngineID          -- data from/at this entity
  IN  contextName              -- data from/in this context
  IN  pduVersion               -- the version of the PDU
  IN  PDU                      -- SNMP Protocol Data Unit
  IN  expectResponse           -- TRUE or FALSE
  IN  sendPduHandle            -- the handle for matching
                                  incoming responses





Harrington & Schoenwaelder  Standards Track                    [Page 22]

RFC 5590                SNMP Transport Subsystem               June 2009


  OUT  destTransportDomain     -- destination transport domain
  OUT  destTransportAddress    -- destination transport address
  OUT  outgoingMessage         -- the message to send
  OUT  outgoingMessageLength   -- its length
  OUT  tmStateReference        -- (NEW) reference to transport state
              )

  statusInformation =          -- success or errorIndication
  prepareResponseMessage(
  IN  messageProcessingModel   -- typically, SNMP version
  IN  securityModel            -- Security Model to use
  IN  securityName             -- on behalf of this principal
  IN  securityLevel            -- Level of Security requested
  IN  contextEngineID          -- data from/at this entity
  IN  contextName              -- data from/in this context
  IN  pduVersion               -- the version of the PDU
  IN  PDU                      -- SNMP Protocol Data Unit
  IN  maxSizeResponseScopedPDU -- maximum size able to accept
  IN  stateReference           -- reference to state information
                               -- as presented with the request
  IN  statusInformation        -- success or errorIndication
                               -- error counter OID/value if error
  OUT destTransportDomain      -- destination transport domain
  OUT destTransportAddress     -- destination transport address
  OUT outgoingMessage          -- the message to send
  OUT outgoingMessageLength    -- its length
  OUT tmStateReference         -- (NEW) reference to transport state
              )

6.2.2.  Security Subsystem Primitives

  transportDomain and transportAddress parameters have been added as IN
  parameters to the generateRequestMsg and generateResponseMsg ASIs,
  and a tmStateReference parameter has been added as an OUT parameter.
  The transportDomain and transportAddress parameters will have been
  passed into the Message Processing Subsystem from the Dispatcher and
  are passed on to the Security Subsystem.  The tmStateReference
  parameter will be passed from the Security Subsystem back to the
  Message Processing Subsystem, and on to the Dispatcher and Transport
  Subsystems.

  If a cache exists for a session identifiable from the
  tmTransportDomain, tmTransportAddress, tmSecurityName, and requested
  securityLevel, then a transport-aware Security Model might create a
  tmStateReference parameter to this cache and pass that as an OUT
  parameter.





Harrington & Schoenwaelder  Standards Track                    [Page 23]

RFC 5590                SNMP Transport Subsystem               June 2009


  statusInformation =
  generateRequestMsg(
    IN   transportDomain         -- (NEW) destination transport domain
    IN   transportAddress        -- (NEW) destination transport address
    IN   messageProcessingModel  -- typically, SNMP version
    IN   globalData              -- message header, admin data
    IN   maxMessageSize          -- of the sending SNMP entity
    IN   securityModel           -- for the outgoing message
    IN   securityEngineID        -- authoritative SNMP entity
    IN   securityName            -- on behalf of this principal
    IN   securityLevel           -- Level of Security requested
    IN   scopedPDU               -- message (plaintext) payload
    OUT  securityParameters      -- filled in by Security Module
    OUT  wholeMsg                -- complete generated message
    OUT  wholeMsgLength          -- length of generated message
    OUT  tmStateReference        -- (NEW) reference to transport state
             )

  statusInformation =
  generateResponseMsg(
    IN   transportDomain         -- (NEW) destination transport domain
    IN   transportAddress        -- (NEW) destination transport address
    IN   messageProcessingModel -- Message Processing Model
    IN   globalData             -- msgGlobalData
    IN   maxMessageSize         -- from msgMaxSize
    IN   securityModel          -- as determined by MPM
    IN   securityEngineID       -- the value of snmpEngineID
    IN   securityName           -- on behalf of this principal
    IN   securityLevel          -- for the outgoing message
    IN   scopedPDU              -- as provided by MPM
    IN   securityStateReference -- as provided by MPM
    OUT  securityParameters     -- filled in by Security Module
    OUT  wholeMsg               -- complete generated message
    OUT  wholeMsgLength         -- length of generated message
    OUT  tmStateReference       -- (NEW) reference to transport state
             )

6.3.  The receiveMessage ASI

  The receiveMessage ASI is used to pass a message from the Transport
  Subsystem to the Dispatcher.  The receiveMessage ASI replaces the
  text "Receive SNMP Response Message from Network" that appears in the
  diagram in Section 4.6.1 of RFC 3411 and the text "Receive SNMP
  Message from Network" from Section 4.6.2 of RFC3411.

  When a message is received on a given transport session, if a cache
  does not already exist for that session, the Transport Model might
  create one, referenced by tmStateReference.  The contents of this



Harrington & Schoenwaelder  Standards Track                    [Page 24]

RFC 5590                SNMP Transport Subsystem               June 2009


  cache are discussed in Section 5.  How this information is determined
  is implementation- and Transport-Model-specific.

  "Might create one" might sound underspecified, but a Transport Model
  might be something like SNMP over UDP over IPv6, where transport
  security is not provided, so it might not create a cache.

  The Transport Model does not know the securityModel for an incoming
  message; this will be determined by the Message Processing Model in a
  Message-Processing-Model-dependent manner.

  statusInformation =
  receiveMessage(
  IN   transportDomain               -- origin transport domain
  IN   transportAddress              -- origin transport address
  IN   incomingMessage               -- the message received
  IN   incomingMessageLength         -- its length
  IN   tmStateReference              -- reference to transport state
   )

6.4.  Changes to RFC 3411 Incoming ASIs

  The tmStateReference parameter has also been added to some of the
  incoming ASIs defined in RFC 3411.  How or if a Message Processing
  Model or Security Model uses tmStateReference is message-processing-
  and Security-Model-specific.

  This might sound underspecified, but a Message Processing Model might
  have access to all the information from the cache and from the
  message.  The Message Processing Model might determine that the USM
  Security Model is specified in an SNMPv3 message header; the USM
  Security Model has no need of values in the tmStateReference cache to
  authenticate and secure the SNMP message, but an Application might
  have specified to use a secure transport such as that provided by the
  SSH Transport Model to send the message to its destination.

6.4.1.  Message Processing Subsystem Primitive

  The tmStateReference parameter of prepareDataElements is passed from
  the Dispatcher to the Message Processing Subsystem.  How or if the
  Message Processing Subsystem modifies or utilizes the contents of the
  cache is Message-Processing-Model-specific.

  result =                       -- SUCCESS or errorIndication
  prepareDataElements(
  IN   transportDomain           -- origin transport domain
  IN   transportAddress          -- origin transport address
  IN   wholeMsg                  -- as received from the network



Harrington & Schoenwaelder  Standards Track                    [Page 25]

RFC 5590                SNMP Transport Subsystem               June 2009


  IN   wholeMsgLength            -- as received from the network
  IN   tmStateReference          -- (NEW) from the Transport Model
  OUT  messageProcessingModel    -- typically, SNMP version
  OUT  securityModel             -- Security Model to use
  OUT  securityName              -- on behalf of this principal
  OUT  securityLevel             -- Level of Security requested
  OUT  contextEngineID           -- data from/at this entity
  OUT  contextName               -- data from/in this context
  OUT  pduVersion                -- the version of the PDU
  OUT  PDU                       -- SNMP Protocol Data Unit
  OUT  pduType                   -- SNMP PDU type
  OUT  sendPduHandle             -- handle for matched request
  OUT  maxSizeResponseScopedPDU  -- maximum size sender can accept
  OUT  statusInformation         -- success or errorIndication
                                 -- error counter OID/value if error
  OUT  stateReference            -- reference to state information
                                 -- to be used for possible Response
  )

6.4.2.  Security Subsystem Primitive

  The processIncomingMessage ASI passes tmStateReference from the
  Message Processing Subsystem to the Security Subsystem.

  If tmStateReference is present and valid, an appropriate Security
  Model might utilize the information in the cache.  How or if the
  Security Subsystem utilizes the information in the cache is Security-
  Model-specific.

  statusInformation =  -- errorIndication or success
                           -- error counter OID/value if error
  processIncomingMsg(
  IN   messageProcessingModel    -- typically, SNMP version
  IN   maxMessageSize            -- of the sending SNMP entity
  IN   securityParameters        -- for the received message
  IN   securityModel             -- for the received message
  IN   securityLevel             -- Level of Security
  IN   wholeMsg                  -- as received on the wire
  IN   wholeMsgLength            -- length as received on the wire
  IN   tmStateReference          -- (NEW) from the Transport Model
  OUT  securityEngineID          -- authoritative SNMP entity
  OUT  securityName              -- identification of the principal
  OUT  scopedPDU,                -- message (plaintext) payload
  OUT  maxSizeResponseScopedPDU  -- maximum size sender can handle
  OUT  securityStateReference    -- reference to security state
                                 -- information, needed for response
  )




Harrington & Schoenwaelder  Standards Track                    [Page 26]

RFC 5590                SNMP Transport Subsystem               June 2009


7.  Security Considerations

  This document defines an architectural approach that permits SNMP to
  utilize transport-layer security services.  Each proposed Transport
  Model should discuss the security considerations of that Transport
  Model.

  It is considered desirable by some industry segments that SNMP
  Transport Models utilize transport-layer security that addresses
  perfect forward secrecy at least for encryption keys.  Perfect
  forward secrecy guarantees that compromise of long-term secret keys
  does not result in disclosure of past session keys.  Each proposed
  Transport Model should include a discussion in its security
  considerations of whether perfect forward secrecy is appropriate for
  that Transport Model.

  The denial-of-service characteristics of various Transport Models and
  security protocols will vary and should be evaluated when determining
  the applicability of a Transport Model to a particular deployment
  situation.

  Since the cache will contain security-related parameters,
  implementers SHOULD store this information (in memory or in
  persistent storage) in a manner to protect it from unauthorized
  disclosure and/or modification.

  Care must be taken to ensure that an SNMP engine is sending packets
  out over a transport using credentials that are legal for that engine
  to use on behalf of that user.  Otherwise, an engine that has
  multiple transports open might be "tricked" into sending a message
  through the wrong transport.

  A Security Model might have multiple sources from which to define the
  securityName and securityLevel.  The use of a secure Transport Model
  does not imply that the securityName and securityLevel chosen by the
  Security Model represent the transport-authenticated identity or the
  transport-provided security services.  The securityModel,
  securityName, and securityLevel parameters are a related set, and an
  administrator should understand how the specified securityModel
  selects the corresponding securityName and securityLevel.

7.1.  Coexistence, Security Parameters, and Access Control

  In the RFC 3411 architecture, the Message Processing Model makes the
  decision about which Security Model to use.  The architectural change
  described by this document does not alter that.





Harrington & Schoenwaelder  Standards Track                    [Page 27]

RFC 5590                SNMP Transport Subsystem               June 2009


  The architecture change described by this document does, however,
  allow SNMP to support two different approaches to security --
  message-driven security and transport-driven security.  With message-
  driven security, SNMP provides its own security and passes security
  parameters within the SNMP message; with transport-driven security,
  SNMP depends on an external entity to provide security during
  transport by "wrapping" the SNMP message.

  Using a non-transport-aware Security Model with a secure Transport
  Model is NOT RECOMMENDED for the following reasons.

  Security Models defined before the Transport Security Model (i.e.,
  SNMPv1, SNMPv2c, and USM) do not support transport-based security and
  only have access to the security parameters contained within the SNMP
  message.  They do not know about the security parameters associated
  with a secure transport.  As a result, the Access Control Subsystem
  bases its decisions on the security parameters extracted from the
  SNMP message, not on transport-based security parameters.

  Implications of combining older Security Models with Secure Transport
  Models are known.  The securityName used for access control decisions
  is based on the message-driven identity, which might be
  unauthenticated, and not on the transport-driven, authenticated
  identity:

  o  An SNMPv1 message will always be paired with an SNMPv1 Security
     Model (per RFC 3584), regardless of the transport mapping or
     Transport Model used, and access controls will be based on the
     unauthenticated community name.

  o  An SNMPv2c message will always be paired with an SNMPv2c Security
     Model (per RFC 3584), regardless of the transport mapping or
     Transport Model used, and access controls will be based on the
     unauthenticated community name.

  o  An SNMPv3 message will always be paired with the securityModel
     specified in the msgSecurityParameters field of the message (per
     RFC 3412), regardless of the transport mapping or Transport Model
     used.  If the SNMPv3 message specifies the User-based Security
     Model (USM) with noAuthNoPriv, then the access controls will be
     based on the unauthenticated USM user.

  o  For outgoing messages, if a Secure Transport Model is selected in
     combination with a Security Model that does not populate a
     tmStateReference, the Secure Transport Model SHOULD detect the
     lack of a valid tmStateReference and fail.





Harrington & Schoenwaelder  Standards Track                    [Page 28]

RFC 5590                SNMP Transport Subsystem               June 2009


  In times of network stress, a Secure Transport Model might not work
  properly if its underlying security mechanisms (e.g., Network Time
  Protocol (NTP) or Authentication, Authorization, and Accounting (AAA)
  protocols or certificate authorities) are not reachable.  The User-
  based Security Model was explicitly designed to not depend upon
  external network services, and provides its own security services.
  It is RECOMMENDED that operators provision authPriv USM as a fallback
  mechanism to supplement any Security Model or Transport Model that
  has external dependencies, so that secure SNMP communications can
  continue when the external network service is not available.

8.  IANA Considerations

  IANA has created a new registry in the Simple Network Management
  Protocol (SNMP) Number Spaces.  The new registry is called "SNMP
  Transport Domains".  This registry contains US-ASCII alpha-numeric
  strings of one to four characters to identify prefixes for
  corresponding SNMP transport domains.  Each transport domain MUST
  have an OID assignment under snmpDomains [RFC2578].  Values are to be
  assigned via [RFC5226] "Specification Required".

  The registry has been populated with the following initial entries:

  Registry Name: SNMP Transport Domains
  Reference: [RFC2578] [RFC3417] [RFC5590]
  Registration Procedures: Specification Required
  Each domain is assigned a MIB-defined OID under snmpDomains

  Prefix        snmpDomains                    Reference
  -------       -----------------------------  ---------
  udp           snmpUDPDomain                  [RFC3417] [RFC5590]
  clns          snmpCLNSDomain                 [RFC3417] [RFC5590]
  cons          snmpCONSDomain                 [RFC3417] [RFC5590]
  ddp           snmpDDPDomain                  [RFC3417] [RFC5590]
  ipx           snmpIPXDomain                  [RFC3417] [RFC5590]
  prxy          rfc1157Domain                  [RFC3417] [RFC5590]

9.  Acknowledgments

  The Integrated Security for SNMP WG would like to thank the following
  people for their contributions to the process.

  The authors of submitted Security Model proposals: Chris Elliot, Wes
  Hardaker, David Harrington, Keith McCloghrie, Kaushik Narayan, David
  Perkins, Joseph Salowey, and Juergen Schoenwaelder.

  The members of the Protocol Evaluation Team: Uri Blumenthal,
  Lakshminath Dondeti, Randy Presuhn, and Eric Rescorla.



Harrington & Schoenwaelder  Standards Track                    [Page 29]

RFC 5590                SNMP Transport Subsystem               June 2009


  WG members who performed detailed reviews: Wes Hardaker, Jeffrey
  Hutzelman, Tom Petch, Dave Shield, and Bert Wijnen.

10.  References

10.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2578]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
             Schoenwaelder, Ed., "Structure of Management Information
             Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

  [RFC3411]  Harrington, D., Presuhn, R., and B. Wijnen, "An
             Architecture for Describing Simple Network Management
             Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
             December 2002.

  [RFC3412]  Case, J., Harrington, D., Presuhn, R., and B. Wijnen,
             "Message Processing and Dispatching for the Simple Network
             Management Protocol (SNMP)", STD 62, RFC 3412,

             December 2002.

  [RFC3413]  Levi, D., Meyer, P., and B. Stewart, "Simple Network
             Management Protocol (SNMP) Applications", STD 62,
             RFC 3413, December 2002.

  [RFC3414]  Blumenthal, U. and B. Wijnen, "User-based Security Model
             (USM) for version 3 of the Simple Network Management
             Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

  [RFC3417]  Presuhn, R., "Transport Mappings for the Simple Network
             Management Protocol (SNMP)", STD 62, RFC 3417,
             December 2002.

10.2.  Informative References

  [RFC2865]  Rigney, C., Willens, S., Rubens, A., and W. Simpson,
             "Remote Authentication Dial In User Service (RADIUS)",
             RFC 2865, June 2000.

  [RFC3410]  Case, J., Mundy, R., Partain, D., and B. Stewart,
             "Introduction and Applicability Statements for Internet-
             Standard Management Framework", RFC 3410, December 2002.





Harrington & Schoenwaelder  Standards Track                    [Page 30]

RFC 5590                SNMP Transport Subsystem               June 2009


  [RFC3584]  Frye, R., Levi, D., Routhier, S., and B. Wijnen,
             "Coexistence between Version 1, Version 2, and Version 3
             of the Internet-standard Network Management Framework",
             BCP 74, RFC 3584, August 2003.

  [RFC4251]  Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
             Protocol Architecture", RFC 4251, January 2006.

  [RFC4422]  Melnikov, A. and K. Zeilenga, "Simple Authentication and
             Security Layer (SASL)", RFC 4422, June 2006.

  [RFC4741]  Enns, R., "NETCONF Configuration Protocol", RFC 4741,
             December 2006.

  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             May 2008.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246, August 2008.

  [RFC5424]  Gerhards, R., "The Syslog Protocol", RFC 5424, March 2009.

  [RFC5591]  Harrington, D. and W. Hardaker, "Transport Security Model
             for the Simple Network Management Protocol (SNMP)",
             RFC 5591, June 2009.

  [RFC5592]  Harrington, D., Salowey, J., and W. Hardaker, "Secure
             Shell Transport Model for the Simple Network Management
             Protocol (SNMP)", RFC 5592, June 2009.





















Harrington & Schoenwaelder  Standards Track                    [Page 31]

RFC 5590                SNMP Transport Subsystem               June 2009


Appendix A.  Why tmStateReference?

  This appendix considers why a cache-based approach was selected for
  passing parameters.

  There are four approaches that could be used for passing information
  between the Transport Model and a Security Model.

  1.  One could define an ASI to supplement the existing ASIs.

  2.  One could add a header to encapsulate the SNMP message.

  3.  One could utilize fields already defined in the existing SNMPv3
      message.

  4.  One could pass the information in an implementation-specific
      cache or via a MIB module.

A.1.  Define an Abstract Service Interface

  Abstract Service Interfaces (ASIs) are defined by a set of primitives
  that specify the services provided and the abstract data elements
  that are to be passed when the services are invoked.  Defining
  additional ASIs to pass the security and transport information from
  the Transport Subsystem to the Security Subsystem has the advantage
  of being consistent with existing RFC 3411/3412 practice; it also
  helps to ensure that any Transport Model proposals pass the necessary
  data and do not cause side effects by creating model-specific
  dependencies between itself and models or subsystems other than those
  that are clearly defined by an ASI.

A.2.  Using an Encapsulating Header

  A header could encapsulate the SNMP message to pass necessary
  information from the Transport Model to the Dispatcher and then to a
  Message Processing Model.  The message header would be included in
  the wholeMessage ASI parameter and would be removed by a
  corresponding Message Processing Model.  This would imply the (one
  and only) Message Dispatcher would need to be modified to determine
  which SNMP message version was involved, and a new Message Processing
  Model would need to be developed that knew how to extract the header
  from the message and pass it to the Security Model.

A.3.  Modifying Existing Fields in an SNMP Message

  [RFC3412] defines the SNMPv3 message, which contains fields to pass
  security-related parameters.  The Transport Subsystem could use these
  fields in an SNMPv3 message (or comparable fields in other message



Harrington & Schoenwaelder  Standards Track                    [Page 32]

RFC 5590                SNMP Transport Subsystem               June 2009


  formats) to pass information between Transport Models in different
  SNMP engines and to pass information between a Transport Model and a
  corresponding Message Processing Model.

  If the fields in an incoming SNMPv3 message are changed by the
  Transport Model before passing it to the Security Model, then the
  Transport Model will need to decode the ASN.1 message, modify the
  fields, and re-encode the message in ASN.1 before passing the message
  on to the Message Dispatcher or to the transport layer.  This would
  require an intimate knowledge of the message format and message
  versions in order for the Transport Model to know which fields could
  be modified.  This would seriously violate the modularity of the
  architecture.

A.4.  Using a Cache

  This document describes a cache into which the Transport Model (TM)
  puts information about the security applied to an incoming message; a
  Security Model can extract that information from the cache.  Given
  that there might be multiple TM security caches, a tmStateReference
  is passed as an extra parameter in the ASIs between the Transport
  Subsystem and the Security Subsystem so that the Security Model knows
  which cache of information to consult.

  This approach does create dependencies between a specific Transport
  Model and a corresponding specific Security Model.  However, the
  approach of passing a model-independent reference to a model-
  dependent cache is consistent with the securityStateReference already
  being passed around in the RFC 3411 ASIs.






















Harrington & Schoenwaelder  Standards Track                    [Page 33]

RFC 5590                SNMP Transport Subsystem               June 2009


Authors' Addresses

  David Harrington
  Huawei Technologies (USA)
  1700 Alma Dr. Suite 100
  Plano, TX 75075
  USA

  Phone: +1 603 436 8634
  EMail: [email protected]


  Juergen Schoenwaelder
  Jacobs University Bremen
  Campus Ring 1
  28725 Bremen
  Germany

  Phone: +49 421 200-3587
  EMail: [email protected]































Harrington & Schoenwaelder  Standards Track                    [Page 34]

=========================================================================





Network Working Group                                      D. Harrington
Request for Comments: 5591                     Huawei Technologies (USA)
Category: Standards Track                                    W. Hardaker
                                              Cobham Analytic Solutions
                                                              June 2009


                   Transport Security Model for the
              Simple Network Management Protocol (SNMP)

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents in effect on the date of
  publication of this document (http://trustee.ietf.org/license-info).
  Please review these documents carefully, as they describe your rights
  and restrictions with respect to this document.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.











Harrington & Hardaker       Standards Track                     [Page 1]

RFC 5591           Transport Security Model for SNMP           June 2009


Abstract

  This memo describes a Transport Security Model for the Simple Network
  Management Protocol (SNMP).

  This memo also defines a portion of the Management Information Base
  (MIB) for monitoring and managing the Transport Security Model for
  SNMP.

Table of Contents

  1. Introduction ....................................................3
     1.1. The Internet-Standard Management Framework .................3
     1.2. Conventions ................................................3
     1.3. Modularity .................................................4
     1.4. Motivation .................................................5
     1.5. Constraints ................................................5
  2. How the Transport Security Model Fits in the Architecture .......6
     2.1. Security Capabilities of this Model ........................6
          2.1.1. Threats .............................................6
          2.1.2. Security Levels .....................................7
     2.2. Transport Sessions .........................................7
     2.3. Coexistence ................................................7
          2.3.1. Coexistence with Message Processing Models ..........7
          2.3.2. Coexistence with Other Security Models ..............8
          2.3.3. Coexistence with Transport Models ...................8
  3. Cached Information and References ...............................8
     3.1. Transport Security Model Cached Information ................9
          3.1.1. securityStateReference ..............................9
          3.1.2. tmStateReference ....................................9
          3.1.3. Prefixes and securityNames ..........................9
  4. Processing an Outgoing Message .................................10
     4.1. Security Processing for an Outgoing Message ...............10
     4.2. Elements of Procedure for Outgoing Messages ...............11
  5. Processing an Incoming SNMP Message ............................12
     5.1. Security Processing for an Incoming Message ...............12
     5.2. Elements of Procedure for Incoming Messages ...............13
  6. MIB Module Overview ............................................14
     6.1. Structure of the MIB Module ...............................14
          6.1.1. The snmpTsmStats Subtree ...........................14
          6.1.2. The snmpTsmConfiguration Subtree ...................14
     6.2. Relationship to Other MIB Modules .........................14
          6.2.1. MIB Modules Required for IMPORTS ...................15
  7. MIB Module Definition ..........................................15
  8. Security Considerations ........................................20
     8.1. MIB Module Security .......................................20
  9. IANA Considerations ............................................21
  10. Acknowledgments ...............................................22



Harrington & Hardaker       Standards Track                     [Page 2]

RFC 5591           Transport Security Model for SNMP           June 2009


  11. References ....................................................22
     11.1. Normative References .....................................22
     11.2. Informative References ...................................23
  Appendix A.  Notification Tables Configuration ....................24
    A.1.  Transport Security Model Processing for Notifications .....25
  Appendix B.  Processing Differences between USM and Secure
               Transport ............................................26
    B.1.  USM and the RFC 3411 Architecture .........................26
    B.2.  Transport Subsystem and the RFC 3411 Architecture .........27

1.  Introduction

  This memo describes a Transport Security Model for the Simple Network
  Management Protocol for use with secure Transport Models in the
  Transport Subsystem [RFC5590].

  This memo also defines a portion of the Management Information Base
  (MIB) for monitoring and managing the Transport Security Model for
  SNMP.

  It is important to understand the SNMP architecture and the
  terminology of the architecture to understand where the Transport
  Security Model described in this memo fits into the architecture and
  interacts with other subsystems and models within the architecture.
  It is expected that readers will have also read and understood
  [RFC3411], [RFC3412], [RFC3413], and [RFC3418].

1.1.  The Internet-Standard Management Framework

  For a detailed overview of the documents that describe the current
  Internet-Standard Management Framework, please refer to section 7 of
  RFC 3410 [RFC3410].

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  MIB objects are generally
  accessed through the Simple Network Management Protocol (SNMP).
  Objects in the MIB are defined using the mechanisms defined in the
  Structure of Management Information (SMI).  This memo specifies a MIB
  module that is compliant to the SMIv2, which is described in STD 58,
  RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
  [RFC2580].

1.2.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].




Harrington & Hardaker       Standards Track                     [Page 3]

RFC 5591           Transport Security Model for SNMP           June 2009


  Lowercase versions of the keywords should be read as in normal
  English.  They will usually, but not always, be used in a context
  that relates to compatibility with the RFC 3411 architecture or the
  subsystem defined here but that might have no impact on on-the-wire
  compatibility.  These terms are used as guidance for designers of
  proposed IETF models to make the designs compatible with RFC 3411
  subsystems and Abstract Service Interfaces (ASIs).  Implementers are
  free to implement differently.  Some usages of these lowercase terms
  are simply normal English usage.

  For consistency with SNMP-related specifications, this document
  favors terminology as defined in STD 62, rather than favoring
  terminology that is consistent with non-SNMP specifications that use
  different variations of the same terminology.  This is consistent
  with the IESG decision to not require the SNMPv3 terminology be
  modified to match the usage of other non-SNMP specifications when
  SNMPv3 was advanced to Full Standard.

  Authentication in this document typically refers to the English
  meaning of "serving to prove the authenticity of" the message, not
  data source authentication or peer identity authentication.

  The terms "manager" and "agent" are not used in this document
  because, in the RFC 3411 architecture, all SNMP entities have the
  capability of acting as manager, agent, or both depending on the SNMP
  applications included in the engine.  Where distinction is needed,
  the application names of command generator, command responder,
  notification originator, notification receiver, and proxy forwarder
  are used.  See "Simple Network Management Protocol (SNMP)
  Applications" [RFC3413] for further information.

  While security protocols frequently refer to a user, the terminology
  used in [RFC3411] and in this memo is "principal".  A principal is
  the "who" on whose behalf services are provided or processing takes
  place.  A principal can be, among other things, an individual acting
  in a particular role, a set of individuals each acting in a
  particular role, an application or a set of applications, or a
  combination of these within an administrative domain.

1.3.  Modularity

  The reader is expected to have read and understood the description of
  the SNMP architecture, as defined in [RFC3411], and the architecture
  extension specified in "Transport Subsystem for the Simple Network
  Management Protocol (SNMP)" [RFC5590], which enables the use of
  external "lower-layer transport" protocols to provide message





Harrington & Hardaker       Standards Track                     [Page 4]

RFC 5591           Transport Security Model for SNMP           June 2009


  security.  Transport Models are tied into the SNMP architecture
  through the Transport Subsystem.  The Transport Security Model is
  designed to work with such lower-layer, secure Transport Models.

  In keeping with the RFC 3411 design decisions to use self-contained
  documents, this memo includes the elements of procedure plus
  associated MIB objects that are needed for processing the Transport
  Security Model for SNMP.  These MIB objects SHOULD NOT be referenced
  in other documents.  This allows the Transport Security Model to be
  designed and documented as independent and self-contained, having no
  direct impact on other modules.  It also allows this module to be
  upgraded and supplemented as the need arises, and to move along the
  standards track on different time-lines from other modules.

  This modularity of specification is not meant to be interpreted as
  imposing any specific requirements on implementation.

1.4.  Motivation

  This memo describes a Security Model to make use of Transport Models
  that use lower-layer, secure transports and existing and commonly
  deployed security infrastructures.  This Security Model is designed
  to meet the security and operational needs of network administrators,
  maximize usability in operational environments to achieve high
  deployment success, and at the same time minimize implementation and
  deployment costs to minimize the time until deployment is possible.

1.5.  Constraints

  The design of this SNMP Security Model is also influenced by the
  following constraints:

  1.  In times of network stress, the security protocol and its
      underlying security mechanisms SHOULD NOT depend solely upon the
      ready availability of other network services (e.g., Network Time
      Protocol (NTP) or Authentication, Authorization, and Accounting
      (AAA) protocols).

  2.  When the network is not under stress, the Security Model and its
      underlying security mechanisms MAY depend upon the ready
      availability of other network services.

  3.  It might not be possible for the Security Model to determine when
      the network is under stress.

  4.  A Security Model SHOULD NOT require changes to the SNMP
      architecture.




Harrington & Hardaker       Standards Track                     [Page 5]

RFC 5591           Transport Security Model for SNMP           June 2009


  5.  A Security Model SHOULD NOT require changes to the underlying
      security protocol.

2.  How the Transport Security Model Fits in the Architecture

  The Transport Security Model is designed to fit into the RFC 3411
  architecture as a Security Model in the Security Subsystem and to
  utilize the services of a secure Transport Model.

  For incoming messages, a secure Transport Model will pass a
  tmStateReference cache, described in [RFC5590].  To maintain RFC 3411
  modularity, the Transport Model will not know which securityModel
  will process the incoming message; the Message Processing Model will
  determine this.  If the Transport Security Model is used with a non-
  secure Transport Model, then the cache will not exist or will not be
  populated with security parameters, which will cause the Transport
  Security Model to return an error (see Section 5.2).

  The Transport Security Model will create the securityName and
  securityLevel to be passed to applications, and will verify that the
  tmTransportSecurityLevel reported by the Transport Model is at least
  as strong as the securityLevel requested by the Message Processing
  Model.

  For outgoing messages, the Transport Security Model will create a
  tmStateReference cache (or use an existing one), and will pass the
  tmStateReference to the specified Transport Model.

2.1.  Security Capabilities of this Model

2.1.1.  Threats

  The Transport Security Model is compatible with the RFC 3411
  architecture and provides protection against the threats identified
  by the RFC 3411 architecture.  However, the Transport Security Model
  does not provide security mechanisms such as authentication and
  encryption itself.  Which threats are addressed and how they are
  mitigated depends on the Transport Model used.  To avoid creating
  potential security vulnerabilities, operators should configure their
  system so this Security Model is always used with a Transport Model
  that provides appropriate security, where "appropriate" for a
  particular deployment is an administrative decision.









Harrington & Hardaker       Standards Track                     [Page 6]

RFC 5591           Transport Security Model for SNMP           June 2009


2.1.2.  Security Levels

  The RFC 3411 architecture recognizes three levels of security:

     - without authentication and without privacy (noAuthNoPriv)

     - with authentication but without privacy (authNoPriv)

     - with authentication and with privacy (authPriv)

  The model-independent securityLevel parameter is used to request
  specific levels of security for outgoing messages and to assert that
  specific levels of security were applied during the transport and
  processing of incoming messages.

  The transport-layer algorithms used to provide security should not be
  exposed to the Transport Security Model, as the Transport Security
  Model has no mechanisms by which it can test whether an assertion
  made by a Transport Model is accurate.

  The Transport Security Model trusts that the underlying secure
  transport connection has been properly configured to support security
  characteristics at least as strong as reported in
  tmTransportSecurityLevel.

2.2.  Transport Sessions

  The Transport Security Model does not work with transport sessions
  directly.  Instead the transport-related state is associated with a
  unique combination of transportDomain, transportAddress,
  securityName, and securityLevel, and is referenced via the
  tmStateReference parameter.  How and if this is mapped to a
  particular transport or channel is the responsibility of the
  Transport Subsystem.

2.3.  Coexistence

  In the RFC 3411 architecture, a Message Processing Model determines
  which Security Model SHALL be called.  As of this writing, IANA has
  registered four Message Processing Models (SNMPv1, SNMPv2c, SNMPv2u/
  SNMPv2*, and SNMPv3) and three other Security Models (SNMPv1,
  SNMPv2c, and the User-based Security Model).

2.3.1.  Coexistence with Message Processing Models

  The SNMPv1 and SNMPv2c message processing described in BCP 74
  [RFC3584] always selects the SNMPv1(1) and SNMPv2c(2) Security
  Models.  Since there is no mechanism defined in RFC 3584 to select an



Harrington & Hardaker       Standards Track                     [Page 7]

RFC 5591           Transport Security Model for SNMP           June 2009


  alternative Security Model, SNMPv1 and SNMPv2c messages cannot use
  the Transport Security Model.  Messages might still be able to be
  conveyed over a secure transport protocol, but the Transport Security
  Model will not be invoked.

  The SNMPv2u/SNMPv2* Message Processing Model is an historic artifact
  for which there is no existing IETF specification.

  The SNMPv3 message processing defined in [RFC3412] extracts the
  securityModel from the msgSecurityModel field of an incoming
  SNMPv3Message.  When this value is transportSecurityModel(4),
  security processing is directed to the Transport Security Model.  For
  an outgoing message to be secured using the Transport Security Model,
  the application MUST specify a securityModel parameter value of
  transportSecurityModel(4) in the sendPdu Abstract Service Interface
  (ASI).

2.3.2.  Coexistence with Other Security Models

  The Transport Security Model uses its own MIB module for processing
  to maintain independence from other Security Models.  This allows the
  Transport Security Model to coexist with other Security Models, such
  as the User-based Security Model (USM) [RFC3414].

2.3.3.  Coexistence with Transport Models

  The Transport Security Model (TSM) MAY work with multiple Transport
  Models, but the RFC 3411 Abstract Service Interfaces (ASIs) do not
  carry a value for the Transport Model.  The MIB module defined in
  this memo allows an administrator to configure whether or not TSM
  prepends a Transport Model prefix to the securityName.  This will
  allow SNMP applications to consider Transport Model as a factor when
  making decisions, such as access control, notification generation,
  and proxy forwarding.

  To have SNMP properly utilize the security services coordinated by
  the Transport Security Model, this Security Model MUST only be used
  with Transport Models that know how to process a tmStateReference,
  such as the Secure Shell Transport Model [RFC5592].

3.  Cached Information and References

  When performing SNMP processing, there are two levels of state
  information that might need to be retained: the immediate state
  linking a request-response pair and a potentially longer-term state
  relating to transport and security.  "Transport Subsystem for the
  Simple Network Management Protocol (SNMP)" [RFC5590] defines general
  requirements for caches and references.



Harrington & Hardaker       Standards Track                     [Page 8]

RFC 5591           Transport Security Model for SNMP           June 2009


  This document defines additional cache requirements related to the
  Transport Security Model.

3.1.  Transport Security Model Cached Information

  The Transport Security Model has specific responsibilities regarding
  the cached information.

3.1.1.  securityStateReference

  The Transport Security Model adds the tmStateReference received from
  the processIncomingMsg ASI to the securityStateReference.  This
  tmStateReference can then be retrieved during the generateResponseMsg
  ASI so that it can be passed back to the Transport Model.

3.1.2.  tmStateReference

  For outgoing messages, the Transport Security Model uses parameters
  provided by the SNMP application to look up or create a
  tmStateReference.

  For the Transport Security Model, the security parameters used for a
  response MUST be the same as those used for the corresponding
  request.  This Security Model uses the tmStateReference stored as
  part of the securityStateReference when appropriate.  For responses
  and reports, this Security Model sets the tmSameSecurity flag to true
  in the tmStateReference before passing it to a Transport Model.

  For incoming messages, the Transport Security Model uses parameters
  provided in the tmStateReference cache to establish a securityName,
  and to verify adequate security levels.

3.1.3.  Prefixes and securityNames

  The SNMP-VIEW-BASED-ACM-MIB module [RFC3415], the SNMP-TARGET-MIB
  module [RFC3413], and other MIB modules contain objects to configure
  security parameters for use by applications such as access control,
  notification generation, and proxy forwarding.

  Transport domains and their corresponding prefixes are coordinated
  via the IANA registry "SNMP Transport Domains".

  If snmpTsmConfigurationUsePrefix is set to true, then all
  securityNames provided by, or provided to, the Transport Security
  Model MUST include a valid transport domain prefix.






Harrington & Hardaker       Standards Track                     [Page 9]

RFC 5591           Transport Security Model for SNMP           June 2009


  If snmpTsmConfigurationUsePrefix is set to false, then all
  securityNames provided by, or provided to, the Transport Security
  Model MUST NOT include a transport domain prefix.

  The tmSecurityName in the tmStateReference stored as part of the
  securityStateReference does not contain a prefix.

4.  Processing an Outgoing Message

  An error indication might return an Object Identifier (OID) and value
  for an incremented counter, a value for securityLevel, values for
  contextEngineID and contextName for the counter, and the
  securityStateReference, if this information is available at the point
  where the error is detected.

4.1.  Security Processing for an Outgoing Message

  This section describes the procedure followed by the Transport
  Security Model.

  The parameters needed for generating a message are supplied to the
  Security Model by the Message Processing Model via the
  generateRequestMsg() or the generateResponseMsg() ASI.  The Transport
  Subsystem architectural extension has added the transportDomain,
  transportAddress, and tmStateReference parameters to the original RFC
  3411 ASIs.

   statusInformation =                -- success or errorIndication
         generateRequestMsg(
         IN   messageProcessingModel  -- typically, SNMP version
         IN   globalData              -- message header, admin data
         IN   maxMessageSize          -- of the sending SNMP entity
         IN   transportDomain         -- (NEW) specified by application
         IN   transportAddress        -- (NEW) specified by application
         IN   securityModel           -- for the outgoing message
         IN   securityEngineID        -- authoritative SNMP entity
         IN   securityName            -- on behalf of this principal
         IN   securityLevel           -- Level of Security requested
         IN   scopedPDU               -- message (plaintext) payload
         OUT  securityParameters      -- filled in by Security Module
         OUT  wholeMsg                -- complete generated message
         OUT  wholeMsgLength          -- length of generated message
         OUT  tmStateReference        -- (NEW) transport info
              )

 statusInformation = -- success or errorIndication
         generateResponseMsg(
         IN   messageProcessingModel  -- typically, SNMP version



Harrington & Hardaker       Standards Track                    [Page 10]

RFC 5591           Transport Security Model for SNMP           June 2009


         IN   globalData              -- message header, admin data
         IN   maxMessageSize          -- of the sending SNMP entity
         IN   transportDomain         -- (NEW) specified by application
         IN   transportAddress        -- (NEW) specified by application
         IN   securityModel           -- for the outgoing message
         IN   securityEngineID        -- authoritative SNMP entity
         IN   securityName            -- on behalf of this principal
         IN   securityLevel           -- Level of Security requested
         IN   scopedPDU               -- message (plaintext) payload
         IN   securityStateReference  -- reference to security state
                                      -- information from original
                                      -- request
         OUT  securityParameters      -- filled in by Security Module
         OUT  wholeMsg                -- complete generated message
         OUT  wholeMsgLength          -- length of generated message
         OUT  tmStateReference        -- (NEW) transport info
              )

4.2.  Elements of Procedure for Outgoing Messages

  1.  If there is a securityStateReference (Response or Report
      message), then this Security Model uses the cached information
      rather than the information provided by the ASI.  Extract the
      tmStateReference from the securityStateReference cache.  Set the
      tmRequestedSecurityLevel to the value of the extracted
      tmTransportSecurityLevel.  Set the tmSameSecurity parameter in
      the tmStateReference cache to true.  The cachedSecurityData for
      this message can now be discarded.

  2.  If there is no securityStateReference (e.g., a Request-type or
      Notification message), then create a tmStateReference cache.  Set
      tmTransportDomain to the value of transportDomain,
      tmTransportAddress to the value of transportAddress, and
      tmRequestedSecurityLevel to the value of securityLevel.
      (Implementers might optimize by pointing to saved copies of these
      session-specific values.)  Set the transaction-specific
      tmSameSecurity parameter to false.

      If the snmpTsmConfigurationUsePrefix object is set to false, then
      set tmSecurityName to the value of securityName.

      If the snmpTsmConfigurationUsePrefix object is set to true, then
      use the transportDomain to look up the corresponding prefix.
      (Since the securityStateReference stores the tmStateReference
      with the tmSecurityName for the incoming message, and since
      tmSecurityName never has a prefix, the prefix-stripping step only
      occurs when we are not using the securityStateReference).




Harrington & Hardaker       Standards Track                    [Page 11]

RFC 5591           Transport Security Model for SNMP           June 2009


         If the prefix lookup fails for any reason, then the
         snmpTsmUnknownPrefixes counter is incremented, an error
         indication is returned to the calling module, and message
         processing stops.

         If the lookup succeeds, but there is no prefix in the
         securityName, or the prefix returned does not match the prefix
         in the securityName, or the length of the prefix is less than
         1 or greater than 4 US-ASCII alpha-numeric characters, then
         the snmpTsmInvalidPrefixes counter is incremented, an error
         indication is returned to the calling module, and message
         processing stops.

         Strip the transport-specific prefix and trailing ':' character
         (US-ASCII 0x3a) from the securityName.  Set tmSecurityName to
         the value of securityName.

  3.  Set securityParameters to a zero-length OCTET STRING ('0400').

  4.  Combine the message parts into a wholeMsg and calculate
      wholeMsgLength.

  5.  The wholeMsg, wholeMsgLength, securityParameters, and
      tmStateReference are returned to the calling Message Processing
      Model with the statusInformation set to success.

5.  Processing an Incoming SNMP Message

  An error indication might return an OID and value for an incremented
  counter, a value for securityLevel, values for contextEngineID and
  contextName for the counter, and the securityStateReference, if this
  information is available at the point where the error is detected.

5.1.  Security Processing for an Incoming Message

  This section describes the procedure followed by the Transport
  Security Model whenever it receives an incoming message from a
  Message Processing Model.  The ASI from a Message Processing Model to
  the Security Subsystem for a received message is:

  statusInformation =  -- errorIndication or success
                           -- error counter OID/value if error
  processIncomingMsg(
  IN   messageProcessingModel    -- typically, SNMP version
  IN   maxMessageSize            -- from the received message
  IN   securityParameters        -- from the received message
  IN   securityModel             -- from the received message
  IN   securityLevel             -- from the received message



Harrington & Hardaker       Standards Track                    [Page 12]

RFC 5591           Transport Security Model for SNMP           June 2009


  IN   wholeMsg                  -- as received on the wire
  IN   wholeMsgLength            -- length as received on the wire
  IN   tmStateReference          -- (NEW) from the Transport Model
  OUT  securityEngineID          -- authoritative SNMP entity
  OUT  securityName              -- identification of the principal
  OUT  scopedPDU,                -- message (plaintext) payload
  OUT  maxSizeResponseScopedPDU  -- maximum size sender can handle
  OUT  securityStateReference    -- reference to security state
   )                         -- information, needed for response

5.2.  Elements of Procedure for Incoming Messages

  1.  Set the securityEngineID to the local snmpEngineID.

  2.  If tmStateReference does not refer to a cache containing values
      for tmTransportDomain, tmTransportAddress, tmSecurityName, and
      tmTransportSecurityLevel, then the snmpTsmInvalidCaches counter
      is incremented, an error indication is returned to the calling
      module, and Security Model processing stops for this message.

  3.  Copy the tmSecurityName to securityName.

      If the snmpTsmConfigurationUsePrefix object is set to true, then
      use the tmTransportDomain to look up the corresponding prefix.

         If the prefix lookup fails for any reason, then the
         snmpTsmUnknownPrefixes counter is incremented, an error
         indication is returned to the calling module, and message
         processing stops.

         If the lookup succeeds but the prefix length is less than 1 or
         greater than 4 octets, then the snmpTsmInvalidPrefixes counter
         is incremented, an error indication is returned to the calling
         module, and message processing stops.

         Set the securityName to be the concatenation of the prefix, a
         ':' character (US-ASCII 0x3a), and the tmSecurityName.

  4.  Compare the value of tmTransportSecurityLevel in the
      tmStateReference cache to the value of the securityLevel
      parameter passed in the processIncomingMsg ASI.  If securityLevel
      specifies privacy (Priv) and tmTransportSecurityLevel specifies
      no privacy (noPriv), or if securityLevel specifies authentication
      (auth) and tmTransportSecurityLevel specifies no authentication
      (noAuth) was provided by the Transport Model, then the
      snmpTsmInadequateSecurityLevels counter is incremented, an error
      indication (unsupportedSecurityLevel) together with the OID and




Harrington & Hardaker       Standards Track                    [Page 13]

RFC 5591           Transport Security Model for SNMP           June 2009


      value of the incremented counter is returned to the calling
      module, and Transport Security Model processing stops for this
      message.

  5.  The tmStateReference is cached as cachedSecurityData so that a
      possible response to this message will use the same security
      parameters.  Then securityStateReference is set for subsequent
      references to this cached data.

  6.  The scopedPDU component is extracted from the wholeMsg.

  7.  The maxSizeResponseScopedPDU is calculated.  This is the maximum
      size allowed for a scopedPDU for a possible Response message.

  8.  The statusInformation is set to success and a return is made to
      the calling module passing back the OUT parameters as specified
      in the processIncomingMsg ASI.

6.  MIB Module Overview

  This MIB module provides objects for use only by the Transport
  Security Model.  It defines a configuration scalar and related error
  counters.

6.1.  Structure of the MIB Module

  Objects in this MIB module are arranged into subtrees.  Each subtree
  is organized as a set of related objects.  The overall structure and
  assignment of objects to their subtrees, and the intended purpose of
  each subtree, is shown below.

6.1.1.  The snmpTsmStats Subtree

  This subtree contains error counters specific to the Transport
  Security Model.

6.1.2.  The snmpTsmConfiguration Subtree

  This subtree contains a configuration object that enables
  administrators to specify if they want a transport domain prefix
  prepended to securityNames for use by applications.

6.2.  Relationship to Other MIB Modules

  Some management objects defined in other MIB modules are applicable
  to an entity implementing the Transport Security Model.  In
  particular, it is assumed that an entity implementing the Transport
  Security Model will implement the SNMP-FRAMEWORK-MIB [RFC3411], the



Harrington & Hardaker       Standards Track                    [Page 14]

RFC 5591           Transport Security Model for SNMP           June 2009


  SNMP-TARGET-MIB [RFC3413], the SNMP-VIEW-BASED-ACM-MIB [RFC3415], and
  the SNMPv2-MIB [RFC3418].  These are not needed to implement the
  SNMP-TSM-MIB.

6.2.1.  MIB Modules Required for IMPORTS

  The following MIB module imports items from [RFC2578], [RFC2579], and
  [RFC2580].

7.  MIB Module Definition

SNMP-TSM-MIB DEFINITIONS ::= BEGIN

IMPORTS
   MODULE-IDENTITY, OBJECT-TYPE,
   mib-2, Counter32
     FROM SNMPv2-SMI -- RFC2578
   MODULE-COMPLIANCE, OBJECT-GROUP
     FROM SNMPv2-CONF -- RFC2580
   TruthValue
      FROM SNMPv2-TC -- RFC2579
   ;

snmpTsmMIB MODULE-IDENTITY
   LAST-UPDATED "200906090000Z"
   ORGANIZATION "ISMS Working Group"
   CONTACT-INFO "WG-EMail:   [email protected]
                 Subscribe:  [email protected]

                 Chairs:
                   Juergen Quittek
                   NEC Europe Ltd.
                   Network Laboratories
                   Kurfuersten-Anlage 36
                   69115 Heidelberg
                   Germany
                   +49 6221 90511-15
                   [email protected]

                   Juergen Schoenwaelder
                   Jacobs University Bremen
                   Campus Ring 1
                   28725 Bremen
                   Germany
                   +49 421 200-3587
                   [email protected]





Harrington & Hardaker       Standards Track                    [Page 15]

RFC 5591           Transport Security Model for SNMP           June 2009


                 Editor:
                   David Harrington
                   Huawei Technologies USA
                   1700 Alma Dr.
                   Plano TX 75075
                   USA
                   +1 603-436-8634
                   [email protected]

                   Wes Hardaker
                   Cobham Analytic Solutions
                   P.O. Box 382
                   Davis, CA  95617
                   USA
                   +1 530 792 1913
                   [email protected]
                "
   DESCRIPTION
      "The Transport Security Model MIB.

       In keeping with the RFC 3411 design decisions to use
       self-contained documents, the RFC that contains the definition
       of this MIB module also includes the elements of procedure
       that are needed for processing the Transport Security Model
       for SNMP.  These MIB objects SHOULD NOT be modified via other
       subsystems or models defined in other documents.  This allows
       the Transport Security Model for SNMP to be designed and
       documented as independent and self-contained, having no direct
       impact on other modules, and this allows this module to be
       upgraded and supplemented as the need arises, and to move
       along the standards track on different time-lines from other
       modules.

       Copyright (c) 2009 IETF Trust and the persons
       identified as authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or
       without modification, are permitted provided that the
       following conditions are met:

       - Redistributions of source code must retain the above copyright
         notice, this list of conditions and the following disclaimer.

       - Redistributions in binary form must reproduce the above
         copyright notice, this list of conditions and the following
         disclaimer in the documentation and/or other materials
         provided with the distribution.




Harrington & Hardaker       Standards Track                    [Page 16]

RFC 5591           Transport Security Model for SNMP           June 2009


       - Neither the name of Internet Society, IETF or IETF Trust,
         nor the names of specific contributors, may be used to endorse
         or promote products derived from this software without
         specific prior written permission.

       THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
       CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
       INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
       MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
       DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
       CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
       SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
       NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
       LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
       HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
       CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
       OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
       EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

       This version of this MIB module is part of RFC 5591;
       see the RFC itself for full legal notices."

   REVISION    "200906090000Z"
   DESCRIPTION "The initial version, published in RFC 5591."

   ::= { mib-2 190 }

-- ---------------------------------------------------------- --
-- subtrees in the SNMP-TSM-MIB
-- ---------------------------------------------------------- --

snmpTsmNotifications OBJECT IDENTIFIER ::= { snmpTsmMIB 0 }
snmpTsmMIBObjects    OBJECT IDENTIFIER ::= { snmpTsmMIB 1 }
snmpTsmConformance   OBJECT IDENTIFIER ::= { snmpTsmMIB 2 }

-- -------------------------------------------------------------
-- Objects
-- -------------------------------------------------------------

-- Statistics for the Transport Security Model

snmpTsmStats         OBJECT IDENTIFIER ::= { snmpTsmMIBObjects 1 }

snmpTsmInvalidCaches OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The number of incoming messages dropped because the



Harrington & Hardaker       Standards Track                    [Page 17]

RFC 5591           Transport Security Model for SNMP           June 2009


                tmStateReference referred to an invalid cache.
               "
   ::= { snmpTsmStats 1 }

snmpTsmInadequateSecurityLevels OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The number of incoming messages dropped because
                the securityLevel asserted by the Transport Model was
                less than the securityLevel requested by the
                application.
               "
   ::= { snmpTsmStats 2 }

snmpTsmUnknownPrefixes OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The number of messages dropped because
                snmpTsmConfigurationUsePrefix was set to true and
                there is no known prefix for the specified transport
                domain.
               "
   ::= { snmpTsmStats 3 }

snmpTsmInvalidPrefixes OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION "The number of messages dropped because
                the securityName associated with an outgoing message
                did not contain a valid transport domain prefix.
               "
   ::= { snmpTsmStats 4 }

-- -------------------------------------------------------------
-- Configuration
-- -------------------------------------------------------------

-- Configuration for the Transport Security Model

snmpTsmConfiguration   OBJECT IDENTIFIER ::= { snmpTsmMIBObjects 2 }

snmpTsmConfigurationUsePrefix OBJECT-TYPE
   SYNTAX      TruthValue
   MAX-ACCESS  read-write
   STATUS      current



Harrington & Hardaker       Standards Track                    [Page 18]

RFC 5591           Transport Security Model for SNMP           June 2009


   DESCRIPTION "If this object is set to true, then securityNames
                passing to and from the application are expected to
                contain a transport-domain-specific prefix.  If this
                object is set to true, then a domain-specific prefix
                will be added by the TSM to the securityName for
                incoming messages and removed from the securityName
                when processing outgoing messages.  Transport domains
                and prefixes are maintained in a registry by IANA.
                This object SHOULD persist across system reboots.
               "
   DEFVAL { false }
   ::= { snmpTsmConfiguration 1 }

-- -------------------------------------------------------------
-- snmpTsmMIB - Conformance Information
-- -------------------------------------------------------------

snmpTsmCompliances OBJECT IDENTIFIER ::= { snmpTsmConformance 1 }

snmpTsmGroups      OBJECT IDENTIFIER ::= { snmpTsmConformance 2 }

-- -------------------------------------------------------------
-- Compliance statements
-- -------------------------------------------------------------

snmpTsmCompliance MODULE-COMPLIANCE
   STATUS      current
   DESCRIPTION "The compliance statement for SNMP engines that support
                the SNMP-TSM-MIB.
               "
   MODULE
       MANDATORY-GROUPS { snmpTsmGroup }
   ::= { snmpTsmCompliances 1 }

-- -------------------------------------------------------------
-- Units of conformance
-- -------------------------------------------------------------
snmpTsmGroup OBJECT-GROUP
   OBJECTS {
       snmpTsmInvalidCaches,
       snmpTsmInadequateSecurityLevels,
       snmpTsmUnknownPrefixes,
       snmpTsmInvalidPrefixes,
       snmpTsmConfigurationUsePrefix
   }
   STATUS      current
   DESCRIPTION "A collection of objects for maintaining
                information of an SNMP engine that implements



Harrington & Hardaker       Standards Track                    [Page 19]

RFC 5591           Transport Security Model for SNMP           June 2009


                the SNMP Transport Security Model.
               "

   ::= { snmpTsmGroups 2 }

END

8.  Security Considerations

  This document describes a Security Model, compatible with the RFC
  3411 architecture, that permits SNMP to utilize security services
  provided through an SNMP Transport Model.  The Transport Security
  Model relies on Transport Models for mutual authentication, binding
  of keys, confidentiality, and integrity.

  The Transport Security Model relies on secure Transport Models to
  provide an authenticated principal identifier and an assertion of
  whether authentication and privacy are used during transport.  This
  Security Model SHOULD always be used with Transport Models that
  provide adequate security, but "adequate security" is a configuration
  and/or run-time decision of the operator or management application.
  The security threats and how these threats are mitigated should be
  covered in detail in the specifications of the Transport Models and
  the underlying secure transports.

  An authenticated principal identifier (securityName) is used in SNMP
  applications for purposes such as access control, notification
  generation, and proxy forwarding.  This Security Model supports
  multiple Transport Models.  Operators might judge some transports to
  be more secure than others, so this Security Model can be configured
  to prepend a prefix to the securityName to indicate the Transport
  Model used to authenticate the principal.  Operators can use the
  prefixed securityName when making application decisions about levels
  of access.

8.1.  MIB Module Security

  There are a number of management objects defined in this MIB module
  with a MAX-ACCESS clause of read-write and/or read-create.  Such
  objects may be considered sensitive or vulnerable in some network
  environments.  The support for SET operations in a non-secure
  environment without proper protection can have a negative effect on
  network operations.  These are the tables and objects and their
  sensitivity/vulnerability:







Harrington & Hardaker       Standards Track                    [Page 20]

RFC 5591           Transport Security Model for SNMP           June 2009


  o  The snmpTsmConfigurationUsePrefix object could be modified,
     creating a denial of service or authorizing SNMP messages that
     would not have previously been authorized by an Access Control
     Model (e.g., the View-based Access Control Model (VACM)).

  Some of the readable objects in this MIB module (i.e., objects with a
  MAX-ACCESS other than not-accessible) may be considered sensitive or
  vulnerable in some network environments.  It is thus important to
  control even GET and/or NOTIFY access to these objects and possibly
  to even encrypt the values of these objects when sending them over
  the network via SNMP.  These are the tables and objects and their
  sensitivity/vulnerability:

  o  All the counters in this module refer to configuration errors and
     do not expose sensitive information.

  SNMP versions prior to SNMPv3 did not include adequate security.
  Even if the network itself is secure (for example by using IPsec),
  even then, there is no control as to who on the secure network is
  allowed to access and GET/SET (read/change/create/delete) the objects
  in this MIB module.

  It is RECOMMENDED that implementers consider the security features as
  provided by the SNMPv3 framework (see [RFC3410], section 8),
  including full support for the USM and Transport Security Model
  cryptographic mechanisms (for authentication and privacy).

  Further, deployment of SNMP versions prior to SNMPv3 is NOT
  RECOMMENDED.  Instead, it is RECOMMENDED to deploy SNMPv3 and to
  enable cryptographic security.  It is then a customer/operator
  responsibility to ensure that the SNMP entity giving access to an
  instance of this MIB module is properly configured to give access to
  the objects only to those principals (users) that have legitimate
  rights to indeed GET or SET (change/create/delete) them.

9.  IANA Considerations

  IANA has assigned:

  1.  An SMI number (190) with a prefix of mib-2 in the MIB module
      registry for the MIB module in this document.

  2.  A value (4) to identify the Transport Security Model, in the
      Security Models registry of the SNMP Number Spaces registry.
      This results in the following table of values:






Harrington & Hardaker       Standards Track                    [Page 21]

RFC 5591           Transport Security Model for SNMP           June 2009


  Value   Description                         References
  -----   -----------                         ----------
    0     reserved for 'any'                  [RFC3411]
    1     reserved for SNMPv1                 [RFC3411]
    2     reserved for SNMPv2c                [RFC3411]
    3     User-Based Security Model (USM)     [RFC3411]
    4     Transport Security Model (TSM)      [RFC5591]

10.  Acknowledgments

  The editors would like to thank Jeffrey Hutzelman for sharing his SSH
  insights and Dave Shield for an outstanding job wordsmithing the
  existing document to improve organization and clarity.

  Additionally, helpful document reviews were received from Juergen
  Schoenwaelder.

11.  References

11.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2578]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
             Schoenwaelder, Ed., "Structure of Management Information
             Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

  [RFC2579]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
             Schoenwaelder, Ed., "Textual Conventions for SMIv2",
             STD 58, RFC 2579, April 1999.

  [RFC2580]  McCloghrie, K., Perkins, D., and J. Schoenwaelder,
             "Conformance Statements for SMIv2", STD 58, RFC 2580,
             April 1999.

  [RFC3411]  Harrington, D., Presuhn, R., and B. Wijnen, "An
             Architecture for Describing Simple Network Management
             Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
             December 2002.

  [RFC3412]  Case, J., Harrington, D., Presuhn, R., and B. Wijnen,
             "Message Processing and Dispatching for the Simple Network
             Management Protocol (SNMP)", STD 62, RFC 3412,
             December 2002.






Harrington & Hardaker       Standards Track                    [Page 22]

RFC 5591           Transport Security Model for SNMP           June 2009


  [RFC3413]  Levi, D., Meyer, P., and B. Stewart, "Simple Network
             Management Protocol (SNMP) Applications", STD 62,
             RFC 3413, December 2002.

  [RFC3414]  Blumenthal, U. and B. Wijnen, "User-based Security Model
             (USM) for version 3 of the Simple Network Management
             Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

  [RFC5590]  Harrington, D. and J. Schoenwaelder, "Transport Subsystem
             for the Simple Network Management Protocol (SNMP)",
             RFC 5590, June 2009.

11.2.  Informative References

  [RFC3410]  Case, J., Mundy, R., Partain, D., and B. Stewart,
             "Introduction and Applicability Statements for Internet-
             Standard Management Framework", RFC 3410, December 2002.

  [RFC3415]  Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based
             Access Control Model (VACM) for the Simple Network
             Management Protocol (SNMP)", STD 62, RFC 3415,
             December 2002.

  [RFC3418]  Presuhn, R., "Management Information Base (MIB) for the
             Simple Network Management Protocol (SNMP)", STD 62,
             RFC 3418, December 2002.

  [RFC3584]  Frye, R., Levi, D., Routhier, S., and B. Wijnen,
             "Coexistence between Version 1, Version 2, and Version 3
             of the Internet-standard Network Management Framework",
             BCP 74, RFC 3584, August 2003.

  [RFC5592]  Harrington, D., Salowey, J., and W. Hardaker, "Secure
             Shell Transport Model for the Simple Network Management
             Protocol (SNMP)", RFC 5592, June 2009.
















Harrington & Hardaker       Standards Track                    [Page 23]

RFC 5591           Transport Security Model for SNMP           June 2009


Appendix A.  Notification Tables Configuration

  The SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB [RFC3413] are used to
  configure notification originators with the destinations to which
  notifications should be sent.

  Most of the configuration is Security-Model-independent and
  Transport-Model-independent.

  The values we will use in the examples for the five model-independent
  security and transport parameters are:

     transportDomain = snmpSSHDomain

     transportAddress = 192.0.2.1:5162

     securityModel = Transport Security Model

     securityName = alice

     securityLevel = authPriv

  The following example will configure the notification originator to
  send informs to a notification receiver at 192.0.2.1:5162 using the
  securityName "alice". "alice" is the name for the recipient from the
  standpoint of the notification originator and is used for processing
  access controls before sending a notification.

  The columns marked with an "*" are the items that are Security-Model-
  specific or Transport-Model-specific.

  The configuration for the "alice" settings in the SNMP-VIEW-BASED-
  ACM-MIB objects are not shown here for brevity.  First, we configure
  which type of notification will be sent for this taglist (toCRTag).
  In this example, we choose to send an Inform.
    snmpNotifyTable row:
         snmpNotifyName                 CRNotif
         snmpNotifyTag                  toCRTag
         snmpNotifyType                 inform
         snmpNotifyStorageType          nonVolatile
         snmpNotifyColumnStatus         createAndGo

  Then we configure a transport address to which notifications
  associated with this taglist will be sent, and we specify which
  snmpTargetParamsEntry will be used (toCR) when sending to this
  transport address.





Harrington & Hardaker       Standards Track                    [Page 24]

RFC 5591           Transport Security Model for SNMP           June 2009


         snmpTargetAddrTable row:
            snmpTargetAddrName              toCRAddr
        *   snmpTargetAddrTDomain           snmpSSHDomain
        *   snmpTargetAddrTAddress          192.0.2.1:5162
            snmpTargetAddrTimeout           1500
            snmpTargetAddrRetryCount        3
            snmpTargetAddrTagList           toCRTag
            snmpTargetAddrParams            toCR   (MUST match below)
            snmpTargetAddrStorageType       nonVolatile
            snmpTargetAddrColumnStatus      createAndGo

  Then we configure which principal at the host will receive the
  notifications associated with this taglist.  Here, we choose "alice",
  who uses the Transport Security Model.
        snmpTargetParamsTable row:
            snmpTargetParamsName            toCR
            snmpTargetParamsMPModel         SNMPv3
        *   snmpTargetParamsSecurityModel   TransportSecurityModel
            snmpTargetParamsSecurityName    "alice"
            snmpTargetParamsSecurityLevel   authPriv
            snmpTargetParamsStorageType     nonVolatile
            snmpTargetParamsRowStatus       createAndGo


A.1.  Transport Security Model Processing for Notifications

  The Transport Security Model is called using the generateRequestMsg()
  ASI, with the following parameters (those with an * are from the
  above tables):

   statusInformation =                -- success or errorIndication
         generateRequestMsg(
         IN   messageProcessingModel  -- *snmpTargetParamsMPModel
         IN   globalData              -- message header, admin data
         IN   maxMessageSize          -- of the sending SNMP entity
         IN   transportDomain         -- *snmpTargetAddrTDomain
         IN   transportAddress        -- *snmpTargetAddrTAddress
         IN   securityModel           -- *snmpTargetParamsSecurityModel
         IN   securityEngineID        -- immaterial; TSM will ignore.
         IN   securityName            -- snmpTargetParamsSecurityName
         IN   securityLevel           -- *snmpTargetParamsSecurityLevel
         IN   scopedPDU               -- message (plaintext) payload
         OUT  securityParameters      -- filled in by Security Module
         OUT  wholeMsg                -- complete generated message
         OUT  wholeMsgLength          -- length of generated message
         OUT  tmStateReference        -- reference to transport info
              )




Harrington & Hardaker       Standards Track                    [Page 25]

RFC 5591           Transport Security Model for SNMP           June 2009


  The Transport Security Model will determine the Transport Model based
  on the snmpTargetAddrTDomain.  The selected Transport Model will
  select the appropriate transport connection using the
  tmStateReference cache created from the values of
  snmpTargetAddrTAddress, snmpTargetParamsSecurityName, and
  snmpTargetParamsSecurityLevel.

Appendix B.  Processing Differences between USM and Secure Transport

  USM and secure transports differ in the processing order and
  responsibilities within the RFC 3411 architecture.  While the steps
  are the same, they occur in a different order and might be done by
  different subsystems.  The following lists illustrate the difference
  in the flow and the responsibility for different processing steps for
  incoming messages when using USM and when using a secure transport.
  (These lists are simplified for illustrative purposes, and do not
  represent all details of processing.  Transport Models MUST provide
  the detailed elements of procedure.)

  With USM, SNMPv1, and SNMPv2c Security Models, security processing
  starts when the Message Processing Model decodes portions of the
  ASN.1 message to extract header fields that are used to determine
  which Security Model will process the message to perform
  authentication, decryption, timeliness checking, integrity checking,
  and translation of parameters to model-independent parameters.  By
  comparison, a secure transport performs those security functions on
  the message, before the ASN.1 is decoded.

  Step 6 cannot occur until after decryption occurs.  Steps 6 and
  beyond are the same for USM and a secure transport.

B.1.  USM and the RFC 3411 Architecture

  1) Decode the ASN.1 header (Message Processing Model).

  2) Determine the SNMP Security Model and parameters (Message
     Processing Model).

  3) Verify securityLevel (Security Model).

  4) Translate parameters to model-independent parameters (Security
     Model).

  5) Authenticate the principal, check message integrity and
     timeliness, and decrypt the message (Security Model).






Harrington & Hardaker       Standards Track                    [Page 26]

RFC 5591           Transport Security Model for SNMP           June 2009


  6) Determine the pduType in the decrypted portions (Message
     Processing Model).

  7) Pass on the decrypted portions with model-independent parameters.

B.2.  Transport Subsystem and the RFC 3411 Architecture

  1) Authenticate the principal, check integrity and timeliness of the
     message, and decrypt the message (Transport Model).

  2) Translate parameters to model-independent parameters (Transport
     Model).

  3) Decode the ASN.1 header (Message Processing Model).

  4) Determine the SNMP Security Model and parameters (Message
     Processing Model).

  5) Verify securityLevel (Security Model).

  6) Determine the pduType in the decrypted portions (Message
     Processing Model).

  7) Pass on the decrypted portions with model-independent security
     parameters.

  If a message is secured using a secure transport layer, then the
  Transport Model will provide the translation from the authenticated
  identity (e.g., an SSH user name) to a human-friendly identifier
  (tmSecurityName) in step 2.  The Security Model will provide a
  mapping from that identifier to a model-independent securityName.




















Harrington & Hardaker       Standards Track                    [Page 27]

RFC 5591           Transport Security Model for SNMP           June 2009


Authors' Addresses

  David Harrington
  Huawei Technologies (USA)
  1700 Alma Dr. Suite 100
  Plano, TX 75075
  USA

  Phone: +1 603 436 8634
  EMail: [email protected]


  Wes Hardaker
  Cobham Analytic Solutions
  P.O. Box 382
  Davis, CA  95617
  US

  Phone: +1 530 792 1913
  EMail: [email protected]































Harrington & Hardaker       Standards Track                    [Page 28]

=========================================================================





Internet Engineering Task Force (IETF)                       W. Hardaker
Request for Comments: 6353                                  SPARTA, Inc.
Obsoletes: 5953                                                July 2011
Category: Standards Track
ISSN: 2070-1721


          Transport Layer Security (TLS) Transport Model for
            the Simple Network Management Protocol (SNMP)

Abstract

  This document describes a Transport Model for the Simple Network
  Management Protocol (SNMP), that uses either the Transport Layer
  Security protocol or the Datagram Transport Layer Security (DTLS)
  protocol.  The TLS and DTLS protocols provide authentication and
  privacy services for SNMP applications.  This document describes how
  the TLS Transport Model (TLSTM) implements the needed features of an
  SNMP Transport Subsystem to make this protection possible in an
  interoperable way.

  This Transport Model is designed to meet the security and operational
  needs of network administrators.  It supports the sending of SNMP
  messages over TLS/TCP and DTLS/UDP.  The TLS mode can make use of
  TCP's improved support for larger packet sizes and the DTLS mode
  provides potentially superior operation in environments where a
  connectionless (e.g., UDP) transport is preferred.  Both TLS and DTLS
  integrate well into existing public keying infrastructures.

  This document also defines a portion of the Management Information
  Base (MIB) for use with network management protocols.  In particular,
  it defines objects for managing the TLS Transport Model for SNMP.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc6353.





Hardaker                     Standards Track                    [Page 1]

RFC 6353              TLS Transport Model for SNMP             July 2011


Copyright Notice

  Copyright (c) 2011 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4
    1.1.  Conventions  . . . . . . . . . . . . . . . . . . . . . . .  7
    1.2.  Changes Since RFC 5953 . . . . . . . . . . . . . . . . . .  8
  2.  The Transport Layer Security Protocol  . . . . . . . . . . . .  8
  3.  How the TLSTM Fits into the Transport Subsystem  . . . . . . .  8
    3.1.  Security Capabilities of This Model  . . . . . . . . . . . 11
      3.1.1.  Threats  . . . . . . . . . . . . . . . . . . . . . . . 11
      3.1.2.  Message Protection . . . . . . . . . . . . . . . . . . 12
      3.1.3.  (D)TLS Connections . . . . . . . . . . . . . . . . . . 13
    3.2.  Security Parameter Passing . . . . . . . . . . . . . . . . 14
    3.3.  Notifications and Proxy  . . . . . . . . . . . . . . . . . 14
  4.  Elements of the Model  . . . . . . . . . . . . . . . . . . . . 15
    4.1.  X.509 Certificates . . . . . . . . . . . . . . . . . . . . 15
      4.1.1.  Provisioning for the Certificate . . . . . . . . . . . 15
    4.2.  (D)TLS Usage . . . . . . . . . . . . . . . . . . . . . . . 17
    4.3.  SNMP Services  . . . . . . . . . . . . . . . . . . . . . . 18
      4.3.1.  SNMP Services for an Outgoing Message  . . . . . . . . 18
      4.3.2.  SNMP Services for an Incoming Message  . . . . . . . . 19




Hardaker                     Standards Track                    [Page 2]

RFC 6353              TLS Transport Model for SNMP             July 2011


    4.4.  Cached Information and References  . . . . . . . . . . . . 20
      4.4.1.  TLS Transport Model Cached Information . . . . . . . . 20
        4.4.1.1.  tmSecurityName . . . . . . . . . . . . . . . . . . 20
        4.4.1.2.  tmSessionID  . . . . . . . . . . . . . . . . . . . 21
        4.4.1.3.  Session State  . . . . . . . . . . . . . . . . . . 21
  5.  Elements of Procedure  . . . . . . . . . . . . . . . . . . . . 21
    5.1.  Procedures for an Incoming Message . . . . . . . . . . . . 21
      5.1.1.  DTLS over UDP Processing for Incoming Messages . . . . 22
      5.1.2.  Transport Processing for Incoming SNMP Messages  . . . 23
    5.2.  Procedures for an Outgoing SNMP Message  . . . . . . . . . 25
    5.3.  Establishing or Accepting a Session  . . . . . . . . . . . 26
      5.3.1.  Establishing a Session as a Client . . . . . . . . . . 26
      5.3.2.  Accepting a Session as a Server  . . . . . . . . . . . 28
    5.4.  Closing a Session  . . . . . . . . . . . . . . . . . . . . 29
  6.  MIB Module Overview  . . . . . . . . . . . . . . . . . . . . . 30
    6.1.  Structure of the MIB Module  . . . . . . . . . . . . . . . 30
    6.2.  Textual Conventions  . . . . . . . . . . . . . . . . . . . 30
    6.3.  Statistical Counters . . . . . . . . . . . . . . . . . . . 30
    6.4.  Configuration Tables . . . . . . . . . . . . . . . . . . . 30
      6.4.1.  Notifications  . . . . . . . . . . . . . . . . . . . . 31
    6.5.  Relationship to Other MIB Modules  . . . . . . . . . . . . 31
      6.5.1.  MIB Modules Required for IMPORTS . . . . . . . . . . . 31
  7.  MIB Module Definition  . . . . . . . . . . . . . . . . . . . . 31
  8.  Operational Considerations . . . . . . . . . . . . . . . . . . 54
    8.1.  Sessions . . . . . . . . . . . . . . . . . . . . . . . . . 54
    8.2.  Notification Receiver Credential Selection . . . . . . . . 54
    8.3.  contextEngineID Discovery  . . . . . . . . . . . . . . . . 55
    8.4.  Transport Considerations . . . . . . . . . . . . . . . . . 55
  9.  Security Considerations  . . . . . . . . . . . . . . . . . . . 55
    9.1.  Certificates, Authentication, and Authorization  . . . . . 55
    9.2.  (D)TLS Security Considerations . . . . . . . . . . . . . . 56
      9.2.1.  TLS Version Requirements . . . . . . . . . . . . . . . 56
      9.2.2.  Perfect Forward Secrecy  . . . . . . . . . . . . . . . 57
    9.3.  Use with SNMPv1/SNMPv2c Messages . . . . . . . . . . . . . 57
    9.4.  MIB Module Security  . . . . . . . . . . . . . . . . . . . 57
  10. IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 59
  11. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 59
  12. References . . . . . . . . . . . . . . . . . . . . . . . . . . 60
    12.1. Normative References . . . . . . . . . . . . . . . . . . . 60
    12.2. Informative References . . . . . . . . . . . . . . . . . . 61
  Appendix A.  Target and Notification Configuration Example . . . . 63
    A.1.  Configuring a Notification Originator  . . . . . . . . . . 63
    A.2.  Configuring TLSTM to Utilize a Simple Derivation of
          tmSecurityName . . . . . . . . . . . . . . . . . . . . . . 64
    A.3.  Configuring TLSTM to Utilize Table-Driven Certificate
          Mapping  . . . . . . . . . . . . . . . . . . . . . . . . . 64





Hardaker                     Standards Track                    [Page 3]

RFC 6353              TLS Transport Model for SNMP             July 2011


1.  Introduction

  It is important to understand the modular SNMPv3 architecture as
  defined by [RFC3411] and enhanced by the Transport Subsystem
  [RFC5590].  It is also important to understand the terminology of the
  SNMPv3 architecture in order to understand where the Transport Model
  described in this document fits into the architecture and how it
  interacts with the other architecture subsystems.  For a detailed
  overview of the documents that describe the current Internet-Standard
  Management Framework, please refer to Section 7 of [RFC3410].

  This document describes a Transport Model that makes use of the
  Transport Layer Security (TLS) [RFC5246] and the Datagram Transport
  Layer Security (DTLS) Protocol [RFC4347], within a Transport
  Subsystem [RFC5590].  DTLS is the datagram variant of the Transport
  Layer Security (TLS) protocol [RFC5246].  The Transport Model in this
  document is referred to as the Transport Layer Security Transport
  Model (TLSTM).  TLS and DTLS take advantage of the X.509 public
  keying infrastructure [RFC5280].  While (D)TLS supports multiple
  authentication mechanisms, this document only discusses X.509
  certificate-based authentication.  Although other forms of
  authentication are possible, they are outside the scope of this
  specification.  This transport model is designed to meet the security
  and operational needs of network administrators, operating in both
  environments where a connectionless (e.g., UDP) transport is
  preferred and in environments where large quantities of data need to
  be sent (e.g., over a TCP-based stream).  Both TLS and DTLS integrate
  well into existing public keying infrastructures.  This document
  supports sending of SNMP messages over TLS/TCP and DTLS/UDP.

  This document also defines a portion of the Management Information
  Base (MIB) for use with network management protocols.  In particular,
  it defines objects for managing the TLS Transport Model for SNMP.

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  MIB objects are generally
  accessed through the Simple Network Management Protocol (SNMP).
  Objects in the MIB are defined using the mechanisms defined in the
  Structure of Management Information (SMI).  This memo specifies a MIB
  module that is compliant to the SMIv2, which is described in STD 58:
  [RFC2578], [RFC2579], and [RFC2580].










Hardaker                     Standards Track                    [Page 4]

RFC 6353              TLS Transport Model for SNMP             July 2011


  The diagram shown below gives a conceptual overview of two SNMP
  entities communicating using the TLS Transport Model (shown as
  "TLSTM").  One entity contains a command responder and notification
  originator application, and the other a command generator and
  notification receiver application.  It should be understood that this
  particular mix of application types is an example only and other
  combinations are equally valid.

  Note: this diagram shows the Transport Security Model (TSM) being
  used as the security model that is defined in [RFC5591].









































Hardaker                     Standards Track                    [Page 5]

RFC 6353              TLS Transport Model for SNMP             July 2011


+---------------------------------------------------------------------+
|                              Network                                |
+---------------------------------------------------------------------+
    ^                     |            ^               |
    |Notifications        |Commands    |Commands       |Notifications
+---|---------------------|-------+ +--|---------------|--------------+
|   |                     V       | |  |               V              |
| +------------+  +------------+  | | +-----------+   +----------+    |
| |  (D)TLS    |  |  (D)TLS    |  | | | (D)TLS    |   | (D)TLS   |    |
| |  (Client)  |  |  (Server)  |  | | | (Client)  |   | (Server) |    |
| +------------+  +------------+  | | +-----------+   +----------+    |
|       ^             ^           | |       ^              ^          |
|       |             |           | |       |              |          |
|       +-------------+           | |       +--------------+          |
| +-----|------------+            | | +-----|------------+            |
| |     V            |            | | |     V            |            |
| | +--------+       |   +-----+  | | | +--------+       |   +-----+  |
| | | TLS TM |<--------->|Cache|  | | | | TLS TM |<--------->|Cache|  |
| | +--------+       |   +-----+  | | | +--------+       |   +-----+  |
| |Transport Subsys. |      ^     | | |Transport Subsys. |      ^     |
| +------------------+      |     | | +------------------+      |     |
|    ^                      |     | |    ^                      |     |
|    |                      +--+  | |    |                      +--+  |
|    v                         |  | |    V                         |  |
| +-----+ +--------+ +-------+ |  | | +-----+ +--------+ +-------+ |  |
| |     | |Message | |Securi.| |  | | |     | |Message | |Securi.| |  |
| |Disp.| |Proc.   | |Subsys.| |  | | |Disp.| |Proc.   | |Subsys.| |  |
| |     | |Subsys. | |       | |  | | |     | |Subsys. | |       | |  |
| |     | |        | |       | |  | | |     | |        | |       | |  |
| |     | | +----+ | | +---+ | |  | | |     | | +----+ | | +---+ | |  |
| |    <--->|v3MP|<--> |TSM|<--+  | | |    <--->|v3MP|<--->|TSM|<--+  |
| |     | | +----+ | | +---+ |    | | |     | | +----+ | | +---+ |    |
| |     | |        | |       |    | | |     | |        | |       |    |
| +-----+ +--------+ +-------+    | | +-----+ +--------+ +-------+    |
|    ^                            | |    ^                            |
|    |                            | |    |                            |
|    +-+------------+             | |    +-+----------+               |
|      |            |             | |      |          |               |
|      v            v             | |      v          V               |
| +-------------+ +-------------+ | | +-------------+ +-------------+ |
| |   COMMAND   | | NOTIFICAT.  | | | |  COMMAND    | | NOTIFICAT.  | |
| |  RESPONDER  | | ORIGINATOR  | | | | GENERATOR   | | RECEIVER    | |
| | application | | application | | | | application | | application | |
| +-------------+ +-------------+ | | +-------------+ +-------------+ |
|                     SNMP entity | |                     SNMP entity |
+---------------------------------+ +---------------------------------+





Hardaker                     Standards Track                    [Page 6]

RFC 6353              TLS Transport Model for SNMP             July 2011


1.1.  Conventions

  For consistency with SNMP-related specifications, this document
  favors terminology as defined in STD 62, rather than favoring
  terminology that is consistent with non-SNMP specifications.  This is
  consistent with the IESG decision to not require the SNMPv3
  terminology be modified to match the usage of other non-SNMP
  specifications when SNMPv3 was advanced to a Full Standard.

  "Authentication" in this document typically refers to the English
  meaning of "serving to prove the authenticity of" the message, not
  data source authentication or peer identity authentication.

  The terms "manager" and "agent" are not used in this document
  because, in the [RFC3411] architecture, all SNMP entities have the
  capability of acting as manager, agent, or both depending on the SNMP
  application types supported in the implementation.  Where distinction
  is required, the application names of command generator, command
  responder, notification originator, notification receiver, and proxy
  forwarder are used.  See "SNMP Applications" [RFC3413] for further
  information.

  Large portions of this document simultaneously refer to both TLS and
  DTLS when discussing TLSTM components that function equally with
  either protocol.  "(D)TLS" is used in these places to indicate that
  the statement applies to either or both protocols as appropriate.
  When a distinction between the protocols is needed, they are referred
  to independently through the use of "TLS" or "DTLS".  The Transport
  Model, however, is named "TLS Transport Model" and refers not to the
  TLS or DTLS protocol but to the specification in this document, which
  includes support for both TLS and DTLS.

  Throughout this document, the terms "client" and "server" are used to
  refer to the two ends of the (D)TLS transport connection.  The client
  actively opens the (D)TLS connection, and the server passively
  listens for the incoming (D)TLS connection.  An SNMP entity may act
  as a (D)TLS client or server or both, depending on the SNMP
  applications supported.

  The User-Based Security Model (USM) [RFC3414] is a mandatory-to-
  implement Security Model in STD 62.  While (D)TLS and USM frequently
  refer to a user, the terminology preferred in RFC 3411 and in this
  memo is "principal".  A principal is the "who" on whose behalf
  services are provided or processing takes place.  A principal can be,
  among other things, an individual acting in a particular role; a set
  of individuals, with each acting in a particular role; an application
  or a set of applications, or a combination of these within an
  administrative domain.



Hardaker                     Standards Track                    [Page 7]

RFC 6353              TLS Transport Model for SNMP             July 2011


  Throughout this document, the term "session" is used to refer to a
  secure association between two TLS Transport Models that permits the
  transmission of one or more SNMP messages within the lifetime of the
  session.  The (D)TLS protocols also have an internal notion of a
  session and although these two concepts of a session are related,
  when the term "session" is used this document is referring to the
  TLSTM's specific session and not directly to the (D)TLS protocol's
  session.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

1.2.  Changes Since RFC 5953

  This document obsoletes [RFC5953].

  Since the publication of RFC 5953, a few editorial errata have been
  noted.  These errata are posted on the RFC Editor web site.  These
  errors have been corrected in this document.

  This document updates the references to RFC 3490 (IDNA 2003) to
  [RFC5890] (IDNA 2008), because RFC 3490 was obsoleted by RFC 5890.

  References to RFC 1033 were replaced with references to [RFC1123].

  Added informative reference to 5953.

  Updated MIB dates and revision date.

2.  The Transport Layer Security Protocol

  (D)TLS provides authentication, data message integrity, and privacy
  at the transport layer (see [RFC4347]).

  The primary goals of the TLS Transport Model are to provide privacy,
  peer identity authentication, and data integrity between two
  communicating SNMP entities.  The TLS and DTLS protocols provide a
  secure transport upon which the TLSTM is based.  Please refer to
  [RFC5246] and [RFC4347] for complete descriptions of the protocols.

3.  How the TLSTM Fits into the Transport Subsystem

  A transport model is a component of the Transport Subsystem.  The TLS
  Transport Model thus fits between the underlying (D)TLS transport
  layer and the Message Dispatcher [RFC3411] component of the SNMP
  engine.




Hardaker                     Standards Track                    [Page 8]

RFC 6353              TLS Transport Model for SNMP             July 2011


  The TLS Transport Model will establish a session between itself and
  the TLS Transport Model of another SNMP engine.  The sending
  transport model passes unencrypted and unauthenticated messages from
  the Dispatcher to (D)TLS to be encrypted and authenticated, and the
  receiving transport model accepts decrypted and authenticated/
  integrity-checked incoming messages from (D)TLS and passes them to
  the Dispatcher.

  After a TLS Transport Model session is established, SNMP messages can
  conceptually be sent through the session from one SNMP message
  Dispatcher to another SNMP Message Dispatcher.  If multiple SNMP
  messages are needed to be passed between two SNMP applications they
  MAY be passed through the same session.  A TLSTM implementation
  engine MAY choose to close the session to conserve resources.

  The TLS Transport Model of an SNMP engine will perform the
  translation between (D)TLS-specific security parameters and SNMP-
  specific, model-independent parameters.

































Hardaker                     Standards Track                    [Page 9]

RFC 6353              TLS Transport Model for SNMP             July 2011


  The diagram below depicts where the TLS Transport Model (shown as
  "(D)TLS TM") fits into the architecture described in RFC 3411 and the
  Transport Subsystem:

  +------------------------------+
  |    Network                   |
  +------------------------------+
     ^       ^              ^
     |       |              |
     v       v              v
  +-------------------------------------------------------------------+
  | +--------------------------------------------------+              |
  | |  Transport Subsystem                             |  +--------+  |
  | | +-----+ +-----+ +-------+             +-------+  |  |        |  |
  | | | UDP | | SSH | |(D)TLS |    . . .    | other |<--->| Cache  |  |
  | | |     | | TM  | | TM    |             |       |  |  |        |  |
  | | +-----+ +-----+ +-------+             +-------+  |  +--------+  |
  | +--------------------------------------------------+         ^    |
  |              ^                                               |    |
  |              |                                               |    |
  | Dispatcher   v                                               |    |
  | +--------------+ +---------------------+  +----------------+ |    |
  | | Transport    | | Message Processing  |  | Security       | |    |
  | | Dispatch     | | Subsystem           |  | Subsystem      | |    |
  | |              | |     +------------+  |  | +------------+ | |    |
  | |              | |  +->| v1MP       |<--->| | USM        | | |    |
  | |              | |  |  +------------+  |  | +------------+ | |    |
  | |              | |  |  +------------+  |  | +------------+ | |    |
  | |              | |  +->| v2cMP      |<--->| | Transport  | | |    |
  | | Message      | |  |  +------------+  |  | | Security   |<--+    |
  | | Dispatch    <---->|  +------------+  |  | | Model      | |      |
  | |              | |  +->| v3MP       |<--->| +------------+ |      |
  | |              | |  |  +------------+  |  | +------------+ |      |
  | | PDU Dispatch | |  |  +------------+  |  | | Other      | |      |
  | +--------------+ |  +->| otherMP    |<--->| | Model(s)   | |      |
  |              ^   |     +------------+  |  | +------------+ |      |
  |              |   +---------------------+  +----------------+      |
  |              v                                                    |
  |      +-------+-------------------------+---------------+          |
  |      ^                                 ^               ^          |
  |      |                                 |               |          |
  |      v                                 v               v          |









Hardaker                     Standards Track                   [Page 10]

RFC 6353              TLS Transport Model for SNMP             July 2011


  | +-------------+   +---------+   +--------------+  +-------------+ |
  | |   COMMAND   |   | ACCESS  |   | NOTIFICATION |  |    PROXY    | |
  | |  RESPONDER  |<->| CONTROL |<->|  ORIGINATOR  |  |  FORWARDER  | |
  | | application |   |         |   | applications |  | application | |
  | +-------------+   +---------+   +--------------+  +-------------+ |
  |      ^                                 ^                          |
  |      |                                 |                          |
  |      v                                 v                          |
  | +----------------------------------------------+                  |
  | |             MIB instrumentation              |      SNMP entity |
  +-------------------------------------------------------------------+

3.1.  Security Capabilities of This Model

3.1.1.  Threats

  The TLS Transport Model provides protection against the threats
  identified by the RFC 3411 architecture [RFC3411]:

  1.  Modification of Information - The modification threat is the
      danger that an unauthorized entity may alter in-transit SNMP
      messages generated on behalf of an authorized principal in such a
      way as to effect unauthorized management operations, including
      falsifying the value of an object.

      (D)TLS provides verification that the content of each received
      message has not been modified during its transmission through the
      network, data has not been altered or destroyed in an
      unauthorized manner, and data sequences have not been altered to
      an extent greater than can occur non-maliciously.

  2.  Masquerade - The masquerade threat is the danger that management
      operations unauthorized for a given principal may be attempted by
      assuming the identity of another principal that has the
      appropriate authorizations.

      The TLSTM verifies the identity of the (D)TLS server through the
      use of the (D)TLS protocol and X.509 certificates.  A TLS
      Transport Model implementation MUST support the authentication of
      both the server and the client.

  3.  Message stream modification - The re-ordering, delay, or replay
      of messages can and does occur through the natural operation of
      many connectionless transport services.  The message stream
      modification threat is the danger that messages may be
      maliciously re-ordered, delayed, or replayed to an extent that is
      greater than can occur through the natural operation of




Hardaker                     Standards Track                   [Page 11]

RFC 6353              TLS Transport Model for SNMP             July 2011


      connectionless transport services, in order to effect
      unauthorized management operations.

      (D)TLS provides replay protection with a Message Authentication
      Code (MAC) that includes a sequence number.  Since UDP provides
      no sequencing ability, DTLS uses a sliding window protocol with
      the sequence number used for replay protection (see [RFC4347]).

  4.  Disclosure - The disclosure threat is the danger of eavesdropping
      on the exchanges between SNMP engines.

      (D)TLS provides protection against the disclosure of information
      to unauthorized recipients or eavesdroppers by allowing for
      encryption of all traffic between SNMP engines.  A TLS Transport
      Model implementation MUST support message encryption to protect
      sensitive data from eavesdropping attacks.

  5.  Denial of Service - The RFC 3411 architecture [RFC3411] states
      that denial-of-service (DoS) attacks need not be addressed by an
      SNMP security protocol.  However, connectionless transports (like
      DTLS over UDP) are susceptible to a variety of DoS attacks
      because they are more vulnerable to spoofed IP addresses.  See
      Section 4.2 for details on how the cookie mechanism is used.
      Note, however, that this mechanism does not provide any defense
      against DoS attacks mounted from valid IP addresses.

  See Section 9 for more detail on the security considerations
  associated with the TLSTM and these security threats.

3.1.2.  Message Protection

  The RFC 3411 architecture recognizes three levels of security:

  o  without authentication and without privacy (noAuthNoPriv)

  o  with authentication but without privacy (authNoPriv)

  o  with authentication and with privacy (authPriv)

  The TLS Transport Model determines from (D)TLS the identity of the
  authenticated principal, the transport type, and the transport
  address associated with an incoming message.  The TLS Transport Model
  provides the identity and destination type and address to (D)TLS for
  outgoing messages.

  When an application requests a session for a message, it also
  requests a security level for that session.  The TLS Transport Model
  MUST ensure that the (D)TLS connection provides security at least as



Hardaker                     Standards Track                   [Page 12]

RFC 6353              TLS Transport Model for SNMP             July 2011


  high as the requested level of security.  How the security level is
  translated into the algorithms used to provide data integrity and
  privacy is implementation dependent.  However, the NULL integrity and
  encryption algorithms MUST NOT be used to fulfill security level
  requests for authentication or privacy.  Implementations MAY choose
  to force (D)TLS to only allow cipher_suites that provide both
  authentication and privacy to guarantee this assertion.

  If a suitable interface between the TLS Transport Model and the
  (D)TLS Handshake Protocol is implemented to allow the selection of
  security-level-dependent algorithms (for example, a security level to
  cipher_suites mapping table), then different security levels may be
  utilized by the application.

  The authentication, integrity, and privacy algorithms used by the
  (D)TLS Protocols may vary over time as the science of cryptography
  continues to evolve and the development of (D)TLS continues over
  time.  Implementers are encouraged to plan for changes in operator
  trust of particular algorithms.  Implementations SHOULD offer
  configuration settings for mapping algorithms to SNMPv3 security
  levels.

3.1.3.  (D)TLS Connections

  (D)TLS connections are opened by the TLS Transport Model during the
  elements of procedure for an outgoing SNMP message.  Since the sender
  of a message initiates the creation of a (D)TLS connection if needed,
  the (D)TLS connection will already exist for an incoming message.

  Implementations MAY choose to instantiate (D)TLS connections in
  anticipation of outgoing messages.  This approach might be useful to
  ensure that a (D)TLS connection to a given target can be established
  before it becomes important to send a message over the (D)TLS
  connection.  Of course, there is no guarantee that a pre-established
  session will still be valid when needed.

  DTLS connections, when used over UDP, are uniquely identified within
  the TLS Transport Model by the combination of transportDomain,
  transportAddress, tmSecurityName, and requestedSecurityLevel
  associated with each session.  Each unique combination of these
  parameters MUST have a locally chosen unique tlstmSessionID for each
  active session.  For further information, see Section 5.  TLS over
  TCP sessions, on the other hand, do not require a unique pairing of
  address and port attributes since their lower-layer protocols (TCP)
  already provide adequate session framing.  But they must still
  provide a unique tlstmSessionID for referencing the session.





Hardaker                     Standards Track                   [Page 13]

RFC 6353              TLS Transport Model for SNMP             July 2011


  The tlstmSessionID MUST NOT change during the entire duration of the
  session from the TLSTM's perspective, and MUST uniquely identify a
  single session.  As an implementation hint: note that the (D)TLS
  internal SessionID does not meet these requirements, since it can
  change over the life of the connection as seen by the TLSTM (for
  example, during renegotiation), and does not necessarily uniquely
  identify a TLSTM session (there can be multiple TLSTM sessions
  sharing the same D(TLS) internal SessionID).

3.2.  Security Parameter Passing

  For the (D)TLS server-side, (D)TLS-specific security parameters
  (i.e., cipher_suites, X.509 certificate fields, IP addresses, and
  ports) are translated by the TLS Transport Model into security
  parameters for the TLS Transport Model and security model (e.g.,
  tmSecurityLevel, tmSecurityName, transportDomain, transportAddress).
  The transport-related and (D)TLS-security-related information,
  including the authenticated identity, are stored in a cache
  referenced by tmStateReference.

  For the (D)TLS client side, the TLS Transport Model takes input
  provided by the Dispatcher in the sendMessage() Abstract Service
  Interface (ASI) and input from the tmStateReference cache.  The
  (D)TLS Transport Model converts that information into suitable
  security parameters for (D)TLS and establishes sessions as needed.

  The elements of procedure in Section 5 discuss these concepts in much
  greater detail.

3.3.  Notifications and Proxy

  (D)TLS connections may be initiated by (D)TLS clients on behalf of
  SNMP applications that initiate communications, such as command
  generators, notification originators, proxy forwarders.  Command
  generators are frequently operated by a human, but notification
  originators and proxy forwarders are usually unmanned automated
  processes.  The targets to whom notifications and proxied requests
  should be sent are typically determined and configured by a network
  administrator.

  The SNMP-TARGET-MIB module [RFC3413] contains objects for defining
  management targets, including transportDomain, transportAddress,
  securityName, securityModel, and securityLevel parameters, for
  notification originator, proxy forwarder, and SNMP-controllable
  command generator applications.  Transport domains and transport
  addresses are configured in the snmpTargetAddrTable, and the
  securityModel, securityName, and securityLevel parameters are
  configured in the snmpTargetParamsTable.  This document defines a MIB



Hardaker                     Standards Track                   [Page 14]

RFC 6353              TLS Transport Model for SNMP             July 2011


  module that extends the SNMP-TARGET-MIB's snmpTargetParamsTable to
  specify a (D)TLS client-side certificate to use for the connection.

  When configuring a (D)TLS target, the snmpTargetAddrTDomain and
  snmpTargetAddrTAddress parameters in snmpTargetAddrTable SHOULD be
  set to the snmpTLSTCPDomain or snmpDTLSUDPDomain object and an
  appropriate snmpTLSAddress value.  When used with the SNMPv3 message
  processing model, the snmpTargetParamsMPModel column of the
  snmpTargetParamsTable SHOULD be set to a value of 3.  The
  snmpTargetParamsSecurityName SHOULD be set to an appropriate
  securityName value, and the snmpTlstmParamsClientFingerprint
  parameter of the snmpTlstmParamsTable SHOULD be set to a value that
  refers to a locally held certificate (and the corresponding private
  key) to be used.  Other parameters, for example, cryptographic
  configuration such as which cipher_suites to use, must come from
  configuration mechanisms not defined in this document.

  The securityName defined in the snmpTargetParamsSecurityName column
  will be used by the access control model to authorize any
  notifications that need to be sent.

4.  Elements of the Model

  This section contains definitions required to realize the (D)TLS
  Transport Model defined by this document.

4.1.  X.509 Certificates

  (D)TLS can make use of X.509 certificates for authentication of both
  sides of the transport.  This section discusses the use of X.509
  certificates in the TLSTM.

  While (D)TLS supports multiple authentication mechanisms, this
  document only discusses X.509-certificate-based authentication; other
  forms of authentication are outside the scope of this specification.
  TLSTM implementations are REQUIRED to support X.509 certificates.

4.1.1.  Provisioning for the Certificate

  Authentication using (D)TLS will require that SNMP entities have
  certificates, either signed by trusted Certification Authorities
  (CAs), or self signed.  Furthermore, SNMP entities will most commonly
  need to be provisioned with root certificates that represent the list
  of trusted CAs that an SNMP entity can use for certificate
  verification.  SNMP entities SHOULD also be provisioned with an X.509
  certificate revocation mechanism which can be used to verify that a
  certificate has not been revoked.  Trusted public keys from either CA
  certificates and/or self-signed certificates MUST be installed into



Hardaker                     Standards Track                   [Page 15]

RFC 6353              TLS Transport Model for SNMP             July 2011


  the server through a trusted out-of-band mechanism and their
  authenticity MUST be verified before access is granted.

  Having received a certificate from a connecting TLSTM client, the
  authenticated tmSecurityName of the principal is derived using the
  snmpTlstmCertToTSNTable.  This table allows mapping of incoming
  connections to tmSecurityNames through defined transformations.  The
  transformations defined in the SNMP-TLS-TM-MIB include:

  o  Mapping a certificate's subjectAltName or CommonName components to
     a tmSecurityName, or

  o  Mapping a certificate's fingerprint value to a directly specified
     tmSecurityName

  As an implementation hint: implementations may choose to discard any
  connections for which no potential snmpTlstmCertToTSNTable mapping
  exists before performing certificate verification to avoid expending
  computational resources associated with certificate verification.

  Deployments SHOULD map the "subjectAltName" component of X.509
  certificates to the TLSTM specific tmSecurityNames.  The
  authenticated identity can be obtained by the TLS Transport Model by
  extracting the subjectAltName(s) from the peer's certificate.  The
  receiving application will then have an appropriate tmSecurityName
  for use by other SNMPv3 components like an access control model.

  An example of this type of mapping setup can be found in Appendix A.

  This tmSecurityName may be later translated from a TLSTM specific
  tmSecurityName to an SNMP engine securityName by the security model.
  A security model, like the TSM security model [RFC5591], may perform
  an identity mapping or a more complex mapping to derive the
  securityName from the tmSecurityName offered by the TLS Transport
  Model.

  The standard View-Based Access Control Model (VACM) access control
  model constrains securityNames to be 32 octets or less in length.  A
  TLSTM generated tmSecurityName, possibly in combination with a
  messaging or security model that increases the length of the
  securityName, might cause the securityName length to exceed 32
  octets.  For example, a 32-octet tmSecurityName derived from an IPv6
  address, paired with a TSM prefix, will generate a 36-octet
  securityName.  Such a securityName will not be able to be used with
  standard VACM or TARGET MIB modules.  Operators should be careful to
  select algorithms and subjectAltNames to avoid this situation.





Hardaker                     Standards Track                   [Page 16]

RFC 6353              TLS Transport Model for SNMP             July 2011


  A pictorial view of the complete transformation process (using the
  TSM security model for the example) is shown below:

   +-------------+     +-------+                   +-----+
   | Certificate |     |       |                   |     |
   |    Path     |     | TLSTM |  tmSecurityName   | TSM |
   | Validation  | --> |       | ----------------->|     |
   +-------------+     +-------+                   +-----+
                                                       |
                                                       | securityName
                                                       V
                                                   +-------------+
                                                   | application |
                                                   +-------------+

4.2.  (D)TLS Usage

  (D)TLS MUST negotiate a cipher_suite that uses X.509 certificates for
  authentication, and MUST authenticate both the client and the server.
  The mandatory-to-implement cipher_suite is specified in the TLS
  specification [RFC5246].

  TLSTM verifies the certificates when the connection is opened (see
  Section 5.3).  For this reason, TLS renegotiation with different
  certificates MUST NOT be done.  That is, implementations MUST either
  disable renegotiation completely (RECOMMENDED), or they MUST present
  the same certificate during renegotiation (and MUST verify that the
  other end presented the same certificate).

  For DTLS over UDP, each SNMP message MUST be placed in a single UDP
  datagram; it MAY be split to multiple DTLS records.  In other words,
  if a single datagram contains multiple DTLS application_data records,
  they are concatenated when received.  The TLSTM implementation SHOULD
  return an error if the SNMP message does not fit in the UDP datagram,
  and thus cannot be sent.

  For DTLS over UDP, the DTLS server implementation MUST support DTLS
  cookies ([RFC4347] already requires that clients support DTLS
  cookies).  Implementations are not required to perform the cookie
  exchange for every DTLS handshake; however, enabling it by default is
  RECOMMENDED.

  For DTLS, replay protection MUST be used.








Hardaker                     Standards Track                   [Page 17]

RFC 6353              TLS Transport Model for SNMP             July 2011


4.3.  SNMP Services

  This section describes the services provided by the TLS Transport
  Model with their inputs and outputs.  The services are between the
  Transport Model and the Dispatcher.

  The services are described as primitives of an abstract service
  interface (ASI) and the inputs and outputs are described as abstract
  data elements as they are passed in these abstract service
  primitives.

4.3.1.  SNMP Services for an Outgoing Message

  The Dispatcher passes the information to the TLS Transport Model
  using the ASI defined in the Transport Subsystem:

     statusInformation =
     sendMessage(
     IN   destTransportDomain           -- transport domain to be used
     IN   destTransportAddress          -- transport address to be used
     IN   outgoingMessage               -- the message to send
     IN   outgoingMessageLength         -- its length
     IN   tmStateReference              -- reference to transport state
      )

  The abstract data elements returned from or passed as parameters into
  the abstract service primitives are as follows:

  statusInformation:  An indication of whether the sending of the
     message was successful.  If not, it is an indication of the
     problem.

  destTransportDomain:  The transport domain for the associated
     destTransportAddress.  The Transport Model uses this parameter to
     determine the transport type of the associated
     destTransportAddress.  This document specifies the
     snmpTLSTCPDomain and the snmpDTLSUDPDomain transport domains.

  destTransportAddress:  The transport address of the destination TLS
     Transport Model in a format specified by the SnmpTLSAddress
     TEXTUAL-CONVENTION.

  outgoingMessage:  The outgoing message to send to (D)TLS for
     encapsulation and transmission.

  outgoingMessageLength:  The length of the outgoingMessage.





Hardaker                     Standards Track                   [Page 18]

RFC 6353              TLS Transport Model for SNMP             July 2011


  tmStateReference:  A reference used to pass model-specific and
     mechanism-specific parameters between the Transport Subsystem and
     transport-aware Security Models.

4.3.2.  SNMP Services for an Incoming Message

  The TLS Transport Model processes the received message from the
  network using the (D)TLS service and then passes it to the Dispatcher
  using the following ASI:

     statusInformation =
     receiveMessage(
     IN   transportDomain               -- origin transport domain
     IN   transportAddress              -- origin transport address
     IN   incomingMessage               -- the message received
     IN   incomingMessageLength         -- its length
     IN   tmStateReference              -- reference to transport state
      )

  The abstract data elements returned from or passed as parameters into
  the abstract service primitives are as follows:

  statusInformation:  An indication of whether the passing of the
     message was successful.  If not, it is an indication of the
     problem.

  transportDomain:  The transport domain for the associated
     transportAddress.  This document specifies the snmpTLSTCPDomain
     and the snmpDTLSUDPDomain transport domains.

  transportAddress:  The transport address of the source of the
     received message in a format specified by the SnmpTLSAddress
     TEXTUAL-CONVENTION.

  incomingMessage:  The whole SNMP message after being processed by
     (D)TLS.

  incomingMessageLength:  The length of the incomingMessage.

  tmStateReference:  A reference used to pass model-specific and
     mechanism-specific parameters between the Transport Subsystem and
     transport-aware Security Models.









Hardaker                     Standards Track                   [Page 19]

RFC 6353              TLS Transport Model for SNMP             July 2011


4.4.  Cached Information and References

  When performing SNMP processing, there are two levels of state
  information that may need to be retained: the immediate state linking
  a request-response pair, and potentially longer-term state relating
  to transport and security.  "Transport Subsystem for the Simple
  Network Management Protocol (SNMP)" [RFC5590] defines general
  requirements for caches and references.

4.4.1.  TLS Transport Model Cached Information

  The TLS Transport Model has specific responsibilities regarding the
  cached information.  See the Elements of Procedure in Section 5 for
  detailed processing instructions on the use of the tmStateReference
  fields by the TLS Transport Model.

4.4.1.1.  tmSecurityName

  The tmSecurityName MUST be a human-readable name (in snmpAdminString
  format) representing the identity that has been set according to the
  procedures in Section 5.  The tmSecurityName MUST be constant for all
  traffic passing through a single TLSTM session.  Messages MUST NOT be
  sent through an existing (D)TLS connection that was established using
  a different tmSecurityName.

  On the (D)TLS server side of a connection, the tmSecurityName is
  derived using the procedures described in Section 5.3.2 and the SNMP-
  TLS-TM-MIB's snmpTlstmCertToTSNTable DESCRIPTION clause.

  On the (D)TLS client side of a connection, the tmSecurityName is
  presented to the TLS Transport Model by the security model through
  the tmStateReference.  This tmSecurityName is typically a copy of or
  is derived from the securityName that was passed by application
  (possibly because of configuration specified in the SNMP-TARGET-MIB).
  The Security Model likely derived the tmSecurityName from the
  securityName presented to the Security Model by the application
  (possibly because of configuration specified in the SNMP-TARGET-MIB).

  Transport-Model-aware security models derive tmSecurityName from a
  securityName, possibly configured in MIB modules for notifications
  and access controls.  Transport Models SHOULD use predictable
  tmSecurityNames so operators will know what to use when configuring
  MIB modules that use securityNames derived from tmSecurityNames.  The
  TLSTM generates predictable tmSecurityNames based on the
  configuration found in the SNMP-TLS-TM-MIB's snmpTlstmCertToTSNTable
  and relies on the network operators to have configured this table
  appropriately.




Hardaker                     Standards Track                   [Page 20]

RFC 6353              TLS Transport Model for SNMP             July 2011


4.4.1.2.  tmSessionID

  The tmSessionID MUST be recorded per message at the time of receipt.
  When tmSameSecurity is set, the recorded tmSessionID can be used to
  determine whether the (D)TLS connection available for sending a
  corresponding outgoing message is the same (D)TLS connection as was
  used when receiving the incoming message (e.g., a response to a
  request).

4.4.1.3.  Session State

  The per-session state that is referenced by tmStateReference may be
  saved across multiple messages in a Local Configuration Datastore.
  Additional session/connection state information might also be stored
  in a Local Configuration Datastore.

5.  Elements of Procedure

  Abstract service interfaces have been defined by [RFC3411] and
  further augmented by [RFC5590] to describe the conceptual data flows
  between the various subsystems within an SNMP entity.  The TLSTM uses
  some of these conceptual data flows when communicating between
  subsystems.

  To simplify the elements of procedure, the release of state
  information is not always explicitly specified.  As a general rule,
  if state information is available when a message gets discarded, the
  message-state information should also be released.  If state
  information is available when a session is closed, the session state
  information should also be released.  Sensitive information, like
  cryptographic keys, should be overwritten appropriately prior to
  being released.

  An error indication in statusInformation will typically include the
  Object Identifier (OID) and value for an incremented error counter.
  This may be accompanied by the requested securityLevel and the
  tmStateReference.  Per-message context information is not accessible
  to Transport Models, so for the returned counter OID and value,
  contextEngine would be set to the local value of snmpEngineID and
  contextName to the default context for error counters.

5.1.  Procedures for an Incoming Message

  This section describes the procedures followed by the (D)TLS
  Transport Model when it receives a (D)TLS protected packet.  The
  required functionality is broken into two different sections.





Hardaker                     Standards Track                   [Page 21]

RFC 6353              TLS Transport Model for SNMP             July 2011


  Section 5.1.1 describes the processing required for de-multiplexing
  multiple DTLS connections, which is specifically needed for DTLS over
  UDP sessions.  It is assumed that TLS protocol implementations
  already provide appropriate message demultiplexing.

  Section 5.1.2 describes the transport processing required once the
  (D)TLS processing has been completed.  This will be needed for all
  (D)TLS-based connections.

5.1.1.  DTLS over UDP Processing for Incoming Messages

  Demultiplexing of incoming packets into separate DTLS sessions MUST
  be implemented.  For connection-oriented transport protocols, such as
  TCP, the transport protocol takes care of demultiplexing incoming
  packets to the right connection.  For DTLS over UDP, this
  demultiplexing will either need to be done within the DTLS
  implementation, if supported, or by the TLSTM implementation.

  Like TCP, DTLS over UDP uses the four-tuple <source IP, destination
  IP, source port, destination port> for identifying the connection
  (and relevant DTLS connection state).  This means that when
  establishing a new session, implementations MUST use a different UDP
  source port number for each active connection to a remote destination
  IP-address/port-number combination to ensure the remote entity can
  disambiguate between multiple connections.

  If demultiplexing received UDP datagrams to DTLS connection state is
  done by the TLSTM implementation (instead of the DTLS
  implementation), the steps below describe one possible method to
  accomplish this.

  The important output results from the steps in this process are the
  remote transport address, incomingMessage, incomingMessageLength, and
  the tlstmSessionID.

  1)  The TLS Transport Model examines the raw UDP message, in an
      implementation-dependent manner.

  2)  The TLS Transport Model queries the Local Configuration Datastore
      (LCD) (see [RFC3411], Section 3.4.2) using the transport
      parameters (source and destination IP addresses and ports) to
      determine if a session already exists.

      2a)  If a matching entry in the LCD does not exist, then the UDP
           packet is passed to the DTLS implementation for processing.
           If the DTLS implementation decides to continue with the
           connection and allocate state for it, it returns a new DTLS
           connection handle (an implementation dependent detail).  In



Hardaker                     Standards Track                   [Page 22]

RFC 6353              TLS Transport Model for SNMP             July 2011


           this case, TLSTM selects a new tlstmSessionId, and caches
           this and the DTLS connection handle as a new entry in the
           LCD (indexed by the transport parameters).  If the DTLS
           implementation returns an error or does not allocate
           connection state (which can happen with the stateless cookie
           exchange), processing stops.

      2b)  If a session does exist in the LCD, then its DTLS connection
           handle (an implementation dependent detail) and its
           tlstmSessionId is extracted from the LCD.  The UDP packet
           and the connection handle are passed to the DTLS
           implementation.  If the DTLS implementation returns success
           but does not return an incomingMessage and an
           incomingMessageLength, then processing stops (this is the
           case when the UDP datagram contained DTLS handshake
           messages, for example).  If the DTLS implementation returns
           an error, then processing stops.

  3)  Retrieve the incomingMessage and an incomingMessageLength from
      DTLS.  These results and the tlstmSessionID are used below in
      Section 5.1.2 to complete the processing of the incoming message.

5.1.2.  Transport Processing for Incoming SNMP Messages

  The procedures in this section describe how the TLS Transport Model
  should process messages that have already been properly extracted
  from the (D)TLS stream.  Note that care must be taken when processing
  messages originating from either TLS or DTLS to ensure they're
  complete and single.  For example, multiple SNMP messages can be
  passed through a single DTLS message and partial SNMP messages may be
  received from a TLS stream.  These steps describe the processing of a
  singular SNMP message after it has been delivered from the (D)TLS
  stream.

  1)  Determine the tlstmSessionID for the incoming message.  The
      tlstmSessionID MUST be a unique session identifier for this
      (D)TLS connection.  The contents and format of this identifier
      are implementation dependent as long as it is unique to the
      session.  A session identifier MUST NOT be reused until all
      references to it are no longer in use.  The tmSessionID is equal
      to the tlstmSessionID discussed in Section 5.1.1. tmSessionID
      refers to the session identifier when stored in the
      tmStateReference and tlstmSessionID refers to the session
      identifier when stored in the LCD.  They MUST always be equal
      when processing a given session's traffic.






Hardaker                     Standards Track                   [Page 23]

RFC 6353              TLS Transport Model for SNMP             July 2011


      If this is the first message received through this session, and
      the session does not have an assigned tlstmSessionID yet, then
      the snmpTlstmSessionAccepts counter is incremented and a
      tlstmSessionID for the session is created.  This will only happen
      on the server side of a connection because a client would have
      already assigned a tlstmSessionID during the openSession()
      invocation.  Implementations may have performed the procedures
      described in Section 5.3.2 prior to this point or they may
      perform them now, but the procedures described in Section 5.3.2
      MUST be performed before continuing beyond this point.

  2)  Create a tmStateReference cache for the subsequent reference and
      assign the following values within it:

      tmTransportDomain  = snmpTLSTCPDomain or snmpDTLSUDPDomain as
         appropriate.

      tmTransportAddress  = The address from which the message
         originated.

      tmSecurityLevel  = The derived tmSecurityLevel for the session,
         as discussed in Sections 3.1.2 and 5.3.

      tmSecurityName  = The derived tmSecurityName for the session as
         discussed in Section 5.3.  This value MUST be constant during
         the lifetime of the session.

      tmSessionID  = The tlstmSessionID described in step 1 above.

  3)  The incomingMessage and incomingMessageLength are assigned values
      from the (D)TLS processing.

  4)  The TLS Transport Model passes the transportDomain,
      transportAddress, incomingMessage, and incomingMessageLength to
      the Dispatcher using the receiveMessage ASI:

     statusInformation =
     receiveMessage(
     IN   transportDomain     -- snmpTLSTCPDomain or snmpDTLSUDPDomain,
     IN   transportAddress    -- address for the received message
     IN   incomingMessage        -- the whole SNMP message from (D)TLS
     IN   incomingMessageLength  -- the length of the SNMP message
     IN   tmStateReference    -- transport info
      )







Hardaker                     Standards Track                   [Page 24]

RFC 6353              TLS Transport Model for SNMP             July 2011


5.2.  Procedures for an Outgoing SNMP Message

  The Dispatcher sends a message to the TLS Transport Model using the
  following ASI:

     statusInformation =
     sendMessage(
     IN   destTransportDomain           -- transport domain to be used
     IN   destTransportAddress          -- transport address to be used
     IN   outgoingMessage               -- the message to send
     IN   outgoingMessageLength         -- its length
     IN   tmStateReference              -- transport info
     )

  This section describes the procedure followed by the TLS Transport
  Model whenever it is requested through this ASI to send a message.

  1)  If tmStateReference does not refer to a cache containing values
      for tmTransportDomain, tmTransportAddress, tmSecurityName,
      tmRequestedSecurityLevel, and tmSameSecurity, then increment the
      snmpTlstmSessionInvalidCaches counter, discard the message, and
      return the error indication in the statusInformation.  Processing
      of this message stops.

  2)  Extract the tmSessionID, tmTransportDomain, tmTransportAddress,
      tmSecurityName, tmRequestedSecurityLevel, and tmSameSecurity
      values from the tmStateReference.  Note: the tmSessionID value
      may be undefined if no session exists yet over which the message
      can be sent.

  3)  If tmSameSecurity is true and tmSessionID is either undefined or
      refers to a session that is no longer open, then increment the
      snmpTlstmSessionNoSessions counter, discard the message, and
      return the error indication in the statusInformation.  Processing
      of this message stops.

  4)  If tmSameSecurity is false and tmSessionID refers to a session
      that is no longer available, then an implementation SHOULD open a
      new session, using the openSession() ASI (described in greater
      detail in step 5b).  Instead of opening a new session an
      implementation MAY return an snmpTlstmSessionNoSessions error to
      the calling module and stop the processing of the message.

  5)  If tmSessionID is undefined, then use tmTransportDomain,
      tmTransportAddress, tmSecurityName, and tmRequestedSecurityLevel
      to see if there is a corresponding entry in the LCD suitable to
      send the message over.




Hardaker                     Standards Track                   [Page 25]

RFC 6353              TLS Transport Model for SNMP             July 2011


      5a)  If there is a corresponding LCD entry, then this session
           will be used to send the message.

      5b)  If there is no corresponding LCD entry, then open a session
           using the openSession() ASI (discussed further in
           Section 5.3.1).  Implementations MAY wish to offer message
           buffering to prevent redundant openSession() calls for the
           same cache entry.  If an error is returned from
           openSession(), then discard the message, discard the
           tmStateReference, increment the snmpTlstmSessionOpenErrors,
           return an error indication to the calling module, and stop
           the processing of the message.

  6)  Using either the session indicated by the tmSessionID (if there
      was one) or the session resulting from a previous step (4 or 5),
      pass the outgoingMessage to (D)TLS for encapsulation and
      transmission.

5.3.  Establishing or Accepting a Session

  Establishing a (D)TLS connection as either a client or a server
  requires slightly different processing.  The following two sections
  describe the necessary processing steps.

5.3.1.  Establishing a Session as a Client

  The TLS Transport Model provides the following primitive for use by a
  client to establish a new (D)TLS connection:

  statusInformation =           -- errorIndication or success
  openSession(
  IN   tmStateReference         -- transport information to be used
  OUT  tmStateReference         -- transport information to be used
  IN   maxMessageSize           -- of the sending SNMP entity
  )

  The following describes the procedure to follow when establishing an
  SNMP over a (D)TLS connection between SNMP engines for exchanging
  SNMP messages.  This process is followed by any SNMP client's engine
  when establishing a session for subsequent use.

  This procedure MAY be done automatically for an SNMP application that
  initiates a transaction, such as a command generator, a notification
  originator, or a proxy forwarder.

  1)  The snmpTlstmSessionOpens counter is incremented.





Hardaker                     Standards Track                   [Page 26]

RFC 6353              TLS Transport Model for SNMP             July 2011


  2)  The client selects the appropriate certificate and cipher_suites
      for the key agreement based on the tmSecurityName and the
      tmRequestedSecurityLevel for the session.  For sessions being
      established as a result of an SNMP-TARGET-MIB based operation,
      the certificate will potentially have been identified via the
      snmpTlstmParamsTable mapping and the cipher_suites will have to
      be taken from a system-wide or implementation-specific
      configuration.  If no row in the snmpTlstmParamsTable exists,
      then implementations MAY choose to establish the connection using
      a default client certificate available to the application.
      Otherwise, the certificate and appropriate cipher_suites will
      need to be passed to the openSession() ASI as supplemental
      information or configured through an implementation-dependent
      mechanism.  It is also implementation-dependent and possibly
      policy-dependent how tmRequestedSecurityLevel will be used to
      influence the security capabilities provided by the (D)TLS
      connection.  However this is done, the security capabilities
      provided by (D)TLS MUST be at least as high as the level of
      security indicated by the tmRequestedSecurityLevel parameter.
      The actual security level of the session is reported in the
      tmStateReference cache as tmSecurityLevel.  For (D)TLS to provide
      strong authentication, each principal acting as a command
      generator SHOULD have its own certificate.

  3)  Using the destTransportDomain and destTransportAddress values,
      the client will initiate the (D)TLS handshake protocol to
      establish session keys for message integrity and encryption.

      If the attempt to establish a session is unsuccessful, then
      snmpTlstmSessionOpenErrors is incremented, an error indication is
      returned, and processing stops.  If the session failed to open
      because the presented server certificate was unknown or invalid,
      then the snmpTlstmSessionUnknownServerCertificate or
      snmpTlstmSessionInvalidServerCertificates MUST be incremented and
      an snmpTlstmServerCertificateUnknown or
      snmpTlstmServerInvalidCertificate notification SHOULD be sent as
      appropriate.  Reasons for server certificate invalidation
      include, but are not limited to, cryptographic validation
      failures and an unexpected presented certificate identity.

  4)  The (D)TLS client MUST then verify that the (D)TLS server's
      presented certificate is the expected certificate.  The (D)TLS
      client MUST NOT transmit SNMP messages until the server
      certificate has been authenticated, the client certificate has
      been transmitted, and the TLS connection has been fully
      established.





Hardaker                     Standards Track                   [Page 27]

RFC 6353              TLS Transport Model for SNMP             July 2011


      If the connection is being established from a configuration based
      on SNMP-TARGET-MIB configuration, then the snmpTlstmAddrTable
      DESCRIPTION clause describes how the verification is done (using
      either a certificate fingerprint, or an identity authenticated
      via certification path validation).

      If the connection is being established for reasons other than
      configuration found in the SNMP-TARGET-MIB, then configuration
      and procedures outside the scope of this document should be
      followed.  Configuration mechanisms SHOULD be similar in nature
      to those defined in the snmpTlstmAddrTable to ensure consistency
      across management configuration systems.  For example, a command-
      line tool for generating SNMP GETs might support specifying
      either the server's certificate fingerprint or the expected host
      name as a command-line argument.

  5)  (D)TLS provides assurance that the authenticated identity has
      been signed by a trusted configured Certification Authority.  If
      verification of the server's certificate fails in any way (for
      example, because of failures in cryptographic verification or the
      presented identity did not match the expected named entity), then
      the session establishment MUST fail, and the
      snmpTlstmSessionInvalidServerCertificates object is incremented.
      If the session cannot be opened for any reason at all, including
      cryptographic verification failures and snmpTlstmCertToTSNTable
      lookup failures, then the snmpTlstmSessionOpenErrors counter is
      incremented and processing stops.

  6)  The TLSTM-specific session identifier (tlstmSessionID) is set in
      the tmSessionID of the tmStateReference passed to the TLS
      Transport Model to indicate that the session has been established
      successfully and to point to a specific (D)TLS connection for
      future use.  The tlstmSessionID is also stored in the LCD for
      later lookup during processing of incoming messages
      (Section 5.1.2).

5.3.2.  Accepting a Session as a Server

  A (D)TLS server should accept new session connections from any client
  for which it is able to verify the client's credentials.  This is
  done by authenticating the client's presented certificate through a
  certificate path validation process (e.g., [RFC5280]) or through
  certificate fingerprint verification using fingerprints configured in
  the snmpTlstmCertToTSNTable.  Afterward, the server will determine
  the identity of the remote entity using the following procedures.






Hardaker                     Standards Track                   [Page 28]

RFC 6353              TLS Transport Model for SNMP             July 2011


  The (D)TLS server identifies the authenticated identity from the
  (D)TLS client's principal certificate using configuration information
  from the snmpTlstmCertToTSNTable mapping table.  The (D)TLS server
  MUST request and expect a certificate from the client and MUST NOT
  accept SNMP messages over the (D)TLS connection until the client has
  sent a certificate and it has been authenticated.  The resulting
  derived tmSecurityName is recorded in the tmStateReference cache as
  tmSecurityName.  The details of the lookup process are fully
  described in the DESCRIPTION clause of the snmpTlstmCertToTSNTable
  MIB object.  If any verification fails in any way (for example,
  because of failures in cryptographic verification or because of the
  lack of an appropriate row in the snmpTlstmCertToTSNTable), then the
  session establishment MUST fail, and the
  snmpTlstmSessionInvalidClientCertificates object is incremented.  If
  the session cannot be opened for any reason at all, including
  cryptographic verification failures, then the
  snmpTlstmSessionOpenErrors counter is incremented and processing
  stops.

  Servers that wish to support multiple principals at a particular port
  SHOULD make use of a (D)TLS extension that allows server-side
  principal selection like the Server Name Indication extension defined
  in Section 3.1 of [RFC4366].  Supporting this will allow, for
  example, sending notifications to a specific principal at a given TCP
  or UDP port.

5.4.  Closing a Session

  The TLS Transport Model provides the following primitive to close a
  session:

  statusInformation =
  closeSession(
  IN  tmSessionID        -- session ID of the session to be closed
  )

  The following describes the procedure to follow to close a session
  between a client and server.  This process is followed by any SNMP
  engine closing the corresponding SNMP session.

  1)  Increment either the snmpTlstmSessionClientCloses or the
      snmpTlstmSessionServerCloses counter as appropriate.

  2)  Look up the session using the tmSessionID.

  3)  If there is no open session associated with the tmSessionID, then
      closeSession processing is completed.




Hardaker                     Standards Track                   [Page 29]

RFC 6353              TLS Transport Model for SNMP             July 2011


  4)  Have (D)TLS close the specified connection.  This MUST include
      sending a close_notify TLS Alert to inform the other side that
      session cleanup may be performed.

6.  MIB Module Overview

  This MIB module provides management of the TLS Transport Model.  It
  defines needed textual conventions, statistical counters,
  notifications, and configuration infrastructure necessary for session
  establishment.  Example usage of the configuration tables can be
  found in Appendix A.

6.1.  Structure of the MIB Module

  Objects in this MIB module are arranged into subtrees.  Each subtree
  is organized as a set of related objects.  The overall structure and
  assignment of objects to their subtrees, and the intended purpose of
  each subtree, is shown below.

6.2.  Textual Conventions

  Generic and Common Textual Conventions used in this module can be
  found summarized at http://www.ops.ietf.org/mib-common-tcs.html.

  This module defines the following new Textual Conventions:

  o  A new TransportAddress format for describing (D)TLS connection
     addressing requirements.

  o  A certificate fingerprint allowing MIB module objects to
     generically refer to a stored X.509 certificate using a
     cryptographic hash as a reference pointer.

6.3.  Statistical Counters

  The SNMP-TLS-TM-MIB defines counters that provide network management
  stations with information about session usage and potential errors
  that a device may be experiencing.

6.4.  Configuration Tables

  The SNMP-TLS-TM-MIB defines configuration tables that an
  administrator can use for configuring a device for sending and
  receiving SNMP messages over (D)TLS.  In particular, there are MIB
  tables that extend the SNMP-TARGET-MIB for configuring (D)TLS
  certificate usage and a MIB table for mapping incoming (D)TLS client
  certificates to SNMPv3 tmSecurityNames.




Hardaker                     Standards Track                   [Page 30]

RFC 6353              TLS Transport Model for SNMP             July 2011


6.4.1.  Notifications

  The SNMP-TLS-TM-MIB defines notifications to alert management
  stations when a (D)TLS connection fails because a server's presented
  certificate did not meet an expected value
  (snmpTlstmServerCertificateUnknown) or because cryptographic
  validation failed (snmpTlstmServerInvalidCertificate).

6.5.  Relationship to Other MIB Modules

  Some management objects defined in other MIB modules are applicable
  to an entity implementing the TLS Transport Model.  In particular, it
  is assumed that an entity implementing the SNMP-TLS-TM-MIB will
  implement the SNMPv2-MIB [RFC3418], the SNMP-FRAMEWORK-MIB [RFC3411],
  the SNMP-TARGET-MIB [RFC3413], the SNMP-NOTIFICATION-MIB [RFC3413],
  and the SNMP-VIEW-BASED-ACM-MIB [RFC3415].

  The SNMP-TLS-TM-MIB module contained in this document is for managing
  TLS Transport Model information.

6.5.1.  MIB Modules Required for IMPORTS

  The SNMP-TLS-TM-MIB module imports items from SNMPv2-SMI [RFC2578],
  SNMPv2-TC [RFC2579], SNMP-FRAMEWORK-MIB [RFC3411], SNMP-TARGET-MIB
  [RFC3413], and SNMPv2-CONF [RFC2580].

7.  MIB Module Definition

SNMP-TLS-TM-MIB DEFINITIONS ::= BEGIN

IMPORTS
   MODULE-IDENTITY, OBJECT-TYPE,
   OBJECT-IDENTITY, mib-2, snmpDomains,
   Counter32, Unsigned32, Gauge32, NOTIFICATION-TYPE
     FROM SNMPv2-SMI                 -- RFC 2578 or any update thereof
   TEXTUAL-CONVENTION, TimeStamp, RowStatus, StorageType,
   AutonomousType
     FROM SNMPv2-TC                  -- RFC 2579 or any update thereof
   MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
     FROM SNMPv2-CONF                -- RFC 2580 or any update thereof
   SnmpAdminString
     FROM SNMP-FRAMEWORK-MIB         -- RFC 3411 or any update thereof
   snmpTargetParamsName, snmpTargetAddrName
     FROM SNMP-TARGET-MIB            -- RFC 3413 or any update thereof
   ;

snmpTlstmMIB MODULE-IDENTITY
   LAST-UPDATED "201107190000Z"



Hardaker                     Standards Track                   [Page 31]

RFC 6353              TLS Transport Model for SNMP             July 2011


   ORGANIZATION "ISMS Working Group"
   CONTACT-INFO "WG-EMail:   [email protected]
                 Subscribe:  [email protected]

                 Chairs:
                    Juergen Schoenwaelder
                    Jacobs University Bremen
                    Campus Ring 1
                    28725 Bremen
                    Germany
                    +49 421 200-3587
                    [email protected]

                    Russ Mundy
                    SPARTA, Inc.
                    7110 Samuel Morse Drive
                    Columbia, MD  21046
                    USA

                 Editor:
                    Wes Hardaker
                    SPARTA, Inc.
                    P.O. Box 382
                    Davis, CA  95617
                    USA
                    [email protected]
                 "

   DESCRIPTION  "
       The TLS Transport Model MIB

       Copyright (c) 2010-2011 IETF Trust and the persons identified
       as authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or
       without modification, is permitted pursuant to, and subject
       to the license terms contained in, the Simplified BSD License
       set forth in Section 4.c of the IETF Trust's Legal Provisions
       Relating to IETF Documents
       (http://trustee.ietf.org/license-info)."

      REVISION     "201107190000Z"
      DESCRIPTION  "This version of this MIB module is part of
                    RFC 6353; see the RFC itself for full legal
                    notices.  The only change was to introduce
                    new wording to reflect require changes for
                    IDNA addresses in the SnmpTLSAddress TC."




Hardaker                     Standards Track                   [Page 32]

RFC 6353              TLS Transport Model for SNMP             July 2011


      REVISION     "201005070000Z"
      DESCRIPTION  "This version of this MIB module is part of
                    RFC 5953; see the RFC itself for full legal
                    notices."

   ::= { mib-2 198 }

-- ************************************************
-- subtrees of the SNMP-TLS-TM-MIB
-- ************************************************

snmpTlstmNotifications OBJECT IDENTIFIER ::= { snmpTlstmMIB 0 }
snmpTlstmIdentities    OBJECT IDENTIFIER ::= { snmpTlstmMIB 1 }
snmpTlstmObjects       OBJECT IDENTIFIER ::= { snmpTlstmMIB 2 }
snmpTlstmConformance   OBJECT IDENTIFIER ::= { snmpTlstmMIB 3 }

-- ************************************************
-- snmpTlstmObjects - Objects
-- ************************************************

snmpTLSTCPDomain OBJECT-IDENTITY
   STATUS      current
   DESCRIPTION
       "The SNMP over TLS via TCP transport domain.  The
       corresponding transport address is of type SnmpTLSAddress.

       The securityName prefix to be associated with the
       snmpTLSTCPDomain is 'tls'.  This prefix may be used by
       security models or other components to identify which secure
       transport infrastructure authenticated a securityName."
   REFERENCE
     "RFC 2579: Textual Conventions for SMIv2"
   ::= { snmpDomains 8 }

snmpDTLSUDPDomain OBJECT-IDENTITY
   STATUS      current
   DESCRIPTION
       "The SNMP over DTLS via UDP transport domain.  The
       corresponding transport address is of type SnmpTLSAddress.

       The securityName prefix to be associated with the
       snmpDTLSUDPDomain is 'dtls'.  This prefix may be used by
       security models or other components to identify which secure
       transport infrastructure authenticated a securityName."
   REFERENCE
     "RFC 2579: Textual Conventions for SMIv2"
   ::= { snmpDomains 9 }




Hardaker                     Standards Track                   [Page 33]

RFC 6353              TLS Transport Model for SNMP             July 2011


SnmpTLSAddress ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "1a"
   STATUS       current
   DESCRIPTION
       "Represents an IPv4 address, an IPv6 address, or a
        US-ASCII-encoded hostname and port number.

       An IPv4 address must be in dotted decimal format followed by a
       colon ':' (US-ASCII character 0x3A) and a decimal port number
       in US-ASCII.

       An IPv6 address must be a colon-separated format (as described
       in RFC 5952), surrounded by square brackets ('[', US-ASCII
       character 0x5B, and ']', US-ASCII character 0x5D), followed by
       a colon ':' (US-ASCII character 0x3A) and a decimal port number
       in US-ASCII.

       A hostname is always in US-ASCII (as per RFC 1123);
       internationalized hostnames are encoded as A-labels as specified
       in  RFC 5890.  The hostname is followed by a
       colon ':' (US-ASCII character 0x3A) and a decimal port number
       in US-ASCII.  The name SHOULD be fully qualified whenever
       possible.

       Values of this textual convention may not be directly usable
       as transport-layer addressing information, and may require
       run-time resolution.  As such, applications that write them
       must be prepared for handling errors if such values are not
       supported, or cannot be resolved (if resolution occurs at the
       time of the management operation).

       The DESCRIPTION clause of TransportAddress objects that may
       have SnmpTLSAddress values must fully describe how (and
       when) such names are to be resolved to IP addresses and vice
       versa.

       This textual convention SHOULD NOT be used directly in object
       definitions since it restricts addresses to a specific
       format.  However, if it is used, it MAY be used either on its
       own or in conjunction with TransportAddressType or
       TransportDomain as a pair.

       When this textual convention is used as a syntax of an index
       object, there may be issues with the limit of 128
       sub-identifiers specified in SMIv2 (STD 58).  It is RECOMMENDED
       that all MIB documents using this textual convention make
       explicit any limitations on index component lengths that
       management software must observe.  This may be done either by



Hardaker                     Standards Track                   [Page 34]

RFC 6353              TLS Transport Model for SNMP             July 2011


       including SIZE constraints on the index components or by
       specifying applicable constraints in the conceptual row
       DESCRIPTION clause or in the surrounding documentation."
   REFERENCE
     "RFC 1123: Requirements for Internet Hosts - Application and
                Support
      RFC 5890: Internationalized Domain Names for Applications (IDNA):
                Definitions and Document Framework
      RFC 5952: A Recommendation for IPv6 Address Text Representation
     "
   SYNTAX       OCTET STRING (SIZE (1..255))

SnmpTLSFingerprint ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "1x:1x"
   STATUS       current
   DESCRIPTION
      "A fingerprint value that can be used to uniquely reference
      other data of potentially arbitrary length.

      An SnmpTLSFingerprint value is composed of a 1-octet hashing
      algorithm identifier followed by the fingerprint value.  The
      octet value encoded is taken from the IANA TLS HashAlgorithm
      Registry (RFC 5246).  The remaining octets are filled using the
      results of the hashing algorithm.

      This TEXTUAL-CONVENTION allows for a zero-length (blank)
      SnmpTLSFingerprint value for use in tables where the
      fingerprint value may be optional.  MIB definitions or
      implementations may refuse to accept a zero-length value as
      appropriate."
      REFERENCE "RFC 5246: The Transport Layer
                 Security (TLS) Protocol Version 1.2
                 http://www.iana.org/assignments/tls-parameters/
      "
   SYNTAX OCTET STRING (SIZE (0..255))

-- Identities for use in the snmpTlstmCertToTSNTable

snmpTlstmCertToTSNMIdentities OBJECT IDENTIFIER
   ::= { snmpTlstmIdentities 1 }

snmpTlstmCertSpecified OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "Directly specifies the tmSecurityName to be used for
                 this certificate.  The value of the tmSecurityName
                 to use is specified in the snmpTlstmCertToTSNData
                 column.  The snmpTlstmCertToTSNData column must
                 contain a non-zero length SnmpAdminString compliant



Hardaker                     Standards Track                   [Page 35]

RFC 6353              TLS Transport Model for SNMP             July 2011


                 value or the mapping described in this row must be
                 considered a failure."
   ::= { snmpTlstmCertToTSNMIdentities 1 }

snmpTlstmCertSANRFC822Name OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "Maps a subjectAltName's rfc822Name to a
                 tmSecurityName.  The local part of the rfc822Name is
                 passed unaltered but the host-part of the name must
                 be passed in lowercase.  This mapping results in a
                 1:1 correspondence between equivalent subjectAltName
                 rfc822Name values and tmSecurityName values except
                 that the host-part of the name MUST be passed in
                 lowercase.

                 Example rfc822Name Field:  [email protected]
                 is mapped to tmSecurityName: [email protected]."
   ::= { snmpTlstmCertToTSNMIdentities 2 }

snmpTlstmCertSANDNSName OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "Maps a subjectAltName's dNSName to a
                 tmSecurityName after first converting it to all
                 lowercase (RFC 5280 does not specify converting to
                 lowercase so this involves an extra step).  This
                 mapping results in a 1:1 correspondence between
                 subjectAltName dNSName values and the tmSecurityName
                 values."
   REFERENCE "RFC 5280 - Internet X.509 Public Key Infrastructure
                        Certificate and Certificate Revocation
                        List (CRL) Profile."
   ::= { snmpTlstmCertToTSNMIdentities 3 }

snmpTlstmCertSANIpAddress OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "Maps a subjectAltName's iPAddress to a
                 tmSecurityName by transforming the binary encoded
                 address as follows:

                 1) for IPv4, the value is converted into a
                    decimal-dotted quad address (e.g., '192.0.2.1').

                 2) for IPv6 addresses, the value is converted into a
                    32-character all lowercase hexadecimal string
                    without any colon separators.






Hardaker                     Standards Track                   [Page 36]

RFC 6353              TLS Transport Model for SNMP             July 2011


                 This mapping results in a 1:1 correspondence between
                 subjectAltName iPAddress values and the
                 tmSecurityName values.

                 The resulting length of an encoded IPv6 address is
                 the maximum length supported by the View-Based
                 Access Control Model (VACM).  Using both the
                 Transport Security Model's support for transport
                 prefixes (see the SNMP-TSM-MIB's
                 snmpTsmConfigurationUsePrefix object for details)
                 will result in securityName lengths that exceed what
                 VACM can handle."
   ::= { snmpTlstmCertToTSNMIdentities 4 }

snmpTlstmCertSANAny OBJECT-IDENTITY
   STATUS        current
   DESCRIPTION  "Maps any of the following fields using the
                 corresponding mapping algorithms:

                 |------------+----------------------------|
                 | Type       | Algorithm                  |
                 |------------+----------------------------|
                 | rfc822Name | snmpTlstmCertSANRFC822Name |
                 | dNSName    | snmpTlstmCertSANDNSName    |
                 | iPAddress  | snmpTlstmCertSANIpAddress  |
                 |------------+----------------------------|

                 The first matching subjectAltName value found in the
                 certificate of the above types MUST be used when
                 deriving the tmSecurityName.  The mapping algorithm
                 specified in the 'Algorithm' column MUST be used to
                 derive the tmSecurityName.

                 This mapping results in a 1:1 correspondence between
                 subjectAltName values and tmSecurityName values.  The
                 three sub-mapping algorithms produced by this
                 combined algorithm cannot produce conflicting
                 results between themselves."
   ::= { snmpTlstmCertToTSNMIdentities 5 }

snmpTlstmCertCommonName OBJECT-IDENTITY
   STATUS        current

   DESCRIPTION  "Maps a certificate's CommonName to a tmSecurityName
                 after converting it to a UTF-8 encoding.  The usage
                 of CommonNames is deprecated and users are
                 encouraged to use subjectAltName mapping methods
                 instead.  This mapping results in a 1:1



Hardaker                     Standards Track                   [Page 37]

RFC 6353              TLS Transport Model for SNMP             July 2011


                 correspondence between certificate CommonName values
                 and tmSecurityName values."
   ::= { snmpTlstmCertToTSNMIdentities 6 }

-- The snmpTlstmSession Group

snmpTlstmSession           OBJECT IDENTIFIER ::= { snmpTlstmObjects 1 }

snmpTlstmSessionOpens  OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "The number of times an openSession() request has been executed
      as a (D)TLS client, regardless of whether it succeeded or
      failed."
   ::= { snmpTlstmSession 1 }

snmpTlstmSessionClientCloses  OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
       "The number of times a closeSession() request has been
       executed as a (D)TLS client, regardless of whether it
       succeeded or failed."
   ::= { snmpTlstmSession 2 }

snmpTlstmSessionOpenErrors  OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
       "The number of times an openSession() request failed to open a
       session as a (D)TLS client, for any reason."
   ::= { snmpTlstmSession 3 }

snmpTlstmSessionAccepts  OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
      "The number of times a (D)TLS server has accepted a new
      connection from a client and has received at least one SNMP
      message through it."
   ::= { snmpTlstmSession 4 }





Hardaker                     Standards Track                   [Page 38]

RFC 6353              TLS Transport Model for SNMP             July 2011


snmpTlstmSessionServerCloses  OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
       "The number of times a closeSession() request has been
       executed as a (D)TLS server, regardless of whether it
       succeeded or failed."
   ::= { snmpTlstmSession 5 }

snmpTlstmSessionNoSessions  OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
       "The number of times an outgoing message was dropped because
       the session associated with the passed tmStateReference was no
       longer (or was never) available."
   ::= { snmpTlstmSession 6 }

snmpTlstmSessionInvalidClientCertificates OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
       "The number of times an incoming session was not established
       on a (D)TLS server because the presented client certificate
       was invalid.  Reasons for invalidation include, but are not
       limited to, cryptographic validation failures or lack of a
       suitable mapping row in the snmpTlstmCertToTSNTable."
   ::= { snmpTlstmSession 7 }

snmpTlstmSessionUnknownServerCertificate OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
       "The number of times an outgoing session was not established
        on a (D)TLS client because the server certificate presented
        by an SNMP over (D)TLS server was invalid because no
        configured fingerprint or Certification Authority (CA) was
        acceptable to validate it.
        This may result because there was no entry in the
        snmpTlstmAddrTable or because no path could be found to a
        known CA."
   ::= { snmpTlstmSession 8 }





Hardaker                     Standards Track                   [Page 39]

RFC 6353              TLS Transport Model for SNMP             July 2011


snmpTlstmSessionInvalidServerCertificates OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
       "The number of times an outgoing session was not established
        on a (D)TLS client because the server certificate presented
        by an SNMP over (D)TLS server could not be validated even if
        the fingerprint or expected validation path was known.  That
        is, a cryptographic validation error occurred during
        certificate validation processing.

       Reasons for invalidation include, but are not
       limited to, cryptographic validation failures."
   ::= { snmpTlstmSession 9 }

snmpTlstmSessionInvalidCaches OBJECT-TYPE
   SYNTAX       Counter32
   MAX-ACCESS   read-only
   STATUS       current
   DESCRIPTION
       "The number of outgoing messages dropped because the
       tmStateReference referred to an invalid cache."
   ::= { snmpTlstmSession 10 }

-- Configuration Objects

snmpTlstmConfig             OBJECT IDENTIFIER ::= { snmpTlstmObjects 2 }

-- Certificate mapping

snmpTlstmCertificateMapping OBJECT IDENTIFIER ::= { snmpTlstmConfig 1 }

snmpTlstmCertToTSNCount OBJECT-TYPE
   SYNTAX      Gauge32
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
       "A count of the number of entries in the
       snmpTlstmCertToTSNTable."
   ::= { snmpTlstmCertificateMapping 1 }

snmpTlstmCertToTSNTableLastChanged OBJECT-TYPE
   SYNTAX      TimeStamp
   MAX-ACCESS  read-only
   STATUS      current





Hardaker                     Standards Track                   [Page 40]

RFC 6353              TLS Transport Model for SNMP             July 2011


   DESCRIPTION
       "The value of sysUpTime.0 when the snmpTlstmCertToTSNTable was
       last modified through any means, or 0 if it has not been
       modified since the command responder was started."
   ::= { snmpTlstmCertificateMapping 2 }

snmpTlstmCertToTSNTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF SnmpTlstmCertToTSNEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "This table is used by a (D)TLS server to map the (D)TLS
       client's presented X.509 certificate to a tmSecurityName.

       On an incoming (D)TLS/SNMP connection, the client's presented
       certificate must either be validated based on an established
       trust anchor, or it must directly match a fingerprint in this
       table.  This table does not provide any mechanisms for
       configuring the trust anchors; the transfer of any needed
       trusted certificates for path validation is expected to occur
       through an out-of-band transfer.

       Once the certificate has been found acceptable (either by path
       validation or directly matching a fingerprint in this table),
       this table is consulted to determine the appropriate
       tmSecurityName to identify with the remote connection.  This
       is done by considering each active row from this table in
       prioritized order according to its snmpTlstmCertToTSNID value.
       Each row's snmpTlstmCertToTSNFingerprint value determines
       whether the row is a match for the incoming connection:

           1) If the row's snmpTlstmCertToTSNFingerprint value
              identifies the presented certificate, then consider the
              row as a successful match.

           2) If the row's snmpTlstmCertToTSNFingerprint value
              identifies a locally held copy of a trusted CA
              certificate and that CA certificate was used to
              validate the path to the presented certificate, then
              consider the row as a successful match.

       Once a matching row has been found, the
       snmpTlstmCertToTSNMapType value can be used to determine how
       the tmSecurityName to associate with the session should be
       determined.  See the snmpTlstmCertToTSNMapType column's
       DESCRIPTION for details on determining the tmSecurityName
       value.  If it is impossible to determine a tmSecurityName from
       the row's data combined with the data presented in the



Hardaker                     Standards Track                   [Page 41]

RFC 6353              TLS Transport Model for SNMP             July 2011


       certificate, then additional rows MUST be searched looking for
       another potential match.  If a resulting tmSecurityName mapped
       from a given row is not compatible with the needed
       requirements of a tmSecurityName (e.g., VACM imposes a
       32-octet-maximum length and the certificate derived
       securityName could be longer), then it must be considered an
       invalid match and additional rows MUST be searched looking for
       another potential match.

       If no matching and valid row can be found, the connection MUST
       be closed and SNMP messages MUST NOT be accepted over it.

       Missing values of snmpTlstmCertToTSNID are acceptable and
       implementations should continue to the next highest numbered
       row.  It is recommended that administrators skip index values
       to leave room for the insertion of future rows (for example,
       use values of 10 and 20 when creating initial rows).

       Users are encouraged to make use of certificates with
       subjectAltName fields that can be used as tmSecurityNames so
       that a single root CA certificate can allow all child
       certificate's subjectAltName to map directly to a
       tmSecurityName via a 1:1 transformation.  However, this table
       is flexible to allow for situations where existing deployed
       certificate infrastructures do not provide adequate
       subjectAltName values for use as tmSecurityNames.
       Certificates may also be mapped to tmSecurityNames using the
       CommonName portion of the Subject field.  However, the usage
       of the CommonName field is deprecated and thus this usage is
       NOT RECOMMENDED.  Direct mapping from each individual
       certificate fingerprint to a tmSecurityName is also possible
       but requires one entry in the table per tmSecurityName and
       requires more management operations to completely configure a
       device."
   ::= { snmpTlstmCertificateMapping 3 }

snmpTlstmCertToTSNEntry OBJECT-TYPE
   SYNTAX      SnmpTlstmCertToTSNEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "A row in the snmpTlstmCertToTSNTable that specifies a mapping
       for an incoming (D)TLS certificate to a tmSecurityName to use
       for a connection."
   INDEX   { snmpTlstmCertToTSNID }
   ::= { snmpTlstmCertToTSNTable 1 }





Hardaker                     Standards Track                   [Page 42]

RFC 6353              TLS Transport Model for SNMP             July 2011


SnmpTlstmCertToTSNEntry ::= SEQUENCE {
   snmpTlstmCertToTSNID           Unsigned32,
   snmpTlstmCertToTSNFingerprint  SnmpTLSFingerprint,
   snmpTlstmCertToTSNMapType      AutonomousType,
   snmpTlstmCertToTSNData         OCTET STRING,
   snmpTlstmCertToTSNStorageType  StorageType,
   snmpTlstmCertToTSNRowStatus    RowStatus
}

snmpTlstmCertToTSNID OBJECT-TYPE
   SYNTAX      Unsigned32 (1..4294967295)
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "A unique, prioritized index for the given entry.  Lower
       numbers indicate a higher priority."
   ::= { snmpTlstmCertToTSNEntry 1 }

snmpTlstmCertToTSNFingerprint OBJECT-TYPE
   SYNTAX      SnmpTLSFingerprint (SIZE(1..255))
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "A cryptographic hash of an X.509 certificate.  The results of
       a successful matching fingerprint to either the trusted CA in
       the certificate validation path or to the certificate itself
       is dictated by the snmpTlstmCertToTSNMapType column."
   ::= { snmpTlstmCertToTSNEntry 2 }

snmpTlstmCertToTSNMapType OBJECT-TYPE
   SYNTAX      AutonomousType
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "Specifies the mapping type for deriving a tmSecurityName from
       a certificate.  Details for mapping of a particular type SHALL
       be specified in the DESCRIPTION clause of the OBJECT-IDENTITY
       that describes the mapping.  If a mapping succeeds it will
       return a tmSecurityName for use by the TLSTM model and
       processing stops.

       If the resulting mapped value is not compatible with the
       needed requirements of a tmSecurityName (e.g., VACM imposes a
       32-octet-maximum length and the certificate derived
       securityName could be longer), then future rows MUST be
       searched for additional snmpTlstmCertToTSNFingerprint matches
       to look for a mapping that succeeds.




Hardaker                     Standards Track                   [Page 43]

RFC 6353              TLS Transport Model for SNMP             July 2011


       Suitable values for assigning to this object that are defined
       within the SNMP-TLS-TM-MIB can be found in the
       snmpTlstmCertToTSNMIdentities portion of the MIB tree."
   DEFVAL { snmpTlstmCertSpecified }
   ::= { snmpTlstmCertToTSNEntry 3 }

snmpTlstmCertToTSNData OBJECT-TYPE
   SYNTAX      OCTET STRING (SIZE(0..1024))
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "Auxiliary data used as optional configuration information for
       a given mapping specified by the snmpTlstmCertToTSNMapType
       column.  Only some mapping systems will make use of this
       column.  The value in this column MUST be ignored for any
       mapping type that does not require data present in this
       column."
   DEFVAL { "" }
   ::= { snmpTlstmCertToTSNEntry 4 }

snmpTlstmCertToTSNStorageType OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
       "The storage type for this conceptual row.  Conceptual rows
       having the value 'permanent' need not allow write-access to
       any columnar objects in the row."
   DEFVAL      { nonVolatile }
   ::= { snmpTlstmCertToTSNEntry 5 }

snmpTlstmCertToTSNRowStatus OBJECT-TYPE
   SYNTAX      RowStatus
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "The status of this conceptual row.  This object may be used
       to create or remove rows from this table.

       To create a row in this table, an administrator must set this
       object to either createAndGo(4) or createAndWait(5).

       Until instances of all corresponding columns are appropriately
       configured, the value of the corresponding instance of the
       snmpTlstmParamsRowStatus column is notReady(3).

       In particular, a newly created row cannot be made active until
       the corresponding snmpTlstmCertToTSNFingerprint,



Hardaker                     Standards Track                   [Page 44]

RFC 6353              TLS Transport Model for SNMP             July 2011


       snmpTlstmCertToTSNMapType, and snmpTlstmCertToTSNData columns
       have been set.

       The following objects may not be modified while the
       value of this object is active(1):
           - snmpTlstmCertToTSNFingerprint
           - snmpTlstmCertToTSNMapType
           - snmpTlstmCertToTSNData
       An attempt to set these objects while the value of
       snmpTlstmParamsRowStatus is active(1) will result in
       an inconsistentValue error."
   ::= { snmpTlstmCertToTSNEntry 6 }

-- Maps tmSecurityNames to certificates for use by the SNMP-TARGET-MIB

snmpTlstmParamsCount OBJECT-TYPE
   SYNTAX      Gauge32
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
       "A count of the number of entries in the snmpTlstmParamsTable."
   ::= { snmpTlstmCertificateMapping 4 }

snmpTlstmParamsTableLastChanged OBJECT-TYPE
   SYNTAX      TimeStamp
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
       "The value of sysUpTime.0 when the snmpTlstmParamsTable
       was last modified through any means, or 0 if it has not been
       modified since the command responder was started."
   ::= { snmpTlstmCertificateMapping 5 }

snmpTlstmParamsTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF SnmpTlstmParamsEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "This table is used by a (D)TLS client when a (D)TLS
       connection is being set up using an entry in the
       SNMP-TARGET-MIB.  It extends the SNMP-TARGET-MIB's
       snmpTargetParamsTable with a fingerprint of a certificate to
       use when establishing such a (D)TLS connection."
   ::= { snmpTlstmCertificateMapping 6 }

snmpTlstmParamsEntry OBJECT-TYPE
   SYNTAX      SnmpTlstmParamsEntry
   MAX-ACCESS  not-accessible



Hardaker                     Standards Track                   [Page 45]

RFC 6353              TLS Transport Model for SNMP             July 2011


   STATUS      current
   DESCRIPTION
       "A conceptual row containing a fingerprint hash of a locally
       held certificate for a given snmpTargetParamsEntry.  The
       values in this row should be ignored if the connection that
       needs to be established, as indicated by the SNMP-TARGET-MIB
       infrastructure, is not a certificate and (D)TLS based
       connection.  The connection SHOULD NOT be established if the
       certificate fingerprint stored in this entry does not point to
       a valid locally held certificate or if it points to an
       unusable certificate (such as might happen when the
       certificate's expiration date has been reached)."
   INDEX    { IMPLIED snmpTargetParamsName }
   ::= { snmpTlstmParamsTable 1 }

SnmpTlstmParamsEntry ::= SEQUENCE {
   snmpTlstmParamsClientFingerprint SnmpTLSFingerprint,
   snmpTlstmParamsStorageType       StorageType,
   snmpTlstmParamsRowStatus         RowStatus
}

snmpTlstmParamsClientFingerprint OBJECT-TYPE
   SYNTAX      SnmpTLSFingerprint
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "This object stores the hash of the public portion of a
       locally held X.509 certificate.  The X.509 certificate, its
       public key, and the corresponding private key will be used
       when initiating a (D)TLS connection as a (D)TLS client."
   ::= { snmpTlstmParamsEntry 1 }

snmpTlstmParamsStorageType OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
       "The storage type for this conceptual row.  Conceptual rows
       having the value 'permanent' need not allow write-access to
       any columnar objects in the row."
   DEFVAL      { nonVolatile }
   ::= { snmpTlstmParamsEntry 2 }

snmpTlstmParamsRowStatus OBJECT-TYPE
   SYNTAX      RowStatus
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION



Hardaker                     Standards Track                   [Page 46]

RFC 6353              TLS Transport Model for SNMP             July 2011


       "The status of this conceptual row.  This object may be used
       to create or remove rows from this table.

       To create a row in this table, an administrator must set this
       object to either createAndGo(4) or createAndWait(5).

       Until instances of all corresponding columns are appropriately
       configured, the value of the corresponding instance of the
       snmpTlstmParamsRowStatus column is notReady(3).

       In particular, a newly created row cannot be made active until
       the corresponding snmpTlstmParamsClientFingerprint column has
       been set.

       The snmpTlstmParamsClientFingerprint object may not be modified
       while the value of this object is active(1).

       An attempt to set these objects while the value of
       snmpTlstmParamsRowStatus is active(1) will result in
       an inconsistentValue error."
   ::= { snmpTlstmParamsEntry 3 }

snmpTlstmAddrCount OBJECT-TYPE
   SYNTAX      Gauge32
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
       "A count of the number of entries in the snmpTlstmAddrTable."
   ::= { snmpTlstmCertificateMapping 7 }

snmpTlstmAddrTableLastChanged OBJECT-TYPE
   SYNTAX      TimeStamp
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
       "The value of sysUpTime.0 when the snmpTlstmAddrTable
       was last modified through any means, or 0 if it has not been
       modified since the command responder was started."
   ::= { snmpTlstmCertificateMapping 8 }

snmpTlstmAddrTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF SnmpTlstmAddrEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "This table is used by a (D)TLS client when a (D)TLS
       connection is being set up using an entry in the
       SNMP-TARGET-MIB.  It extends the SNMP-TARGET-MIB's



Hardaker                     Standards Track                   [Page 47]

RFC 6353              TLS Transport Model for SNMP             July 2011


       snmpTargetAddrTable so that the client can verify that the
       correct server has been reached.  This verification can use
       either a certificate fingerprint, or an identity
       authenticated via certification path validation.

       If there is an active row in this table corresponding to the
       entry in the SNMP-TARGET-MIB that was used to establish the
       connection, and the row's snmpTlstmAddrServerFingerprint
       column has non-empty value, then the server's presented
       certificate is compared with the
       snmpTlstmAddrServerFingerprint value (and the
       snmpTlstmAddrServerIdentity column is ignored).  If the
       fingerprint matches, the verification has succeeded.  If the
       fingerprint does not match, then the connection MUST be
       closed.

       If the server's presented certificate has passed
       certification path validation [RFC5280] to a configured
       trust anchor, and an active row exists with a zero-length
       snmpTlstmAddrServerFingerprint value, then the
       snmpTlstmAddrServerIdentity column contains the expected
       host name.  This expected host name is then compared against
       the server's certificate as follows:

         - Implementations MUST support matching the expected host
         name against a dNSName in the subjectAltName extension
         field and MAY support checking the name against the
         CommonName portion of the subject distinguished name.

         - The '*' (ASCII 0x2a) wildcard character is allowed in the
         dNSName of the subjectAltName extension (and in common
         name, if used to store the host name), but only as the
         left-most (least significant) DNS label in that value.
         This wildcard matches any left-most DNS label in the
         server name.  That is, the subject *.example.com matches
         the server names a.example.com and b.example.com, but does
         not match example.com or a.b.example.com.  Implementations
         MUST support wildcards in certificates as specified above,
         but MAY provide a configuration option to disable them.

         - If the locally configured name is an internationalized
         domain name, conforming implementations MUST convert it to
         the ASCII Compatible Encoding (ACE) format for performing
         comparisons, as specified in Section 7 of [RFC5280].

       If the expected host name fails these conditions then the
       connection MUST be closed.




Hardaker                     Standards Track                   [Page 48]

RFC 6353              TLS Transport Model for SNMP             July 2011


       If there is no row in this table corresponding to the entry
       in the SNMP-TARGET-MIB and the server can be authorized by
       another, implementation-dependent means, then the connection
       MAY still proceed."

   ::= { snmpTlstmCertificateMapping 9 }

snmpTlstmAddrEntry OBJECT-TYPE
   SYNTAX      SnmpTlstmAddrEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
       "A conceptual row containing a copy of a certificate's
       fingerprint for a given snmpTargetAddrEntry.  The values in
       this row should be ignored if the connection that needs to be
       established, as indicated by the SNMP-TARGET-MIB
       infrastructure, is not a (D)TLS based connection.  If an
       snmpTlstmAddrEntry exists for a given snmpTargetAddrEntry, then
       the presented server certificate MUST match or the connection
       MUST NOT be established.  If a row in this table does not
       exist to match an snmpTargetAddrEntry row, then the connection
       SHOULD still proceed if some other certificate validation path
       algorithm (e.g., RFC 5280) can be used."
   INDEX    { IMPLIED snmpTargetAddrName }
   ::= { snmpTlstmAddrTable 1 }

SnmpTlstmAddrEntry ::= SEQUENCE {
   snmpTlstmAddrServerFingerprint    SnmpTLSFingerprint,
   snmpTlstmAddrServerIdentity       SnmpAdminString,
   snmpTlstmAddrStorageType          StorageType,
   snmpTlstmAddrRowStatus            RowStatus
}

snmpTlstmAddrServerFingerprint OBJECT-TYPE
   SYNTAX      SnmpTLSFingerprint
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "A cryptographic hash of a public X.509 certificate.  This
       object should store the hash of the public X.509 certificate
       that the remote server should present during the (D)TLS
       connection setup.  The fingerprint of the presented
       certificate and this hash value MUST match exactly or the
       connection MUST NOT be established."
   DEFVAL { "" }
   ::= { snmpTlstmAddrEntry 1 }





Hardaker                     Standards Track                   [Page 49]

RFC 6353              TLS Transport Model for SNMP             July 2011


snmpTlstmAddrServerIdentity OBJECT-TYPE
   SYNTAX      SnmpAdminString
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "The reference identity to check against the identity
       presented by the remote system."
   DEFVAL { "" }
   ::= { snmpTlstmAddrEntry 2 }

snmpTlstmAddrStorageType OBJECT-TYPE
   SYNTAX       StorageType
   MAX-ACCESS   read-create
   STATUS       current
   DESCRIPTION
       "The storage type for this conceptual row.  Conceptual rows
       having the value 'permanent' need not allow write-access to
       any columnar objects in the row."
   DEFVAL      { nonVolatile }
   ::= { snmpTlstmAddrEntry 3 }


snmpTlstmAddrRowStatus OBJECT-TYPE
   SYNTAX      RowStatus
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
       "The status of this conceptual row.  This object may be used
       to create or remove rows from this table.

       To create a row in this table, an administrator must set this
       object to either createAndGo(4) or createAndWait(5).

       Until instances of all corresponding columns are
       appropriately configured, the value of the
       corresponding instance of the snmpTlstmAddrRowStatus
       column is notReady(3).

       In particular, a newly created row cannot be made active until
       the corresponding snmpTlstmAddrServerFingerprint column has been
       set.

       Rows MUST NOT be active if the snmpTlstmAddrServerFingerprint
       column is blank and the snmpTlstmAddrServerIdentity is set to
       '*' since this would insecurely accept any presented
       certificate.





Hardaker                     Standards Track                   [Page 50]

RFC 6353              TLS Transport Model for SNMP             July 2011


       The snmpTlstmAddrServerFingerprint object may not be modified
       while the value of this object is active(1).

       An attempt to set these objects while the value of
       snmpTlstmAddrRowStatus is active(1) will result in
       an inconsistentValue error."
   ::= { snmpTlstmAddrEntry 4 }

-- ************************************************
--  snmpTlstmNotifications - Notifications Information
-- ************************************************

snmpTlstmServerCertificateUnknown NOTIFICATION-TYPE
   OBJECTS { snmpTlstmSessionUnknownServerCertificate }
   STATUS  current
   DESCRIPTION
       "Notification that the server certificate presented by an SNMP
        over (D)TLS server was invalid because no configured
        fingerprint or CA was acceptable to validate it.  This may be
        because there was no entry in the snmpTlstmAddrTable or
        because no path could be found to known Certification
        Authority.

        To avoid notification loops, this notification MUST NOT be
        sent to servers that themselves have triggered the
        notification."
   ::= { snmpTlstmNotifications 1 }

snmpTlstmServerInvalidCertificate NOTIFICATION-TYPE
   OBJECTS { snmpTlstmAddrServerFingerprint,
             snmpTlstmSessionInvalidServerCertificates}
   STATUS  current
   DESCRIPTION
       "Notification that the server certificate presented by an SNMP
        over (D)TLS server could not be validated even if the
        fingerprint or expected validation path was known.  That is, a
        cryptographic validation error occurred during certificate
        validation processing.

        To avoid notification loops, this notification MUST NOT be
        sent to servers that themselves have triggered the
        notification."
   ::= { snmpTlstmNotifications 2 }

-- ************************************************
-- snmpTlstmCompliances - Conformance Information
-- ************************************************




Hardaker                     Standards Track                   [Page 51]

RFC 6353              TLS Transport Model for SNMP             July 2011


snmpTlstmCompliances OBJECT IDENTIFIER ::= { snmpTlstmConformance 1 }

snmpTlstmGroups OBJECT IDENTIFIER ::= { snmpTlstmConformance 2 }

-- ************************************************
-- Compliance statements
-- ************************************************

snmpTlstmCompliance MODULE-COMPLIANCE
   STATUS      current
   DESCRIPTION
       "The compliance statement for SNMP engines that support the
       SNMP-TLS-TM-MIB"
   MODULE
       MANDATORY-GROUPS { snmpTlstmStatsGroup,
                          snmpTlstmIncomingGroup,
                          snmpTlstmOutgoingGroup,
                          snmpTlstmNotificationGroup }
   ::= { snmpTlstmCompliances 1 }

-- ************************************************
-- Units of conformance
-- ************************************************
snmpTlstmStatsGroup OBJECT-GROUP
   OBJECTS {
       snmpTlstmSessionOpens,
       snmpTlstmSessionClientCloses,
       snmpTlstmSessionOpenErrors,
       snmpTlstmSessionAccepts,
       snmpTlstmSessionServerCloses,
       snmpTlstmSessionNoSessions,
       snmpTlstmSessionInvalidClientCertificates,
       snmpTlstmSessionUnknownServerCertificate,
       snmpTlstmSessionInvalidServerCertificates,
       snmpTlstmSessionInvalidCaches
   }
   STATUS      current
   DESCRIPTION
       "A collection of objects for maintaining
       statistical information of an SNMP engine that
       implements the SNMP TLS Transport Model."
   ::= { snmpTlstmGroups 1 }

snmpTlstmIncomingGroup OBJECT-GROUP
   OBJECTS {
       snmpTlstmCertToTSNCount,
       snmpTlstmCertToTSNTableLastChanged,
       snmpTlstmCertToTSNFingerprint,



Hardaker                     Standards Track                   [Page 52]

RFC 6353              TLS Transport Model for SNMP             July 2011


       snmpTlstmCertToTSNMapType,
       snmpTlstmCertToTSNData,
       snmpTlstmCertToTSNStorageType,
       snmpTlstmCertToTSNRowStatus
   }
   STATUS      current
   DESCRIPTION
       "A collection of objects for maintaining
       incoming connection certificate mappings to
       tmSecurityNames of an SNMP engine that implements the
       SNMP TLS Transport Model."
   ::= { snmpTlstmGroups 2 }

snmpTlstmOutgoingGroup OBJECT-GROUP
   OBJECTS {
       snmpTlstmParamsCount,
       snmpTlstmParamsTableLastChanged,
       snmpTlstmParamsClientFingerprint,
       snmpTlstmParamsStorageType,
       snmpTlstmParamsRowStatus,
       snmpTlstmAddrCount,
       snmpTlstmAddrTableLastChanged,
       snmpTlstmAddrServerFingerprint,
       snmpTlstmAddrServerIdentity,
       snmpTlstmAddrStorageType,
       snmpTlstmAddrRowStatus
   }
   STATUS      current
   DESCRIPTION
       "A collection of objects for maintaining
       outgoing connection certificates to use when opening
       connections as a result of SNMP-TARGET-MIB settings."
   ::= { snmpTlstmGroups 3 }

snmpTlstmNotificationGroup NOTIFICATION-GROUP
   NOTIFICATIONS {
       snmpTlstmServerCertificateUnknown,
       snmpTlstmServerInvalidCertificate
   }
   STATUS current
   DESCRIPTION
       "Notifications"
   ::= { snmpTlstmGroups 4 }

END






Hardaker                     Standards Track                   [Page 53]

RFC 6353              TLS Transport Model for SNMP             July 2011


8.  Operational Considerations

  This section discusses various operational aspects of deploying
  TLSTM.

8.1.  Sessions

  A session is discussed throughout this document as meaning a security
  association between two TLSTM instances.  State information for the
  sessions are maintained in each TLSTM implementation and this
  information is created and destroyed as sessions are opened and
  closed.  A "broken" session (one side up and one side down) can
  result if one side of a session is brought down abruptly (i.e.,
  reboot, power outage, etc.).  Whenever possible, implementations
  SHOULD provide graceful session termination through the use of TLS
  disconnect messages.  Implementations SHOULD also have a system in
  place for detecting "broken" sessions through the use of heartbeats
  [HEARTBEAT] or other detection mechanisms.

  Implementations SHOULD limit the lifetime of established sessions
  depending on the algorithms used for generation of the master session
  secret, the privacy and integrity algorithms used to protect
  messages, the environment of the session, the amount of data
  transferred, and the sensitivity of the data.

8.2.  Notification Receiver Credential Selection

  When an SNMP engine needs to establish an outgoing session for
  notifications, the snmpTargetParamsTable includes an entry for the
  snmpTargetParamsSecurityName of the target.  Servers that wish to
  support multiple principals at a particular port SHOULD make use of
  the Server Name Indication extension defined in Section 3.1 of
  [RFC4366].  Without the Server Name Indication the receiving SNMP
  engine (server) will not know which (D)TLS certificate to offer to
  the client so that the tmSecurityName identity-authentication will be
  successful.

  Another solution is to maintain a one-to-one mapping between
  certificates and incoming ports for notification receivers.  This can
  be handled at the notification originator by configuring the
  snmpTargetAddrTable (snmpTargetAddrTDomain and
  snmpTargetAddrTAddress) and requiring the receiving SNMP engine to
  monitor multiple incoming static ports based on which principals are
  capable of receiving notifications.

  Implementations MAY also choose to designate a single Notification
  Receiver Principal to receive all incoming notifications or select an




Hardaker                     Standards Track                   [Page 54]

RFC 6353              TLS Transport Model for SNMP             July 2011


  implementation specific method of selecting a server certificate to
  present to clients.

8.3.  contextEngineID Discovery

  SNMPv3 requires that an application know the identifier
  (snmpEngineID) of the remote SNMP protocol engine in order to
  retrieve or manipulate objects maintained on the remote SNMP entity.

  [RFC5343] introduces a well-known localEngineID and a discovery
  mechanism that can be used to learn the snmpEngineID of a remote SNMP
  protocol engine.  Implementations are RECOMMENDED to support and use
  the contextEngineID discovery mechanism defined in [RFC5343].

8.4.  Transport Considerations

  This document defines how SNMP messages can be transmitted over the
  TLS- and DTLS-based protocols.  Each of these protocols is
  additionally based on other transports (TCP and UDP).  These two base
  protocols also have operational considerations that must be taken
  into consideration when selecting a (D)TLS-based protocol to use such
  as its performance in degraded or limited networks.  It is beyond the
  scope of this document to summarize the characteristics of these
  transport mechanisms.  Please refer to the base protocol documents
  for details on messaging considerations with respect to MTU size,
  fragmentation, performance in lossy networks, etc.

9.  Security Considerations

  This document describes a transport model that permits SNMP to
  utilize (D)TLS security services.  The security threats and how the
  (D)TLS transport model mitigates these threats are covered in detail
  throughout this document.  Security considerations for DTLS are
  covered in [RFC4347] and security considerations for TLS are
  described in Section 11 and Appendices D, E, and F of TLS 1.2
  [RFC5246].  When run over a connectionless transport such as UDP,
  DTLS is more vulnerable to denial-of-service attacks from spoofed IP
  addresses; see Section 4.2 for details how the cookie exchange is
  used to address this issue.

9.1.  Certificates, Authentication, and Authorization

  Implementations are responsible for providing a security certificate
  installation and configuration mechanism.  Implementations SHOULD
  support certificate revocation lists.

  (D)TLS provides for authentication of the identity of both the (D)TLS
  server and the (D)TLS client.  Access to MIB objects for the



Hardaker                     Standards Track                   [Page 55]

RFC 6353              TLS Transport Model for SNMP             July 2011


  authenticated principal MUST be enforced by an access control
  subsystem (e.g., the VACM).

  Authentication of the command generator principal's identity is
  important for use with the SNMP access control subsystem to ensure
  that only authorized principals have access to potentially sensitive
  data.  The authenticated identity of the command generator
  principal's certificate is mapped to an SNMP model-independent
  securityName for use with SNMP access control.

  The (D)TLS handshake only provides assurance that the certificate of
  the authenticated identity has been signed by a configured accepted
  Certification Authority.  (D)TLS has no way to further authorize or
  reject access based on the authenticated identity.  An Access Control
  Model (such as the VACM) provides access control and authorization of
  a command generator's requests to a command responder and a
  notification receiver's authorization to receive Notifications from a
  notification originator.  However, to avoid man-in-the-middle
  attacks, both ends of the (D)TLS-based connection MUST check the
  certificate presented by the other side against what was expected.
  For example, command generators must check that the command responder
  presented and authenticated itself with an X.509 certificate that was
  expected.  Not doing so would allow an impostor, at a minimum, to
  present false data, receive sensitive information, and/or provide a
  false belief that configuration was actually received and acted upon.
  Authenticating and verifying the identity of the (D)TLS server and
  the (D)TLS client for all operations ensures the authenticity of the
  SNMP engine that provides MIB data.

  The instructions found in the DESCRIPTION clause of the
  snmpTlstmCertToTSNTable object must be followed exactly.  It is also
  important that the rows of the table be searched in prioritized order
  starting with the row containing the lowest numbered
  snmpTlstmCertToTSNID value.

9.2.  (D)TLS Security Considerations

  This section discusses security considerations specific to the usage
  of (D)TLS.

9.2.1.  TLS Version Requirements

  Implementations of TLS typically support multiple versions of the
  Transport Layer Security protocol as well as the older Secure Sockets
  Layer (SSL) protocol.  Because of known security vulnerabilities,
  TLSTM clients and servers MUST NOT request, offer, or use SSL 2.0.
  See Appendix E.2 of [RFC5246] for further details.




Hardaker                     Standards Track                   [Page 56]

RFC 6353              TLS Transport Model for SNMP             July 2011


9.2.2.  Perfect Forward Secrecy

  The use of Perfect Forward Secrecy is RECOMMENDED and can be provided
  by (D)TLS with appropriately selected cipher_suites, as discussed in
  Appendix F of [RFC5246].

9.3.  Use with SNMPv1/SNMPv2c Messages

  The SNMPv1 and SNMPv2c message processing described in [RFC3584] (BCP
  74) always selects the SNMPv1 or SNMPv2c Security Models,
  respectively.  Both of these and the User-based Security Model
  typically used with SNMPv3 derive the securityName and securityLevel
  from the SNMP message received, even when the message was received
  over a secure transport.  Access control decisions are therefore made
  based on the contents of the SNMP message, rather than using the
  authenticated identity and securityLevel provided by the TLS
  Transport Model.  It is RECOMMENDED that only SNMPv3 messages using
  the Transport Security Model (TSM) or another secure-transport aware
  security model be sent over the TLSTM transport.

  Using a non-transport-aware Security Model with a secure Transport
  Model is NOT RECOMMENDED.  See [RFC5590], Section 7.1 for additional
  details on the coexistence of security-aware transports and non-
  transport-aware security models.

9.4.  MIB Module Security

  There are a number of management objects defined in this MIB module
  with a MAX-ACCESS clause of read-write and/or read-create.  Such
  objects may be considered sensitive or vulnerable in some network
  environments.  The support for SET operations in a non-secure
  environment without proper protection can have a negative effect on
  network operations.  These are the tables and objects and their
  sensitivity/vulnerability:

  o  The snmpTlstmParamsTable can be used to change the outgoing X.509
     certificate used to establish a (D)TLS connection.  Modifications
     to objects in this table need to be adequately authenticated since
     modifying the values in this table will have profound impacts to
     the security of outbound connections from the device.  Since
     knowledge of authorization rules and certificate usage mechanisms
     may be considered sensitive, protection from disclosure of the
     SNMP traffic via encryption is also highly recommended.

  o  The snmpTlstmAddrTable can be used to change the expectations of
     the certificates presented by a remote (D)TLS server.
     Modifications to objects in this table need to be adequately
     authenticated since modifying the values in this table will have



Hardaker                     Standards Track                   [Page 57]

RFC 6353              TLS Transport Model for SNMP             July 2011


     profound impacts to the security of outbound connections from the
     device.  Since knowledge of authorization rules and certificate
     usage mechanisms may be considered sensitive, protection from
     disclosure of the SNMP traffic via encryption is also highly
     recommended.

  o  The snmpTlstmCertToTSNTable is used to specify the mapping of
     incoming X.509 certificates to tmSecurityNames, which eventually
     get mapped to an SNMPv3 securityName.  Modifications to objects in
     this table need to be adequately authenticated since modifying the
     values in this table will have profound impacts to the security of
     incoming connections to the device.  Since knowledge of
     authorization rules and certificate usage mechanisms may be
     considered sensitive, protection from disclosure of the SNMP
     traffic via encryption is also highly recommended.  When this
     table contains a significant number of rows it may affect the
     system performance when accepting new (D)TLS connections.

  Some of the readable objects in this MIB module (i.e., objects with a
  MAX-ACCESS other than not-accessible) may be considered sensitive or
  vulnerable in some network environments.  It is thus important to
  control even GET and/or NOTIFY access to these objects and possibly
  to even encrypt the values of these objects when sending them over
  the network via SNMP.  These are the tables and objects and their
  sensitivity/vulnerability:

  o  This MIB contains a collection of counters that monitor the (D)TLS
     connections being established with a device.  Since knowledge of
     connection and certificate usage mechanisms may be considered
     sensitive, protection from disclosure of the SNMP traffic via
     encryption is highly recommended.

  SNMP versions prior to SNMPv3 did not include adequate security.
  Even if the network itself is secure (for example, by using IPsec),
  even then, there is no control as to who on the secure network is
  allowed to access and GET/SET (read/change/create/delete) the objects
  in this MIB module.

  It is RECOMMENDED that implementers consider the security features as
  provided by the SNMPv3 framework (see [RFC3410], Section 8),
  including full support for the SNMPv3 cryptographic mechanisms (for
  authentication and privacy).

  Further, deployment of SNMP versions prior to SNMPv3 is NOT
  RECOMMENDED.  Instead, it is RECOMMENDED to deploy SNMPv3 and to
  enable cryptographic security.  It is then a customer/operator
  responsibility to ensure that the SNMP entity giving access to an
  instance of this MIB module is properly configured to give access to



Hardaker                     Standards Track                   [Page 58]

RFC 6353              TLS Transport Model for SNMP             July 2011


  the objects only to those principals (users) that have legitimate
  rights to indeed GET or SET (change/create/delete) them.

10.  IANA Considerations

  IANA has assigned:

  1.  Two TCP/UDP port numbers from the "Registered Ports" range of the
      Port Numbers registry, with the following keywords:

    Keyword         Decimal      Description       References
    -------         -------      -----------       ----------
    snmptls         10161/tcp    SNMP-TLS          [RFC6353]
    snmpdtls        10161/udp    SNMP-DTLS         [RFC6353]
    snmptls-trap    10162/tcp    SNMP-Trap-TLS     [RFC6353]
    snmpdtls-trap   10162/udp    SNMP-Trap-DTLS    [RFC6353]

  These are the default ports for receipt of SNMP command messages
  (snmptls and snmpdtls) and SNMP notification messages (snmptls-trap
  and snmpdtls-trap) over a TLS Transport Model as defined in this
  document.

  2.  An SMI number (8) under snmpDomains for the snmpTLSTCPDomain
      object identifier

  3.  An SMI number (9) under snmpDomains for the snmpDTLSUDPDomain
      object identifier

  4.  An SMI number (198) under mib-2, for the MIB module in this
      document

  5.  "tls" as the corresponding prefix for the snmpTLSTCPDomain in the
      SNMP Transport Domains registry

  6.  "dtls" as the corresponding prefix for the snmpDTLSUDPDomain in
      the SNMP Transport Domains registry

11.  Acknowledgements

  This document closely follows and copies the Secure Shell Transport
  Model for SNMP documented by David Harrington and Joseph Salowey in
  [RFC5592].

  This document was reviewed by the following people who helped provide
  useful comments (in alphabetical order): Andy Donati, Pasi Eronen,
  David Harrington, Jeffrey Hutzelman, Alan Luchuk, Michael Peck, Tom
  Petch, Randy Presuhn, Ray Purvis, Peter Saint-Andre, Joseph Salowey,
  Juergen Schoenwaelder, Dave Shield, and Robert Story.



Hardaker                     Standards Track                   [Page 59]

RFC 6353              TLS Transport Model for SNMP             July 2011


  This work was supported in part by the United States Department of
  Defense.  Large portions of this document are based on work by
  General Dynamics C4 Systems and the following individuals: Brian
  Baril, Kim Bryant, Dana Deluca, Dan Hanson, Tim Huemiller, John
  Holzhauer, Colin Hoogeboom, Dave Kornbau, Chris Knaian, Dan Knaul,
  Charles Limoges, Steve Moccaldi, Gerardo Orlando, and Brandon Yip.

12.  References

12.1.  Normative References

  [RFC1123]    Braden, R., "Requirements for Internet Hosts -
               Application and Support", STD 3, RFC 1123, October 1989.

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

  [RFC2578]    McCloghrie, K., Ed., Perkins, D., Ed., and J.
               Schoenwaelder, Ed., "Structure of Management Information
               Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

  [RFC2579]    McCloghrie, K., Ed., Perkins, D., Ed., and J.
               Schoenwaelder, Ed., "Textual Conventions for SMIv2",
               STD 58, RFC 2579, April 1999.

  [RFC2580]    McCloghrie, K., Perkins, D., and J. Schoenwaelder,
               "Conformance Statements for SMIv2", STD 58, RFC 2580,
               April 1999.

  [RFC3411]    Harrington, D., Presuhn, R., and B. Wijnen, "An
               Architecture for Describing Simple Network Management
               Protocol (SNMP) Management Frameworks", STD 62,
               RFC 3411, December 2002.

  [RFC3413]    Levi, D., Meyer, P., and B. Stewart, "Simple Network
               Management Protocol (SNMP) Applications", STD 62,
               RFC 3413, December 2002.

  [RFC3414]    Blumenthal, U. and B. Wijnen, "User-based Security Model
               (USM) for version 3 of the Simple Network Management
               Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

  [RFC3415]    Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based
               Access Control Model (VACM) for the Simple Network
               Management Protocol (SNMP)", STD 62, RFC 3415,
               December 2002.





Hardaker                     Standards Track                   [Page 60]

RFC 6353              TLS Transport Model for SNMP             July 2011


  [RFC3418]    Presuhn, R., "Management Information Base (MIB) for the
               Simple Network Management Protocol (SNMP)", STD 62,
               RFC 3418, December 2002.

  [RFC3584]    Frye, R., Levi, D., Routhier, S., and B. Wijnen,
               "Coexistence between Version 1, Version 2, and Version 3
               of the Internet-standard Network Management Framework",
               BCP 74, RFC 3584, August 2003.

  [RFC4347]    Rescorla, E. and N. Modadugu, "Datagram Transport Layer
               Security", RFC 4347, April 2006.

  [RFC4366]    Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen,
               J., and T. Wright, "Transport Layer Security (TLS)
               Extensions", RFC 4366, April 2006.

  [RFC5246]    Dierks, T. and E. Rescorla, "The Transport Layer
               Security (TLS) Protocol Version 1.2", RFC 5246,
               August 2008.

  [RFC5280]    Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
               Housley, R., and W. Polk, "Internet X.509 Public Key
               Infrastructure Certificate and Certificate Revocation
               List (CRL) Profile", RFC 5280, May 2008.

  [RFC5590]    Harrington, D. and J. Schoenwaelder, "Transport
               Subsystem for the Simple Network Management Protocol
               (SNMP)", RFC 5590, June 2009.

  [RFC5591]    Harrington, D. and W. Hardaker, "Transport Security
               Model for the Simple Network Management Protocol
               (SNMP)", RFC 5591, June 2009.

  [RFC5952]    Kawamura, S. and M. Kawashima, "A Recommendation for
               IPv6 Address Text Representation", RFC 5952,
               August 2010.

12.2.  Informative References

  [HEARTBEAT]  Seggelmann, R., Tuexen, M., and M. Williams, "Transport
               Layer Security (TLS) and Datagram Transport Layer
               Security (DTLS) Heartbeat Extension", Work in Progress,
               July 2011.

  [RFC3410]    Case, J., Mundy, R., Partain, D., and B. Stewart,
               "Introduction and Applicability Statements for Internet-
               Standard Management Framework", RFC 3410, December 2002.




Hardaker                     Standards Track                   [Page 61]

RFC 6353              TLS Transport Model for SNMP             July 2011


  [RFC5343]    Schoenwaelder, J., "Simple Network Management Protocol
               (SNMP) Context EngineID Discovery", RFC 5343,
               September 2008.

  [RFC5592]    Harrington, D., Salowey, J., and W. Hardaker, "Secure
               Shell Transport Model for the Simple Network Management
               Protocol (SNMP)", RFC 5592, June 2009.

  [RFC5890]    Klensin, J., "Internationalized Domain Names for
               Applications (IDNA): Definitions and Document
               Framework", RFC 5890, August 2010.

  [RFC5953]    Hardaker, W., "Transport Layer Security (TLS) Transport
               Model for the Simple Network Management Protocol
               (SNMP)", RFC 5953, August 2010.




































Hardaker                     Standards Track                   [Page 62]

RFC 6353              TLS Transport Model for SNMP             July 2011


Appendix A.  Target and Notification Configuration Example

  The following sections describe example configuration for the SNMP-
  TLS-TM-MIB, the SNMP-TARGET-MIB, the NOTIFICATION-MIB, and the SNMP-
  VIEW-BASED-ACM-MIB.

A.1.  Configuring a Notification Originator

  The following row adds the "Joe Cool" user to the "administrators"
  group:

      vacmSecurityModel              = 4 (TSM)
      vacmSecurityName               = "Joe Cool"
      vacmGroupName                  = "administrators"
      vacmSecurityToGroupStorageType = 3 (nonVolatile)
      vacmSecurityToGroupStatus      = 4 (createAndGo)

  The following row configures the snmpTlstmAddrTable to use
  certificate path validation and to require the remote notification
  receiver to present a certificate for the "server.example.org"
  identity.

      snmpTargetAddrName             =  "toNRAddr"
      snmpTlstmAddrServerFingerprint =  ""
      snmpTlstmAddrServerIdentity    =  "server.example.org"
      snmpTlstmAddrStorageType       =  3         (nonVolatile)
      snmpTlstmAddrRowStatus         =  4         (createAndGo)

  The following row configures the snmpTargetAddrTable to send
  notifications using TLS/TCP to the snmptls-trap port at 192.0.2.1:

      snmpTargetAddrName              = "toNRAddr"
      snmpTargetAddrTDomain           = snmpTLSTCPDomain
      snmpTargetAddrTAddress          = "192.0.2.1:10162"
      snmpTargetAddrTimeout           = 1500
      snmpTargetAddrRetryCount        = 3
      snmpTargetAddrTagList           = "toNRTag"
      snmpTargetAddrParams            = "toNR"     (MUST match below)
      snmpTargetAddrStorageType       = 3          (nonVolatile)
      snmpTargetAddrRowStatus         = 4          (createAndGo)











Hardaker                     Standards Track                   [Page 63]

RFC 6353              TLS Transport Model for SNMP             July 2011


  The following row configures the snmpTargetParamsTable to send the
  notifications to "Joe Cool", using authPriv SNMPv3 notifications
  through the TransportSecurityModel [RFC5591]:

      snmpTargetParamsName            = "toNR"     (must match above)
      snmpTargetParamsMPModel         = 3 (SNMPv3)
      snmpTargetParamsSecurityModel   = 4 (TransportSecurityModel)
      snmpTargetParamsSecurityName    = "Joe Cool"
      snmpTargetParamsSecurityLevel   = 3          (authPriv)
      snmpTargetParamsStorageType     = 3          (nonVolatile)
      snmpTargetParamsRowStatus       = 4          (createAndGo)

A.2.  Configuring TLSTM to Utilize a Simple Derivation of tmSecurityName

  The following row configures the snmpTlstmCertToTSNTable to map a
  validated client certificate, referenced by the client's public X.509
  hash fingerprint, to a tmSecurityName using the subjectAltName
  component of the certificate.

      snmpTlstmCertToTSNID          = 1
                                      (chosen by ordering preference)
      snmpTlstmCertToTSNFingerprint = HASH (appropriate fingerprint)
      snmpTlstmCertToTSNMapType     = snmpTlstmCertSANAny
      snmpTlstmCertToTSNData        = ""  (not used)
      snmpTlstmCertToTSNStorageType = 3   (nonVolatile)
      snmpTlstmCertToTSNRowStatus   = 4   (createAndGo)

  This type of configuration should only be used when the naming
  conventions of the (possibly multiple) Certification Authorities are
  well understood, so two different principals cannot inadvertently be
  identified by the same derived tmSecurityName.

A.3.  Configuring TLSTM to Utilize Table-Driven Certificate Mapping

  The following row configures the snmpTlstmCertToTSNTable to map a
  validated client certificate, referenced by the client's public X.509
  hash fingerprint, to the directly specified tmSecurityName of "Joe
  Cool".

      snmpTlstmCertToTSNID           = 2
                                       (chosen by ordering preference)
      snmpTlstmCertToTSNFingerprint  = HASH (appropriate fingerprint)
      snmpTlstmCertToTSNMapType      = snmpTlstmCertSpecified
      snmpTlstmCertToTSNSecurityName = "Joe Cool"
      snmpTlstmCertToTSNStorageType  = 3  (nonVolatile)
      snmpTlstmCertToTSNRowStatus    = 4  (createAndGo)





Hardaker                     Standards Track                   [Page 64]

RFC 6353              TLS Transport Model for SNMP             July 2011


Author's Address

  Wes Hardaker
  SPARTA, Inc.
  P.O. Box 382
  Davis, CA  95617
  USA

  Phone: +1 530 792 1913
  EMail: [email protected]









































Hardaker                     Standards Track                   [Page 65]