Network Working Group                                         R. Housley
Request for Comments: 5652                                Vigil Security
Obsoletes: 3852                                           September 2009
Category: Standards Track


                  Cryptographic Message Syntax (CMS)

Abstract

  This document describes the Cryptographic Message Syntax (CMS).  This
  syntax is used to digitally sign, digest, authenticate, or encrypt
  arbitrary message content.

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright and License Notice

  Copyright (c) 2009 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.



Housley                     Standards Track                     [Page 1]

RFC 5652              Cryptographic Message Syntax        September 2009


Table of Contents

  1. Introduction ....................................................3
     1.1. Evolution of the CMS .......................................4
          1.1.1. Changes Since PKCS #7 Version 1.5 ...................4
          1.1.2. Changes Since RFC 2630 ..............................4
          1.1.3. Changes Since RFC 3369 ..............................5
          1.1.4. Changes Since RFC 3852 ..............................5
     1.2. Terminology ................................................5
     1.3. Version Numbers ............................................6
  2. General Overview ................................................6
  3. General Syntax ..................................................7
  4. Data Content Type ...............................................7
  5. Signed-data Content Type ........................................8
     5.1. SignedData Type ............................................9
     5.2. EncapsulatedContentInfo Type ..............................11
          5.2.1. Compatibility with PKCS #7 .........................12
     5.3. SignerInfo Type ...........................................13
     5.4. Message Digest Calculation Process ........................16
     5.5. Signature Generation Process ..............................16
     5.6. Signature Verification Process ............................17
  6. Enveloped-Data Content Type ....................................17
     6.1. EnvelopedData Type ........................................18
     6.2. RecipientInfo Type ........................................21
          6.2.1. KeyTransRecipientInfo Type .........................22
          6.2.2. KeyAgreeRecipientInfo Type .........................23
          6.2.3. KEKRecipientInfo Type ..............................25
          6.2.4. PasswordRecipientInfo Type .........................26
          6.2.5. OtherRecipientInfo Type ............................27
     6.3. Content-encryption Process ................................27
     6.4. Key-Encryption Process ....................................28
  7. Digested-Data Content Type .....................................28
  8. Encrypted-Data Content Type ....................................29
  9. Authenticated-Data Content Type ................................30
     9.1. AuthenticatedData Type ....................................31
     9.2. MAC Generation ............................................33
     9.3. MAC Verification ..........................................34
  10. Useful Types ..................................................34
     10.1. Algorithm Identifier Types ...............................35
          10.1.1. DigestAlgorithmIdentifier .........................35
          10.1.2. SignatureAlgorithmIdentifier ......................35
          10.1.3. KeyEncryptionAlgorithmIdentifier ..................35
          10.1.4. ContentEncryptionAlgorithmIdentifier ..............36
          10.1.5. MessageAuthenticationCodeAlgorithm ................36
          10.1.6. KeyDerivationAlgorithmIdentifier ..................36
     10.2. Other Useful Types .......................................36
          10.2.1. RevocationInfoChoices .............................36
          10.2.2. CertificateChoices ................................37



Housley                     Standards Track                     [Page 2]

RFC 5652              Cryptographic Message Syntax        September 2009


          10.2.3. CertificateSet ....................................38
          10.2.4. IssuerAndSerialNumber .............................38
          10.2.5. CMSVersion ........................................39
          10.2.6. UserKeyingMaterial ................................39
          10.2.7. OtherKeyAttribute .................................39
  11. Useful Attributes .............................................39
     11.1. Content Type .............................................40
     11.2. Message Digest ...........................................40
     11.3. Signing Time .............................................41
     11.4. Countersignature .........................................42
  12. ASN.1 Modules .................................................43
     12.1. CMS ASN.1 Module .........................................44
     12.2. Version 1 Attribute Certificate ASN.1 Module .............51
  13. References ....................................................52
     13.1. Normative References .....................................52
     13.2. Informative References ...................................53
  14. Security Considerations .......................................54
  15. Acknowledgments ...............................................56

1.  Introduction

  This document describes the Cryptographic Message Syntax (CMS).  This
  syntax is used to digitally sign, digest, authenticate, or encrypt
  arbitrary message content.

  The CMS describes an encapsulation syntax for data protection.  It
  supports digital signatures and encryption.  The syntax allows
  multiple encapsulations; one encapsulation envelope can be nested
  inside another.  Likewise, one party can digitally sign some
  previously encapsulated data.  It also allows arbitrary attributes,
  such as signing time, to be signed along with the message content,
  and it provides for other attributes such as countersignatures to be
  associated with a signature.

  The CMS can support a variety of architectures for certificate-based
  key management, such as the one defined by the PKIX (Public Key
  Infrastructure using X.509) working group [PROFILE].

  The CMS values are generated using ASN.1 [X.208-88], using BER-
  encoding (Basic Encoding Rules) [X.209-88].  Values are typically
  represented as octet strings.  While many systems are capable of
  transmitting arbitrary octet strings reliably, it is well known that
  many electronic mail systems are not.  This document does not address
  mechanisms for encoding octet strings for reliable transmission in
  such environments.






Housley                     Standards Track                     [Page 3]

RFC 5652              Cryptographic Message Syntax        September 2009


1.1.  Evolution of the CMS

  The CMS is derived from PKCS #7 version 1.5, which is documented in
  RFC 2315 [PKCS#7].  PKCS #7 version 1.5 was developed outside of the
  IETF; it was originally published as an RSA Laboratories Technical
  Note in November 1993.  Since that time, the IETF has taken
  responsibility for the development and maintenance of the CMS.
  Today, several important IETF Standards-Track protocols make use of
  the CMS.

  This section describes that changes that the IETF has made to the CMS
  in each of the published versions.

1.1.1.  Changes Since PKCS #7 Version 1.5

  RFC 2630 [CMS1] was the first version of the CMS on the IETF
  Standards Track.  Wherever possible, backward compatibility with PKCS
  #7 version 1.5 is preserved; however, changes were made to
  accommodate version 1 attribute certificate transfer and to support
  algorithm-independent key management.  PKCS #7 version 1.5 included
  support only for key transport.  RFC 2630 adds support for key
  agreement and previously distributed symmetric key-encryption key
  techniques.

1.1.2.  Changes Since RFC 2630

  RFC 3369 [CMS2] obsoletes RFC 2630 [CMS1] and RFC 3211 [PWRI].
  Password-based key management is included in the CMS specification,
  and an extension mechanism to support new key management schemes
  without further changes to the CMS is specified.  Backward
  compatibility with RFC 2630 and RFC 3211 is preserved; however,
  version 2 attribute certificate transfer is added, and the use of
  version 1 attribute certificates is deprecated.

  Secure/Multipurpose Internet Mail Extensions (S/MIME) v2 signatures
  [MSG2], which are based on PKCS #7 version 1.5, are compatible with
  S/MIME v3 signatures [MSG3]and S/MIME v3.1 signatures [MSG3.1].
  However, there are some subtle compatibility issues with signatures
  based on PKCS #7 version 1.5.  These issues are discussed in Section
  5.2.1.  These issues remain with the current version of the CMS.

  Specific cryptographic algorithms are not discussed in this document,
  but they were discussed in RFC 2630.  The discussion of specific
  cryptographic algorithms has been moved to a separate document
  [CMSALG].  Separation of the protocol and algorithm specifications
  allows the IETF to update each document independently.  This
  specification does not require the implementation of any particular




Housley                     Standards Track                     [Page 4]

RFC 5652              Cryptographic Message Syntax        September 2009


  algorithms.  Rather, protocols that rely on the CMS are expected to
  choose appropriate algorithms for their environment.  The algorithms
  may be selected from [CMSALG] or elsewhere.

1.1.3.  Changes Since RFC 3369

  RFC 3852 [CMS3] obsoletes RFC 3369 [CMS2].  As discussed in the
  previous section, RFC 3369 introduced an extension mechanism to
  support new key management schemes without further changes to the
  CMS.  RFC 3852 introduces a similar extension mechanism to support
  additional certificate formats and revocation status information
  formats without further changes to the CMS.  These extensions are
  primarily documented in Sections 10.2.1 and 10.2.2.  Backward
  compatibility with earlier versions of the CMS is preserved.

  The use of version numbers is described in Section 1.3.

  Since the publication of RFC 3369, a few errata have been noted.
  These errata are posted on the RFC Editor web site.  These errors
  have been corrected in this document.

  The text in Section 11.4 that describes the counter signature
  unsigned attribute is clarified.  Hopefully, the revised text is
  clearer about the portion of the SignerInfo signature that is covered
  by a countersignature.

1.1.4.  Changes Since RFC 3852

  This document obsoletes RFC 3852 [CMS3].  The primary reason for the
  publication of this document is to advance the CMS along the
  standards maturity ladder.

  This document includes the clarifications that were originally
  published in RFC 4853 [CMSMSIG] regarding the proper handling of the
  SignedData protected content type when more than one digital
  signature is present.

  Since the publication of RFC 3852, a few errata have been noted.
  These errata are posted on the RFC Editor web site.  These errors
  have been corrected in this document.

1.2.  Terminology

  In this document, the key words MUST, MUST NOT, REQUIRED, SHOULD,
  SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL are to be interpreted as
  described in [STDWORDS].





Housley                     Standards Track                     [Page 5]

RFC 5652              Cryptographic Message Syntax        September 2009


1.3.  Version Numbers

  Each of the major data structures includes a version number as the
  first item in the data structure.  The version numbers are intended
  to avoid ASN.1 decode errors.  Some implementations do not check the
  version number prior to attempting a decode, and if a decode error
  occurs, then the version number is checked as part of the error
  handling routine.  This is a reasonable approach; it places error
  processing outside of the fast path.  This approach is also forgiving
  when an incorrect version number is used by the sender.

  Most of the initial version numbers were assigned in PKCS #7 version
  1.5.  Others were assigned when the structure was initially created.
  Whenever a structure is updated, a higher version number is assigned.
  However, to ensure maximum interoperability, the higher version
  number is only used when the new syntax feature is employed.  That
  is, the lowest version number that supports the generated syntax is
  used.

2.  General Overview

  The CMS is general enough to support many different content types.
  This document defines one protection content, ContentInfo.
  ContentInfo encapsulates a single identified content type, and the
  identified type may provide further encapsulation.  This document
  defines six content types: data, signed-data, enveloped-data,
  digested-data, encrypted-data, and authenticated-data.  Additional
  content types can be defined outside this document.

  An implementation that conforms to this specification MUST implement
  the protection content, ContentInfo, and MUST implement the data,
  signed-data, and enveloped-data content types.  The other content
  types MAY be implemented.

  As a general design philosophy, each content type permits single pass
  processing using indefinite-length Basic Encoding Rules (BER)
  encoding.  Single-pass operation is especially helpful if content is
  large, stored on tapes, or is "piped" from another process.  Single-
  pass operation has one significant drawback: it is difficult to
  perform encode operations using the Distinguished Encoding Rules
  (DER) [X.509-88] encoding in a single pass since the lengths of the
  various components may not be known in advance.  However, signed
  attributes within the signed-data content type and authenticated
  attributes within the authenticated-data content type need to be
  transmitted in DER form to ensure that recipients can verify a
  content that contains one or more unrecognized attributes.  Signed
  attributes and authenticated attributes are the only data types used
  in the CMS that require DER encoding.



Housley                     Standards Track                     [Page 6]

RFC 5652              Cryptographic Message Syntax        September 2009


3.  General Syntax

  The following object identifier identifies the content information
  type:

     id-ct-contentInfo OBJECT IDENTIFIER ::= { iso(1) member-body(2)
        us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) ct(1) 6 }

  The CMS associates a content type identifier with a content.  The
  syntax MUST have ASN.1 type ContentInfo:

     ContentInfo ::= SEQUENCE {
       contentType ContentType,
       content [0] EXPLICIT ANY DEFINED BY contentType }

     ContentType ::= OBJECT IDENTIFIER

  The fields of ContentInfo have the following meanings:

     contentType indicates the type of the associated content.  It is
     an object identifier; it is a unique string of integers assigned
     by an authority that defines the content type.

     content is the associated content.  The type of content can be
     determined uniquely by contentType.  Content types for data,
     signed-data, enveloped-data, digested-data, encrypted-data, and
     authenticated-data are defined in this document.  If additional
     content types are defined in other documents, the ASN.1 type
     defined SHOULD NOT be a CHOICE type.

4.  Data Content Type

  The following object identifier identifies the data content type:

     id-data OBJECT IDENTIFIER ::= { iso(1) member-body(2)
        us(840) rsadsi(113549) pkcs(1) pkcs7(7) 1 }

  The data content type is intended to refer to arbitrary octet
  strings, such as ASCII text files; the interpretation is left to the
  application.  Such strings need not have any internal structure
  (although they could have their own ASN.1 definition or other
  structure).

  S/MIME uses id-data to identify MIME-encoded content.  The use of
  this content identifier is specified in RFC 2311 for S/MIME v2
  [MSG2], RFC 2633 for S/MIME v3 [MSG3], and RFC 3851 for S/MIME v3.1
  [MSG3.1].




Housley                     Standards Track                     [Page 7]

RFC 5652              Cryptographic Message Syntax        September 2009


  The data content type is generally encapsulated in the signed-data,
  enveloped-data, digested-data, encrypted-data, or authenticated-data
  content type.

5.  Signed-data Content Type

  The signed-data content type consists of a content of any type and
  zero or more signature values.  Any number of signers in parallel can
  sign any type of content.

  The typical application of the signed-data content type represents
  one signer's digital signature on content of the data content type.
  Another typical application disseminates certificates and certificate
  revocation lists (CRLs).

  The process by which signed-data is constructed involves the
  following steps:

  1.  For each signer, a message digest, or hash value, is computed on
      the content with a signer-specific message-digest algorithm.  If
      the signer is signing any information other than the content, the
      message digest of the content and the other information are
      digested with the signer's message digest algorithm (see Section
      5.4), and the result becomes the "message digest."

  2.  For each signer, the message digest is digitally signed using the
      signer's private key.

  3.  For each signer, the signature value and other signer-specific
      information are collected into a SignerInfo value, as defined in
      Section 5.3.  Certificates and CRLs for each signer, and those
      not corresponding to any signer, are collected in this step.

  4.  The message digest algorithms for all the signers and the
      SignerInfo values for all the signers are collected together with
      the content into a SignedData value, as defined in Section 5.1.

  A recipient independently computes the message digest.  This message
  digest and the signer's public key are used to verify the signature
  value.  The signer's public key is referenced in one of two ways.  It
  can be referenced by an issuer distinguished name along with an
  issuer-specific serial number to uniquely identify the certificate
  that contains the public key.  Alternatively, it can be referenced by
  a subject key identifier, which accommodates both certified and
  uncertified public keys.  While not required, the signer's
  certificate can be included in the SignedData certificates field.





Housley                     Standards Track                     [Page 8]

RFC 5652              Cryptographic Message Syntax        September 2009


  When more than one signature is present, the successful validation of
  one signature associated with a given signer is usually treated as a
  successful signature by that signer.  However, there are some
  application environments where other rules are needed.  An
  application that employs a rule other than one valid signature for
  each signer must specify those rules.  Also, where simple matching of
  the signer identifier is not sufficient to determine whether the
  signatures were generated by the same signer, the application
  specification must describe how to determine which signatures were
  generated by the same signer.  Support of different communities of
  recipients is the primary reason that signers choose to include more
  than one signature.  For example, the signed-data content type might
  include signatures generated with the RSA signature algorithm and
  with the Elliptic Curve Digital Signature Algorithm (ECDSA) signature
  algorithm.  This allows recipients to verify the signature associated
  with one algorithm or the other.

  This section is divided into six parts.  The first part describes the
  top-level type SignedData, the second part describes
  EncapsulatedContentInfo, the third part describes the per-signer
  information type SignerInfo, and the fourth, fifth, and sixth parts
  describe the message digest calculation, signature generation, and
  signature verification processes, respectively.

5.1.  SignedData Type

  The following object identifier identifies the signed-data content
  type:

     id-signedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
        us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2 }

  The signed-data content type shall have ASN.1 type SignedData:

     SignedData ::= SEQUENCE {
       version CMSVersion,
       digestAlgorithms DigestAlgorithmIdentifiers,
       encapContentInfo EncapsulatedContentInfo,
       certificates [0] IMPLICIT CertificateSet OPTIONAL,
       crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,
       signerInfos SignerInfos }

     DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier

     SignerInfos ::= SET OF SignerInfo






Housley                     Standards Track                     [Page 9]

RFC 5652              Cryptographic Message Syntax        September 2009


  The fields of type SignedData have the following meanings:

     version is the syntax version number.  The appropriate value
     depends on certificates, eContentType, and SignerInfo.  The
     version MUST be assigned as follows:

        IF ((certificates is present) AND
           (any certificates with a type of other are present)) OR
           ((crls is present) AND
           (any crls with a type of other are present))
        THEN version MUST be 5
        ELSE
           IF (certificates is present) AND
              (any version 2 attribute certificates are present)
           THEN version MUST be 4
           ELSE
              IF ((certificates is present) AND
                 (any version 1 attribute certificates are present)) OR
                 (any SignerInfo structures are version 3) OR
                 (encapContentInfo eContentType is other than id-data)
              THEN version MUST be 3
              ELSE version MUST be 1

     digestAlgorithms is a collection of message digest algorithm
     identifiers.  There MAY be any number of elements in the
     collection, including zero.  Each element identifies the message
     digest algorithm, along with any associated parameters, used by
     one or more signer.  The collection is intended to list the
     message digest algorithms employed by all of the signers, in any
     order, to facilitate one-pass signature verification.
     Implementations MAY fail to validate signatures that use a digest
     algorithm that is not included in this set.  The message digesting
     process is described in Section 5.4.

     encapContentInfo is the signed content, consisting of a content
     type identifier and the content itself.  Details of the
     EncapsulatedContentInfo type are discussed in Section 5.2.

     certificates is a collection of certificates.  It is intended that
     the set of certificates be sufficient to contain certification
     paths from a recognized "root" or "top-level certification
     authority" to all of the signers in the signerInfos field.  There
     may be more certificates than necessary, and there may be
     certificates sufficient to contain certification paths from two or
     more independent top-level certification authorities.  There may
     also be fewer certificates than necessary, if it is expected that
     recipients have an alternate means of obtaining necessary




Housley                     Standards Track                    [Page 10]

RFC 5652              Cryptographic Message Syntax        September 2009


     certificates (e.g., from a previous set of certificates).  The
     signer's certificate MAY be included.  The use of version 1
     attribute certificates is strongly discouraged.

     crls is a collection of revocation status information.  It is
     intended that the collection contain information sufficient to
     determine whether the certificates in the certificates field are
     valid, but such correspondence is not necessary.  Certificate
     revocation lists (CRLs) are the primary source of revocation
     status information.  There MAY be more CRLs than necessary, and
     there MAY also be fewer CRLs than necessary.

     signerInfos is a collection of per-signer information.  There MAY
     be any number of elements in the collection, including zero.  When
     the collection represents more than one signature, the successful
     validation of one of signature from a given signer ought to be
     treated as a successful signature by that signer.  However, there
     are some application environments where other rules are needed.
     The details of the SignerInfo type are discussed in Section 5.3.
     Since each signer can employ a different digital signature
     technique, and future specifications could update the syntax, all
     implementations MUST gracefully handle unimplemented versions of
     SignerInfo.  Further, since all implementations will not support
     every possible signature algorithm, all implementations MUST
     gracefully handle unimplemented signature algorithms when they are
     encountered.

5.2.  EncapsulatedContentInfo Type

  The content is represented in the type EncapsulatedContentInfo:

     EncapsulatedContentInfo ::= SEQUENCE {
       eContentType ContentType,
       eContent [0] EXPLICIT OCTET STRING OPTIONAL }

     ContentType ::= OBJECT IDENTIFIER

  The fields of type EncapsulatedContentInfo have the following
  meanings:

     eContentType is an object identifier.  The object identifier
     uniquely specifies the content type.

     eContent is the content itself, carried as an octet string.  The
     eContent need not be DER encoded.






Housley                     Standards Track                    [Page 11]

RFC 5652              Cryptographic Message Syntax        September 2009


  The optional omission of the eContent within the
  EncapsulatedContentInfo field makes it possible to construct
  "external signatures".  In the case of external signatures, the
  content being signed is absent from the EncapsulatedContentInfo value
  included in the signed-data content type.  If the eContent value
  within EncapsulatedContentInfo is absent, then the signatureValue is
  calculated and the eContentType is assigned as though the eContent
  value was present.

  In the degenerate case where there are no signers, the
  EncapsulatedContentInfo value being "signed" is irrelevant.  In this
  case, the content type within the EncapsulatedContentInfo value being
  "signed" MUST be id-data (as defined in Section 4), and the content
  field of the EncapsulatedContentInfo value MUST be omitted.

5.2.1.  Compatibility with PKCS #7

  This section contains a word of warning to implementers that wish to
  support both the CMS and PKCS #7 [PKCS#7] SignedData content types.
  Both the CMS and PKCS #7 identify the type of the encapsulated
  content with an object identifier, but the ASN.1 type of the content
  itself is variable in PKCS #7 SignedData content type.

  PKCS #7 defines content as:

     content [0] EXPLICIT ANY DEFINED BY contentType OPTIONAL

  The CMS defines eContent as:

     eContent [0] EXPLICIT OCTET STRING OPTIONAL

  The CMS definition is much easier to use in most applications, and it
  is compatible with both S/MIME v2 and S/MIME v3.  S/MIME signed
  messages using the CMS and PKCS #7 are compatible because identical
  signed message formats are specified in RFC 2311 for S/MIME v2
  [MSG2], RFC 2633 for S/MIME v3 [MSG3], and RFC 3851 for S/MIME v3.1
  [MSG3.1].  S/MIME v2 encapsulates the MIME content in a Data type
  (that is, an OCTET STRING) carried in the SignedData contentInfo
  content ANY field, and S/MIME v3 carries the MIME content in the
  SignedData encapContentInfo eContent OCTET STRING.  Therefore, in
  S/MIME v2, S/MIME v3, and S/MIME v3.1, the MIME content is placed in
  an OCTET STRING and the message digest is computed over the identical
  portions of the content.  That is, the message digest is computed
  over the octets comprising the value of the OCTET STRING, neither the
  tag nor length octets are included.






Housley                     Standards Track                    [Page 12]

RFC 5652              Cryptographic Message Syntax        September 2009


  There are incompatibilities between the CMS and PKCS #7 SignedData
  types when the encapsulated content is not formatted using the Data
  type.  For example, when an RFC 2634 signed receipt [ESS] is
  encapsulated in the CMS SignedData type, then the Receipt SEQUENCE is
  encoded in the SignedData encapContentInfo eContent OCTET STRING and
  the message digest is computed using the entire Receipt SEQUENCE
  encoding (including tag, length and value octets).  However, if an
  RFC 2634 signed receipt is encapsulated in the PKCS #7 SignedData
  type, then the Receipt SEQUENCE is DER encoded [X.509-88] in the
  SignedData contentInfo content ANY field (a SEQUENCE, not an OCTET
  STRING).  Therefore, the message digest is computed using only the
  value octets of the Receipt SEQUENCE encoding.

  The following strategy can be used to achieve backward compatibility
  with PKCS #7 when processing SignedData content types.  If the
  implementation is unable to ASN.1 decode the SignedData type using
  the CMS SignedData encapContentInfo eContent OCTET STRING syntax,
  then the implementation MAY attempt to decode the SignedData type
  using the PKCS #7 SignedData contentInfo content ANY syntax and
  compute the message digest accordingly.

  The following strategy can be used to achieve backward compatibility
  with PKCS #7 when creating a SignedData content type in which the
  encapsulated content is not formatted using the Data type.
  Implementations MAY examine the value of the eContentType, and then
  adjust the expected DER encoding of eContent based on the object
  identifier value.  For example, to support Microsoft Authenticode
  [MSAC], the following information MAY be included:

     eContentType Object Identifier is set to { 1 3 6 1 4 1 311 2 1 4 }

     eContent contains DER-encoded Authenticode signing information

5.3.  SignerInfo Type

  Per-signer information is represented in the type SignerInfo:

     SignerInfo ::= SEQUENCE {
       version CMSVersion,
       sid SignerIdentifier,
       digestAlgorithm DigestAlgorithmIdentifier,
       signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
       signatureAlgorithm SignatureAlgorithmIdentifier,
       signature SignatureValue,
       unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }






Housley                     Standards Track                    [Page 13]

RFC 5652              Cryptographic Message Syntax        September 2009


     SignerIdentifier ::= CHOICE {
       issuerAndSerialNumber IssuerAndSerialNumber,
       subjectKeyIdentifier [0] SubjectKeyIdentifier }

     SignedAttributes ::= SET SIZE (1..MAX) OF Attribute

     UnsignedAttributes ::= SET SIZE (1..MAX) OF Attribute

     Attribute ::= SEQUENCE {
       attrType OBJECT IDENTIFIER,
       attrValues SET OF AttributeValue }

     AttributeValue ::= ANY

     SignatureValue ::= OCTET STRING

  The fields of type SignerInfo have the following meanings:

     version is the syntax version number.  If the SignerIdentifier is
     the CHOICE issuerAndSerialNumber, then the version MUST be 1.  If
     the SignerIdentifier is subjectKeyIdentifier, then the version
     MUST be 3.

     sid specifies the signer's certificate (and thereby the signer's
     public key).  The signer's public key is needed by the recipient
     to verify the signature.  SignerIdentifier provides two
     alternatives for specifying the signer's public key.  The
     issuerAndSerialNumber alternative identifies the signer's
     certificate by the issuer's distinguished name and the certificate
     serial number; the subjectKeyIdentifier identifies the signer's
     certificate by a key identifier.  When an X.509 certificate is
     referenced, the key identifier matches the X.509
     subjectKeyIdentifier extension value.  When other certificate
     formats are referenced, the documents that specify the certificate
     format and their use with the CMS must include details on matching
     the key identifier to the appropriate certificate field.
     Implementations MUST support the reception of the
     issuerAndSerialNumber and subjectKeyIdentifier forms of
     SignerIdentifier.  When generating a SignerIdentifier,
     implementations MAY support one of the forms (either
     issuerAndSerialNumber or subjectKeyIdentifier) and always use it,
     or implementations MAY arbitrarily mix the two forms.  However,
     subjectKeyIdentifier MUST be used to refer to a public key
     contained in a non-X.509 certificate.

     digestAlgorithm identifies the message digest algorithm, and any
     associated parameters, used by the signer.  The message digest is
     computed on either the content being signed or the content



Housley                     Standards Track                    [Page 14]

RFC 5652              Cryptographic Message Syntax        September 2009


     together with the signed attributes using the process described in
     Section 5.4.  The message digest algorithm SHOULD be among those
     listed in the digestAlgorithms field of the associated SignerData.
     Implementations MAY fail to validate signatures that use a digest
     algorithm that is not included in the SignedData digestAlgorithms
     set.

     signedAttrs is a collection of attributes that are signed.  The
     field is optional, but it MUST be present if the content type of
     the EncapsulatedContentInfo value being signed is not id-data.
     SignedAttributes MUST be DER encoded, even if the rest of the
     structure is BER encoded.  Useful attribute types, such as signing
     time, are defined in Section 11.  If the field is present, it MUST
     contain, at a minimum, the following two attributes:

        A content-type attribute having as its value the content type
        of the EncapsulatedContentInfo value being signed.  Section
        11.1 defines the content-type attribute.  However, the
        content-type attribute MUST NOT be used as part of a
        countersignature unsigned attribute as defined in Section 11.4.

        A message-digest attribute, having as its value the message
        digest of the content.  Section 11.2 defines the message-digest
        attribute.

     signatureAlgorithm identifies the signature algorithm, and any
     associated parameters, used by the signer to generate the digital
     signature.

     signature is the result of digital signature generation, using the
     message digest and the signer's private key.  The details of the
     signature depend on the signature algorithm employed.

     unsignedAttrs is a collection of attributes that are not signed.
     The field is optional.  Useful attribute types, such as
     countersignatures, are defined in Section 11.

  The fields of type SignedAttribute and UnsignedAttribute have the
  following meanings:

     attrType indicates the type of attribute.  It is an object
     identifier.

     attrValues is a set of values that comprise the attribute.  The
     type of each value in the set can be determined uniquely by
     attrType.  The attrType can impose restrictions on the number of
     items in the set.




Housley                     Standards Track                    [Page 15]

RFC 5652              Cryptographic Message Syntax        September 2009


5.4.  Message Digest Calculation Process

  The message digest calculation process computes a message digest on
  either the content being signed or the content together with the
  signed attributes.  In either case, the initial input to the message
  digest calculation process is the "value" of the encapsulated content
  being signed.  Specifically, the initial input is the
  encapContentInfo eContent OCTET STRING to which the signing process
  is applied.  Only the octets comprising the value of the eContent
  OCTET STRING are input to the message digest algorithm, not the tag
  or the length octets.

  The result of the message digest calculation process depends on
  whether the signedAttrs field is present.  When the field is absent,
  the result is just the message digest of the content as described
  above.  When the field is present, however, the result is the message
  digest of the complete DER encoding of the SignedAttrs value
  contained in the signedAttrs field.  Since the SignedAttrs value,
  when present, must contain the content-type and the message-digest
  attributes, those values are indirectly included in the result.  The
  content-type attribute MUST NOT be included in a countersignature
  unsigned attribute as defined in Section 11.4.  A separate encoding
  of the signedAttrs field is performed for message digest calculation.
  The IMPLICIT [0] tag in the signedAttrs is not used for the DER
  encoding, rather an EXPLICIT SET OF tag is used.  That is, the DER
  encoding of the EXPLICIT SET OF tag, rather than of the IMPLICIT [0]
  tag, MUST be included in the message digest calculation along with
  the length and content octets of the SignedAttributes value.

  When the signedAttrs field is absent, only the octets comprising the
  value of the SignedData encapContentInfo eContent OCTET STRING (e.g.,
  the contents of a file) are input to the message digest calculation.
  This has the advantage that the length of the content being signed
  need not be known in advance of the signature generation process.

  Although the encapContentInfo eContent OCTET STRING tag and length
  octets are not included in the message digest calculation, they are
  protected by other means.  The length octets are protected by the
  nature of the message digest algorithm since it is computationally
  infeasible to find any two distinct message contents of any length
  that have the same message digest.

5.5.  Signature Generation Process

  The input to the signature generation process includes the result of
  the message digest calculation process and the signer's private key.
  The details of the signature generation depend on the signature
  algorithm employed.  The object identifier, along with any



Housley                     Standards Track                    [Page 16]

RFC 5652              Cryptographic Message Syntax        September 2009


  parameters, that specifies the signature algorithm employed by the
  signer is carried in the signatureAlgorithm field.  The signature
  value generated by the signer MUST be encoded as an OCTET STRING and
  carried in the signature field.

5.6.  Signature Verification Process

  The input to the signature verification process includes the result
  of the message digest calculation process and the signer's public
  key.  The recipient MAY obtain the correct public key for the signer
  by any means, but the preferred method is from a certificate obtained
  from the SignedData certificates field.  The selection and validation
  of the signer's public key MAY be based on certification path
  validation (see [PROFILE]) as well as other external context, but is
  beyond the scope of this document.  The details of the signature
  verification depend on the signature algorithm employed.

  The recipient MUST NOT rely on any message digest values computed by
  the originator.  If the SignedData signerInfo includes
  signedAttributes, then the content message digest MUST be calculated
  as described in Section 5.4.  For the signature to be valid, the
  message digest value calculated by the recipient MUST be the same as
  the value of the messageDigest attribute included in the
  signedAttributes of the SignedData signerInfo.

  If the SignedData signerInfo includes signedAttributes, then the
  content-type attribute value MUST match the SignedData
  encapContentInfo eContentType value.

6.  Enveloped-data Content Type

  The enveloped-data content type consists of an encrypted content of
  any type and encrypted content-encryption keys for one or more
  recipients.  The combination of the encrypted content and one
  encrypted content-encryption key for a recipient is a "digital
  envelope" for that recipient.  Any type of content can be enveloped
  for an arbitrary number of recipients using any of the supported key
  management techniques for each recipient.

  The typical application of the enveloped-data content type will
  represent one or more recipients' digital envelopes on content of the
  data or signed-data content types.

  Enveloped-data is constructed by the following steps:

  1.  A content-encryption key for a particular content-encryption
      algorithm is generated at random.




Housley                     Standards Track                    [Page 17]

RFC 5652              Cryptographic Message Syntax        September 2009


  2.  The content-encryption key is encrypted for each recipient.  The
      details of this encryption depend on the key management algorithm
      used, but four general techniques are supported:

        key transport:  the content-encryption key is encrypted in the
        recipient's public key;

        key agreement:  the recipient's public key and the sender's
        private key are used to generate a pairwise symmetric key, then
        the content-encryption key is encrypted in the pairwise
        symmetric key;

        symmetric key-encryption keys:  the content-encryption key is
        encrypted in a previously distributed symmetric key-encryption
        key; and

        passwords: the content-encryption key is encrypted in a key-
        encryption key that is derived from a password or other shared
        secret value.

  3.  For each recipient, the encrypted content-encryption key and
      other recipient-specific information are collected into a
      RecipientInfo value, defined in Section 6.2.

  4.  The content is encrypted with the content-encryption key.
      Content encryption may require that the content be padded to a
      multiple of some block size; see Section 6.3.

  5.  The RecipientInfo values for all the recipients are collected
      together with the encrypted content to form an EnvelopedData
      value as defined in Section 6.1.

  A recipient opens the digital envelope by decrypting one of the
  encrypted content-encryption keys and then decrypting the encrypted
  content with the recovered content-encryption key.

  This section is divided into four parts.  The first part describes
  the top-level type EnvelopedData, the second part describes the per-
  recipient information type RecipientInfo, and the third and fourth
  parts describe the content-encryption and key-encryption processes.

6.1.  EnvelopedData Type

  The following object identifier identifies the enveloped-data content
  type:

     id-envelopedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs7(7) 3 }



Housley                     Standards Track                    [Page 18]

RFC 5652              Cryptographic Message Syntax        September 2009


  The enveloped-data content type shall have ASN.1 type EnvelopedData:

     EnvelopedData ::= SEQUENCE {
       version CMSVersion,
       originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
       recipientInfos RecipientInfos,
       encryptedContentInfo EncryptedContentInfo,
       unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPTIONAL }

     OriginatorInfo ::= SEQUENCE {
       certs [0] IMPLICIT CertificateSet OPTIONAL,
       crls [1] IMPLICIT RevocationInfoChoices OPTIONAL }

     RecipientInfos ::= SET SIZE (1..MAX) OF RecipientInfo

     EncryptedContentInfo ::= SEQUENCE {
       contentType ContentType,
       contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
       encryptedContent [0] IMPLICIT EncryptedContent OPTIONAL }

     EncryptedContent ::= OCTET STRING

     UnprotectedAttributes ::= SET SIZE (1..MAX) OF Attribute

  The fields of type EnvelopedData have the following meanings:

     version is the syntax version number.  The appropriate value
     depends on originatorInfo, RecipientInfo, and unprotectedAttrs.
     The version MUST be assigned as follows:

        IF (originatorInfo is present) AND
           ((any certificates with a type of other are present) OR
           (any crls with a type of other are present))
        THEN version is 4
        ELSE
           IF ((originatorInfo is present) AND
              (any version 2 attribute certificates are present)) OR
              (any RecipientInfo structures include pwri) OR
              (any RecipientInfo structures include ori)
           THEN version is 3
           ELSE
              IF (originatorInfo is absent) AND
                 (unprotectedAttrs is absent) AND
                 (all RecipientInfo structures are version 0)
              THEN version is 0
              ELSE version is 2





Housley                     Standards Track                    [Page 19]

RFC 5652              Cryptographic Message Syntax        September 2009


     originatorInfo optionally provides information about the
     originator.  It is present only if required by the key management
     algorithm.  It may contain certificates and CRLs:

        certs is a collection of certificates.  certs may contain
        originator certificates associated with several different key
        management algorithms.  certs may also contain attribute
        certificates associated with the originator.  The certificates
        contained in certs are intended to be sufficient for all
        recipients to build certification paths from a recognized
        "root" or "top-level certification authority".  However, certs
        may contain more certificates than necessary, and there may be
        certificates sufficient to make certification paths from two or
        more independent top-level certification authorities.
        Alternatively, certs may contain fewer certificates than
        necessary, if it is expected that recipients have an alternate
        means of obtaining necessary certificates (e.g., from a
        previous set of certificates).

        crls is a collection of CRLs.  It is intended that the set
        contain information sufficient to determine whether or not the
        certificates in the certs field are valid, but such
        correspondence is not necessary.  There MAY be more CRLs than
        necessary, and there MAY also be fewer CRLs than necessary.

     recipientInfos is a collection of per-recipient information.
     There MUST be at least one element in the collection.

     encryptedContentInfo is the encrypted content information.

     unprotectedAttrs is a collection of attributes that are not
     encrypted.  The field is optional.  Useful attribute types are
     defined in Section 11.

  The fields of type EncryptedContentInfo have the following meanings:

     contentType indicates the type of content.

     contentEncryptionAlgorithm identifies the content-encryption
     algorithm, and any associated parameters, used to encrypt the
     content.  The content-encryption process is described in Section
     6.3.  The same content-encryption algorithm and content-encryption
     key are used for all recipients.

     encryptedContent is the result of encrypting the content.  The
     field is optional, and if the field is not present, its intended
     value must be supplied by other means.




Housley                     Standards Track                    [Page 20]

RFC 5652              Cryptographic Message Syntax        September 2009


  The recipientInfos field comes before the encryptedContentInfo field
  so that an EnvelopedData value may be processed in a single pass.

6.2.  RecipientInfo Type

  Per-recipient information is represented in the type RecipientInfo.
  RecipientInfo has a different format for each of the supported key
  management techniques.  Any of the key management techniques can be
  used for each recipient of the same encrypted content.  In all cases,
  the encrypted content-encryption key is transferred to one or more
  recipients.

  Since all implementations will not support every possible key
  management algorithm, all implementations MUST gracefully handle
  unimplemented algorithms when they are encountered.  For example, if
  a recipient receives a content-encryption key encrypted in their RSA
  public key using RSA-OAEP (Optimal Asymmetric Encryption Padding) and
  the implementation only supports RSA PKCS #1 v1.5, then a graceful
  failure must be implemented.

  Implementations MUST support key transport, key agreement, and
  previously distributed symmetric key-encryption keys, as represented
  by ktri, kari, and kekri, respectively.  Implementations MAY support
  the password-based key management as represented by pwri.
  Implementations MAY support any other key management technique as
  represented by ori.  Since each recipient can employ a different key
  management technique and future specifications could define
  additional key management techniques, all implementations MUST
  gracefully handle unimplemented alternatives within the RecipientInfo
  CHOICE, all implementations MUST gracefully handle unimplemented
  versions of otherwise supported alternatives within the RecipientInfo
  CHOICE, and all implementations MUST gracefully handle unimplemented
  or unknown ori alternatives.

     RecipientInfo ::= CHOICE {
       ktri KeyTransRecipientInfo,
       kari [1] KeyAgreeRecipientInfo,
       kekri [2] KEKRecipientInfo,
       pwri [3] PasswordRecipientinfo,
       ori [4] OtherRecipientInfo }

     EncryptedKey ::= OCTET STRING









Housley                     Standards Track                    [Page 21]

RFC 5652              Cryptographic Message Syntax        September 2009


6.2.1.  KeyTransRecipientInfo Type

  Per-recipient information using key transport is represented in the
  type KeyTransRecipientInfo.  Each instance of KeyTransRecipientInfo
  transfers the content-encryption key to one recipient.

     KeyTransRecipientInfo ::= SEQUENCE {
       version CMSVersion,  -- always set to 0 or 2
       rid RecipientIdentifier,
       keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
       encryptedKey EncryptedKey }

     RecipientIdentifier ::= CHOICE {
       issuerAndSerialNumber IssuerAndSerialNumber,
       subjectKeyIdentifier [0] SubjectKeyIdentifier }

  The fields of type KeyTransRecipientInfo have the following meanings:

     version is the syntax version number.  If the RecipientIdentifier
     is the CHOICE issuerAndSerialNumber, then the version MUST be 0.
     If the RecipientIdentifier is subjectKeyIdentifier, then the
     version MUST be 2.

     rid specifies the recipient's certificate or key that was used by
     the sender to protect the content-encryption key.  The content-
     encryption key is encrypted with the recipient's public key.  The
     RecipientIdentifier provides two alternatives for specifying the
     recipient's certificate, and thereby the recipient's public key.
     The recipient's certificate must contain a key transport public
     key.  Therefore, a recipient X.509 version 3 certificate that
     contains a key usage extension MUST assert the keyEncipherment
     bit.  The issuerAndSerialNumber alternative identifies the
     recipient's certificate by the issuer's distinguished name and the
     certificate serial number; the subjectKeyIdentifier identifies the
     recipient's certificate by a key identifier.  When an X.509
     certificate is referenced, the key identifier matches the X.509
     subjectKeyIdentifier extension value.  When other certificate
     formats are referenced, the documents that specify the certificate
     format and their use with the CMS must include details on matching
     the key identifier to the appropriate certificate field.  For
     recipient processing, implementations MUST support both of these
     alternatives for specifying the recipient's certificate.  For
     sender processing, implementations MUST support at least one of
     these alternatives.







Housley                     Standards Track                    [Page 22]

RFC 5652              Cryptographic Message Syntax        September 2009


     keyEncryptionAlgorithm identifies the key-encryption algorithm,
     and any associated parameters, used to encrypt the content-
     encryption key for the recipient.  The key-encryption process is
     described in Section 6.4.

     encryptedKey is the result of encrypting the content-encryption
     key for the recipient.

6.2.2.  KeyAgreeRecipientInfo Type

  Recipient information using key agreement is represented in the type
  KeyAgreeRecipientInfo.  Each instance of KeyAgreeRecipientInfo will
  transfer the content-encryption key to one or more recipients that
  use the same key agreement algorithm and domain parameters for that
  algorithm.

     KeyAgreeRecipientInfo ::= SEQUENCE {
       version CMSVersion,  -- always set to 3
       originator [0] EXPLICIT OriginatorIdentifierOrKey,
       ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
       keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
       recipientEncryptedKeys RecipientEncryptedKeys }

     OriginatorIdentifierOrKey ::= CHOICE {
       issuerAndSerialNumber IssuerAndSerialNumber,
       subjectKeyIdentifier [0] SubjectKeyIdentifier,
       originatorKey [1] OriginatorPublicKey }

     OriginatorPublicKey ::= SEQUENCE {
       algorithm AlgorithmIdentifier,
       publicKey BIT STRING }

     RecipientEncryptedKeys ::= SEQUENCE OF RecipientEncryptedKey

     RecipientEncryptedKey ::= SEQUENCE {
       rid KeyAgreeRecipientIdentifier,
       encryptedKey EncryptedKey }

     KeyAgreeRecipientIdentifier ::= CHOICE {
       issuerAndSerialNumber IssuerAndSerialNumber,
       rKeyId [0] IMPLICIT RecipientKeyIdentifier }

     RecipientKeyIdentifier ::= SEQUENCE {
       subjectKeyIdentifier SubjectKeyIdentifier,
       date GeneralizedTime OPTIONAL,
       other OtherKeyAttribute OPTIONAL }

     SubjectKeyIdentifier ::= OCTET STRING



Housley                     Standards Track                    [Page 23]

RFC 5652              Cryptographic Message Syntax        September 2009


  The fields of type KeyAgreeRecipientInfo have the following meanings:

     version is the syntax version number.  It MUST always be 3.

     originator is a CHOICE with three alternatives specifying the
     sender's key agreement public key.  The sender uses the
     corresponding private key and the recipient's public key to
     generate a pairwise key.  The content-encryption key is encrypted
     in the pairwise key.  The issuerAndSerialNumber alternative
     identifies the sender's certificate, and thereby the sender's
     public key, by the issuer's distinguished name and the certificate
     serial number.  The subjectKeyIdentifier alternative identifies
     the sender's certificate, and thereby the sender's public key, by
     a key identifier.  When an X.509 certificate is referenced, the
     key identifier matches the X.509 subjectKeyIdentifier extension
     value.  When other certificate formats are referenced, the
     documents that specify the certificate format and their use with
     the CMS must include details on matching the key identifier to the
     appropriate certificate field.  The originatorKey alternative
     includes the algorithm identifier and sender's key agreement
     public key.  This alternative permits originator anonymity since
     the public key is not certified.  Implementations MUST support all
     three alternatives for specifying the sender's public key.

     ukm is optional.  With some key agreement algorithms, the sender
     provides a User Keying Material (UKM) to ensure that a different
     key is generated each time the same two parties generate a
     pairwise key.  Implementations MUST accept a KeyAgreeRecipientInfo
     SEQUENCE that includes a ukm field.  Implementations that do not
     support key agreement algorithms that make use of UKMs MUST
     gracefully handle the presence of UKMs.

     keyEncryptionAlgorithm identifies the key-encryption algorithm,
     and any associated parameters, used to encrypt the content-
     encryption key with the key-encryption key.  The key-encryption
     process is described in Section 6.4.

     recipientEncryptedKeys includes a recipient identifier and
     encrypted key for one or more recipients.  The
     KeyAgreeRecipientIdentifier is a CHOICE with two alternatives
     specifying the recipient's certificate, and thereby the
     recipient's public key, that was used by the sender to generate a
     pairwise key-encryption key.  The recipient's certificate must
     contain a key agreement public key.  Therefore, a recipient X.509
     version 3 certificate that contains a key usage extension MUST
     assert the keyAgreement bit.  The content-encryption key is
     encrypted in the pairwise key-encryption key.  The
     issuerAndSerialNumber alternative identifies the recipient's



Housley                     Standards Track                    [Page 24]

RFC 5652              Cryptographic Message Syntax        September 2009


     certificate by the issuer's distinguished name and the certificate
     serial number; the RecipientKeyIdentifier is described below.  The
     encryptedKey is the result of encrypting the content-encryption
     key in the pairwise key-encryption key generated using the key
     agreement algorithm.  Implementations MUST support both
     alternatives for specifying the recipient's certificate.

  The fields of type RecipientKeyIdentifier have the following
  meanings:

     subjectKeyIdentifier identifies the recipient's certificate by a
     key identifier.  When an X.509 certificate is referenced, the key
     identifier matches the X.509 subjectKeyIdentifier extension value.
     When other certificate formats are referenced, the documents that
     specify the certificate format and their use with the CMS must
     include details on matching the key identifier to the appropriate
     certificate field.

     date is optional.  When present, the date specifies which of the
     recipient's previously distributed UKMs was used by the sender.

     other is optional.  When present, this field contains additional
     information used by the recipient to locate the public keying
     material used by the sender.

6.2.3.  KEKRecipientInfo Type

  Recipient information using previously distributed symmetric keys is
  represented in the type KEKRecipientInfo.  Each instance of
  KEKRecipientInfo will transfer the content-encryption key to one or
  more recipients who have the previously distributed key-encryption
  key.

     KEKRecipientInfo ::= SEQUENCE {
       version CMSVersion,  -- always set to 4
       kekid KEKIdentifier,
       keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
       encryptedKey EncryptedKey }

     KEKIdentifier ::= SEQUENCE {
       keyIdentifier OCTET STRING,
       date GeneralizedTime OPTIONAL,
       other OtherKeyAttribute OPTIONAL }








Housley                     Standards Track                    [Page 25]

RFC 5652              Cryptographic Message Syntax        September 2009


  The fields of type KEKRecipientInfo have the following meanings:

     version is the syntax version number.  It MUST always be 4.

     kekid specifies a symmetric key-encryption key that was previously
     distributed to the sender and one or more recipients.

     keyEncryptionAlgorithm identifies the key-encryption algorithm,
     and any associated parameters, used to encrypt the content-
     encryption key with the key-encryption key.  The key-encryption
     process is described in Section 6.4.

     encryptedKey is the result of encrypting the content-encryption
     key in the key-encryption key.

  The fields of type KEKIdentifier have the following meanings:

     keyIdentifier identifies the key-encryption key that was
     previously distributed to the sender and one or more recipients.

     date is optional.  When present, the date specifies a single key-
     encryption key from a set that was previously distributed.

     other is optional.  When present, this field contains additional
     information used by the recipient to determine the key-encryption
     key used by the sender.

6.2.4.  PasswordRecipientInfo Type

  Recipient information using a password or shared secret value is
  represented in the type PasswordRecipientInfo.  Each instance of
  PasswordRecipientInfo will transfer the content-encryption key to one
  or more recipients who possess the password or shared secret value.

  The PasswordRecipientInfo Type is specified in RFC 3211 [PWRI].  The
  PasswordRecipientInfo structure is repeated here for completeness.

     PasswordRecipientInfo ::= SEQUENCE {
       version CMSVersion,   -- Always set to 0
       keyDerivationAlgorithm [0] KeyDerivationAlgorithmIdentifier
                                    OPTIONAL,
       keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
       encryptedKey EncryptedKey }








Housley                     Standards Track                    [Page 26]

RFC 5652              Cryptographic Message Syntax        September 2009


  The fields of type PasswordRecipientInfo have the following meanings:

     version is the syntax version number.  It MUST always be 0.

     keyDerivationAlgorithm identifies the key-derivation algorithm,
     and any associated parameters, used to derive the key-encryption
     key from the password or shared secret value.  If this field is
     absent, the key-encryption key is supplied from an external
     source, for example a hardware crypto token such as a smart card.

     keyEncryptionAlgorithm identifies the encryption algorithm, and
     any associated parameters, used to encrypt the content-encryption
     key with the key-encryption key.

     encryptedKey is the result of encrypting the content-encryption
     key with the key-encryption key.

6.2.5.  OtherRecipientInfo Type

  Recipient information for additional key management techniques are
  represented in the type OtherRecipientInfo.  The OtherRecipientInfo
  type allows key management techniques beyond key transport, key
  agreement, previously distributed symmetric key-encryption keys, and
  password-based key management to be specified in future documents.
  An object identifier uniquely identifies such key management
  techniques.

     OtherRecipientInfo ::= SEQUENCE {
       oriType OBJECT IDENTIFIER,
       oriValue ANY DEFINED BY oriType }

  The fields of type OtherRecipientInfo have the following meanings:

     oriType identifies the key management technique.

     oriValue contains the protocol data elements needed by a recipient
     using the identified key management technique.

6.3.  Content-encryption Process

  The content-encryption key for the desired content-encryption
  algorithm is randomly generated.  The data to be protected is padded
  as described below, then the padded data is encrypted using the
  content-encryption key.  The encryption operation maps an arbitrary
  string of octets (the data) to another string of octets (the
  ciphertext) under control of a content-encryption key.  The encrypted
  data is included in the EnvelopedData encryptedContentInfo
  encryptedContent OCTET STRING.



Housley                     Standards Track                    [Page 27]

RFC 5652              Cryptographic Message Syntax        September 2009


  Some content-encryption algorithms assume the input length is a
  multiple of k octets, where k is greater than one.  For such
  algorithms, the input shall be padded at the trailing end with
  k-(lth mod k) octets all having value k-(lth mod k), where lth is
  the length of the input.  In other words, the input is padded at
  the trailing end with one of the following strings:

                    01 -- if lth mod k = k-1
                 02 02 -- if lth mod k = k-2
                     .
                     .
                     .
           k k ... k k -- if lth mod k = 0

  The padding can be removed unambiguously since all input is padded,
  including input values that are already a multiple of the block size,
  and no padding string is a suffix of another.  This padding method is
  well defined if and only if k is less than 256.

6.4.  Key-encryption Process

  The input to the key-encryption process -- the value supplied to the
  recipient's key-encryption algorithm -- is just the "value" of the
  content-encryption key.

  Any of the aforementioned key management techniques can be used for
  each recipient of the same encrypted content.

7.  Digested-data Content Type

  The digested-data content type consists of content of any type and a
  message digest of the content.

  Typically, the digested-data content type is used to provide content
  integrity, and the result generally becomes an input to the
  enveloped-data content type.

  The following steps construct digested-data:

  1.  A message digest is computed on the content with a message-digest
      algorithm.

  2.  The message-digest algorithm and the message digest are collected
      together with the content into a DigestedData value.

  A recipient verifies the message digest by comparing the message
  digest to an independently computed message digest.




Housley                     Standards Track                    [Page 28]

RFC 5652              Cryptographic Message Syntax        September 2009


  The following object identifier identifies the digested-data content
  type:

     id-digestedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs7(7) 5 }

  The digested-data content type shall have ASN.1 type DigestedData:

     DigestedData ::= SEQUENCE {
       version CMSVersion,
       digestAlgorithm DigestAlgorithmIdentifier,
       encapContentInfo EncapsulatedContentInfo,
       digest Digest }

     Digest ::= OCTET STRING

  The fields of type DigestedData have the following meanings:

     version is the syntax version number.  If the encapsulated content
     type is id-data, then the value of version MUST be 0; however, if
     the encapsulated content type is other than id-data, then the
     value of version MUST be 2.

     digestAlgorithm identifies the message digest algorithm, and any
     associated parameters, under which the content is digested.  The
     message-digesting process is the same as in Section 5.4 in the
     case when there are no signed attributes.

     encapContentInfo is the content that is digested, as defined in
     Section 5.2.

     digest is the result of the message-digesting process.

  The ordering of the digestAlgorithm field, the encapContentInfo
  field, and the digest field makes it possible to process a
  DigestedData value in a single pass.

8.  Encrypted-data Content Type

  The encrypted-data content type consists of encrypted content of any
  type.  Unlike the enveloped-data content type, the encrypted-data
  content type has neither recipients nor encrypted content-encryption
  keys.  Keys MUST be managed by other means.

  The typical application of the encrypted-data content type will be to
  encrypt the content of the data content type for local storage,
  perhaps where the encryption key is derived from a password.




Housley                     Standards Track                    [Page 29]

RFC 5652              Cryptographic Message Syntax        September 2009


  The following object identifier identifies the encrypted-data content
  type:

     id-encryptedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs7(7) 6 }

  The encrypted-data content type shall have ASN.1 type EncryptedData:

     EncryptedData ::= SEQUENCE {
       version CMSVersion,
       encryptedContentInfo EncryptedContentInfo,
       unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPTIONAL }

  The fields of type EncryptedData have the following meanings:

     version is the syntax version number.  If unprotectedAttrs is
     present, then the version MUST be 2.  If unprotectedAttrs is
     absent, then version MUST be 0.

     encryptedContentInfo is the encrypted content information, as
     defined in Section 6.1.

     unprotectedAttrs is a collection of attributes that are not
     encrypted.  The field is optional.  Useful attribute types are
     defined in Section 11.

9.  Authenticated-data Content Type

  The authenticated-data content type consists of content of any type,
  a message authentication code (MAC), and encrypted authentication
  keys for one or more recipients.  The combination of the MAC and one
  encrypted authentication key for a recipient is necessary for that
  recipient to verify the integrity of the content.  Any type of
  content can be integrity protected for an arbitrary number of
  recipients.

  The process by which authenticated-data is constructed involves the
  following steps:

  1.  A message-authentication key for a particular message-
      authentication algorithm is generated at random.

  2.  The message-authentication key is encrypted for each recipient.
      The details of this encryption depend on the key management
      algorithm used.






Housley                     Standards Track                    [Page 30]

RFC 5652              Cryptographic Message Syntax        September 2009


  3.  For each recipient, the encrypted message-authentication key and
      other recipient-specific information are collected into a
      RecipientInfo value, defined in Section 6.2.

  4.  Using the message-authentication key, the originator computes a
      MAC value on the content.  If the originator is authenticating
      any information in addition to the content (see Section 9.2), a
      message digest is calculated on the content, the message digest
      of the content and the other information are authenticated using
      the message-authentication key, and the result becomes the "MAC
      value".

9.1.  AuthenticatedData Type

  The following object identifier identifies the authenticated-data
  content type:

     id-ct-authData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
        us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
        ct(1) 2 }

  The authenticated-data content type shall have ASN.1 type
  AuthenticatedData:

     AuthenticatedData ::= SEQUENCE {
       version CMSVersion,
       originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
       recipientInfos RecipientInfos,
       macAlgorithm MessageAuthenticationCodeAlgorithm,
       digestAlgorithm [1] DigestAlgorithmIdentifier OPTIONAL,
       encapContentInfo EncapsulatedContentInfo,
       authAttrs [2] IMPLICIT AuthAttributes OPTIONAL,
       mac MessageAuthenticationCode,
       unauthAttrs [3] IMPLICIT UnauthAttributes OPTIONAL }

     AuthAttributes ::= SET SIZE (1..MAX) OF Attribute

     UnauthAttributes ::= SET SIZE (1..MAX) OF Attribute

     MessageAuthenticationCode ::= OCTET STRING

  The fields of type AuthenticatedData have the following meanings:

     version is the syntax version number.  The version MUST be
     assigned as follows:






Housley                     Standards Track                    [Page 31]

RFC 5652              Cryptographic Message Syntax        September 2009


        IF (originatorInfo is present) AND
           ((any certificates with a type of other are present) OR
           (any crls with a type of other are present))
        THEN version is 3
        ELSE
           IF ((originatorInfo is present) AND
              (any version 2 attribute certificates are present))
           THEN version is 1
           ELSE version is 0

     originatorInfo optionally provides information about the
     originator.  It is present only if required by the key management
     algorithm.  It MAY contain certificates, attribute certificates,
     and CRLs, as defined in Section 6.1.

     recipientInfos is a collection of per-recipient information, as
     defined in Section 6.1.  There MUST be at least one element in the
     collection.

     macAlgorithm is a message authentication code (MAC) algorithm
     identifier.  It identifies the MAC algorithm, along with any
     associated parameters, used by the originator.  Placement of the
     macAlgorithm field facilitates one-pass processing by the
     recipient.

     digestAlgorithm identifies the message digest algorithm, and any
     associated parameters, used to compute a message digest on the
     encapsulated content if authenticated attributes are present.  The
     message digesting process is described in Section 9.2.  Placement
     of the digestAlgorithm field facilitates one-pass processing by
     the recipient.  If the digestAlgorithm field is present, then the
     authAttrs field MUST also be present.

     encapContentInfo is the content that is authenticated, as defined
     in Section 5.2.

     authAttrs is a collection of authenticated attributes.  The
     authAttrs structure is optional, but it MUST be present if the
     content type of the EncapsulatedContentInfo value being
     authenticated is not id-data.  If the authAttrs field is present,
     then the digestAlgorithm field MUST also be present.  The
     AuthAttributes structure MUST be DER encoded, even if the rest of
     the structure is BER encoded.  Useful attribute types are defined
     in Section 11.  If the authAttrs field is present, it MUST
     contain, at a minimum, the following two attributes:






Housley                     Standards Track                    [Page 32]

RFC 5652              Cryptographic Message Syntax        September 2009


        A content-type attribute having as its value the content type
        of the EncapsulatedContentInfo value being authenticated.
        Section 11.1 defines the content-type attribute.

        A message-digest attribute, having as its value the message
        digest of the content.  Section 11.2 defines the message-digest
        attribute.

     mac is the message authentication code.

     unauthAttrs is a collection of attributes that are not
     authenticated.  The field is optional.  To date, no attributes
     have been defined for use as unauthenticated attributes, but other
     useful attribute types are defined in Section 11.

9.2.  MAC Generation

  The MAC calculation process computes a message authentication code
  (MAC) on either the content being authenticated or a message digest
  of content being authenticated together with the originator's
  authenticated attributes.

  If the authAttrs field is absent, the input to the MAC calculation
  process is the value of the encapContentInfo eContent OCTET STRING.
  Only the octets comprising the value of the eContent OCTET STRING are
  input to the MAC algorithm; the tag and the length octets are
  omitted.  This has the advantage that the length of the content being
  authenticated need not be known in advance of the MAC generation
  process.

  If the authAttrs field is present, the content-type attribute (as
  described in Section 11.1) and the message-digest attribute (as
  described in Section 11.2) MUST be included, and the input to the MAC
  calculation process is the DER encoding of authAttrs.  A separate
  encoding of the authAttrs field is performed for message digest
  calculation.  The IMPLICIT [2] tag in the authAttrs field is not used
  for the DER encoding, rather an EXPLICIT SET OF tag is used.  That
  is, the DER encoding of the SET OF tag, rather than of the IMPLICIT
  [2] tag, is to be included in the message digest calculation along
  with the length and content octets of the authAttrs value.

  The message digest calculation process computes a message digest on
  the content being authenticated.  The initial input to the message
  digest calculation process is the "value" of the encapsulated content
  being authenticated.  Specifically, the input is the encapContentInfo
  eContent OCTET STRING to which the authentication process is applied.
  Only the octets comprising the value of the encapContentInfo eContent
  OCTET STRING are input to the message digest algorithm, not the tag



Housley                     Standards Track                    [Page 33]

RFC 5652              Cryptographic Message Syntax        September 2009


  or the length octets.  This has the advantage that the length of the
  content being authenticated need not be known in advance.  Although
  the encapContentInfo eContent OCTET STRING tag and length octets are
  not included in the message digest calculation, they are still
  protected by other means.  The length octets are protected by the
  nature of the message digest algorithm since it is computationally
  infeasible to find any two distinct contents of any length that have
  the same message digest.

  The input to the MAC calculation process includes the MAC input data,
  defined above, and an authentication key conveyed in a recipientInfo
  structure.  The details of MAC calculation depend on the MAC
  algorithm employed (e.g., Hashed Message Authentication Code (HMAC)).
  The object identifier, along with any parameters, that specifies the
  MAC algorithm employed by the originator is carried in the
  macAlgorithm field.  The MAC value generated by the originator is
  encoded as an OCTET STRING and carried in the mac field.

9.3.  MAC Verification

  The input to the MAC verification process includes the input data
  (determined based on the presence or absence of the authAttrs field,
  as defined in 9.2), and the authentication key conveyed in
  recipientInfo.  The details of the MAC verification process depend on
  the MAC algorithm employed.

  The recipient MUST NOT rely on any MAC values or message digest
  values computed by the originator.  The content is authenticated as
  described in Section 9.2.  If the originator includes authenticated
  attributes, then the content of the authAttrs is authenticated as
  described in Section 9.2.  For authentication to succeed, the MAC
  value calculated by the recipient MUST be the same as the value of
  the mac field.  Similarly, for authentication to succeed when the
  authAttrs field is present, the content message digest value
  calculated by the recipient MUST be the same as the message digest
  value included in the authAttrs message-digest attribute.

  If the AuthenticatedData includes authAttrs, then the content-type
  attribute value MUST match the AuthenticatedData encapContentInfo
  eContentType value.

10.  Useful Types

  This section is divided into two parts.  The first part defines
  algorithm identifiers, and the second part defines other useful
  types.





Housley                     Standards Track                    [Page 34]

RFC 5652              Cryptographic Message Syntax        September 2009


10.1.  Algorithm Identifier Types

  All of the algorithm identifiers have the same type:
  AlgorithmIdentifier.  The definition of AlgorithmIdentifier is taken
  from X.509 [X.509-88].

  There are many alternatives for each algorithm type.

10.1.1.  DigestAlgorithmIdentifier

  The DigestAlgorithmIdentifier type identifies a message-digest
  algorithm.  Examples include SHA-1, MD2, and MD5.  A message-digest
  algorithm maps an octet string (the content) to another octet string
  (the message digest).

     DigestAlgorithmIdentifier ::= AlgorithmIdentifier

10.1.2.  SignatureAlgorithmIdentifier

  The SignatureAlgorithmIdentifier type identifies a signature
  algorithm, and it can also identify a message digest algorithm.
  Examples include RSA, DSA, DSA with SHA-1, ECDSA, and ECDSA with
  SHA-256.  A signature algorithm supports signature generation and
  verification operations.  The signature generation operation uses the
  message digest and the signer's private key to generate a signature
  value.  The signature verification operation uses the message digest
  and the signer's public key to determine whether or not a signature
  value is valid.  Context determines which operation is intended.

     SignatureAlgorithmIdentifier ::= AlgorithmIdentifier

10.1.3.  KeyEncryptionAlgorithmIdentifier

  The KeyEncryptionAlgorithmIdentifier type identifies a key-encryption
  algorithm used to encrypt a content-encryption key.  The encryption
  operation maps an octet string (the key) to another octet string (the
  encrypted key) under control of a key-encryption key.  The decryption
  operation is the inverse of the encryption operation.  Context
  determines which operation is intended.

  The details of encryption and decryption depend on the key management
  algorithm used.  Key transport, key agreement, previously distributed
  symmetric key-encrypting keys, and symmetric key-encrypting keys
  derived from passwords are supported.

     KeyEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier





Housley                     Standards Track                    [Page 35]

RFC 5652              Cryptographic Message Syntax        September 2009


10.1.4.  ContentEncryptionAlgorithmIdentifier

  The ContentEncryptionAlgorithmIdentifier type identifies a content-
  encryption algorithm.  Examples include Triple-DES and RC2.  A
  content-encryption algorithm supports encryption and decryption
  operations.  The encryption operation maps an octet string (the
  plaintext) to another octet string (the ciphertext) under control of
  a content-encryption key.  The decryption operation is the inverse of
  the encryption operation.  Context determines which operation is
  intended.

     ContentEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

10.1.5.  MessageAuthenticationCodeAlgorithm

  The MessageAuthenticationCodeAlgorithm type identifies a message
  authentication code (MAC) algorithm.  Examples include DES-MAC and
  HMAC-SHA-1.  A MAC algorithm supports generation and verification
  operations.  The MAC generation and verification operations use the
  same symmetric key.  Context determines which operation is intended.

     MessageAuthenticationCodeAlgorithm ::= AlgorithmIdentifier

10.1.6.  KeyDerivationAlgorithmIdentifier

  The KeyDerivationAlgorithmIdentifier type is specified in RFC 3211
  [PWRI].  The KeyDerivationAlgorithmIdentifier definition is repeated
  here for completeness.

  Key derivation algorithms convert a password or shared secret value
  into a key-encryption key.

     KeyDerivationAlgorithmIdentifier ::= AlgorithmIdentifier

10.2.  Other Useful Types

  This section defines types that are used other places in the
  document.  The types are not listed in any particular order.

10.2.1.  RevocationInfoChoices

  The RevocationInfoChoices type gives a set of revocation status
  information alternatives.  It is intended that the set contain
  information sufficient to determine whether the certificates and
  attribute certificates with which the set is associated are revoked.
  However, there MAY be more revocation status information than
  necessary or there MAY be less revocation status information than
  necessary.  X.509 Certificate revocation lists (CRLs) [X.509-97] are



Housley                     Standards Track                    [Page 36]

RFC 5652              Cryptographic Message Syntax        September 2009


  the primary source of revocation status information, but any other
  revocation information format can be supported.  The
  OtherRevocationInfoFormat alternative is provided to support any
  other revocation information format without further modifications to
  the CMS.  For example, Online Certificate Status Protocol (OCSP)
  Responses [OCSP] can be supported using the
  OtherRevocationInfoFormat.

  The CertificateList may contain a CRL, an Authority Revocation List
  (ARL), a Delta CRL, or an Attribute Certificate Revocation List.  All
  of these lists share a common syntax.

  The CertificateList type gives a certificate revocation list (CRL).
  CRLs are specified in X.509 [X.509-97], and they are profiled for use
  in the Internet in RFC 5280 [PROFILE].

  The definition of CertificateList is taken from X.509.

     RevocationInfoChoices ::= SET OF RevocationInfoChoice

     RevocationInfoChoice ::= CHOICE {
       crl CertificateList,
       other [1] IMPLICIT OtherRevocationInfoFormat }

     OtherRevocationInfoFormat ::= SEQUENCE {
       otherRevInfoFormat OBJECT IDENTIFIER,
       otherRevInfo ANY DEFINED BY otherRevInfoFormat }

10.2.2.  CertificateChoices

  The CertificateChoices type gives either a PKCS #6 extended
  certificate [PKCS#6], an X.509 certificate, a version 1 X.509
  attribute certificate (ACv1) [X.509-97], a version 2 X.509 attribute
  certificate (ACv2) [X.509-00], or any other certificate format.  The
  PKCS #6 extended certificate is obsolete.  The PKCS #6 certificate is
  included for backward compatibility, and PKCS #6 certificates SHOULD
  NOT be used.  The ACv1 is also obsolete.  ACv1 is included for
  backward compatibility, and ACv1 SHOULD NOT be used.  The Internet
  profile of X.509 certificates is specified in the "Internet X.509
  Public Key Infrastructure: Certificate and CRL Profile" [PROFILE].
  The Internet profile of ACv2 is specified in the "An Internet
  Attribute Certificate Profile for Authorization" [ACPROFILE].  The
  OtherCertificateFormat alternative is provided to support any other
  certificate format without further modifications to the CMS.

  The definition of Certificate is taken from X.509.





Housley                     Standards Track                    [Page 37]

RFC 5652              Cryptographic Message Syntax        September 2009


  The definitions of AttributeCertificate are taken from X.509-1997 and
  X.509-2000.  The definition from X.509-1997 is assigned to
  AttributeCertificateV1 (see Section 12.2), and the definition from
  X.509-2000 is assigned to AttributeCertificateV2.

     CertificateChoices ::= CHOICE {
      certificate Certificate,
      extendedCertificate [0] IMPLICIT ExtendedCertificate, -- Obsolete
      v1AttrCert [1] IMPLICIT AttributeCertificateV1,       -- Obsolete
      v2AttrCert [2] IMPLICIT AttributeCertificateV2,
      other [3] IMPLICIT OtherCertificateFormat }

     OtherCertificateFormat ::= SEQUENCE {
       otherCertFormat OBJECT IDENTIFIER,
       otherCert ANY DEFINED BY otherCertFormat }

10.2.3.  CertificateSet

  The CertificateSet type provides a set of certificates.  It is
  intended that the set be sufficient to contain certification paths
  from a recognized "root" or "top-level certification authority" to
  all of the sender certificates with which the set is associated.
  However, there may be more certificates than necessary, or there MAY
  be fewer than necessary.

  The precise meaning of a "certification path" is outside the scope of
  this document.  However, [PROFILE] provides a definition for X.509
  certificates.  Some applications may impose upper limits on the
  length of a certification path; others may enforce certain
  relationships between the subjects and issuers of certificates within
  a certification path.

     CertificateSet ::= SET OF CertificateChoices

10.2.4.  IssuerAndSerialNumber

  The IssuerAndSerialNumber type identifies a certificate, and thereby
  an entity and a public key, by the distinguished name of the
  certificate issuer and an issuer-specific certificate serial number.

  The definition of Name is taken from X.501 [X.501-88], and the
  definition of CertificateSerialNumber is taken from X.509 [X.509-97].

     IssuerAndSerialNumber ::= SEQUENCE {
       issuer Name,
       serialNumber CertificateSerialNumber }

     CertificateSerialNumber ::= INTEGER



Housley                     Standards Track                    [Page 38]

RFC 5652              Cryptographic Message Syntax        September 2009


10.2.5.  CMSVersion

  The CMSVersion type gives a syntax version number, for compatibility
  with future revisions of this specification.

     CMSVersion ::= INTEGER
                    { v0(0), v1(1), v2(2), v3(3), v4(4), v5(5) }

10.2.6.  UserKeyingMaterial

  The UserKeyingMaterial type gives a syntax for user keying material
  (UKM).  Some key agreement algorithms require UKMs to ensure that a
  different key is generated each time the same two parties generate a
  pairwise key.  The sender provides a UKM for use with a specific key
  agreement algorithm.

     UserKeyingMaterial ::= OCTET STRING

10.2.7.  OtherKeyAttribute

  The OtherKeyAttribute type gives a syntax for the inclusion of other
  key attributes that permit the recipient to select the key used by
  the sender.  The attribute object identifier must be registered along
  with the syntax of the attribute itself.  Use of this structure
  should be avoided since it might impede interoperability.

     OtherKeyAttribute ::= SEQUENCE {
       keyAttrId OBJECT IDENTIFIER,
       keyAttr ANY DEFINED BY keyAttrId OPTIONAL }

11.  Useful Attributes

  This section defines attributes that may be used with signed-data,
  enveloped-data, encrypted-data, or authenticated-data.  The syntax of
  Attribute is compatible with X.501 [X.501-88] and RFC 5280 [PROFILE].
  Some of the attributes defined in this section were originally
  defined in PKCS #9 [PKCS#9]; others were originally defined in a
  previous version of this specification [CMS1].  The attributes are
  not listed in any particular order.

  Additional attributes are defined in many places, notably the S/MIME
  Version 3.1 Message Specification [MSG3.1] and the Enhanced Security
  Services for S/MIME [ESS], which also include recommendations on the
  placement of these attributes.







Housley                     Standards Track                    [Page 39]

RFC 5652              Cryptographic Message Syntax        September 2009


11.1.  Content Type

  The content-type attribute type specifies the content type of the
  ContentInfo within signed-data or authenticated-data.  The content-
  type attribute type MUST be present whenever signed attributes are
  present in signed-data or authenticated attributes present in
  authenticated-data.  The content-type attribute value MUST match the
  encapContentInfo eContentType value in the signed-data or
  authenticated-data.

  The content-type attribute MUST be a signed attribute or an
  authenticated attribute; it MUST NOT be an unsigned attribute,
  unauthenticated attribute, or unprotected attribute.

  The following object identifier identifies the content-type
  attribute:

     id-contentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs9(9) 3 }

  Content-type attribute values have ASN.1 type ContentType:

     ContentType ::= OBJECT IDENTIFIER

  Even though the syntax is defined as a SET OF AttributeValue, a
  content-type attribute MUST have a single attribute value; zero or
  multiple instances of AttributeValue are not permitted.

  The SignedAttributes and AuthAttributes syntaxes are each defined as
  a SET OF Attributes.  The SignedAttributes in a signerInfo MUST NOT
  include multiple instances of the content-type attribute.  Similarly,
  the AuthAttributes in an AuthenticatedData MUST NOT include multiple
  instances of the content-type attribute.

11.2.  Message Digest

  The message-digest attribute type specifies the message digest of the
  encapContentInfo eContent OCTET STRING being signed in signed-data
  (see Section 5.4) or authenticated in authenticated-data (see Section
  9.2).  For signed-data, the message digest is computed using the
  signer's message digest algorithm.  For authenticated-data, the
  message digest is computed using the originator's message digest
  algorithm.

  Within signed-data, the message-digest signed attribute type MUST be
  present when there are any signed attributes present.  Within
  authenticated-data, the message-digest authenticated attribute type
  MUST be present when there are any authenticated attributes present.



Housley                     Standards Track                    [Page 40]

RFC 5652              Cryptographic Message Syntax        September 2009


  The message-digest attribute MUST be a signed attribute or an
  authenticated attribute; it MUST NOT be an unsigned attribute,
  unauthenticated attribute, or unprotected attribute.

  The following object identifier identifies the message-digest
  attribute:

     id-messageDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs9(9) 4 }

  Message-digest attribute values have ASN.1 type MessageDigest:

     MessageDigest ::= OCTET STRING

  A message-digest attribute MUST have a single attribute value, even
  though the syntax is defined as a SET OF AttributeValue.  There MUST
  NOT be zero or multiple instances of AttributeValue present.

  The SignedAttributes syntax and AuthAttributes syntax are each
  defined as a SET OF Attributes.  The SignedAttributes in a signerInfo
  MUST include only one instance of the message-digest attribute.
  Similarly, the AuthAttributes in an AuthenticatedData MUST include
  only one instance of the message-digest attribute.

11.3.  Signing Time

  The signing-time attribute type specifies the time at which the
  signer (purportedly) performed the signing process.  The signing-time
  attribute type is intended for use in signed-data.

  The signing-time attribute MUST be a signed attribute or an
  authenticated attribute; it MUST NOT be an unsigned attribute,
  unauthenticated attribute, or unprotected attribute.

  The following object identifier identifies the signing-time
  attribute:

     id-signingTime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs9(9) 5 }

  Signing-time attribute values have ASN.1 type SigningTime:

     SigningTime ::= Time

     Time ::= CHOICE {
       utcTime UTCTime,
       generalizedTime GeneralizedTime }




Housley                     Standards Track                    [Page 41]

RFC 5652              Cryptographic Message Syntax        September 2009


  Note: The definition of Time matches the one specified in the 1997
  version of X.509 [X.509-97].

  Dates between 1 January 1950 and 31 December 2049 (inclusive) MUST be
  encoded as UTCTime.  Any dates with year values before 1950 or after
  2049 MUST be encoded as GeneralizedTime.

  UTCTime values MUST be expressed in Coordinated Universal Time
  (formerly known as Greenwich Mean Time (GMT) and Zulu clock time) and
  MUST include seconds (i.e., times are YYMMDDHHMMSSZ), even where the
  number of seconds is zero.  Midnight MUST be represented as
  "YYMMDD000000Z".  Century information is implicit, and the century
  MUST be determined as follows:

     Where YY is greater than or equal to 50, the year MUST be
     interpreted as 19YY; and

     Where YY is less than 50, the year MUST be interpreted as 20YY.

  GeneralizedTime values MUST be expressed in Coordinated Universal
  Time and MUST include seconds (i.e., times are YYYYMMDDHHMMSSZ), even
  where the number of seconds is zero.  GeneralizedTime values MUST NOT
  include fractional seconds.

  A signing-time attribute MUST have a single attribute value, even
  though the syntax is defined as a SET OF AttributeValue.  There MUST
  NOT be zero or multiple instances of AttributeValue present.

  The SignedAttributes syntax and the AuthAttributes syntax are each
  defined as a SET OF Attributes.  The SignedAttributes in a signerInfo
  MUST NOT include multiple instances of the signing-time attribute.
  Similarly, the AuthAttributes in an AuthenticatedData MUST NOT
  include multiple instances of the signing-time attribute.

  No requirement is imposed concerning the correctness of the signing
  time, and acceptance of a purported signing time is a matter of a
  recipient's discretion.  It is expected, however, that some signers,
  such as time-stamp servers, will be trusted implicitly.

11.4.  Countersignature

  The countersignature attribute type specifies one or more signatures
  on the contents octets of the signature OCTET STRING in a SignerInfo
  value of the signed-data.  That is, the message digest is computed
  over the octets comprising the value of the OCTET STRING, neither the
  tag nor length octets are included.  Thus, the countersignature
  attribute type countersigns (signs in serial) another signature.




Housley                     Standards Track                    [Page 42]

RFC 5652              Cryptographic Message Syntax        September 2009


  The countersignature attribute MUST be an unsigned attribute; it MUST
  NOT be a signed attribute, an authenticated attribute, an
  unauthenticated attribute, or an unprotected attribute.

  The following object identifier identifies the countersignature
  attribute:

     id-countersignature OBJECT IDENTIFIER ::= { iso(1) member-body(2)
         us(840) rsadsi(113549) pkcs(1) pkcs9(9) 6 }

  Countersignature attribute values have ASN.1 type Countersignature:

     Countersignature ::= SignerInfo

  Countersignature values have the same meaning as SignerInfo values
  for ordinary signatures, except that:

  1.  The signedAttributes field MUST NOT contain a content-type
      attribute; there is no content type for countersignatures.

  2.  The signedAttributes field MUST contain a message-digest
      attribute if it contains any other attributes.

  3.  The input to the message-digesting process is the contents octets
      of the DER encoding of the signatureValue field of the SignerInfo
      value with which the attribute is associated.

  A countersignature attribute can have multiple attribute values.  The
  syntax is defined as a SET OF AttributeValue, and there MUST be one
  or more instances of AttributeValue present.

  The UnsignedAttributes syntax is defined as a SET OF Attributes.  The
  UnsignedAttributes in a signerInfo may include multiple instances of
  the countersignature attribute.

  A countersignature, since it has type SignerInfo, can itself contain
  a countersignature attribute.  Thus, it is possible to construct an
  arbitrarily long series of countersignatures.

12.  ASN.1 Modules

  Section 12.1 contains the ASN.1 module for the CMS, and Section 12.2
  contains the ASN.1 module for the Version 1 Attribute Certificate.








Housley                     Standards Track                    [Page 43]

RFC 5652              Cryptographic Message Syntax        September 2009


12.1.  CMS ASN.1 Module

  CryptographicMessageSyntax2004
    { iso(1) member-body(2) us(840) rsadsi(113549)
      pkcs(1) pkcs-9(9) smime(16) modules(0) cms-2004(24) }

  DEFINITIONS IMPLICIT TAGS ::=
  BEGIN

  -- EXPORTS All
  -- The types and values defined in this module are exported for use
  -- in the other ASN.1 modules.  Other applications may use them for
  -- their own purposes.

  IMPORTS

    -- Imports from RFC 5280 [PROFILE], Appendix A.1
          AlgorithmIdentifier, Certificate, CertificateList,
          CertificateSerialNumber, Name
             FROM PKIX1Explicit88
                  { iso(1) identified-organization(3) dod(6)
                    internet(1) security(5) mechanisms(5) pkix(7)
                    mod(0) pkix1-explicit(18) }

    -- Imports from RFC 3281 [ACPROFILE], Appendix B
          AttributeCertificate
             FROM PKIXAttributeCertificate
                  { iso(1) identified-organization(3) dod(6)
                    internet(1) security(5) mechanisms(5) pkix(7)
                    mod(0) attribute-cert(12) }

    -- Imports from Appendix B of this document
          AttributeCertificateV1
             FROM AttributeCertificateVersion1
                  { iso(1) member-body(2) us(840) rsadsi(113549)
                    pkcs(1) pkcs-9(9) smime(16) modules(0)
                    v1AttrCert(15) } ;

  -- Cryptographic Message Syntax

  ContentInfo ::= SEQUENCE {
    contentType ContentType,
    content [0] EXPLICIT ANY DEFINED BY contentType }

  ContentType ::= OBJECT IDENTIFIER






Housley                     Standards Track                    [Page 44]

RFC 5652              Cryptographic Message Syntax        September 2009


  SignedData ::= SEQUENCE {
    version CMSVersion,
    digestAlgorithms DigestAlgorithmIdentifiers,
    encapContentInfo EncapsulatedContentInfo,
    certificates [0] IMPLICIT CertificateSet OPTIONAL,
    crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,
    signerInfos SignerInfos }

  DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier

  SignerInfos ::= SET OF SignerInfo

  EncapsulatedContentInfo ::= SEQUENCE {
    eContentType ContentType,
    eContent [0] EXPLICIT OCTET STRING OPTIONAL }

  SignerInfo ::= SEQUENCE {
    version CMSVersion,
    sid SignerIdentifier,
    digestAlgorithm DigestAlgorithmIdentifier,
    signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
    signatureAlgorithm SignatureAlgorithmIdentifier,
    signature SignatureValue,
    unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }

  SignerIdentifier ::= CHOICE {
    issuerAndSerialNumber IssuerAndSerialNumber,
    subjectKeyIdentifier [0] SubjectKeyIdentifier }

  SignedAttributes ::= SET SIZE (1..MAX) OF Attribute

  UnsignedAttributes ::= SET SIZE (1..MAX) OF Attribute

  Attribute ::= SEQUENCE {
    attrType OBJECT IDENTIFIER,
    attrValues SET OF AttributeValue }

  AttributeValue ::= ANY

  SignatureValue ::= OCTET STRING

  EnvelopedData ::= SEQUENCE {
    version CMSVersion,
    originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
    recipientInfos RecipientInfos,
    encryptedContentInfo EncryptedContentInfo,
    unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPTIONAL }




Housley                     Standards Track                    [Page 45]

RFC 5652              Cryptographic Message Syntax        September 2009


  OriginatorInfo ::= SEQUENCE {
    certs [0] IMPLICIT CertificateSet OPTIONAL,
    crls [1] IMPLICIT RevocationInfoChoices OPTIONAL }

  RecipientInfos ::= SET SIZE (1..MAX) OF RecipientInfo

  EncryptedContentInfo ::= SEQUENCE {
    contentType ContentType,
    contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
    encryptedContent [0] IMPLICIT EncryptedContent OPTIONAL }

  EncryptedContent ::= OCTET STRING

  UnprotectedAttributes ::= SET SIZE (1..MAX) OF Attribute

  RecipientInfo ::= CHOICE {
    ktri KeyTransRecipientInfo,
    kari [1] KeyAgreeRecipientInfo,
    kekri [2] KEKRecipientInfo,
    pwri [3] PasswordRecipientInfo,
    ori [4] OtherRecipientInfo }

  EncryptedKey ::= OCTET STRING

  KeyTransRecipientInfo ::= SEQUENCE {
    version CMSVersion,  -- always set to 0 or 2
    rid RecipientIdentifier,
    keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
    encryptedKey EncryptedKey }

  RecipientIdentifier ::= CHOICE {
    issuerAndSerialNumber IssuerAndSerialNumber,
    subjectKeyIdentifier [0] SubjectKeyIdentifier }

  KeyAgreeRecipientInfo ::= SEQUENCE {
    version CMSVersion,  -- always set to 3
    originator [0] EXPLICIT OriginatorIdentifierOrKey,
    ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
    keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
    recipientEncryptedKeys RecipientEncryptedKeys }

  OriginatorIdentifierOrKey ::= CHOICE {
    issuerAndSerialNumber IssuerAndSerialNumber,
    subjectKeyIdentifier [0] SubjectKeyIdentifier,
    originatorKey [1] OriginatorPublicKey }






Housley                     Standards Track                    [Page 46]

RFC 5652              Cryptographic Message Syntax        September 2009


  OriginatorPublicKey ::= SEQUENCE {
    algorithm AlgorithmIdentifier,
    publicKey BIT STRING }

  RecipientEncryptedKeys ::= SEQUENCE OF RecipientEncryptedKey

  RecipientEncryptedKey ::= SEQUENCE {
    rid KeyAgreeRecipientIdentifier,
    encryptedKey EncryptedKey }

  KeyAgreeRecipientIdentifier ::= CHOICE {
    issuerAndSerialNumber IssuerAndSerialNumber,
    rKeyId [0] IMPLICIT RecipientKeyIdentifier }

  RecipientKeyIdentifier ::= SEQUENCE {
    subjectKeyIdentifier SubjectKeyIdentifier,
    date GeneralizedTime OPTIONAL,
    other OtherKeyAttribute OPTIONAL }

  SubjectKeyIdentifier ::= OCTET STRING

  KEKRecipientInfo ::= SEQUENCE {
    version CMSVersion,  -- always set to 4
    kekid KEKIdentifier,
    keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
    encryptedKey EncryptedKey }

  KEKIdentifier ::= SEQUENCE {
    keyIdentifier OCTET STRING,
    date GeneralizedTime OPTIONAL,
    other OtherKeyAttribute OPTIONAL }

  PasswordRecipientInfo ::= SEQUENCE {
    version CMSVersion,   -- always set to 0
    keyDerivationAlgorithm [0] KeyDerivationAlgorithmIdentifier
                               OPTIONAL,
    keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
    encryptedKey EncryptedKey }

  OtherRecipientInfo ::= SEQUENCE {
    oriType OBJECT IDENTIFIER,
    oriValue ANY DEFINED BY oriType }

  DigestedData ::= SEQUENCE {
    version CMSVersion,
    digestAlgorithm DigestAlgorithmIdentifier,
    encapContentInfo EncapsulatedContentInfo,
    digest Digest }



Housley                     Standards Track                    [Page 47]

RFC 5652              Cryptographic Message Syntax        September 2009


  Digest ::= OCTET STRING

  EncryptedData ::= SEQUENCE {
    version CMSVersion,
    encryptedContentInfo EncryptedContentInfo,
    unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPTIONAL }

  AuthenticatedData ::= SEQUENCE {
    version CMSVersion,
    originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
    recipientInfos RecipientInfos,
    macAlgorithm MessageAuthenticationCodeAlgorithm,
    digestAlgorithm [1] DigestAlgorithmIdentifier OPTIONAL,
    encapContentInfo EncapsulatedContentInfo,
    authAttrs [2] IMPLICIT AuthAttributes OPTIONAL,
    mac MessageAuthenticationCode,
    unauthAttrs [3] IMPLICIT UnauthAttributes OPTIONAL }

  AuthAttributes ::= SET SIZE (1..MAX) OF Attribute

  UnauthAttributes ::= SET SIZE (1..MAX) OF Attribute

  MessageAuthenticationCode ::= OCTET STRING

  DigestAlgorithmIdentifier ::= AlgorithmIdentifier

  SignatureAlgorithmIdentifier ::= AlgorithmIdentifier

  KeyEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

  ContentEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

  MessageAuthenticationCodeAlgorithm ::= AlgorithmIdentifier

  KeyDerivationAlgorithmIdentifier ::= AlgorithmIdentifier

  RevocationInfoChoices ::= SET OF RevocationInfoChoice

  RevocationInfoChoice ::= CHOICE {
    crl CertificateList,
    other [1] IMPLICIT OtherRevocationInfoFormat }

  OtherRevocationInfoFormat ::= SEQUENCE {
    otherRevInfoFormat OBJECT IDENTIFIER,
    otherRevInfo ANY DEFINED BY otherRevInfoFormat }






Housley                     Standards Track                    [Page 48]

RFC 5652              Cryptographic Message Syntax        September 2009


  CertificateChoices ::= CHOICE {
    certificate Certificate,
    extendedCertificate [0] IMPLICIT ExtendedCertificate,  -- Obsolete
    v1AttrCert [1] IMPLICIT AttributeCertificateV1,        -- Obsolete
    v2AttrCert [2] IMPLICIT AttributeCertificateV2,
    other [3] IMPLICIT OtherCertificateFormat }

  AttributeCertificateV2 ::= AttributeCertificate

  OtherCertificateFormat ::= SEQUENCE {
    otherCertFormat OBJECT IDENTIFIER,
    otherCert ANY DEFINED BY otherCertFormat }

  CertificateSet ::= SET OF CertificateChoices

  IssuerAndSerialNumber ::= SEQUENCE {
    issuer Name,
    serialNumber CertificateSerialNumber }

  CMSVersion ::= INTEGER  { v0(0), v1(1), v2(2), v3(3), v4(4), v5(5) }

  UserKeyingMaterial ::= OCTET STRING

  OtherKeyAttribute ::= SEQUENCE {
    keyAttrId OBJECT IDENTIFIER,
    keyAttr ANY DEFINED BY keyAttrId OPTIONAL }

  -- Content Type Object Identifiers

  id-ct-contentInfo OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) ct(1) 6 }

  id-data OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs7(7) 1 }

  id-signedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2 }

  id-envelopedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs7(7) 3 }

  id-digestedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs7(7) 5 }

  id-encryptedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs7(7) 6 }





Housley                     Standards Track                    [Page 49]

RFC 5652              Cryptographic Message Syntax        September 2009


  id-ct-authData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) ct(1) 2 }

  -- The CMS Attributes

  MessageDigest ::= OCTET STRING

  SigningTime  ::= Time

  Time ::= CHOICE {
    utcTime UTCTime,
    generalTime GeneralizedTime }

  Countersignature ::= SignerInfo

  -- Attribute Object Identifiers

  id-contentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs9(9) 3 }

  id-messageDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs9(9) 4 }

  id-signingTime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs9(9) 5 }

  id-countersignature OBJECT IDENTIFIER ::= { iso(1) member-body(2)
      us(840) rsadsi(113549) pkcs(1) pkcs9(9) 6 }

  -- Obsolete Extended Certificate syntax from PKCS #6

  ExtendedCertificateOrCertificate ::= CHOICE {
    certificate Certificate,
    extendedCertificate [0] IMPLICIT ExtendedCertificate }

  ExtendedCertificate ::= SEQUENCE {
    extendedCertificateInfo ExtendedCertificateInfo,
    signatureAlgorithm SignatureAlgorithmIdentifier,
    signature Signature }

  ExtendedCertificateInfo ::= SEQUENCE {
    version CMSVersion,
    certificate Certificate,
    attributes UnauthAttributes }

  Signature ::= BIT STRING

  END -- of CryptographicMessageSyntax2004



Housley                     Standards Track                    [Page 50]

RFC 5652              Cryptographic Message Syntax        September 2009


12.2.  Version 1 Attribute Certificate ASN.1 Module

  AttributeCertificateVersion1
      { iso(1) member-body(2) us(840) rsadsi(113549)
        pkcs(1) pkcs-9(9) smime(16) modules(0) v1AttrCert(15) }

  DEFINITIONS EXPLICIT TAGS ::=
  BEGIN

  -- EXPORTS All

  IMPORTS

    -- Imports from RFC 5280 [PROFILE], Appendix A.1
          AlgorithmIdentifier, Attribute, CertificateSerialNumber,
          Extensions, UniqueIdentifier
             FROM PKIX1Explicit88
                  { iso(1) identified-organization(3) dod(6)
                    internet(1) security(5) mechanisms(5) pkix(7)
                    mod(0) pkix1-explicit(18) }

    -- Imports from RFC 5280 [PROFILE], Appendix A.2
          GeneralNames
             FROM PKIX1Implicit88
                  { iso(1) identified-organization(3) dod(6)
                    internet(1) security(5) mechanisms(5) pkix(7)
                    mod(0) pkix1-implicit(19) }

    -- Imports from RFC 3281 [ACPROFILE], Appendix B
          AttCertValidityPeriod, IssuerSerial
             FROM PKIXAttributeCertificate
                  { iso(1) identified-organization(3) dod(6)
                    internet(1) security(5) mechanisms(5) pkix(7)
                    mod(0) attribute-cert(12) } ;

  -- Definition extracted from X.509-1997 [X.509-97], but
  -- different type names are used to avoid collisions.

  AttributeCertificateV1 ::= SEQUENCE {
    acInfo AttributeCertificateInfoV1,
    signatureAlgorithm AlgorithmIdentifier,
    signature BIT STRING }









Housley                     Standards Track                    [Page 51]

RFC 5652              Cryptographic Message Syntax        September 2009


  AttributeCertificateInfoV1 ::= SEQUENCE {
    version AttCertVersionV1 DEFAULT v1,
    subject CHOICE {
      baseCertificateID [0] IssuerSerial,
        -- associated with a Public Key Certificate
      subjectName [1] GeneralNames },
        -- associated with a name
    issuer GeneralNames,
    signature AlgorithmIdentifier,
    serialNumber CertificateSerialNumber,
    attCertValidityPeriod AttCertValidityPeriod,
    attributes SEQUENCE OF Attribute,
    issuerUniqueID UniqueIdentifier OPTIONAL,
    extensions Extensions OPTIONAL }

  AttCertVersionV1 ::= INTEGER { v1(0) }

  END -- of AttributeCertificateVersion1

13.  References

13.1.  Normative References

  [ACPROFILE]   Farrell, S. and R. Housley, "An Internet Attribute
                Certificate Profile for Authorization", RFC 3281, April
                2002.

  [PROFILE]     Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
                Housley, R., and W. Polk, "Internet X.509 Public Key
                Infrastructure Certificate and Certificate Revocation
                List (CRL) Profile", RFC 5280, May 2008.

  [STDWORDS]    Bradner, S., "Key words for use in RFCs to Indicate
                Requirement Levels", BCP 14, RFC 2119, March 1997.

  [X.208-88]    CCITT.  Recommendation X.208: Specification of Abstract
                Syntax Notation One (ASN.1), 1988.

  [X.209-88]    CCITT.  Recommendation X.209: Specification of Basic
                Encoding Rules for Abstract Syntax Notation One
                (ASN.1), 1988.

  [X.501-88]    CCITT.  Recommendation X.501: The Directory - Models,
                1988.

  [X.509-88]    CCITT.  Recommendation X.509: The Directory -
                Authentication Framework, 1988.




Housley                     Standards Track                    [Page 52]

RFC 5652              Cryptographic Message Syntax        September 2009


  [X.509-97]    ITU-T.  Recommendation X.509: The Directory -
                Authentication Framework, 1997.

  [X.509-00]    ITU-T.  Recommendation X.509: The Directory -
                Authentication Framework, 2000.

13.2.  Informative References

  [CMS1]        Housley, R., "Cryptographic Message Syntax", RFC 2630,
                June 1999.

  [CMS2]        Housley, R., "Cryptographic Message Syntax (CMS)", RFC
                3369, August 2002.

  [CMS3]        Housley, R., "Cryptographic Message Syntax (CMS)", RFC
                3852, July 2004.

  [CMSALG]      Housley, R., "Cryptographic Message Syntax (CMS)
                Algorithms", RFC 3370, August 2002.

  [CMSMSIG]     Housley, R., "Cryptographic Message Syntax (CMS)
                Multiple Signer Clarification", RFC 4853, April 2007.

  [DH-X9.42]    Rescorla, E., "Diffie-Hellman Key Agreement Method",
                RFC 2631, June 1999.

  [ESS]         Hoffman, P., Ed., "Enhanced Security Services for
                S/MIME", RFC 2634, June 1999.

  [MSAC]        Microsoft Development Network (MSDN) Library,
                "Authenticode", April 2004 Release.

  [MSG2]        Dusse, S., Hoffman, P., Ramsdell, B., Lundblade, L.,
                and L. Repka, "S/MIME Version 2 Message Specification",
                RFC 2311, March 1998.

  [MSG3]        Ramsdell, B., Ed., "S/MIME Version 3 Message
                Specification", RFC 2633, June 1999.

  [MSG3.1]      Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail
                Extensions (S/MIME) Version 3.1 Message Specification",
                RFC 3851, July 2004.

  [NEWPKCS#1]   Kaliski, B. and J. Staddon, "PKCS #1: RSA Cryptography
                Specifications Version 2.0", RFC 2437, October 1998.






Housley                     Standards Track                    [Page 53]

RFC 5652              Cryptographic Message Syntax        September 2009


  [OCSP]        Myers, M., Ankney, R., Malpani, A., Galperin, S., and
                C. Adams, "X.509 Internet Public Key Infrastructure
                Online Certificate Status Protocol - OCSP", RFC 2560,
                June 1999.

  [PKCS#1]      Kaliski, B., "PKCS #1: RSA Encryption Version 1.5", RFC
                2313, March 1998.

  [PKCS#6]      RSA Laboratories.  PKCS #6: Extended-Certificate Syntax
                Standard, Version 1.5.  November 1993.

  [PKCS#7]      Kaliski, B., "PKCS #7: Cryptographic Message Syntax
                Version 1.5", RFC 2315, March 1998.

  [PKCS#9]      RSA Laboratories.  PKCS #9: Selected Attribute Types,
                Version 1.1.  November 1993.

  [PWRI]        Gutmann, P., "Password-based Encryption for CMS", RFC
                3211, December 2001.

  [RANDOM]      Eastlake, D., 3rd, Schiller, J., and S. Crocker,
                "Randomness Requirements for Security", BCP 106, RFC
                4086, June 2005.

14.  Security Considerations

  The Cryptographic Message Syntax provides a method for digitally
  signing data, digesting data, encrypting data, and authenticating
  data.

  Implementations must protect the signer's private key.  Compromise of
  the signer's private key permits masquerade.

  Implementations must protect the key management private key, the
  key-encryption key, and the content-encryption key.  Compromise of
  the key management private key or the key-encryption key may result
  in the disclosure of all contents protected with that key.
  Similarly, compromise of the content-encryption key may result in
  disclosure of the associated encrypted content.

  Implementations must protect the key management private key and the
  message-authentication key.  Compromise of the key management private
  key permits masquerade of authenticated data.  Similarly, compromise
  of the message-authentication key may result in undetectable
  modification of the authenticated content.






Housley                     Standards Track                    [Page 54]

RFC 5652              Cryptographic Message Syntax        September 2009


  The key management technique employed to distribute message-
  authentication keys must itself provide data origin authentication;
  otherwise, the contents are delivered with integrity from an unknown
  source.  Neither RSA [PKCS#1] [NEWPKCS#1] nor Ephemeral-Static
  Diffie-Hellman [DH-X9.42] provide the necessary data origin
  authentication.  Static-Static Diffie-Hellman [DH-X9.42] does provide
  the necessary data origin authentication when both the originator and
  recipient public keys are bound to appropriate identities in X.509
  certificates.

  When more than two parties share the same message-authentication key,
  data origin authentication is not provided.  Any party that knows the
  message-authentication key can compute a valid MAC; therefore, the
  contents could originate from any one of the parties.

  Implementations must randomly generate content-encryption keys,
  message-authentication keys, initialization vectors (IVs), and
  padding.  Also, the generation of public/private key pairs relies on
  random numbers.  The use of inadequate pseudo-random number
  generators (PRNGs) to generate cryptographic keys can result in
  little or no security.  An attacker may find it much easier to
  reproduce the PRNG environment that produced the keys, searching the
  resulting small set of possibilities, rather than brute force
  searching the whole key space.  The generation of quality random
  numbers is difficult.  RFC 4086 [RANDOM] offers important guidance in
  this area.

  When using key-agreement algorithms or previously distributed
  symmetric key-encryption keys, a key-encryption key is used to
  encrypt the content-encryption key.  If the key-encryption and
  content-encryption algorithms are different, the effective security
  is determined by the weaker of the two algorithms.  If, for example,
  content is encrypted with Triple-DES using a 168-bit Triple-DES
  content-encryption key, and the content-encryption key is wrapped
  with RC2 using a 40-bit RC2 key-encryption key, then at most 40 bits
  of protection is provided.  A trivial search to determine the value
  of the 40-bit RC2 key can recover the Triple-DES key, and then the
  Triple-DES key can be used to decrypt the content.  Therefore,
  implementers must ensure that key-encryption algorithms are as strong
  or stronger than content-encryption algorithms.

  Implementers should be aware that cryptographic algorithms become
  weaker with time.  As new cryptoanalysis techniques are developed and
  computing performance improves, the work factor to break a particular
  cryptographic algorithm will be reduced.  Therefore, cryptographic
  algorithm implementations should be modular, allowing new algorithms
  to be readily inserted.  That is, implementers should be prepared for
  the set of algorithms that must be supported to change over time.



Housley                     Standards Track                    [Page 55]

RFC 5652              Cryptographic Message Syntax        September 2009


  The countersignature unsigned attribute includes a digital signature
  that is computed on the content signature value; thus, the
  countersigning process need not know the original signed content.
  This structure permits implementation efficiency advantages; however,
  this structure may also permit the countersigning of an inappropriate
  signature value.  Therefore, implementations that perform
  countersignatures should either verify the original signature value
  prior to countersigning it (this verification requires processing of
  the original content), or implementations should perform
  countersigning in a context that ensures that only appropriate
  signature values are countersigned.

15.  Acknowledgments

  This document is the result of contributions from many professionals.
  I appreciate the hard work of all members of the IETF S/MIME Working
  Group.  I extend a special thanks to Rich Ankney, Simon Blake-Wilson,
  Tim Dean, Steve Dusse, Carl Ellison, Peter Gutmann, Bob Jueneman,
  Stephen Henson, Paul Hoffman, Scott Hollenbeck, Don Johnson, Burt
  Kaliski, John Linn, John Pawling, Blake Ramsdell, Francois Rousseau,
  Jim Schaad, Dave Solo, Paul Timmel, and Sean Turner for their efforts
  and support.

  I thank Tim Polk for his encouragement in advancing this
  specification along the standards maturity ladder.  In addition, I
  thank Jan Vilhuber for the careful reading that resulted in RFC
  Errata 1744.

Author's Address

  Russell Housley
  Vigil Security, LLC
  918 Spring Knoll Drive
  Herndon, VA 20170
  USA
  EMail: [email protected]















Housley                     Standards Track                    [Page 56]