Network Working Group                                     H. Schulzrinne
Request for Comments: 3551                           Columbia University
Obsoletes: 1890                                                S. Casner
Category: Standards Track                                  Packet Design
                                                              July 2003


             RTP Profile for Audio and Video Conferences
                         with Minimal Control

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

  This document describes a profile called "RTP/AVP" for the use of the
  real-time transport protocol (RTP), version 2, and the associated
  control protocol, RTCP, within audio and video multiparticipant
  conferences with minimal control.  It provides interpretations of
  generic fields within the RTP specification suitable for audio and
  video conferences.  In particular, this document defines a set of
  default mappings from payload type numbers to encodings.

  This document also describes how audio and video data may be carried
  within RTP.  It defines a set of standard encodings and their names
  when used within RTP.  The descriptions provide pointers to reference
  implementations and the detailed standards.  This document is meant
  as an aid for implementors of audio, video and other real-time
  multimedia applications.

  This memorandum obsoletes RFC 1890.  It is mostly backwards-
  compatible except for functions removed because two interoperable
  implementations were not found.  The additions to RFC 1890 codify
  existing practice in the use of payload formats under this profile
  and include new payload formats defined since RFC 1890 was published.







Schulzrinne & Casner        Standards Track                     [Page 1]

RFC 3551                    RTP A/V Profile                    July 2003


Table of Contents

  1.  Introduction .................................................  3
      1.1  Terminology .............................................  3
  2.  RTP and RTCP Packet Forms and Protocol Behavior ..............  4
  3.  Registering Additional Encodings .............................  6
  4.  Audio ........................................................  8
      4.1  Encoding-Independent Rules ..............................  8
      4.2  Operating Recommendations ...............................  9
      4.3  Guidelines for Sample-Based Audio Encodings ............. 10
      4.4  Guidelines for Frame-Based Audio Encodings .............. 11
      4.5  Audio Encodings ......................................... 12
           4.5.1   DVI4 ............................................ 13
           4.5.2   G722 ............................................ 14
           4.5.3   G723 ............................................ 14
           4.5.4   G726-40, G726-32, G726-24, and G726-16 .......... 18
           4.5.5   G728 ............................................ 19
           4.5.6   G729 ............................................ 20
           4.5.7   G729D and G729E ................................. 22
           4.5.8   GSM ............................................. 24
           4.5.9   GSM-EFR ......................................... 27
           4.5.10  L8 .............................................. 27
           4.5.11  L16 ............................................. 27
           4.5.12  LPC ............................................. 27
           4.5.13  MPA ............................................. 28
           4.5.14  PCMA and PCMU ................................... 28
           4.5.15  QCELP ........................................... 28
           4.5.16  RED ............................................. 29
           4.5.17  VDVI ............................................ 29
  5.  Video ........................................................ 30
      5.1  CelB .................................................... 30
      5.2  JPEG .................................................... 30
      5.3  H261 .................................................... 30
      5.4  H263 .................................................... 31
      5.5  H263-1998 ............................................... 31
      5.6  MPV ..................................................... 31
      5.7  MP2T .................................................... 31
      5.8  nv ...................................................... 32
  6.  Payload Type Definitions ..................................... 32
  7.  RTP over TCP and Similar Byte Stream Protocols ............... 34
  8.  Port Assignment .............................................. 34
  9.  Changes from RFC 1890 ........................................ 35
  10. Security Considerations ...................................... 38
  11. IANA Considerations .......................................... 39
  12. References ................................................... 39
      12.1 Normative References .................................... 39
      12.2 Informative References .................................. 39
  13. Current Locations of Related Resources ....................... 41



Schulzrinne & Casner        Standards Track                     [Page 2]

RFC 3551                    RTP A/V Profile                    July 2003


  14. Acknowledgments .............................................. 42
  15. Intellectual Property Rights Statement ....................... 43
  16. Authors' Addresses ........................................... 43
  17. Full Copyright Statement ..................................... 44

1. Introduction

  This profile defines aspects of RTP left unspecified in the RTP
  Version 2 protocol definition (RFC 3550) [1].  This profile is
  intended for the use within audio and video conferences with minimal
  session control.  In particular, no support for the negotiation of
  parameters or membership control is provided.  The profile is
  expected to be useful in sessions where no negotiation or membership
  control are used (e.g., using the static payload types and the
  membership indications provided by RTCP), but this profile may also
  be useful in conjunction with a higher-level control protocol.

  Use of this profile may be implicit in the use of the appropriate
  applications; there may be no explicit indication by port number,
  protocol identifier or the like.  Applications such as session
  directories may use the name for this profile specified in Section
  11.

  Other profiles may make different choices for the items specified
  here.

  This document also defines a set of encodings and payload formats for
  audio and video.  These payload format descriptions are included here
  only as a matter of convenience since they are too small to warrant
  separate documents.  Use of these payload formats is NOT REQUIRED to
  use this profile.  Only the binding of some of the payload formats to
  static payload type numbers in Tables 4 and 5 is normative.

1.1 Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [2] and
  indicate requirement levels for implementations compliant with this
  RTP profile.

  This document defines the term media type as dividing encodings of
  audio and video content into three classes: audio, video and
  audio/video (interleaved).







Schulzrinne & Casner        Standards Track                     [Page 3]

RFC 3551                    RTP A/V Profile                    July 2003


2. RTP and RTCP Packet Forms and Protocol Behavior

  The section "RTP Profiles and Payload Format Specifications" of RFC
  3550 enumerates a number of items that can be specified or modified
  in a profile.  This section addresses these items.  Generally, this
  profile follows the default and/or recommended aspects of the RTP
  specification.

  RTP data header: The standard format of the fixed RTP data
     header is used (one marker bit).

  Payload types: Static payload types are defined in Section 6.

  RTP data header additions: No additional fixed fields are
     appended to the RTP data header.

  RTP data header extensions: No RTP header extensions are
     defined, but applications operating under this profile MAY use
     such extensions.  Thus, applications SHOULD NOT assume that the
     RTP header X bit is always zero and SHOULD be prepared to ignore
     the header extension.  If a header extension is defined in the
     future, that definition MUST specify the contents of the first 16
     bits in such a way that multiple different extensions can be
     identified.

  RTCP packet types: No additional RTCP packet types are defined
     by this profile specification.

  RTCP report interval: The suggested constants are to be used for
     the RTCP report interval calculation.  Sessions operating under
     this profile MAY specify a separate parameter for the RTCP traffic
     bandwidth rather than using the default fraction of the session
     bandwidth.  The RTCP traffic bandwidth MAY be divided into two
     separate session parameters for those participants which are
     active data senders and those which are not.  Following the
     recommendation in the RTP specification [1] that 1/4 of the RTCP
     bandwidth be dedicated to data senders, the RECOMMENDED default
     values for these two parameters would be 1.25% and 3.75%,
     respectively.  For a particular session, the RTCP bandwidth for
     non-data-senders MAY be set to zero when operating on
     unidirectional links or for sessions that don't require feedback
     on the quality of reception.  The RTCP bandwidth for data senders
     SHOULD be kept non-zero so that sender reports can still be sent
     for inter-media synchronization and to identify the source by
     CNAME.  The means by which the one or two session parameters for
     RTCP bandwidth are specified is beyond the scope of this memo.





Schulzrinne & Casner        Standards Track                     [Page 4]

RFC 3551                    RTP A/V Profile                    July 2003


  SR/RR extension: No extension section is defined for the RTCP SR
     or RR packet.

  SDES use: Applications MAY use any of the SDES items described
     in the RTP specification.  While CNAME information MUST be sent
     every reporting interval, other items SHOULD only be sent every
     third reporting interval, with NAME sent seven out of eight times
     within that slot and the remaining SDES items cyclically taking up
     the eighth slot, as defined in Section 6.2.2 of the RTP
     specification.  In other words, NAME is sent in RTCP packets 1, 4,
     7, 10, 13, 16, 19, while, say, EMAIL is used in RTCP packet 22.

  Security: The RTP default security services are also the default
     under this profile.

  String-to-key mapping: No mapping is specified by this profile.

  Congestion: RTP and this profile may be used in the context of
     enhanced network service, for example, through Integrated Services
     (RFC 1633) [4] or Differentiated Services (RFC 2475) [5], or they
     may be used with best effort service.

     If enhanced service is being used, RTP receivers SHOULD monitor
     packet loss to ensure that the service that was requested is
     actually being delivered.  If it is not, then they SHOULD assume
     that they are receiving best-effort service and behave
     accordingly.

     If best-effort service is being used, RTP receivers SHOULD monitor
     packet loss to ensure that the packet loss rate is within
     acceptable parameters.  Packet loss is considered acceptable if a
     TCP flow across the same network path and experiencing the same
     network conditions would achieve an average throughput, measured
     on a reasonable timescale, that is not less than the RTP flow is
     achieving.  This condition can be satisfied by implementing
     congestion control mechanisms to adapt the transmission rate (or
     the number of layers subscribed for a layered multicast session),
     or by arranging for a receiver to leave the session if the loss
     rate is unacceptably high.

     The comparison to TCP cannot be specified exactly, but is intended
     as an "order-of-magnitude" comparison in timescale and throughput.
     The timescale on which TCP throughput is measured is the round-
     trip time of the connection.  In essence, this requirement states
     that it is not acceptable to deploy an application (using RTP or
     any other transport protocol) on the best-effort Internet which
     consumes bandwidth arbitrarily and does not compete fairly with
     TCP within an order of magnitude.



Schulzrinne & Casner        Standards Track                     [Page 5]

RFC 3551                    RTP A/V Profile                    July 2003


  Underlying protocol: The profile specifies the use of RTP over
     unicast and multicast UDP as well as TCP.  (This does not preclude
     the use of these definitions when RTP is carried by other lower-
     layer protocols.)

  Transport mapping: The standard mapping of RTP and RTCP to
     transport-level addresses is used.

  Encapsulation: This profile leaves to applications the
     specification of RTP encapsulation in protocols other than UDP.

3.  Registering Additional Encodings

  This profile lists a set of encodings, each of which is comprised of
  a particular media data compression or representation plus a payload
  format for encapsulation within RTP.  Some of those payload formats
  are specified here, while others are specified in separate RFCs.  It
  is expected that additional encodings beyond the set listed here will
  be created in the future and specified in additional payload format
  RFCs.

  This profile also assigns to each encoding a short name which MAY be
  used by higher-level control protocols, such as the Session
  Description Protocol (SDP), RFC 2327 [6], to identify encodings
  selected for a particular RTP session.

  In some contexts it may be useful to refer to these encodings in the
  form of a MIME content-type.  To facilitate this, RFC 3555 [7]
  provides registrations for all of the encodings names listed here as
  MIME subtype names under the "audio" and "video" MIME types through
  the MIME registration procedure as specified in RFC 2048 [8].

  Any additional encodings specified for use under this profile (or
  others) may also be assigned names registered as MIME subtypes with
  the Internet Assigned Numbers Authority (IANA).  This registry
  provides a means to insure that the names assigned to the additional
  encodings are kept unique.  RFC 3555 specifies the information that
  is required for the registration of RTP encodings.

  In addition to assigning names to encodings, this profile also
  assigns static RTP payload type numbers to some of them.  However,
  the payload type number space is relatively small and cannot
  accommodate assignments for all existing and future encodings.
  During the early stages of RTP development, it was necessary to use
  statically assigned payload types because no other mechanism had been
  specified to bind encodings to payload types.  It was anticipated
  that non-RTP means beyond the scope of this memo (such as directory
  services or invitation protocols) would be specified to establish a



Schulzrinne & Casner        Standards Track                     [Page 6]

RFC 3551                    RTP A/V Profile                    July 2003


  dynamic mapping between a payload type and an encoding.  Now,
  mechanisms for defining dynamic payload type bindings have been
  specified in the Session Description Protocol (SDP) and in other
  protocols such as ITU-T Recommendation H.323/H.245.  These mechanisms
  associate the registered name of the encoding/payload format, along
  with any additional required parameters, such as the RTP timestamp
  clock rate and number of channels, with a payload type number.  This
  association is effective only for the duration of the RTP session in
  which the dynamic payload type binding is made.  This association
  applies only to the RTP session for which it is made, thus the
  numbers can be re-used for different encodings in different sessions
  so the number space limitation is avoided.

  This profile reserves payload type numbers in the range 96-127
  exclusively for dynamic assignment.  Applications SHOULD first use
  values in this range for dynamic payload types.  Those applications
  which need to define more than 32 dynamic payload types MAY bind
  codes below 96, in which case it is RECOMMENDED that unassigned
  payload type numbers be used first.  However, the statically assigned
  payload types are default bindings and MAY be dynamically bound to
  new encodings if needed.  Redefining payload types below 96 may cause
  incorrect operation if an attempt is made to join a session without
  obtaining session description information that defines the dynamic
  payload types.

  Dynamic payload types SHOULD NOT be used without a well-defined
  mechanism to indicate the mapping.  Systems that expect to
  interoperate with others operating under this profile SHOULD NOT make
  their own assignments of proprietary encodings to particular, fixed
  payload types.

  This specification establishes the policy that no additional static
  payload types will be assigned beyond the ones defined in this
  document.  Establishing this policy avoids the problem of trying to
  create a set of criteria for accepting static assignments and
  encourages the implementation and deployment of the dynamic payload
  type mechanisms.

  The final set of static payload type assignments is provided in
  Tables 4 and 5.











Schulzrinne & Casner        Standards Track                     [Page 7]

RFC 3551                    RTP A/V Profile                    July 2003


4.  Audio

4.1  Encoding-Independent Rules

  Since the ability to suppress silence is one of the primary
  motivations for using packets to transmit voice, the RTP header
  carries both a sequence number and a timestamp to allow a receiver to
  distinguish between lost packets and periods of time when no data was
  transmitted.  Discontiguous transmission (silence suppression) MAY be
  used with any audio payload format.  Receivers MUST assume that
  senders may suppress silence unless this is restricted by signaling
  specified elsewhere.  (Even if the transmitter does not suppress
  silence, the receiver should be prepared to handle periods when no
  data is present since packets may be lost.)

  Some payload formats (see Sections 4.5.3 and 4.5.6) define a "silence
  insertion descriptor" or "comfort noise" frame to specify parameters
  for artificial noise that may be generated during a period of silence
  to approximate the background noise at the source.  For other payload
  formats, a generic Comfort Noise (CN) payload format is specified in
  RFC 3389 [9].  When the CN payload format is used with another
  payload format, different values in the RTP payload type field
  distinguish comfort-noise packets from those of the selected payload
  format.

  For applications which send either no packets or occasional comfort-
  noise packets during silence, the first packet of a talkspurt, that
  is, the first packet after a silence period during which packets have
  not been transmitted contiguously, SHOULD be distinguished by setting
  the marker bit in the RTP data header to one.  The marker bit in all
  other packets is zero.  The beginning of a talkspurt MAY be used to
  adjust the playout delay to reflect changing network delays.
  Applications without silence suppression MUST set the marker bit to
  zero.

  The RTP clock rate used for generating the RTP timestamp is
  independent of the number of channels and the encoding; it usually
  equals the number of sampling periods per second.  For N-channel
  encodings, each sampling period (say, 1/8,000 of a second) generates
  N samples.  (This terminology is standard, but somewhat confusing, as
  the total number of samples generated per second is then the sampling
  rate times the channel count.)

  If multiple audio channels are used, channels are numbered left-to-
  right, starting at one.  In RTP audio packets, information from
  lower-numbered channels precedes that from higher-numbered channels.





Schulzrinne & Casner        Standards Track                     [Page 8]

RFC 3551                    RTP A/V Profile                    July 2003


  For more than two channels, the convention followed by the AIFF-C
  audio interchange format SHOULD be followed [3], using the following
  notation, unless some other convention is specified for a particular
  encoding or payload format:

     l  left
     r  right
     c  center
     S  surround
     F  front
     R  rear

     channels  description  channel
                               1     2   3   4   5   6
     _________________________________________________
     2         stereo          l     r
     3                         l     r   c
     4                         l     c   r   S
     5                        Fl     Fr  Fc  Sl  Sr
     6                         l     lc  c   r   rc  S

        Note: RFC 1890 defined two conventions for the ordering of four
        audio channels.  Since the ordering is indicated implicitly by
        the number of channels, this was ambiguous.  In this revision,
        the order described as "quadrophonic" has been eliminated to
        remove the ambiguity.  This choice was based on the observation
        that quadrophonic consumer audio format did not become popular
        whereas surround-sound subsequently has.

  Samples for all channels belonging to a single sampling instant MUST
  be within the same packet.  The interleaving of samples from
  different channels depends on the encoding.  General guidelines are
  given in Section 4.3 and 4.4.

  The sampling frequency SHOULD be drawn from the set:  8,000, 11,025,
  16,000, 22,050, 24,000, 32,000, 44,100 and 48,000 Hz.  (Older Apple
  Macintosh computers had a native sample rate of 22,254.54 Hz, which
  can be converted to 22,050 with acceptable quality by dropping 4
  samples in a 20 ms frame.)  However, most audio encodings are defined
  for a more restricted set of sampling frequencies.  Receivers SHOULD
  be prepared to accept multi-channel audio, but MAY choose to only
  play a single channel.

4.2  Operating Recommendations

  The following recommendations are default operating parameters.
  Applications SHOULD be prepared to handle other values.  The ranges
  given are meant to give guidance to application writers, allowing a



Schulzrinne & Casner        Standards Track                     [Page 9]

RFC 3551                    RTP A/V Profile                    July 2003


  set of applications conforming to these guidelines to interoperate
  without additional negotiation.  These guidelines are not intended to
  restrict operating parameters for applications that can negotiate a
  set of interoperable parameters, e.g., through a conference control
  protocol.

  For packetized audio, the default packetization interval SHOULD have
  a duration of 20 ms or one frame, whichever is longer, unless
  otherwise noted in Table 1 (column "ms/packet").  The packetization
  interval determines the minimum end-to-end delay; longer packets
  introduce less header overhead but higher delay and make packet loss
  more noticeable.  For non-interactive applications such as lectures
  or for links with severe bandwidth constraints, a higher
  packetization delay MAY be used.  A receiver SHOULD accept packets
  representing between 0 and 200 ms of audio data.  (For framed audio
  encodings, a receiver SHOULD accept packets with a number of frames
  equal to 200 ms divided by the frame duration, rounded up.)  This
  restriction allows reasonable buffer sizing for the receiver.

4.3  Guidelines for Sample-Based Audio Encodings

  In sample-based encodings, each audio sample is represented by a
  fixed number of bits.  Within the compressed audio data, codes for
  individual samples may span octet boundaries.  An RTP audio packet
  may contain any number of audio samples, subject to the constraint
  that the number of bits per sample times the number of samples per
  packet yields an integral octet count.  Fractional encodings produce
  less than one octet per sample.

  The duration of an audio packet is determined by the number of
  samples in the packet.

  For sample-based encodings producing one or more octets per sample,
  samples from different channels sampled at the same sampling instant
  SHOULD be packed in consecutive octets.  For example, for a two-
  channel encoding, the octet sequence is (left channel, first sample),
  (right channel, first sample), (left channel, second sample), (right
  channel, second sample), ....  For multi-octet encodings, octets
  SHOULD be transmitted in network byte order (i.e., most significant
  octet first).

  The packing of sample-based encodings producing less than one octet
  per sample is encoding-specific.

  The RTP timestamp reflects the instant at which the first sample in
  the packet was sampled, that is, the oldest information in the
  packet.




Schulzrinne & Casner        Standards Track                    [Page 10]

RFC 3551                    RTP A/V Profile                    July 2003


4.4  Guidelines for Frame-Based Audio Encodings

  Frame-based encodings encode a fixed-length block of audio into
  another block of compressed data, typically also of fixed length.
  For frame-based encodings, the sender MAY choose to combine several
  such frames into a single RTP packet.  The receiver can tell the
  number of frames contained in an RTP packet, if all the frames have
  the same length, by dividing the RTP payload length by the audio
  frame size which is defined as part of the encoding.  This does not
  work when carrying frames of different sizes unless the frame sizes
  are relatively prime.  If not, the frames MUST indicate their size.

  For frame-based codecs, the channel order is defined for the whole
  block.  That is, for two-channel audio, right and left samples SHOULD
  be coded independently, with the encoded frame for the left channel
  preceding that for the right channel.

  All frame-oriented audio codecs SHOULD be able to encode and decode
  several consecutive frames within a single packet.  Since the frame
  size for the frame-oriented codecs is given, there is no need to use
  a separate designation for the same encoding, but with different
  number of frames per packet.

  RTP packets SHALL contain a whole number of frames, with frames
  inserted according to age within a packet, so that the oldest frame
  (to be played first) occurs immediately after the RTP packet header.
  The RTP timestamp reflects the instant at which the first sample in
  the first frame was sampled, that is, the oldest information in the
  packet.






















Schulzrinne & Casner        Standards Track                    [Page 11]

RFC 3551                    RTP A/V Profile                    July 2003


4.5 Audio Encodings

  name of                              sampling              default
  encoding  sample/frame  bits/sample      rate  ms/frame  ms/packet
  __________________________________________________________________
  DVI4      sample        4                var.                   20
  G722      sample        8              16,000                   20
  G723      frame         N/A             8,000        30         30
  G726-40   sample        5               8,000                   20
  G726-32   sample        4               8,000                   20
  G726-24   sample        3               8,000                   20
  G726-16   sample        2               8,000                   20
  G728      frame         N/A             8,000       2.5         20
  G729      frame         N/A             8,000        10         20
  G729D     frame         N/A             8,000        10         20
  G729E     frame         N/A             8,000        10         20
  GSM       frame         N/A             8,000        20         20
  GSM-EFR   frame         N/A             8,000        20         20
  L8        sample        8                var.                   20
  L16       sample        16               var.                   20
  LPC       frame         N/A             8,000        20         20
  MPA       frame         N/A              var.      var.
  PCMA      sample        8                var.                   20
  PCMU      sample        8                var.                   20
  QCELP     frame         N/A             8,000        20         20
  VDVI      sample        var.             var.                   20

  Table 1: Properties of Audio Encodings (N/A: not applicable; var.:
           variable)

  The characteristics of the audio encodings described in this document
  are shown in Table 1; they are listed in order of their payload type
  in Table 4.  While most audio codecs are only specified for a fixed
  sampling rate, some sample-based algorithms (indicated by an entry of
  "var." in the sampling rate column of Table 1) may be used with
  different sampling rates, resulting in different coded bit rates.
  When used with a sampling rate other than that for which a static
  payload type is defined, non-RTP means beyond the scope of this memo
  MUST be used to define a dynamic payload type and MUST indicate the
  selected RTP timestamp clock rate, which is usually the same as the
  sampling rate for audio.










Schulzrinne & Casner        Standards Track                    [Page 12]

RFC 3551                    RTP A/V Profile                    July 2003


4.5.1 DVI4

  DVI4 uses an adaptive delta pulse code modulation (ADPCM) encoding
  scheme that was specified by the Interactive Multimedia Association
  (IMA) as the "IMA ADPCM wave type".  However, the encoding defined
  here as DVI4 differs in three respects from the IMA specification:

  o  The RTP DVI4 header contains the predicted value rather than the
     first sample value contained the IMA ADPCM block header.

  o  IMA ADPCM blocks contain an odd number of samples, since the first
     sample of a block is contained just in the header (uncompressed),
     followed by an even number of compressed samples.  DVI4 has an
     even number of compressed samples only, using the `predict' word
     from the header to decode the first sample.

  o  For DVI4, the 4-bit samples are packed with the first sample in
     the four most significant bits and the second sample in the four
     least significant bits.  In the IMA ADPCM codec, the samples are
     packed in the opposite order.

  Each packet contains a single DVI block.  This profile only defines
  the 4-bit-per-sample version, while IMA also specified a 3-bit-per-
  sample encoding.

  The "header" word for each channel has the following structure:

     int16  predict;  /* predicted value of first sample
                         from the previous block (L16 format) */
     u_int8 index;    /* current index into stepsize table */
     u_int8 reserved; /* set to zero by sender, ignored by receiver */

  Each octet following the header contains two 4-bit samples, thus the
  number of samples per packet MUST be even because there is no means
  to indicate a partially filled last octet.

  Packing of samples for multiple channels is for further study.

  The IMA ADPCM algorithm was described in the document IMA Recommended
  Practices for Enhancing Digital Audio Compatibility in Multimedia
  Systems (version 3.0).  However, the Interactive Multimedia
  Association ceased operations in 1997.  Resources for an archived
  copy of that document and a software implementation of the RTP DVI4
  encoding are listed in Section 13.







Schulzrinne & Casner        Standards Track                    [Page 13]

RFC 3551                    RTP A/V Profile                    July 2003


4.5.2 G722

  G722 is specified in ITU-T Recommendation G.722, "7 kHz audio-coding
  within 64 kbit/s".  The G.722 encoder produces a stream of octets,
  each of which SHALL be octet-aligned in an RTP packet.  The first bit
  transmitted in the G.722 octet, which is the most significant bit of
  the higher sub-band sample, SHALL correspond to the most significant
  bit of the octet in the RTP packet.

  Even though the actual sampling rate for G.722 audio is 16,000 Hz,
  the RTP clock rate for the G722 payload format is 8,000 Hz because
  that value was erroneously assigned in RFC 1890 and must remain
  unchanged for backward compatibility.  The octet rate or sample-pair
  rate is 8,000 Hz.

4.5.3 G723

  G723 is specified in ITU Recommendation G.723.1, "Dual-rate speech
  coder for multimedia communications transmitting at 5.3 and 6.3
  kbit/s".  The G.723.1 5.3/6.3 kbit/s codec was defined by the ITU-T
  as a mandatory codec for ITU-T H.324 GSTN videophone terminal
  applications.  The algorithm has a floating point specification in
  Annex B to G.723.1, a silence compression algorithm in Annex A to
  G.723.1 and a scalable channel coding scheme for wireless
  applications in G.723.1 Annex C.

  This Recommendation specifies a coded representation that can be used
  for compressing the speech signal component of multi-media services
  at a very low bit rate.  Audio is encoded in 30 ms frames, with an
  additional delay of 7.5 ms due to look-ahead.  A G.723.1 frame can be
  one of three sizes:  24 octets (6.3 kb/s frame), 20 octets (5.3 kb/s
  frame), or 4 octets.  These 4-octet frames are called SID frames
  (Silence Insertion Descriptor) and are used to specify comfort noise
  parameters.  There is no restriction on how 4, 20, and 24 octet
  frames are intermixed.  The least significant two bits of the first
  octet in the frame determine the frame size and codec type:

        bits  content                      octets/frame
        00    high-rate speech (6.3 kb/s)            24
        01    low-rate speech  (5.3 kb/s)            20
        10    SID frame                               4
        11    reserved









Schulzrinne & Casner        Standards Track                    [Page 14]

RFC 3551                    RTP A/V Profile                    July 2003


  It is possible to switch between the two rates at any 30 ms frame
  boundary.  Both (5.3 kb/s and 6.3 kb/s) rates are a mandatory part of
  the encoder and decoder.  Receivers MUST accept both data rates and
  MUST accept SID frames unless restriction of these capabilities has
  been signaled.  The MIME registration for G723 in RFC 3555 [7]
  specifies parameters that MAY be used with MIME or SDP to restrict to
  a single data rate or to restrict the use of SID frames.  This coder
  was optimized to represent speech with near-toll quality at the above
  rates using a limited amount of complexity.

  The packing of the encoded bit stream into octets and the
  transmission order of the octets is specified in Rec. G.723.1 and is
  the same as that produced by the G.723 C code reference
  implementation.  For the 6.3 kb/s data rate, this packing is
  illustrated as follows, where the header (HDR) bits are always "0 0"
  as shown in Fig. 1 to indicate operation at 6.3 kb/s, and the Z bit
  is always set to zero.  The diagrams show the bit packing in "network
  byte order", also known as big-endian order.  The bits of each 32-bit
  word are numbered 0 to 31, with the most significant bit on the left
  and numbered 0.  The octets (bytes) of each word are transmitted most
  significant octet first.  The bits of each data field are numbered in
  the order of the bit stream representation of the encoding (least
  significant bit first).  The vertical bars indicate the boundaries
  between field fragments.



























Schulzrinne & Casner        Standards Track                    [Page 15]

RFC 3551                    RTP A/V Profile                    July 2003


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    LPC    |HDR|      LPC      |      LPC      |    ACL0   |LPC|
  |           |   |               |               |           |   |
  |0 0 0 0 0 0|0 0|1 1 1 1 0 0 0 0|2 2 1 1 1 1 1 1|0 0 0 0 0 0|2 2|
  |5 4 3 2 1 0|   |3 2 1 0 9 8 7 6|1 0 9 8 7 6 5 4|5 4 3 2 1 0|3 2|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  ACL2   |ACL|A| GAIN0 |ACL|ACL|    GAIN0      |    GAIN1      |
  |         | 1 |C|       | 3 | 2 |               |               |
  |0 0 0 0 0|0 0|0|0 0 0 0|0 0|0 0|1 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0|
  |4 3 2 1 0|1 0|6|3 2 1 0|1 0|6 5|1 0 9 8 7 6 5 4|7 6 5 4 3 2 1 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | GAIN2 | GAIN1 |     GAIN2     |     GAIN3     | GRID  | GAIN3 |
  |       |       |               |               |       |       |
  |0 0 0 0|1 1 0 0|1 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0|0 0 0 0|1 1 0 0|
  |3 2 1 0|1 0 9 8|1 0 9 8 7 6 5 4|7 6 5 4 3 2 1 0|3 2 1 0|1 0 9 8|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   MSBPOS    |Z|POS|  MSBPOS   |     POS0      |POS|   POS0    |
  |             | | 0 |           |               | 1 |           |
  |0 0 0 0 0 0 0|0|0 0|1 1 1 0 0 0|0 0 0 0 0 0 0 0|0 0|1 1 1 1 1 1|
  |6 5 4 3 2 1 0| |1 0|2 1 0 9 8 7|9 8 7 6 5 4 3 2|1 0|5 4 3 2 1 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     POS1      | POS2  | POS1  |     POS2      | POS3  | POS2  |
  |               |       |       |               |       |       |
  |0 0 0 0 0 0 0 0|0 0 0 0|1 1 1 1|1 1 0 0 0 0 0 0|0 0 0 0|1 1 1 1|
  |9 8 7 6 5 4 3 2|3 2 1 0|3 2 1 0|1 0 9 8 7 6 5 4|3 2 1 0|5 4 3 2|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     POS3      |   PSIG0   |POS|PSIG2|  PSIG1  |  PSIG3  |PSIG2|
  |               |           | 3 |     |         |         |     |
  |1 1 0 0 0 0 0 0|0 0 0 0 0 0|1 1|0 0 0|0 0 0 0 0|0 0 0 0 0|0 0 0|
  |1 0 9 8 7 6 5 4|5 4 3 2 1 0|3 2|2 1 0|4 3 2 1 0|4 3 2 1 0|5 4 3|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 1: G.723 (6.3 kb/s) bit packing

  For the 5.3 kb/s data rate, the header (HDR) bits are always "0 1",
  as shown in Fig. 2, to indicate operation at 5.3 kb/s.













Schulzrinne & Casner        Standards Track                    [Page 16]

RFC 3551                    RTP A/V Profile                    July 2003


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    LPC    |HDR|      LPC      |      LPC      |   ACL0    |LPC|
  |           |   |               |               |           |   |
  |0 0 0 0 0 0|0 1|1 1 1 1 0 0 0 0|2 2 1 1 1 1 1 1|0 0 0 0 0 0|2 2|
  |5 4 3 2 1 0|   |3 2 1 0 9 8 7 6|1 0 9 8 7 6 5 4|5 4 3 2 1 0|3 2|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  ACL2   |ACL|A| GAIN0 |ACL|ACL|     GAIN0     |     GAIN1     |
  |         | 1 |C|       | 3 | 2 |               |               |
  |0 0 0 0 0|0 0|0|0 0 0 0|0 0|0 0|1 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0|
  |4 3 2 1 0|1 0|6|3 2 1 0|1 0|6 5|1 0 9 8 7 6 5 4|7 6 5 4 3 2 1 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | GAIN2 | GAIN1 |     GAIN2     |    GAIN3      | GRID  | GAIN3 |
  |       |       |               |               |       |       |
  |0 0 0 0|1 1 0 0|1 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0|0 0 0 0|1 1 0 0|
  |3 2 1 0|1 0 9 8|1 0 9 8 7 6 5 4|7 6 5 4 3 2 1 0|4 3 2 1|1 0 9 8|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     POS0      | POS1  | POS0  |     POS1      |     POS2      |
  |               |       |       |               |               |
  |0 0 0 0 0 0 0 0|0 0 0 0|1 1 0 0|1 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0|
  |7 6 5 4 3 2 1 0|3 2 1 0|1 0 9 8|1 0 9 8 7 6 5 4|7 6 5 4 3 2 1 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | POS3  | POS2  |     POS3      | PSIG1 | PSIG0 | PSIG3 | PSIG2 |
  |       |       |               |       |       |       |       |
  |0 0 0 0|1 1 0 0|1 1 0 0 0 0 0 0|0 0 0 0|0 0 0 0|0 0 0 0|0 0 0 0|
  |3 2 1 0|1 0 9 8|1 0 9 8 7 6 5 4|3 2 1 0|3 2 1 0|3 2 1 0|3 2 1 0|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 2: G.723 (5.3 kb/s) bit packing

  The packing of G.723.1 SID (silence) frames, which are indicated by
  the header (HDR) bits having the pattern "1 0", is depicted in Fig.
  3.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    LPC    |HDR|      LPC      |      LPC      |   GAIN    |LPC|
  |           |   |               |               |           |   |
  |0 0 0 0 0 0|1 0|1 1 1 1 0 0 0 0|2 2 1 1 1 1 1 1|0 0 0 0 0 0|2 2|
  |5 4 3 2 1 0|   |3 2 1 0 9 8 7 6|1 0 9 8 7 6 5 4|5 4 3 2 1 0|3 2|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 3: G.723 SID mode bit packing






Schulzrinne & Casner        Standards Track                    [Page 17]

RFC 3551                    RTP A/V Profile                    July 2003


4.5.4  G726-40, G726-32, G726-24, and G726-16

  ITU-T Recommendation G.726 describes, among others, the algorithm
  recommended for conversion of a single 64 kbit/s A-law or mu-law PCM
  channel encoded at 8,000 samples/sec to and from a 40, 32, 24, or 16
  kbit/s channel.  The conversion is applied to the PCM stream using an
  Adaptive Differential Pulse Code Modulation (ADPCM) transcoding
  technique.  The ADPCM representation consists of a series of
  codewords with a one-to-one correspondence to the samples in the PCM
  stream.  The G726 data rates of 40, 32, 24, and 16 kbit/s have
  codewords of 5, 4, 3, and 2 bits, respectively.

  The 16 and 24 kbit/s encodings do not provide toll quality speech.
  They are designed for used in overloaded Digital Circuit
  Multiplication Equipment (DCME).  ITU-T G.726 recommends that the 16
  and 24 kbit/s encodings should be alternated with higher data rate
  encodings to provide an average sample size of between 3.5 and 3.7
  bits per sample.

  The encodings of G.726 are here denoted as G726-40, G726-32, G726-24,
  and G726-16.  Prior to 1990, G721 described the 32 kbit/s ADPCM
  encoding, and G723 described the 40, 32, and 16 kbit/s encodings.
  Thus, G726-32 designates the same algorithm as G721 in RFC 1890.

  A stream of G726 codewords contains no information on the encoding
  being used, therefore transitions between G726 encoding types are not
  permitted within a sequence of packed codewords.  Applications MUST
  determine the encoding type of packed codewords from the RTP payload
  identifier.

  No payload-specific header information SHALL be included as part of
  the audio data.  A stream of G726 codewords MUST be packed into
  octets as follows:  the first codeword is placed into the first octet
  such that the least significant bit of the codeword aligns with the
  least significant bit in the octet, the second codeword is then
  packed so that its least significant bit coincides with the least
  significant unoccupied bit in the octet.  When a complete codeword
  cannot be placed into an octet, the bits overlapping the octet
  boundary are placed into the least significant bits of the next
  octet.  Packing MUST end with a completely packed final octet.  The
  number of codewords packed will therefore be a multiple of 8, 2, 8,
  and 4 for G726-40, G726-32, G726-24, and G726-16, respectively.  An
  example of the packing scheme for G726-32 codewords is as shown,
  where bit 7 is the least significant bit of the first octet, and bit
  A3 is the least significant bit of the first codeword:






Schulzrinne & Casner        Standards Track                    [Page 18]

RFC 3551                    RTP A/V Profile                    July 2003


         0                   1
         0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
        |B B B B|A A A A|D D D D|C C C C| ...
        |0 1 2 3|0 1 2 3|0 1 2 3|0 1 2 3|
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  An example of the packing scheme for G726-24 codewords follows, where
  again bit 7 is the least significant bit of the first octet, and bit
  A2 is the least significant bit of the first codeword:

         0                   1                   2
         0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
        |C C|B B B|A A A|F|E E E|D D D|C|H H H|G G G|F F| ...
        |1 2|0 1 2|0 1 2|2|0 1 2|0 1 2|0|0 1 2|0 1 2|0 1|
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Note that the "little-endian" direction in which samples are packed
  into octets in the G726-16, -24, -32 and -40 payload formats
  specified here is consistent with ITU-T Recommendation X.420, but is
  the opposite of what is specified in ITU-T Recommendation I.366.2
  Annex E for ATM AAL2 transport.  A second set of RTP payload formats
  matching the packetization of I.366.2 Annex E and identified by MIME
  subtypes AAL2-G726-16, -24, -32 and -40 will be specified in a
  separate document.

4.5.5 G728

  G728 is specified in ITU-T Recommendation G.728, "Coding of speech at
  16 kbit/s using low-delay code excited linear prediction".

  A G.278 encoder translates 5 consecutive audio samples into a 10-bit
  codebook index, resulting in a bit rate of 16 kb/s for audio sampled
  at 8,000 samples per second.  The group of five consecutive samples
  is called a vector.  Four consecutive vectors, labeled V1 to V4
  (where V1 is to be played first by the receiver), build one G.728
  frame.  The four vectors of 40 bits are packed into 5 octets, labeled
  B1 through B5.  B1 SHALL be placed first in the RTP packet.

  Referring to the figure below, the principle for bit order is
  "maintenance of bit significance".  Bits from an older vector are
  more significant than bits from newer vectors.  The MSB of the frame
  goes to the MSB of B1 and the LSB of the frame goes to LSB of B5.







Schulzrinne & Casner        Standards Track                    [Page 19]

RFC 3551                    RTP A/V Profile                    July 2003


                  1         2         3        3
        0         0         0         0        9
        ++++++++++++++++++++++++++++++++++++++++
        <---V1---><---V2---><---V3---><---V4---> vectors
        <--B1--><--B2--><--B3--><--B4--><--B5--> octets
        <------------- frame 1 ---------------->

  In particular, B1 contains the eight most significant bits of V1,
  with the MSB of V1 being the MSB of B1.  B2 contains the two least
  significant bits of V1, the more significant of the two in its MSB,
  and the six most significant bits of V2.  B1 SHALL be placed first in
  the RTP packet and B5 last.

4.5.6 G729

  G729 is specified in ITU-T Recommendation G.729, "Coding of speech at
  8 kbit/s using conjugate structure-algebraic code excited linear
  prediction (CS-ACELP)".  A reduced-complexity version of the G.729
  algorithm is specified in Annex A to Rec. G.729.  The speech coding
  algorithms in the main body of G.729 and in G.729 Annex A are fully
  interoperable with each other, so there is no need to further
  distinguish between them.  An implementation that signals or accepts
  use of G729 payload format may implement either G.729 or G.729A
  unless restricted by additional signaling specified elsewhere related
  specifically to the encoding rather than the payload format.  The
  G.729 and G.729 Annex A codecs were optimized to represent speech
  with high quality, where G.729 Annex A trades some speech quality for
  an approximate 50% complexity reduction [10].  See the next Section
  (4.5.7) for other data rates added in later G.729 Annexes.  For all
  data rates, the sampling frequency (and RTP timestamp clock rate) is
  8,000 Hz.

  A voice activity detector (VAD) and comfort noise generator (CNG)
  algorithm in Annex B of G.729 is RECOMMENDED for digital simultaneous
  voice and data applications and can be used in conjunction with G.729
  or G.729 Annex A.  A G.729 or G.729 Annex A frame contains 10 octets,
  while the G.729 Annex B comfort noise frame occupies 2 octets.
  Receivers MUST accept comfort noise frames if restriction of their
  use has not been signaled.  The MIME registration for G729 in RFC
  3555 [7] specifies a parameter that MAY be used with MIME or SDP to
  restrict the use of comfort noise frames.

  A G729 RTP packet may consist of zero or more G.729 or G.729 Annex A
  frames, followed by zero or one G.729 Annex B frames.  The presence
  of a comfort noise frame can be deduced from the length of the RTP
  payload.  The default packetization interval is 20 ms (two frames),
  but in some situations it may be desirable to send 10 ms packets.  An




Schulzrinne & Casner        Standards Track                    [Page 20]

RFC 3551                    RTP A/V Profile                    July 2003


  example would be a transition from speech to comfort noise in the
  first 10 ms of the packet.  For some applications, a longer
  packetization interval may be required to reduce the packet rate.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |L|      L1     |    L2   |    L3   |       P1      |P|    C1   |
     |0|             |         |         |               |0|         |
     | |0 1 2 3 4 5 6|0 1 2 3 4|0 1 2 3 4|0 1 2 3 4 5 6 7| |0 1 2 3 4|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       C1      |  S1   | GA1 |  GB1  |    P2   |      C2       |
     |          1 1 1|       |     |       |         |               |
     |5 6 7 8 9 0 1 2|0 1 2 3|0 1 2|0 1 2 3|0 1 2 3 4|0 1 2 3 4 5 6 7|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   C2    |  S2   | GA2 |  GB2  |
     |    1 1 1|       |     |       |
     |8 9 0 1 2|0 1 2 3|0 1 2|0 1 2 3|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 4: G.729 and G.729A bit packing

  The transmitted parameters of a G.729/G.729A 10-ms frame, consisting
  of 80 bits, are defined in Recommendation G.729, Table 8/G.729.  The
  mapping of the these parameters is given below in Fig. 4.  The
  diagrams show the bit packing in "network byte order", also known as
  big-endian order.  The bits of each 32-bit word are numbered 0 to 31,
  with the most significant bit on the left and numbered 0.  The octets
  (bytes) of each word are transmitted most significant octet first.
  The bits of each data field are numbered in the order as produced by
  the G.729 C code reference implementation.

  The packing of the G.729 Annex B comfort noise frame is shown in Fig.
  5.

         0                   1
         0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |L|  LSF1   |  LSF2 |   GAIN  |R|
        |S|         |       |         |E|
        |F|         |       |         |S|
        |0|0 1 2 3 4|0 1 2 3|0 1 2 3 4|V|    RESV = Reserved (zero)
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 5: G.729 Annex B bit packing






Schulzrinne & Casner        Standards Track                    [Page 21]

RFC 3551                    RTP A/V Profile                    July 2003


4.5.7 G729D and G729E

  Annexes D and E to ITU-T Recommendation G.729 provide additional data
  rates.  Because the data rate is not signaled in the bitstream, the
  different data rates are given distinct RTP encoding names which are
  mapped to distinct payload type numbers.  G729D indicates a 6.4
  kbit/s coding mode (G.729 Annex D, for momentary reduction in channel
  capacity), while G729E indicates an 11.8 kbit/s mode (G.729 Annex E,
  for improved performance with a wide range of narrow-band input
  signals, e.g., music and background noise).  Annex E has two
  operating modes, backward adaptive and forward adaptive, which are
  signaled by the first two bits in each frame (the most significant
  two bits of the first octet).

  The voice activity detector (VAD) and comfort noise generator (CNG)
  algorithm specified in Annex B of G.729 may be used with Annex D and
  Annex E frames in addition to G.729 and G.729 Annex A frames.  The
  algorithm details for the operation of Annexes D and E with the Annex
  B CNG are specified in G.729 Annexes F and G.  Note that Annexes F
  and G do not introduce any new encodings.  Receivers MUST accept
  comfort noise frames if restriction of their use has not been
  signaled.  The MIME registrations for G729D and G729E in RFC 3555 [7]
  specify a parameter that MAY be used with MIME or SDP to restrict the
  use of comfort noise frames.

  For G729D, an RTP packet may consist of zero or more G.729 Annex D
  frames, followed by zero or one G.729 Annex B frame.  Similarly, for
  G729E, an RTP packet may consist of zero or more G.729 Annex E
  frames, followed by zero or one G.729 Annex B frame.  The presence of
  a comfort noise frame can be deduced from the length of the RTP
  payload.

  A single RTP packet must contain frames of only one data rate,
  optionally followed by one comfort noise frame.  The data rate may be
  changed from packet to packet by changing the payload type number.
  G.729 Annexes D, E and H describe what the encoding and decoding
  algorithms must do to accommodate a change in data rate.

  For G729D, the bits of a G.729 Annex D frame are formatted as shown
  below in Fig. 6 (cf.  Table D.1/G.729).  The frame length is 64 bits.











Schulzrinne & Casner        Standards Track                    [Page 22]

RFC 3551                    RTP A/V Profile                    July 2003


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |L|      L1     |    L2   |    L3   |        P1     |     C1    |
     |0|             |         |         |               |           |
     | |0 1 2 3 4 5 6|0 1 2 3 4|0 1 2 3 4|0 1 2 3 4 5 6 7|0 1 2 3 4 5|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | C1  |S1 | GA1 | GB1 |  P2   |        C2       |S2 | GA2 | GB2 |
     |     |   |     |     |       |                 |   |     |     |
     |6 7 8|0 1|0 1 2|0 1 2|0 1 2 3|0 1 2 3 4 5 6 7 8|0 1|0 1 2|0 1 2|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 6: G.729 Annex D bit packing

  The net bit rate for the G.729 Annex E algorithm is 11.8 kbit/s and a
  total of 118 bits are used.  Two bits are appended as "don't care"
  bits to complete an integer number of octets for the frame.  For
  G729E, the bits of a data frame are formatted as shown in the next
  two diagrams (cf. Table E.1/G.729).  The fields for the G729E forward
  adaptive mode are packed as shown in Fig. 7.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |0 0|L|      L1     |    L2   |    L3   |        P1     |P| C0_1|
     |   |0|             |         |         |               |0|     |
     |   | |0 1 2 3 4 5 6|0 1 2 3 4|0 1 2 3 4|0 1 2 3 4 5 6 7| |0 1 2|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       |   C1_1      |     C2_1    |   C3_1      |    C4_1     |
     |       |             |             |             |             |
     |3 4 5 6|0 1 2 3 4 5 6|0 1 2 3 4 5 6|0 1 2 3 4 5 6|0 1 2 3 4 5 6|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | GA1 |  GB1  |    P2   |   C0_2      |     C1_2    |   C2_2    |
     |     |       |         |             |             |           |
     |0 1 2|0 1 2 3|0 1 2 3 4|0 1 2 3 4 5 6|0 1 2 3 4 5 6|0 1 2 3 4 5|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | |    C3_2     |     C4_2    | GA2 | GB2   |DC |
     | |             |             |     |       |   |
     |6|0 1 2 3 4 5 6|0 1 2 3 4 5 6|0 1 2|0 1 2 3|0 1|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Figure 7: G.729 Annex E (forward adaptive mode) bit packing

  The fields for the G729E backward adaptive mode are packed as shown
  in Fig. 8.






Schulzrinne & Casner        Standards Track                    [Page 23]

RFC 3551                    RTP A/V Profile                    July 2003


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1 1|       P1      |P|       C0_1              |     C1_1      |
     |   |               |0|                    1 1 1|               |
     |   |0 1 2 3 4 5 6 7|0|0 1 2 3 4 5 6 7 8 9 0 1 2|0 1 2 3 4 5 6 7|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   |  C2_1       | C3_1        | C4_1        |GA1  | GB1   |P2 |
     |   |             |             |             |     |       |   |
     |8 9|0 1 2 3 4 5 6|0 1 2 3 4 5 6|0 1 2 3 4 5 6|0 1 2|0 1 2 3|0 1|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     |          C0_2           |       C1_2        |    C2_2   |
     |     |                    1 1 1|                   |           |
     |2 3 4|0 1 2 3 4 5 6 7 8 9 0 1 2|0 1 2 3 4 5 6 7 8 9|0 1 2 3 4 5|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | |    C3_2     |     C4_2    | GA2 | GB2   |DC |
     | |             |             |     |       |   |
     |6|0 1 2 3 4 5 6|0 1 2 3 4 5 6|0 1 2|0 1 2 3|0 1|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Figure 8: G.729 Annex E (backward adaptive mode) bit packing

4.5.8 GSM

  GSM (Group Speciale Mobile) denotes the European GSM 06.10 standard
  for full-rate speech transcoding, ETS 300 961, which is based on
  RPE/LTP (residual pulse excitation/long term prediction) coding at a
  rate of 13 kb/s [11,12,13].  The text of the standard can be obtained
  from:

  ETSI (European Telecommunications Standards Institute)
  ETSI Secretariat: B.P.152
  F-06561 Valbonne Cedex
  France
  Phone: +33 92 94 42 00
  Fax:   +33 93 65 47 16

  Blocks of 160 audio samples are compressed into 33 octets, for an
  effective data rate of 13,200 b/s.

4.5.8.1  General Packaging Issues

  The GSM standard (ETS 300 961) specifies the bit stream produced by
  the codec, but does not specify how these bits should be packed for
  transmission.  The packetization specified here has subsequently been
  adopted in ETSI Technical Specification TS 101 318.  Some software
  implementations of the GSM codec use a different packing than that
  specified here.



Schulzrinne & Casner        Standards Track                    [Page 24]

RFC 3551                    RTP A/V Profile                    July 2003


              field  field name  bits  field  field name  bits
              ________________________________________________
              1      LARc[0]     6     39     xmc[22]     3
              2      LARc[1]     6     40     xmc[23]     3
              3      LARc[2]     5     41     xmc[24]     3
              4      LARc[3]     5     42     xmc[25]     3
              5      LARc[4]     4     43     Nc[2]       7
              6      LARc[5]     4     44     bc[2]       2
              7      LARc[6]     3     45     Mc[2]       2
              8      LARc[7]     3     46     xmaxc[2]    6
              9      Nc[0]       7     47     xmc[26]     3
              10     bc[0]       2     48     xmc[27]     3
              11     Mc[0]       2     49     xmc[28]     3
              12     xmaxc[0]    6     50     xmc[29]     3
              13     xmc[0]      3     51     xmc[30]     3
              14     xmc[1]      3     52     xmc[31]     3
              15     xmc[2]      3     53     xmc[32]     3
              16     xmc[3]      3     54     xmc[33]     3
              17     xmc[4]      3     55     xmc[34]     3
              18     xmc[5]      3     56     xmc[35]     3
              19     xmc[6]      3     57     xmc[36]     3
              20     xmc[7]      3     58     xmc[37]     3
              21     xmc[8]      3     59     xmc[38]     3
              22     xmc[9]      3     60     Nc[3]       7
              23     xmc[10]     3     61     bc[3]       2
              24     xmc[11]     3     62     Mc[3]       2
              25     xmc[12]     3     63     xmaxc[3]    6
              26     Nc[1]       7     64     xmc[39]     3
              27     bc[1]       2     65     xmc[40]     3
              28     Mc[1]       2     66     xmc[41]     3
              29     xmaxc[1]    6     67     xmc[42]     3
              30     xmc[13]     3     68     xmc[43]     3
              31     xmc[14]     3     69     xmc[44]     3
              32     xmc[15]     3     70     xmc[45]     3
              33     xmc[16]     3     71     xmc[46]     3
              34     xmc[17]     3     72     xmc[47]     3
              35     xmc[18]     3     73     xmc[48]     3
              36     xmc[19]     3     74     xmc[49]     3
              37     xmc[20]     3     75     xmc[50]     3
              38     xmc[21]     3     76     xmc[51]     3

                     Table 2: Ordering of GSM variables









Schulzrinne & Casner        Standards Track                    [Page 25]

RFC 3551                    RTP A/V Profile                    July 2003


  Octet  Bit 0   Bit 1   Bit 2   Bit 3   Bit 4   Bit 5   Bit 6   Bit 7
  _____________________________________________________________________
      0    1       1       0       1    LARc0.0 LARc0.1 LARc0.2 LARc0.3
      1 LARc0.4 LARc0.5 LARc1.0 LARc1.1 LARc1.2 LARc1.3 LARc1.4 LARc1.5
      2 LARc2.0 LARc2.1 LARc2.2 LARc2.3 LARc2.4 LARc3.0 LARc3.1 LARc3.2
      3 LARc3.3 LARc3.4 LARc4.0 LARc4.1 LARc4.2 LARc4.3 LARc5.0 LARc5.1
      4 LARc5.2 LARc5.3 LARc6.0 LARc6.1 LARc6.2 LARc7.0 LARc7.1 LARc7.2
      5  Nc0.0   Nc0.1   Nc0.2   Nc0.3   Nc0.4   Nc0.5   Nc0.6  bc0.0
      6  bc0.1   Mc0.0   Mc0.1  xmaxc00 xmaxc01 xmaxc02 xmaxc03 xmaxc04
      7 xmaxc05 xmc0.0  xmc0.1  xmc0.2  xmc1.0  xmc1.1  xmc1.2  xmc2.0
      8 xmc2.1  xmc2.2  xmc3.0  xmc3.1  xmc3.2  xmc4.0  xmc4.1  xmc4.2
      9 xmc5.0  xmc5.1  xmc5.2  xmc6.0  xmc6.1  xmc6.2  xmc7.0  xmc7.1
     10 xmc7.2  xmc8.0  xmc8.1  xmc8.2  xmc9.0  xmc9.1  xmc9.2  xmc10.0
     11 xmc10.1 xmc10.2 xmc11.0 xmc11.1 xmc11.2 xmc12.0 xmc12.1 xcm12.2
     12  Nc1.0   Nc1.1   Nc1.2   Nc1.3   Nc1.4   Nc1.5   Nc1.6   bc1.0
     13  bc1.1   Mc1.0   Mc1.1  xmaxc10 xmaxc11 xmaxc12 xmaxc13 xmaxc14
     14 xmax15  xmc13.0 xmc13.1 xmc13.2 xmc14.0 xmc14.1 xmc14.2 xmc15.0
     15 xmc15.1 xmc15.2 xmc16.0 xmc16.1 xmc16.2 xmc17.0 xmc17.1 xmc17.2
     16 xmc18.0 xmc18.1 xmc18.2 xmc19.0 xmc19.1 xmc19.2 xmc20.0 xmc20.1
     17 xmc20.2 xmc21.0 xmc21.1 xmc21.2 xmc22.0 xmc22.1 xmc22.2 xmc23.0
     18 xmc23.1 xmc23.2 xmc24.0 xmc24.1 xmc24.2 xmc25.0 xmc25.1 xmc25.2
     19  Nc2.0   Nc2.1   Nc2.2   Nc2.3   Nc2.4   Nc2.5   Nc2.6   bc2.0
     20  bc2.1   Mc2.0   Mc2.1  xmaxc20 xmaxc21 xmaxc22 xmaxc23 xmaxc24
     21 xmaxc25 xmc26.0 xmc26.1 xmc26.2 xmc27.0 xmc27.1 xmc27.2 xmc28.0
     22 xmc28.1 xmc28.2 xmc29.0 xmc29.1 xmc29.2 xmc30.0 xmc30.1 xmc30.2
     23 xmc31.0 xmc31.1 xmc31.2 xmc32.0 xmc32.1 xmc32.2 xmc33.0 xmc33.1
     24 xmc33.2 xmc34.0 xmc34.1 xmc34.2 xmc35.0 xmc35.1 xmc35.2 xmc36.0
     25 Xmc36.1 xmc36.2 xmc37.0 xmc37.1 xmc37.2 xmc38.0 xmc38.1 xmc38.2
     26  Nc3.0   Nc3.1   Nc3.2   Nc3.3   Nc3.4   Nc3.5   Nc3.6   bc3.0
     27  bc3.1   Mc3.0   Mc3.1  xmaxc30 xmaxc31 xmaxc32 xmaxc33 xmaxc34
     28 xmaxc35 xmc39.0 xmc39.1 xmc39.2 xmc40.0 xmc40.1 xmc40.2 xmc41.0
     29 xmc41.1 xmc41.2 xmc42.0 xmc42.1 xmc42.2 xmc43.0 xmc43.1 xmc43.2
     30 xmc44.0 xmc44.1 xmc44.2 xmc45.0 xmc45.1 xmc45.2 xmc46.0 xmc46.1
     31 xmc46.2 xmc47.0 xmc47.1 xmc47.2 xmc48.0 xmc48.1 xmc48.2 xmc49.0
     32 xmc49.1 xmc49.2 xmc50.0 xmc50.1 xmc50.2 xmc51.0 xmc51.1 xmc51.2

                       Table 3: GSM payload format

  In the GSM packing used by RTP, the bits SHALL be packed beginning
  from the most significant bit.  Every 160 sample GSM frame is coded
  into one 33 octet (264 bit) buffer.  Every such buffer begins with a
  4 bit signature (0xD), followed by the MSB encoding of the fields of
  the frame.  The first octet thus contains 1101 in the 4 most
  significant bits (0-3) and the 4 most significant bits of F1 (0-3) in
  the 4 least significant bits (4-7).  The second octet contains the 2
  least significant bits of F1 in bits 0-1, and F2 in bits 2-7, and so
  on.  The order of the fields in the frame is described in Table 2.




Schulzrinne & Casner        Standards Track                    [Page 26]

RFC 3551                    RTP A/V Profile                    July 2003


4.5.8.2   GSM Variable Names and Numbers

  In the RTP encoding we have the bit pattern described in Table 3,
  where F.i signifies the ith bit of the field F, bit 0 is the most
  significant bit, and the bits of every octet are numbered from 0 to 7
  from most to least significant.

4.5.9 GSM-EFR

  GSM-EFR denotes GSM 06.60 enhanced full rate speech transcoding,
  specified in ETS 300 726 which is available from ETSI at the address
  given in Section 4.5.8.  This codec has a frame length of 244 bits.
  For transmission in RTP, each codec frame is packed into a 31 octet
  (248 bit) buffer beginning with a 4-bit signature 0xC in a manner
  similar to that specified here for the original GSM 06.10 codec.  The
  packing is specified in ETSI Technical Specification TS 101 318.

4.5.10 L8

  L8 denotes linear audio data samples, using 8-bits of precision with
  an offset of 128, that is, the most negative signal is encoded as
  zero.

4.5.11 L16

  L16 denotes uncompressed audio data samples, using 16-bit signed
  representation with 65,535 equally divided steps between minimum and
  maximum signal level, ranging from -32,768 to 32,767.  The value is
  represented in two's complement notation and transmitted in network
  byte order (most significant byte first).

  The MIME registration for L16 in RFC 3555 [7] specifies parameters
  that MAY be used with MIME or SDP to indicate that analog pre-
  emphasis was applied to the signal before quantization or to indicate
  that a multiple-channel audio stream follows a different channel
  ordering convention than is specified in Section 4.1.

4.5.12 LPC

  LPC designates an experimental linear predictive encoding contributed
  by Ron Frederick, which is based on an implementation written by Ron
  Zuckerman posted to the Usenet group comp.dsp on June 26, 1992.  The
  codec generates 14 octets for every frame.  The framesize is set to
  20 ms, resulting in a bit rate of 5,600 b/s.







Schulzrinne & Casner        Standards Track                    [Page 27]

RFC 3551                    RTP A/V Profile                    July 2003


4.5.13 MPA

  MPA denotes MPEG-1 or MPEG-2 audio encapsulated as elementary
  streams.  The encoding is defined in ISO standards ISO/IEC 11172-3
  and 13818-3.  The encapsulation is specified in RFC 2250 [14].

  The encoding may be at any of three levels of complexity, called
  Layer I, II and III.  The selected layer as well as the sampling rate
  and channel count are indicated in the payload.  The RTP timestamp
  clock rate is always 90,000, independent of the sampling rate.
  MPEG-1 audio supports sampling rates of 32, 44.1, and 48 kHz (ISO/IEC
  11172-3, section 1.1; "Scope").  MPEG-2 supports sampling rates of
  16, 22.05 and 24 kHz.  The number of samples per frame is fixed, but
  the frame size will vary with the sampling rate and bit rate.

  The MIME registration for MPA in RFC 3555 [7] specifies parameters
  that MAY be used with MIME or SDP to restrict the selection of layer,
  channel count, sampling rate, and bit rate.

4.5.14 PCMA and PCMU

  PCMA and PCMU are specified in ITU-T Recommendation G.711.  Audio
  data is encoded as eight bits per sample, after logarithmic scaling.
  PCMU denotes mu-law scaling, PCMA A-law scaling.  A detailed
  description is given by Jayant and Noll [15].  Each G.711 octet SHALL
  be octet-aligned in an RTP packet.  The sign bit of each G.711 octet
  SHALL correspond to the most significant bit of the octet in the RTP
  packet (i.e., assuming the G.711 samples are handled as octets on the
  host machine, the sign bit SHALL be the most significant bit of the
  octet as defined by the host machine format).  The 56 kb/s and 48
  kb/s modes of G.711 are not applicable to RTP, since PCMA and PCMU
  MUST always be transmitted as 8-bit samples.

  See Section 4.1 regarding silence suppression.

4.5.15 QCELP

  The Electronic Industries Association (EIA) & Telecommunications
  Industry Association (TIA) standard IS-733, "TR45: High Rate Speech
  Service Option for Wideband Spread Spectrum Communications Systems",
  defines the QCELP audio compression algorithm for use in wireless
  CDMA applications.  The QCELP CODEC compresses each 20 milliseconds
  of 8,000 Hz, 16-bit sampled input speech into one of four different
  size output frames:  Rate 1 (266 bits), Rate 1/2 (124 bits), Rate 1/4
  (54 bits) or Rate 1/8 (20 bits).  For typical speech patterns, this
  results in an average output of 6.8 kb/s for normal mode and 4.7 kb/s
  for reduced rate mode.  The packetization of the QCELP audio codec is
  described in [16].



Schulzrinne & Casner        Standards Track                    [Page 28]

RFC 3551                    RTP A/V Profile                    July 2003


4.5.16 RED

  The redundant audio payload format "RED" is specified by RFC 2198
  [17].  It defines a means by which multiple redundant copies of an
  audio packet may be transmitted in a single RTP stream.  Each packet
  in such a stream contains, in addition to the audio data for that
  packetization interval, a (more heavily compressed) copy of the data
  from a previous packetization interval.  This allows an approximation
  of the data from lost packets to be recovered upon decoding of a
  subsequent packet, giving much improved sound quality when compared
  with silence substitution for lost packets.

4.5.17 VDVI

  VDVI is a variable-rate version of DVI4, yielding speech bit rates of
  between 10 and 25 kb/s.  It is specified for single-channel operation
  only.  Samples are packed into octets starting at the most-
  significant bit.  The last octet is padded with 1 bits if the last
  sample does not fill the last octet.  This padding is distinct from
  the valid codewords.  The receiver needs to detect the padding
  because there is no explicit count of samples in the packet.

  It uses the following encoding:

           DVI4 codeword  VDVI bit pattern
           _______________________________
                       0  00
                       1  010
                       2  1100
                       3  11100
                       4  111100
                       5  1111100
                       6  11111100
                       7  11111110
                       8  10
                       9  011
                      10  1101
                      11  11101
                      12  111101
                      13  1111101
                      14  11111101
                      15  11111111









Schulzrinne & Casner        Standards Track                    [Page 29]

RFC 3551                    RTP A/V Profile                    July 2003


5.  Video

  The following sections describe the video encodings that are defined
  in this memo and give their abbreviated names used for
  identification.  These video encodings and their payload types are
  listed in Table 5.

  All of these video encodings use an RTP timestamp frequency of 90,000
  Hz, the same as the MPEG presentation time stamp frequency.  This
  frequency yields exact integer timestamp increments for the typical
  24 (HDTV), 25 (PAL), and 29.97 (NTSC) and 30 Hz (HDTV) frame rates
  and 50, 59.94 and 60 Hz field rates.  While 90 kHz is the RECOMMENDED
  rate for future video encodings used within this profile, other rates
  MAY be used.  However, it is not sufficient to use the video frame
  rate (typically between 15 and 30 Hz) because that does not provide
  adequate resolution for typical synchronization requirements when
  calculating the RTP timestamp corresponding to the NTP timestamp in
  an RTCP SR packet.  The timestamp resolution MUST also be sufficient
  for the jitter estimate contained in the receiver reports.

  For most of these video encodings, the RTP timestamp encodes the
  sampling instant of the video image contained in the RTP data packet.
  If a video image occupies more than one packet, the timestamp is the
  same on all of those packets.  Packets from different video images
  are distinguished by their different timestamps.

  Most of these video encodings also specify that the marker bit of the
  RTP header SHOULD be set to one in the last packet of a video frame
  and otherwise set to zero.  Thus, it is not necessary to wait for a
  following packet with a different timestamp to detect that a new
  frame should be displayed.

5.1  CelB

  The CELL-B encoding is a proprietary encoding proposed by Sun
  Microsystems.  The byte stream format is described in RFC 2029 [18].

5.2 JPEG

  The encoding is specified in ISO Standards 10918-1 and 10918-2.  The
  RTP payload format is as specified in RFC 2435 [19].

5.3 H261

  The encoding is specified in ITU-T Recommendation H.261, "Video codec
  for audiovisual services at p x 64 kbit/s".  The packetization and
  RTP-specific properties are described in RFC 2032 [20].




Schulzrinne & Casner        Standards Track                    [Page 30]

RFC 3551                    RTP A/V Profile                    July 2003


5.4 H263

  The encoding is specified in the 1996 version of ITU-T Recommendation
  H.263, "Video coding for low bit rate communication".  The
  packetization and RTP-specific properties are described in RFC 2190
  [21].  The H263-1998 payload format is RECOMMENDED over this one for
  use by new implementations.

5.5 H263-1998

  The encoding is specified in the 1998 version of ITU-T Recommendation
  H.263, "Video coding for low bit rate communication".  The
  packetization and RTP-specific properties are described in RFC 2429
  [22].  Because the 1998 version of H.263 is a superset of the 1996
  syntax, this payload format can also be used with the 1996 version of
  H.263, and is RECOMMENDED for this use by new implementations.  This
  payload format does not replace RFC 2190, which continues to be used
  by existing implementations, and may be required for backward
  compatibility in new implementations.  Implementations using the new
  features of the 1998 version of H.263 MUST use the payload format
  described in RFC 2429.

5.6 MPV

  MPV designates the use of MPEG-1 and MPEG-2 video encoding elementary
  streams as specified in ISO Standards ISO/IEC 11172 and 13818-2,
  respectively.  The RTP payload format is as specified in RFC 2250
  [14], Section 3.

  The MIME registration for MPV in RFC 3555 [7] specifies a parameter
  that MAY be used with MIME or SDP to restrict the selection of the
  type of MPEG video.

5.7 MP2T

  MP2T designates the use of MPEG-2 transport streams, for either audio
  or video.  The RTP payload format is described in RFC 2250 [14],
  Section 2.













Schulzrinne & Casner        Standards Track                    [Page 31]

RFC 3551                    RTP A/V Profile                    July 2003


5.8 nv

  The encoding is implemented in the program `nv', version 4, developed
  at Xerox PARC by Ron Frederick.  Further information is available
  from the author:

  Ron Frederick
  Blue Coat Systems Inc.
  650 Almanor Avenue
  Sunnyvale, CA 94085
  United States
  EMail: [email protected]

6.  Payload Type Definitions

  Tables 4 and 5 define this profile's static payload type values for
  the PT field of the RTP data header.  In addition, payload type
  values in the range 96-127 MAY be defined dynamically through a
  conference control protocol, which is beyond the scope of this
  document.  For example, a session directory could specify that for a
  given session, payload type 96 indicates PCMU encoding, 8,000 Hz
  sampling rate, 2 channels.  Entries in Tables 4 and 5 with payload
  type "dyn" have no static payload type assigned and are only used
  with a dynamic payload type.  Payload type 2 was assigned to G721 in
  RFC 1890 and to its equivalent successor G726-32 in draft versions of
  this specification, but its use is now deprecated and that static
  payload type is marked reserved due to conflicting use for the
  payload formats G726-32 and AAL2-G726-32 (see Section 4.5.4).
  Payload type 13 indicates the Comfort Noise (CN) payload format
  specified in RFC 3389 [9].  Payload type 19 is marked "reserved"
  because some draft versions of this specification assigned that
  number to an earlier version of the comfort noise payload format.
  The payload type range 72-76 is marked "reserved" so that RTCP and
  RTP packets can be reliably distinguished (see Section "Summary of
  Protocol Constants" of the RTP protocol specification).

  The payload types currently defined in this profile are assigned to
  exactly one of three categories or media types:  audio only, video
  only and those combining audio and video.  The media types are marked
  in Tables 4 and 5 as "A", "V" and "AV", respectively.  Payload types
  of different media types SHALL NOT be interleaved or multiplexed
  within a single RTP session, but multiple RTP sessions MAY be used in
  parallel to send multiple media types.  An RTP source MAY change
  payload types within the same media type during a session.  See the
  section "Multiplexing RTP Sessions" of RFC 3550 for additional
  explanation.





Schulzrinne & Casner        Standards Track                    [Page 32]

RFC 3551                    RTP A/V Profile                    July 2003


              PT   encoding    media type  clock rate   channels
                   name                    (Hz)
              ___________________________________________________
              0    PCMU        A            8,000       1
              1    reserved    A
              2    reserved    A
              3    GSM         A            8,000       1
              4    G723        A            8,000       1
              5    DVI4        A            8,000       1
              6    DVI4        A           16,000       1
              7    LPC         A            8,000       1
              8    PCMA        A            8,000       1
              9    G722        A            8,000       1
              10   L16         A           44,100       2
              11   L16         A           44,100       1
              12   QCELP       A            8,000       1
              13   CN          A            8,000       1
              14   MPA         A           90,000       (see text)
              15   G728        A            8,000       1
              16   DVI4        A           11,025       1
              17   DVI4        A           22,050       1
              18   G729        A            8,000       1
              19   reserved    A
              20   unassigned  A
              21   unassigned  A
              22   unassigned  A
              23   unassigned  A
              dyn  G726-40     A            8,000       1
              dyn  G726-32     A            8,000       1
              dyn  G726-24     A            8,000       1
              dyn  G726-16     A            8,000       1
              dyn  G729D       A            8,000       1
              dyn  G729E       A            8,000       1
              dyn  GSM-EFR     A            8,000       1
              dyn  L8          A            var.        var.
              dyn  RED         A                        (see text)
              dyn  VDVI        A            var.        1

              Table 4: Payload types (PT) for audio encodings












Schulzrinne & Casner        Standards Track                    [Page 33]

RFC 3551                    RTP A/V Profile                    July 2003


              PT      encoding    media type  clock rate
                      name                    (Hz)
              _____________________________________________
              24      unassigned  V
              25      CelB        V           90,000
              26      JPEG        V           90,000
              27      unassigned  V
              28      nv          V           90,000
              29      unassigned  V
              30      unassigned  V
              31      H261        V           90,000
              32      MPV         V           90,000
              33      MP2T        AV          90,000
              34      H263        V           90,000
              35-71   unassigned  ?
              72-76   reserved    N/A         N/A
              77-95   unassigned  ?
              96-127  dynamic     ?
              dyn     H263-1998   V           90,000

              Table 5: Payload types (PT) for video and combined
                       encodings

  Session participants agree through mechanisms beyond the scope of
  this specification on the set of payload types allowed in a given
  session.  This set MAY, for example, be defined by the capabilities
  of the applications used, negotiated by a conference control protocol
  or established by agreement between the human participants.

  Audio applications operating under this profile SHOULD, at a minimum,
  be able to send and/or receive payload types 0 (PCMU) and 5 (DVI4).
  This allows interoperability without format negotiation and ensures
  successful negotiation with a conference control protocol.

7.  RTP over TCP and Similar Byte Stream Protocols

  Under special circumstances, it may be necessary to carry RTP in
  protocols offering a byte stream abstraction, such as TCP, possibly
  multiplexed with other data.  The application MUST define its own
  method of delineating RTP and RTCP packets (RTSP [23] provides an
  example of such an encapsulation specification).

8.  Port Assignment

  As specified in the RTP protocol definition, RTP data SHOULD be
  carried on an even UDP port number and the corresponding RTCP packets
  SHOULD be carried on the next higher (odd) port number.




Schulzrinne & Casner        Standards Track                    [Page 34]

RFC 3551                    RTP A/V Profile                    July 2003


  Applications operating under this profile MAY use any such UDP port
  pair.  For example, the port pair MAY be allocated randomly by a
  session management program.  A single fixed port number pair cannot
  be required because multiple applications using this profile are
  likely to run on the same host, and there are some operating systems
  that do not allow multiple processes to use the same UDP port with
  different multicast addresses.

  However, port numbers 5004 and 5005 have been registered for use with
  this profile for those applications that choose to use them as the
  default pair.  Applications that operate under multiple profiles MAY
  use this port pair as an indication to select this profile if they
  are not subject to the constraint of the previous paragraph.
  Applications need not have a default and MAY require that the port
  pair be explicitly specified.  The particular port numbers were
  chosen to lie in the range above 5000 to accommodate port number
  allocation practice within some versions of the Unix operating
  system, where port numbers below 1024 can only be used by privileged
  processes and port numbers between 1024 and 5000 are automatically
  assigned by the operating system.

9.  Changes from RFC 1890

  This RFC revises RFC 1890.  It is mostly backwards-compatible with
  RFC 1890 except for functions removed because two interoperable
  implementations were not found.  The additions to RFC 1890 codify
  existing practice in the use of payload formats under this profile.
  Since this profile may be used without using any of the payload
  formats listed here, the addition of new payload formats in this
  revision does not affect backwards compatibility.  The changes are
  listed below, categorized into functional and non-functional changes.

  Functional changes:

  o  Section 11, "IANA Considerations" was added to specify the
     registration of the name for this profile.  That appendix also
     references a new Section 3 "Registering Additional Encodings"
     which establishes a policy that no additional registration of
     static payload types for this profile will be made beyond those
     added in this revision and included in Tables 4 and 5.  Instead,
     additional encoding names may be registered as MIME subtypes for
     binding to dynamic payload types.  Non-normative references were
     added to RFC 3555 [7] where MIME subtypes for all the listed
     payload formats are registered, some with optional parameters for
     use of the payload formats.






Schulzrinne & Casner        Standards Track                    [Page 35]

RFC 3551                    RTP A/V Profile                    July 2003


  o  Static payload types 4, 16, 17 and 34 were added to incorporate
     IANA registrations made since the publication of RFC 1890, along
     with the corresponding payload format descriptions for G723 and
     H263.

  o  Following working group discussion, static payload types 12 and 18
     were added along with the corresponding payload format
     descriptions for QCELP and G729.  Static payload type 13 was
     assigned to the Comfort Noise (CN) payload format defined in RFC
     3389.  Payload type 19 was marked reserved because it had been
     temporarily allocated to an earlier version of Comfort Noise
     present in some draft revisions of this document.

  o  The payload format for G721 was renamed to G726-32 following the
     ITU-T renumbering, and the payload format description for G726 was
     expanded to include the -16, -24 and -40 data rates.  Because of
     confusion regarding draft revisions of this document, some
     implementations of these G726 payload formats packed samples into
     octets starting with the most significant bit rather than the
     least significant bit as specified here.  To partially resolve
     this incompatibility, new payload formats named AAL2-G726-16, -24,
     -32 and -40 will be specified in a separate document (see note in
     Section 4.5.4), and use of static payload type 2 is deprecated as
     explained in Section 6.

  o  Payload formats G729D and G729E were added following the ITU-T
     addition of Annexes D and E to Recommendation G.729.  Listings
     were added for payload formats GSM-EFR, RED, and H263-1998
     published in other documents subsequent to RFC 1890.  These
     additional payload formats are referenced only by dynamic payload
     type numbers.

  o  The descriptions of the payload formats for G722, G728, GSM, VDVI
     were expanded.

  o  The payload format for 1016 audio was removed and its static
     payload type assignment 1 was marked "reserved" because two
     interoperable implementations were not found.

  o  Requirements for congestion control were added in Section 2.

  o  This profile follows the suggestion in the revised RTP spec that
     RTCP bandwidth may be specified separately from the session
     bandwidth and separately for active senders and passive receivers.

  o  The mapping of a user pass-phrase string into an encryption key
     was deleted from Section 2 because two interoperable
     implementations were not found.



Schulzrinne & Casner        Standards Track                    [Page 36]

RFC 3551                    RTP A/V Profile                    July 2003


  o  The "quadrophonic" sample ordering convention for four-channel
     audio was removed to eliminate an ambiguity as noted in Section
     4.1.

  Non-functional changes:

  o  In Section 4.1, it is now explicitly stated that silence
     suppression is allowed for all audio payload formats.  (This has
     always been the case and derives from a fundamental aspect of
     RTP's design and the motivations for packet audio, but was not
     explicit stated before.)  The use of comfort noise is also
     explained.

  o  In Section 4.1, the requirement level for setting of the marker
     bit on the first packet after silence for audio was changed from
     "is" to "SHOULD be", and clarified that the marker bit is set only
     when packets are intentionally not sent.

  o  Similarly, text was added to specify that the marker bit SHOULD be
     set to one on the last packet of a video frame, and that video
     frames are distinguished by their timestamps.

  o  RFC references are added for payload formats published after RFC
     1890.

  o  The security considerations and full copyright sections were
     added.

  o  According to Peter Hoddie of Apple, only pre-1994 Macintosh used
     the 22254.54 rate and none the 11127.27 rate, so the latter was
     dropped from the discussion of suggested sampling frequencies.

  o  Table 1 was corrected to move some values from the "ms/packet"
     column to the "default ms/packet" column where they belonged.

  o  Since the Interactive Multimedia Association ceased operations, an
     alternate resource was provided for a referenced IMA document.

  o  A note has been added for G722 to clarify a discrepancy between
     the actual sampling rate and the RTP timestamp clock rate.

  o  Small clarifications of the text have been made in several places,
     some in response to questions from readers.  In particular:

     -  A definition for "media type" is given in Section 1.1 to allow
        the explanation of multiplexing RTP sessions in Section 6 to be
        more clear regarding the multiplexing of multiple media.




Schulzrinne & Casner        Standards Track                    [Page 37]

RFC 3551                    RTP A/V Profile                    July 2003


     -  The explanation of how to determine the number of audio frames
        in a packet from the length was expanded.

     -  More description of the allocation of bandwidth to SDES items
        is given.

     -  A note was added that the convention for the order of channels
        specified in Section 4.1 may be overridden by a particular
        encoding or payload format specification.

     -  The terms MUST, SHOULD, MAY, etc. are used as defined in RFC
        2119.

  o  A second author for this document was added.

10. Security Considerations

  Implementations using the profile defined in this specification are
  subject to the security considerations discussed in the RTP
  specification [1].  This profile does not specify any different
  security services.  The primary function of this profile is to list a
  set of data compression encodings for audio and video media.

  Confidentiality of the media streams is achieved by encryption.
  Because the data compression used with the payload formats described
  in this profile is applied end-to-end, encryption may be performed
  after compression so there is no conflict between the two operations.

  A potential denial-of-service threat exists for data encodings using
  compression techniques that have non-uniform receiver-end
  computational load.  The attacker can inject pathological datagrams
  into the stream which are complex to decode and cause the receiver to
  be overloaded.

  As with any IP-based protocol, in some circumstances a receiver may
  be overloaded simply by the receipt of too many packets, either
  desired or undesired.  Network-layer authentication MAY be used to
  discard packets from undesired sources, but the processing cost of
  the authentication itself may be too high.  In a multicast
  environment, source pruning is implemented in IGMPv3 (RFC 3376) [24]
  and in multicast routing protocols to allow a receiver to select
  which sources are allowed to reach it.









Schulzrinne & Casner        Standards Track                    [Page 38]

RFC 3551                    RTP A/V Profile                    July 2003


11. IANA Considerations

  The RTP specification establishes a registry of profile names for use
  by higher-level control protocols, such as the Session Description
  Protocol (SDP), RFC 2327 [6], to refer to transport methods.  This
  profile registers the name "RTP/AVP".

  Section 3 establishes the policy that no additional registration of
  static RTP payload types for this profile will be made beyond those
  added in this document revision and included in Tables 4 and 5.  IANA
  may reference that section in declining to accept any additional
  registration requests.  In Tables 4 and 5, note that types 1 and 2
  have been marked reserved and the set of "dyn" payload types included
  has been updated.  These changes are explained in Sections 6 and 9.

12.  References

12.1 Normative References

  [1]  Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson,
       "RTP:  A Transport Protocol for Real-Time Applications", RFC
       3550, July 2003.

  [2]  Bradner, S., "Key Words for Use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, March 1997.

  [3]  Apple Computer, "Audio Interchange File Format AIFF-C", August
       1991.  (also ftp://ftp.sgi.com/sgi/aiff-c.9.26.91.ps.Z).

12.2 Informative References

  [4]  Braden, R., Clark, D. and S. Shenker, "Integrated Services in
       the Internet Architecture: an Overview", RFC 1633, June 1994.

  [5]  Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z. and W.
       Weiss, "An Architecture for Differentiated Service", RFC 2475,
       December 1998.

  [6]  Handley, M. and V. Jacobson, "SDP: Session Description
       Protocol", RFC 2327, April 1998.

  [7]  Casner, S. and P. Hoschka, "MIME Type Registration of RTP
       Payload Types", RFC 3555, July 2003.

  [8]  Freed, N., Klensin, J. and J. Postel, "Multipurpose Internet
       Mail Extensions (MIME) Part Four: Registration Procedures", BCP
       13, RFC 2048, November 1996.




Schulzrinne & Casner        Standards Track                    [Page 39]

RFC 3551                    RTP A/V Profile                    July 2003


  [9]  Zopf, R., "Real-time Transport Protocol (RTP) Payload for
       Comfort Noise (CN)", RFC 3389, September 2002.

  [10] Deleam, D. and J.-P. Petit, "Real-time implementations of the
       recent ITU-T low bit rate speech coders on the TI TMS320C54X
       DSP: results, methodology, and applications", in Proc. of
       International Conference on Signal Processing, Technology, and
       Applications (ICSPAT) , (Boston, Massachusetts), pp. 1656--1660,
       October 1996.

  [11] Mouly, M. and M.-B. Pautet, The GSM system for mobile
       communications Lassay-les-Chateaux, France: Europe Media
       Duplication, 1993.

  [12] Degener, J., "Digital Speech Compression", Dr. Dobb's Journal,
       December 1994.

  [13] Redl, S., Weber, M. and M. Oliphant, An Introduction to GSM
       Boston: Artech House, 1995.

  [14] Hoffman, D., Fernando, G., Goyal, V. and M. Civanlar, "RTP
       Payload Format for MPEG1/MPEG2 Video", RFC 2250, January 1998.

  [15] Jayant, N. and P. Noll, Digital Coding of Waveforms--Principles
       and Applications to Speech and Video Englewood Cliffs, New
       Jersey: Prentice-Hall, 1984.

  [16] McKay, K., "RTP Payload Format for PureVoice(tm) Audio", RFC
       2658, August 1999.

  [17] Perkins, C., Kouvelas, I., Hodson, O., Hardman, V., Handley, M.,
       Bolot, J.-C., Vega-Garcia, A. and S. Fosse-Parisis, "RTP Payload
       for Redundant Audio Data", RFC 2198, September 1997.

  [18] Speer, M. and D. Hoffman, "RTP Payload Format of Sun's CellB
       Video Encoding", RFC 2029, October 1996.

  [19] Berc, L., Fenner, W., Frederick, R., McCanne, S. and P. Stewart,
       "RTP Payload Format for JPEG-Compressed Video", RFC 2435,
       October 1998.

  [20] Turletti, T. and C. Huitema, "RTP Payload Format for H.261 Video
       Streams", RFC 2032, October 1996.

  [21] Zhu, C., "RTP Payload Format for H.263 Video Streams", RFC 2190,
       September 1997.





Schulzrinne & Casner        Standards Track                    [Page 40]

RFC 3551                    RTP A/V Profile                    July 2003


  [22] Bormann, C., Cline, L., Deisher, G., Gardos, T., Maciocco, C.,
       Newell, D., Ott, J., Sullivan, G., Wenger, S. and C. Zhu, "RTP
       Payload Format for the 1998 Version of ITU-T Rec. H.263 Video
       (H.263+)", RFC 2429, October 1998.

  [23] Schulzrinne, H., Rao, A. and R. Lanphier, "Real Time Streaming
       Protocol (RTSP)", RFC 2326, April 1998.

  [24] Cain, B., Deering, S., Kouvelas, I., Fenner, B. and A.
       Thyagarajan, "Internet Group Management Protocol, Version 3",
       RFC 3376, October 2002.

13. Current Locations of Related Resources

  Note:  Several sections below refer to the ITU-T Software Tool
  Library (STL).  It is available from the ITU Sales Service, Place des
  Nations, CH-1211 Geneve 20, Switzerland (also check
  http://www.itu.int).  The ITU-T STL is covered by a license defined
  in ITU-T Recommendation G.191, "Software tools for speech and audio
  coding standardization".

  DVI4

  An archived copy of the document IMA Recommended Practices for
  Enhancing Digital Audio Compatibility in Multimedia Systems (version
  3.0), which describes the IMA ADPCM algorithm, is available at:

     http://www.cs.columbia.edu/~hgs/audio/dvi/

  An implementation is available from Jack Jansen at

     ftp://ftp.cwi.nl/local/pub/audio/adpcm.shar

  G722

  An implementation of the G.722 algorithm is available as part of the
  ITU-T STL, described above.

  G723

  The reference C code implementation defining the G.723.1 algorithm
  and its Annexes A, B, and C are available as an integral part of
  Recommendation G.723.1 from the ITU Sales Service, address listed
  above.  Both the algorithm and C code are covered by a specific
  license.  The ITU-T Secretariat should be contacted to obtain such
  licensing information.





Schulzrinne & Casner        Standards Track                    [Page 41]

RFC 3551                    RTP A/V Profile                    July 2003


  G726

  G726 is specified in the ITU-T Recommendation G.726, "40, 32, 24, and
  16 kb/s Adaptive Differential Pulse Code Modulation (ADPCM)".  An
  implementation of the G.726 algorithm is available as part of the
  ITU-T STL, described above.

  G729

  The reference C code implementation defining the G.729 algorithm and
  its Annexes A through I are available as an integral part of
  Recommendation G.729 from the ITU Sales Service, listed above.  Annex
  I contains the integrated C source code for all G.729 operating
  modes.  The G.729 algorithm and associated C code are covered by a
  specific license.  The contact information for obtaining the license
  is available from the ITU-T Secretariat.

  GSM

  A reference implementation was written by Carsten Bormann and Jutta
  Degener (then at TU Berlin, Germany).  It is available at

     http://www.dmn.tzi.org/software/gsm/

  Although the RPE-LTP algorithm is not an ITU-T standard, there is a C
  code implementation of the RPE-LTP algorithm available as part of the
  ITU-T STL.  The STL implementation is an adaptation of the TU Berlin
  version.

  LPC

  An implementation is available at

     ftp://parcftp.xerox.com/pub/net-research/lpc.tar.Z

  PCMU, PCMA

  An implementation of these algorithms is available as part of the
  ITU-T STL, described above.

14. Acknowledgments

  The comments and careful review of Simao Campos, Richard Cox and AVT
  Working Group participants are gratefully acknowledged.  The GSM
  description was adopted from the IMTC Voice over IP Forum Service
  Interoperability Implementation Agreement (January 1997).  Fred Burg
  and Terry Lyons helped with the G.729 description.




Schulzrinne & Casner        Standards Track                    [Page 42]

RFC 3551                    RTP A/V Profile                    July 2003


15. Intellectual Property Rights Statement

  The IETF takes no position regarding the validity or scope of any
  intellectual property or other rights that might be claimed to
  pertain to the implementation or use of the technology described in
  this document or the extent to which any license under such rights
  might or might not be available; neither does it represent that it
  has made any effort to identify any such rights.  Information on the
  IETF's procedures with respect to rights in standards-track and
  standards-related documentation can be found in BCP-11.  Copies of
  claims of rights made available for publication and any assurances of
  licenses to be made available, or the result of an attempt made to
  obtain a general license or permission for the use of such
  proprietary rights by implementors or users of this specification can
  be obtained from the IETF Secretariat.

  The IETF invites any interested party to bring to its attention any
  copyrights, patents or patent applications, or other proprietary
  rights which may cover technology that may be required to practice
  this standard.  Please address the information to the IETF Executive
  Director.

16. Authors' Addresses

  Henning Schulzrinne
  Department of Computer Science
  Columbia University
  1214 Amsterdam Avenue
  New York, NY 10027
  United States

  EMail: [email protected]


  Stephen L. Casner
  Packet Design
  3400 Hillview Avenue, Building 3
  Palo Alto, CA 94304
  United States

  EMail: [email protected]










Schulzrinne & Casner        Standards Track                    [Page 43]

RFC 3551                    RTP A/V Profile                    July 2003


17. Full Copyright Statement

  Copyright (C) The Internet Society (2003).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

  Funding for the RFC Editor function is currently provided by the
  Internet Society.



















Schulzrinne & Casner        Standards Track                    [Page 44]