Network Working Group                 Editors of this version:
Request for Comments: 2578                                 K. McCloghrie
STD: 58                                                    Cisco Systems
Obsoletes: 1902                                               D. Perkins
Category: Standards Track                                       SNMPinfo
                                                       J. Schoenwaelder
                                                        TU Braunschweig
                                     Authors of previous version:
                                                                J. Case
                                                          SNMP Research
                                                          K. McCloghrie
                                                          Cisco Systems
                                                                M. Rose
                                                 First Virtual Holdings
                                                          S. Waldbusser
                                         International Network Services
                                                             April 1999


        Structure of Management Information Version 2 (SMIv2)


Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999).  All Rights Reserved.


Table of Contents

  1 Introduction .................................................3
  1.1 A Note on Terminology ......................................4
  2 Definitions ..................................................4
  2.1 The MODULE-IDENTITY macro ..................................5
  2.2 Object Names and Syntaxes ..................................5
  2.3 The OBJECT-TYPE macro ......................................8
  2.5 The NOTIFICATION-TYPE macro ...............................10
  2.6 Administrative Identifiers ................................11
  3 Information Modules .........................................11
  3.1 Macro Invocation ..........................................12
  3.1.1 Textual Values and Strings ..............................13


McCloghrie, et al.          Standards Track                     [Page 1]





RFC 2578                         SMIv2                        April 1999


  3.2 IMPORTing Symbols .........................................14
  3.3 Exporting Symbols .........................................14
  3.4 ASN.1 Comments ............................................14
  3.5 OBJECT IDENTIFIER values ..................................15
  3.6 OBJECT IDENTIFIER usage ...................................15
  3.7 Reserved Keywords .........................................16
  4 Naming Hierarchy ............................................16
  5 Mapping of the MODULE-IDENTITY macro ........................17
  5.1 Mapping of the LAST-UPDATED clause ........................17
  5.2 Mapping of the ORGANIZATION clause ........................17
  5.3 Mapping of the CONTACT-INFO clause ........................18
  5.4 Mapping of the DESCRIPTION clause .........................18
  5.5 Mapping of the REVISION clause ............................18
  5.5.1 Mapping of the DESCRIPTION sub-clause ...................18
  5.6 Mapping of the MODULE-IDENTITY value ......................18
  5.7 Usage Example .............................................18
  6 Mapping of the OBJECT-IDENTITY macro ........................19
  6.1 Mapping of the STATUS clause ..............................19
  6.2 Mapping of the DESCRIPTION clause .........................20
  6.3 Mapping of the REFERENCE clause ...........................20
  6.4 Mapping of the OBJECT-IDENTITY value ......................20
  6.5 Usage Example .............................................20
  7 Mapping of the OBJECT-TYPE macro ............................20
  7.1 Mapping of the SYNTAX clause ..............................21
  7.1.1 Integer32 and INTEGER ...................................21
  7.1.2 OCTET STRING ............................................21
  7.1.3 OBJECT IDENTIFIER .......................................22
  7.1.4 The BITS construct ......................................22
  7.1.5 IpAddress ...............................................22
  7.1.6 Counter32 ...............................................23
  7.1.7 Gauge32 .................................................23
  7.1.8 TimeTicks ...............................................24
  7.1.9 Opaque ..................................................24
  7.1.10 Counter64 ..............................................24
  7.1.11 Unsigned32 .............................................25
  7.1.12 Conceptual Tables ......................................25
  7.1.12.1 Creation and Deletion of Conceptual Rows .............26
  7.2 Mapping of the UNITS clause ...............................26
  7.3 Mapping of the MAX-ACCESS clause ..........................26
  7.4 Mapping of the STATUS clause ..............................27
  7.5 Mapping of the DESCRIPTION clause .........................27
  7.6 Mapping of the REFERENCE clause ...........................27
  7.7 Mapping of the INDEX clause ...............................27
  7.8 Mapping of the AUGMENTS clause ............................29
  7.8.1 Relation between INDEX and AUGMENTS clauses .............30
  7.9 Mapping of the DEFVAL clause ..............................30
  7.10 Mapping of the OBJECT-TYPE value .........................31
  7.11 Usage Example ............................................32


McCloghrie, et al.          Standards Track                     [Page 2]





RFC 2578                         SMIv2                        April 1999


  8 Mapping of the NOTIFICATION-TYPE macro ......................34
  8.1 Mapping of the OBJECTS clause .............................34
  8.2 Mapping of the STATUS clause ..............................34
  8.3 Mapping of the DESCRIPTION clause .........................35
  8.4 Mapping of the REFERENCE clause ...........................35
  8.5 Mapping of the NOTIFICATION-TYPE value ....................35
  8.6 Usage Example .............................................35
  9 Refined Syntax ..............................................36
  10 Extending an Information Module ............................37
  10.1 Object Assignments .......................................37
  10.2 Object Definitions .......................................38
  10.3 Notification Definitions .................................39
  11 Appendix A: Detailed Sub-typing Rules ......................40
  11.1 Syntax Rules .............................................40
  11.2 Examples .................................................41
  12 Security Considerations ....................................41
  13 Editors' Addresses .........................................41
  14 References .................................................42
  15 Full Copyright Statement ...................................43

1.  Introduction

  Management information is viewed as a collection of managed objects,
  residing in a virtual information store, termed the Management
  Information Base (MIB).  Collections of related objects are defined
  in MIB modules.  These modules are written using an adapted subset of
  OSI's Abstract Syntax Notation One, ASN.1 (1988) [1].  It is the
  purpose of this document, the Structure of Management Information
  (SMI), to define that adapted subset, and to assign a set of
  associated administrative values.

  The SMI is divided into three parts:  module definitions, object
  definitions, and, notification definitions.

(1)  Module definitions are used when describing information modules.
    An ASN.1 macro, MODULE-IDENTITY, is used to concisely convey the
    semantics of an information module.

(2)  Object definitions are used when describing managed objects.  An
    ASN.1 macro, OBJECT-TYPE, is used to concisely convey the syntax
    and semantics of a managed object.

(3)  Notification definitions are used when describing unsolicited
    transmissions of management information.  An ASN.1 macro,
    NOTIFICATION-TYPE, is used to concisely convey the syntax and
    semantics of a notification.




McCloghrie, et al.          Standards Track                     [Page 3]





RFC 2578                         SMIv2                        April 1999


1.1.  A Note on Terminology

  For the purpose of exposition, the original Structure of Management
  Information, as described in RFCs 1155 (STD 16), 1212 (STD 16), and
  RFC 1215, is termed the SMI version 1 (SMIv1).  The current version
  of the Structure of Management Information is termed SMI version 2
  (SMIv2).

2.  Definitions

SNMPv2-SMI DEFINITIONS ::= BEGIN


-- the path to the root

org            OBJECT IDENTIFIER ::= { iso 3 }  --  "iso" = 1
dod            OBJECT IDENTIFIER ::= { org 6 }
internet       OBJECT IDENTIFIER ::= { dod 1 }

directory      OBJECT IDENTIFIER ::= { internet 1 }

mgmt           OBJECT IDENTIFIER ::= { internet 2 }
mib-2          OBJECT IDENTIFIER ::= { mgmt 1 }
transmission   OBJECT IDENTIFIER ::= { mib-2 10 }

experimental   OBJECT IDENTIFIER ::= { internet 3 }

private        OBJECT IDENTIFIER ::= { internet 4 }
enterprises    OBJECT IDENTIFIER ::= { private 1 }

security       OBJECT IDENTIFIER ::= { internet 5 }

snmpV2         OBJECT IDENTIFIER ::= { internet 6 }

-- transport domains
snmpDomains    OBJECT IDENTIFIER ::= { snmpV2 1 }

-- transport proxies
snmpProxys     OBJECT IDENTIFIER ::= { snmpV2 2 }

-- module identities
snmpModules    OBJECT IDENTIFIER ::= { snmpV2 3 }

-- Extended UTCTime, to allow dates with four-digit years
-- (Note that this definition of ExtUTCTime is not to be IMPORTed
--  by MIB modules.)
ExtUTCTime ::= OCTET STRING(SIZE(11 | 13))
   -- format is YYMMDDHHMMZ or YYYYMMDDHHMMZ


McCloghrie, et al.          Standards Track                     [Page 4]





RFC 2578                         SMIv2                        April 1999


   --   where: YY   - last two digits of year (only years
   --                 between 1900-1999)
   --          YYYY - last four digits of the year (any year)
   --          MM   - month (01 through 12)
   --          DD   - day of month (01 through 31)
   --          HH   - hours (00 through 23)
   --          MM   - minutes (00 through 59)
   --          Z    - denotes GMT (the ASCII character Z)
   --
   -- For example, "9502192015Z" and "199502192015Z" represent
   -- 8:15pm GMT on 19 February 1995. Years after 1999 must use
   -- the four digit year format. Years 1900-1999 may use the
   -- two or four digit format.

-- definitions for information modules

MODULE-IDENTITY MACRO ::=
BEGIN
   TYPE NOTATION ::=
                 "LAST-UPDATED" value(Update ExtUTCTime)
                 "ORGANIZATION" Text
                 "CONTACT-INFO" Text
                 "DESCRIPTION" Text
                 RevisionPart

   VALUE NOTATION ::=
                 value(VALUE OBJECT IDENTIFIER)

   RevisionPart ::=
                 Revisions
               | empty
   Revisions ::=
                 Revision
               | Revisions Revision
   Revision ::=
                 "REVISION" value(Update ExtUTCTime)
                 "DESCRIPTION" Text

   -- a character string as defined in section 3.1.1
   Text ::= value(IA5String)
END


OBJECT-IDENTITY MACRO ::=
BEGIN
   TYPE NOTATION ::=
                 "STATUS" Status
                 "DESCRIPTION" Text


McCloghrie, et al.          Standards Track                     [Page 5]





RFC 2578                         SMIv2                        April 1999


                 ReferPart

   VALUE NOTATION ::=
                 value(VALUE OBJECT IDENTIFIER)

   Status ::=
                 "current"
               | "deprecated"
               | "obsolete"

   ReferPart ::=
                 "REFERENCE" Text
               | empty

   -- a character string as defined in section 3.1.1
   Text ::= value(IA5String)
END


-- names of objects
-- (Note that these definitions of ObjectName and NotificationName
--  are not to be IMPORTed by MIB modules.)

ObjectName ::=
   OBJECT IDENTIFIER

NotificationName ::=
   OBJECT IDENTIFIER

-- syntax of objects

-- the "base types" defined here are:
--   3 built-in ASN.1 types: INTEGER, OCTET STRING, OBJECT IDENTIFIER
--   8 application-defined types: Integer32, IpAddress, Counter32,
--              Gauge32, Unsigned32, TimeTicks, Opaque, and Counter64

ObjectSyntax ::=
   CHOICE {
       simple
           SimpleSyntax,

         -- note that SEQUENCEs for conceptual tables and
         -- rows are not mentioned here...

       application-wide
           ApplicationSyntax
   }



McCloghrie, et al.          Standards Track                     [Page 6]





RFC 2578                         SMIv2                        April 1999


-- built-in ASN.1 types

SimpleSyntax ::=
   CHOICE {
       -- INTEGERs with a more restrictive range
       -- may also be used
       integer-value               -- includes Integer32
           INTEGER (-2147483648..2147483647),

       -- OCTET STRINGs with a more restrictive size
       -- may also be used
       string-value
           OCTET STRING (SIZE (0..65535)),

       objectID-value
           OBJECT IDENTIFIER
   }

-- indistinguishable from INTEGER, but never needs more than
-- 32-bits for a two's complement representation
Integer32 ::=
       INTEGER (-2147483648..2147483647)


-- application-wide types

ApplicationSyntax ::=
   CHOICE {
       ipAddress-value
           IpAddress,

       counter-value
           Counter32,

       timeticks-value
           TimeTicks,

       arbitrary-value
           Opaque,

       big-counter-value
           Counter64,

       unsigned-integer-value  -- includes Gauge32
           Unsigned32
   }

-- in network-byte order


McCloghrie, et al.          Standards Track                     [Page 7]





RFC 2578                         SMIv2                        April 1999


-- (this is a tagged type for historical reasons)
IpAddress ::=
   [APPLICATION 0]
       IMPLICIT OCTET STRING (SIZE (4))

-- this wraps
Counter32 ::=
   [APPLICATION 1]
       IMPLICIT INTEGER (0..4294967295)

-- this doesn't wrap
Gauge32 ::=
   [APPLICATION 2]
       IMPLICIT INTEGER (0..4294967295)

-- an unsigned 32-bit quantity
-- indistinguishable from Gauge32
Unsigned32 ::=
   [APPLICATION 2]
       IMPLICIT INTEGER (0..4294967295)

-- hundredths of seconds since an epoch
TimeTicks ::=
   [APPLICATION 3]
       IMPLICIT INTEGER (0..4294967295)

-- for backward-compatibility only
Opaque ::=
   [APPLICATION 4]
       IMPLICIT OCTET STRING

-- for counters that wrap in less than one hour with only 32 bits
Counter64 ::=
   [APPLICATION 6]
       IMPLICIT INTEGER (0..18446744073709551615)


-- definition for objects

OBJECT-TYPE MACRO ::=
BEGIN
   TYPE NOTATION ::=
                 "SYNTAX" Syntax
                 UnitsPart
                 "MAX-ACCESS" Access
                 "STATUS" Status
                 "DESCRIPTION" Text
                 ReferPart


McCloghrie, et al.          Standards Track                     [Page 8]





RFC 2578                         SMIv2                        April 1999


                 IndexPart
                 DefValPart

   VALUE NOTATION ::=
                 value(VALUE ObjectName)

   Syntax ::=   -- Must be one of the following:
                      -- a base type (or its refinement),
                      -- a textual convention (or its refinement), or
                      -- a BITS pseudo-type
                  type
               | "BITS" "{" NamedBits "}"

   NamedBits ::= NamedBit
               | NamedBits "," NamedBit

   NamedBit ::=  identifier "(" number ")" -- number is nonnegative

   UnitsPart ::=
                 "UNITS" Text
               | empty

   Access ::=
                 "not-accessible"
               | "accessible-for-notify"
               | "read-only"
               | "read-write"
               | "read-create"

   Status ::=
                 "current"
               | "deprecated"
               | "obsolete"

   ReferPart ::=
                 "REFERENCE" Text
               | empty

   IndexPart ::=
                 "INDEX"    "{" IndexTypes "}"
               | "AUGMENTS" "{" Entry      "}"
               | empty
   IndexTypes ::=
                 IndexType
               | IndexTypes "," IndexType
   IndexType ::=
                 "IMPLIED" Index
               | Index


McCloghrie, et al.          Standards Track                     [Page 9]





RFC 2578                         SMIv2                        April 1999


   Index ::=
                   -- use the SYNTAX value of the
                   -- correspondent OBJECT-TYPE invocation
                 value(ObjectName)
   Entry ::=
                   -- use the INDEX value of the
                   -- correspondent OBJECT-TYPE invocation
                 value(ObjectName)

   DefValPart ::= "DEFVAL" "{" Defvalue "}"
               | empty

   Defvalue ::=  -- must be valid for the type specified in
                 -- SYNTAX clause of same OBJECT-TYPE macro
                 value(ObjectSyntax)
               | "{" BitsValue "}"

   BitsValue ::= BitNames
               | empty

   BitNames ::=  BitName
               | BitNames "," BitName

   BitName ::= identifier

   -- a character string as defined in section 3.1.1
   Text ::= value(IA5String)
END


-- definitions for notifications

NOTIFICATION-TYPE MACRO ::=
BEGIN
   TYPE NOTATION ::=
                 ObjectsPart
                 "STATUS" Status
                 "DESCRIPTION" Text
                 ReferPart

   VALUE NOTATION ::=
                 value(VALUE NotificationName)

   ObjectsPart ::=
                 "OBJECTS" "{" Objects "}"
               | empty
   Objects ::=
                 Object


McCloghrie, et al.          Standards Track                    [Page 10]





RFC 2578                         SMIv2                        April 1999


               | Objects "," Object
   Object ::=
                 value(ObjectName)

   Status ::=
                 "current"
               | "deprecated"
               | "obsolete"

   ReferPart ::=
                 "REFERENCE" Text
               | empty

   -- a character string as defined in section 3.1.1
   Text ::= value(IA5String)
END

-- definitions of administrative identifiers

zeroDotZero    OBJECT-IDENTITY
   STATUS     current
   DESCRIPTION
           "A value used for null identifiers."
   ::= { 0 0 }

END

3.  Information Modules

  An "information module" is an ASN.1 module defining information
  relating to network management.

  The SMI describes how to use an adapted subset of ASN.1 (1988) to
  define an information module.  Further, additional restrictions are
  placed on "standard" information modules.  It is strongly recommended
  that "enterprise-specific" information modules also adhere to these
  restrictions.

  Typically, there are three kinds of information modules:

(1)  MIB modules, which contain definitions of inter-related managed
    objects, make use of the OBJECT-TYPE and NOTIFICATION-TYPE macros;

(2)  compliance statements for MIB modules, which make use of the
    MODULE-COMPLIANCE and OBJECT-GROUP macros [2]; and,

(3)  capability statements for agent implementations which make use of
    the AGENT-CAPABILITIES macros [2].


McCloghrie, et al.          Standards Track                    [Page 11]





RFC 2578                         SMIv2                        April 1999


  This classification scheme does not imply a rigid taxonomy.  For
  example, a "standard" information module will normally include
  definitions of managed objects and a compliance statement.
  Similarly, an "enterprise-specific" information module might include
  definitions of managed objects and a capability statement.  Of
  course, a "standard" information module may not contain capability
  statements.

  The constructs of ASN.1 allowed in SMIv2 information modules include:
  the IMPORTS clause, value definitions for OBJECT IDENTIFIERs, type
  definitions for SEQUENCEs (with restrictions), ASN.1 type assignments
  of the restricted ASN.1 types allowed in SMIv2, and instances of
  ASN.1 macros defined in this document and its companion documents [2,
  3].  Additional ASN.1 macros must not be defined in SMIv2 information
  modules.  SMIv1 macros must not be used in SMIv2 information modules.

  The names of all standard information modules must be unique (but
  different versions of the same information module should have the
  same name).  Developers of enterprise information modules are
  encouraged to choose names for their information modules that will
  have a low probability of colliding with standard or other enterprise
  information modules. An information module may not use the ASN.1
  construct of placing an object identifier value between the module
  name and the "DEFINITIONS" keyword.  For the purposes of this
  specification, an ASN.1 module name begins with an upper-case letter
  and continues with zero or more letters, digits, or hyphens, except
  that a hyphen can not be the last character, nor can there be two
  consecutive hyphens.

  All information modules start with exactly one invocation of the
  MODULE-IDENTITY macro, which provides contact information as well as
  revision history to distinguish between versions of the same
  information module.  This invocation must appear immediately after
  any IMPORTs statements.

3.1.  Macro Invocation

  Within an information module, each macro invocation appears as:

       <descriptor> <macro> <clauses> ::= <value>

  where <descriptor> corresponds to an ASN.1 identifier, <macro> names
  the macro being invoked, and <clauses> and <value> depend on the
  definition of the macro.  (Note that this definition of a descriptor
  applies to all macros defined in this memo and in [2].)





McCloghrie, et al.          Standards Track                    [Page 12]





RFC 2578                         SMIv2                        April 1999


  For the purposes of this specification, an ASN.1 identifier consists
  of one or more letters or digits, and its initial character must be a
  lower-case letter.  Note that hyphens are not allowed by this
  specification (except for use by information modules converted from
  SMIv1 which did allow hyphens).

  For all descriptors appearing in an information module, the
  descriptor shall be unique and mnemonic, and shall not exceed 64
  characters in length.  (However, descriptors longer than 32
  characters are not recommended.)  This promotes a common language for
  humans to use when discussing the information module and also
  facilitates simple table mappings for user-interfaces.

  The set of descriptors defined in all "standard" information modules
  shall be unique.

  Finally, by convention, if the descriptor refers to an object with a
  SYNTAX clause value of either Counter32 or Counter64, then the
  descriptor used for the object should denote plurality.

3.1.1.  Textual Values and Strings

  Some clauses in a macro invocation may take a character string as a
  textual value (e.g., the DESCRIPTION clause).  Other clauses take
  binary or hexadecimal strings (in any position where a non-negative
  number is allowed).

  A character string is preceded and followed by the quote character
  ("), and consists of an arbitrary number (possibly zero) of:

     - any 7-bit displayable ASCII characters except quote ("),
     - tab characters,
     - spaces, and
     - line terminator characters (\n or \r\n).

  The value of a character string is interpreted as ASCII.

  A binary string consists of a number (possibly zero) of zeros and
  ones preceded by a single (') and followed by either the pair ('B) or
  ('b), where the number is a multiple of eight.

  A hexadecimal string consists of an even number (possibly zero) of
  hexadecimal digits, preceded by a single (') and followed by either
  the pair ('H) or ('h).  Digits specified via letters can be in upper
  or lower case.

  Note that ASN.1 comments can not be enclosed inside any of these
  types of strings.


McCloghrie, et al.          Standards Track                    [Page 13]





RFC 2578                         SMIv2                        April 1999


3.2.  IMPORTing Symbols

  To reference an external object, the IMPORTS statement must be used
  to identify both the descriptor and the module in which the
  descriptor is defined, where the module is identified by its ASN.1
  module name.

  Note that when symbols from "enterprise-specific" information modules
  are referenced  (e.g., a descriptor), there is the possibility of
  collision.  As such, if different objects with the same descriptor
  are IMPORTed, then this ambiguity is resolved by prefixing the
  descriptor with the name of the information module and a dot ("."),
  i.e.,

       "module.descriptor"

  (All descriptors must be unique within any information module.)

  Of course, this notation can be used to refer to objects even when
  there is no collision when IMPORTing symbols.

  Finally, if any of the ASN.1 named types and macros defined in this
  document, specifically:

       Counter32, Counter64, Gauge32, Integer32, IpAddress, MODULE-
       IDENTITY, NOTIFICATION-TYPE, Opaque, OBJECT-TYPE, OBJECT-
       IDENTITY, TimeTicks, Unsigned32,

  or any of those defined in [2] or [3], are used in an information
  module, then they must be imported using the IMPORTS statement.
  However, the following must not be included in an IMPORTS statement:

     - named types defined by ASN.1 itself, specifically: INTEGER,
       OCTET STRING, OBJECT IDENTIFIER, SEQUENCE, SEQUENCE OF type,
     - the BITS construct.

3.3.  Exporting Symbols

  The ASN.1 EXPORTS statement is not allowed in SMIv2 information
  modules.  All items defined in an information module are
  automatically exported.

3.4.  ASN.1 Comments

  ASN.1 comments can be included in an information module.  However, it
  is recommended that all substantive descriptions be placed within an
  appropriate DESCRIPTION clause.



McCloghrie, et al.          Standards Track                    [Page 14]





RFC 2578                         SMIv2                        April 1999


  ASN.1 comments commence with a pair of adjacent hyphens and end with
  the next pair of adjacent hyphens or at the end of the line,
  whichever occurs first.  Comments ended by a pair of hyphens have the
  effect of a single space character.

3.5.  OBJECT IDENTIFIER values

  An OBJECT IDENTIFIER value is an ordered list of non-negative
  numbers.  For the SMIv2, each number in the list is referred to as a
  sub-identifier, there are at most 128 sub-identifiers in a value, and
  each sub-identifier has a maximum value of 2^32-1 (4294967295
  decimal).

  All OBJECT IDENTIFIER values have at least two sub-identifiers, where
  the value of the first sub-identifier is one of the following well-
  known names:

       Value   Name
         0     ccitt
         1     iso
         2     joint-iso-ccitt

  (Note that this SMI does not recognize "new" well-known names, e.g.,
  as defined when the CCITT became the ITU.)

3.6.  OBJECT IDENTIFIER usage

  OBJECT IDENTIFIERs are used in information modules in two ways:

(1)  registration: the definition of a particular item is registered as
    a particular OBJECT IDENTIFIER value, and associated with a
    particular descriptor.  After such a registration, the semantics
    thereby associated with the value are not allowed to change, the
    OBJECT IDENTIFIER can not be used for any other registration, and
    the descriptor can not be changed nor associated with any other
    registration.  The following macros result in a registration:

         OBJECT-TYPE, MODULE-IDENTITY, NOTIFICATION-TYPE, OBJECT-GROUP,
         OBJECT-IDENTITY, NOTIFICATION-GROUP, MODULE-COMPLIANCE,
         AGENT-CAPABILITIES.

(2)  assignment: a descriptor can be assigned to a particular OBJECT
    IDENTIFIER value.  For this usage, the semantics associated with
    the OBJECT IDENTIFIER value is not allowed to change, and a
    descriptor assigned to a particular OBJECT IDENTIFIER value cannot
    subsequently be assigned to another.  However, multiple descriptors
    can be assigned to the same OBJECT IDENTIFIER value.  Such
    assignments are specified in the following manner:


McCloghrie, et al.          Standards Track                    [Page 15]





RFC 2578                         SMIv2                        April 1999


         mib         OBJECT IDENTIFIER ::= { mgmt 1 }  -- from RFC1156
         mib-2       OBJECT IDENTIFIER ::= { mgmt 1 }  -- from RFC1213
         fredRouter  OBJECT IDENTIFIER ::= { flintStones 1 1 }
         barneySwitch OBJECT IDENTIFIER ::= { flintStones bedrock(2) 1 }

    Note while the above examples are legal, the following is not:

         dinoHost OBJECT IDENTIFIER ::= { flintStones bedrock 2 }

  A descriptor is allowed to be associated with both a registration and
  an assignment, providing both are associated with the same OBJECT
  IDENTIFIER value and semantics.

3.7.  Reserved Keywords

  The following are reserved keywords which must not be used as
  descriptors or module names:

       ABSENT ACCESS AGENT-CAPABILITIES ANY APPLICATION AUGMENTS BEGIN
       BIT BITS BOOLEAN BY CHOICE COMPONENT COMPONENTS CONTACT-INFO
       CREATION-REQUIRES Counter32 Counter64 DEFAULT DEFINED
       DEFINITIONS DEFVAL DESCRIPTION DISPLAY-HINT END ENUMERATED
       ENTERPRISE EXPLICIT EXPORTS EXTERNAL FALSE FROM GROUP Gauge32
       IDENTIFIER IMPLICIT IMPLIED IMPORTS INCLUDES INDEX INTEGER
       Integer32 IpAddress LAST-UPDATED MANDATORY-GROUPS MAX MAX-ACCESS
       MIN MIN-ACCESS MINUS-INFINITY MODULE MODULE-COMPLIANCE MODULE-
       IDENTITY NOTIFICATION-GROUP NOTIFICATION-TYPE NOTIFICATIONS NULL
       OBJECT OBJECT-GROUP OBJECT-IDENTITY OBJECT-TYPE OBJECTS OCTET OF
       OPTIONAL ORGANIZATION Opaque PLUS-INFINITY PRESENT PRIVATE
       PRODUCT-RELEASE REAL REFERENCE REVISION SEQUENCE SET SIZE STATUS
       STRING SUPPORTS SYNTAX TAGS TEXTUAL-CONVENTION TRAP-TYPE TRUE
       TimeTicks UNITS UNIVERSAL Unsigned32 VARIABLES VARIATION WITH
       WRITE-SYNTAX

4.  Naming Hierarchy

  The root of the subtree administered by the Internet Assigned Numbers
  Authority (IANA) for the Internet is:

       internet       OBJECT IDENTIFIER ::= { iso 3 6 1 }

  That is, the Internet subtree of OBJECT IDENTIFIERs starts with the
  prefix:

       1.3.6.1.

  Several branches underneath this subtree are used for network
  management:


McCloghrie, et al.          Standards Track                    [Page 16]





RFC 2578                         SMIv2                        April 1999


       mgmt           OBJECT IDENTIFIER ::= { internet 2 }
       experimental   OBJECT IDENTIFIER ::= { internet 3 }
       private        OBJECT IDENTIFIER ::= { internet 4 }
       enterprises    OBJECT IDENTIFIER ::= { private 1 }

  However, the SMI does not prohibit the definition of objects in other
  portions of the object tree.

  The mgmt(2) subtree is used to identify "standard" objects.

  The experimental(3) subtree is used to identify objects being
  designed by working groups of the IETF.  If an information module
  produced by a working group becomes a "standard" information module,
  then at the very beginning of its entry onto the Internet standards
  track, the objects are moved under the mgmt(2) subtree.

  The private(4) subtree is used to identify objects defined
  unilaterally.  The enterprises(1) subtree beneath private is used,
  among other things, to permit providers of networking subsystems to
  register models of their products.

5.  Mapping of the MODULE-IDENTITY macro

  The MODULE-IDENTITY macro is used to provide contact and revision
  history for each information module.  It must appear exactly once in
  every information module.  It should be noted that the expansion of
  the MODULE-IDENTITY macro is something which conceptually happens
  during implementation and not during run-time.

  Note that reference in an IMPORTS clause or in clauses of SMIv2
  macros to an information module is NOT through the use of the
  'descriptor' of a MODULE-IDENTITY macro; rather, an information
  module is referenced through specifying its module name.

5.1.  Mapping of the LAST-UPDATED clause

  The LAST-UPDATED clause, which must be present, contains the date and
  time that this information module was last edited.

5.2.  Mapping of the ORGANIZATION clause

  The ORGANIZATION clause, which must be present, contains a textual
  description of the organization under whose auspices this information
  module was developed.






McCloghrie, et al.          Standards Track                    [Page 17]





RFC 2578                         SMIv2                        April 1999


5.3.  Mapping of the CONTACT-INFO clause

  The CONTACT-INFO clause, which must be present, contains the name,
  postal address, telephone number, and electronic mail address of the
  person to whom technical queries concerning this information module
  should be sent.

5.4.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a high-level
  textual description of the contents of this information module.

5.5.  Mapping of the REVISION clause

  The REVISION clause, which need not be present, is repeatedly used to
  describe the revisions (including the initial version) made to this
  information module, in reverse chronological order (i.e., most recent
  first).  Each instance of this clause contains the date and time of
  the revision.

5.5.1.  Mapping of the DESCRIPTION sub-clause

  The DESCRIPTION sub-clause, which must be present for each REVISION
  clause, contains a high-level textual description of the revision
  identified in that REVISION clause.

5.6.  Mapping of the MODULE-IDENTITY value

  The value of an invocation of the MODULE-IDENTITY macro is an OBJECT
  IDENTIFIER.  As such, this value may be authoritatively used when
  specifying an OBJECT IDENTIFIER value to refer to the information
  module containing the invocation.

  Note that it is a common practice to use the value of the MODULE-
  IDENTITY macro as a subtree under which other OBJECT IDENTIFIER
  values assigned within the module are defined.  However, it is legal
  (and occasionally necessary) for the other OBJECT IDENTIFIER values
  assigned within the module to be unrelated to the OBJECT IDENTIFIER
  value of the MODULE-IDENTITY macro.

5.7.  Usage Example

  Consider how a skeletal MIB module might be constructed:  e.g.,

  FIZBIN-MIB DEFINITIONS ::= BEGIN

  IMPORTS
      MODULE-IDENTITY, OBJECT-TYPE, experimental


McCloghrie, et al.          Standards Track                    [Page 18]





RFC 2578                         SMIv2                        April 1999


          FROM SNMPv2-SMI;


  fizbin MODULE-IDENTITY
      LAST-UPDATED "199505241811Z"
      ORGANIZATION "IETF SNMPv2 Working Group"
      CONTACT-INFO
              "        Marshall T. Rose

               Postal: Dover Beach Consulting, Inc.
                       420 Whisman Court
                       Mountain View, CA  94043-2186
                       US

                  Tel: +1 415 968 1052
                  Fax: +1 415 968 2510

               E-mail: [email protected]"

      DESCRIPTION
              "The MIB module for entities implementing the xxxx
              protocol."
      REVISION      "9505241811Z"
      DESCRIPTION
              "The latest version of this MIB module."
      REVISION      "9210070433Z"
      DESCRIPTION
              "The initial version of this MIB module, published in
              RFC yyyy."
  -- contact IANA for actual number
      ::= { experimental xx }

  END

6.  Mapping of the OBJECT-IDENTITY macro

  The OBJECT-IDENTITY macro is used to define information about an
  OBJECT IDENTIFIER assignment.  All administrative OBJECT IDENTIFIER
  assignments which define a type identification value (see
  AutonomousType, a textual convention defined in [3]) should be
  defined via the OBJECT-IDENTITY macro.  It should be noted that the
  expansion of the OBJECT-IDENTITY macro is something which
  conceptually happens during implementation and not during run-time.

6.1.  Mapping of the STATUS clause

  The STATUS clause, which must be present, indicates whether this
  definition is current or historic.


McCloghrie, et al.          Standards Track                    [Page 19]





RFC 2578                         SMIv2                        April 1999


  The value "current" means that the definition is current and valid.
  The value "obsolete" means the definition is obsolete and should not
  be implemented and/or can be removed if previously implemented.
  While the value "deprecated" also indicates an obsolete definition,
  it permits new/continued implementation in order to foster
  interoperability with older/existing implementations.

6.2.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a textual
  description of the object assignment.

6.3.  Mapping of the REFERENCE clause

  The REFERENCE clause, which need not be present, contains a textual
  cross-reference to some other document, either another information
  module which defines a related assignment, or some other document
  which provides additional information relevant to this definition.

6.4.  Mapping of the OBJECT-IDENTITY value

  The value of an invocation of the OBJECT-IDENTITY macro is an OBJECT
  IDENTIFIER.

6.5.  Usage Example

  Consider how an OBJECT IDENTIFIER assignment might be made:  e.g.,

  fizbin69 OBJECT-IDENTITY
      STATUS  current
      DESCRIPTION
              "The authoritative identity of the Fizbin 69 chipset."
     ::= { fizbinChipSets 1 }

7.  Mapping of the OBJECT-TYPE macro

  The OBJECT-TYPE macro is used to define a type of managed object.  It
  should be noted that the expansion of the OBJECT-TYPE macro is
  something which conceptually happens during implementation and not
  during run-time.

  For leaf objects which are not columnar objects (i.e., not contained
  within a conceptual table), instances of the object are identified by
  appending a sub-identifier of zero to the name of that object.
  Otherwise, the INDEX clause of the conceptual row object superior to
  a columnar object defines instance identification information.




McCloghrie, et al.          Standards Track                    [Page 20]





RFC 2578                         SMIv2                        April 1999


7.1.  Mapping of the SYNTAX clause

  The SYNTAX clause, which must be present, defines the abstract data
  structure corresponding to that object.  The data structure must be
  one of the following: a base type, the BITS construct, or a textual
  convention.  (SEQUENCE OF and SEQUENCE are also possible for
  conceptual tables, see section 7.1.12).  The base types are those
  defined in the ObjectSyntax CHOICE.  A textual convention is a
  newly-defined type defined as a sub-type of a base type [3].

  An extended subset of the full capabilities of ASN.1 (1988) sub-
  typing is allowed, as appropriate to the underlying ASN.1 type.  Any
  such restriction on size, range or enumerations specified in this
  clause represents the maximal level of support which makes "protocol
  sense".  Restrictions on sub-typing are specified in detail in
  Section 9 and Appendix A of this memo.

  The semantics of ObjectSyntax are now described.

7.1.1.  Integer32 and INTEGER

  The Integer32 type represents integer-valued information between
  -2^31 and 2^31-1 inclusive (-2147483648 to 2147483647 decimal).  This
  type is indistinguishable from the INTEGER type.  Both the INTEGER
  and Integer32 types may be sub-typed to be more constrained than the
  Integer32 type.

  The INTEGER type (but not the Integer32 type) may also be used to
  represent integer-valued information as named-number enumerations.
  In this case, only those named-numbers so enumerated may be present
  as a value.  Note that although it is recommended that enumerated
  values start at 1 and be numbered contiguously, any valid value for
  Integer32 is allowed for an enumerated value and, further, enumerated
  values needn't be contiguously assigned.

  Finally, a label for a named-number enumeration must consist of one
  or more letters or digits, up to a maximum of 64 characters, and the
  initial character must be a lower-case letter.  (However, labels
  longer than 32 characters are not recommended.)  Note that hyphens
  are not allowed by this specification (except for use by information
  modules converted from SMIv1 which did allow hyphens).

7.1.2.  OCTET STRING

  The OCTET STRING type represents arbitrary binary or textual data.
  Although the SMI-specified size limitation for this type is 65535
  octets, MIB designers should realize that there may be implementation
  and interoperability limitations for sizes in excess of 255 octets.


McCloghrie, et al.          Standards Track                    [Page 21]





RFC 2578                         SMIv2                        April 1999


7.1.3.  OBJECT IDENTIFIER

  The OBJECT IDENTIFIER type represents administratively assigned
  names.  Any instance of this type may have at most 128 sub-
  identifiers.  Further, each sub-identifier must not exceed the value
  2^32-1 (4294967295 decimal).

7.1.4.  The BITS construct

  The BITS construct represents an enumeration of named bits.  This
  collection is assigned non-negative, contiguous (but see below)
  values, starting at zero.  Only those named-bits so enumerated may be
  present in a value.  (Thus, enumerations must be assigned to
  consecutive bits; however, see Section 9 for refinements of an object
  with this syntax.)

  As part of updating an information module, for an object defined
  using the BITS construct, new enumerations can be added or existing
  enumerations can have new labels assigned to them.  After an
  enumeration is added, it might not be possible to distinguish between
  an implementation of the updated object for which the new enumeration
  is not asserted, and an implementation of the object prior to the
  addition.  Depending on the circumstances, such an ambiguity could
  either be desirable or could be undesirable.  The means to avoid such
  an ambiguity is dependent on the encoding of values on the wire;
  however, one possibility is to define new enumerations starting at
  the next multiple of eight bits.  (Of course, this can also result in
  the enumerations no longer being contiguous.)

  Although there is no SMI-specified limitation on the number of
  enumerations (and therefore on the length of a value), except as may
  be imposed by the limit on the length of an OCTET STRING, MIB
  designers should realize that there may be implementation and
  interoperability limitations for sizes in excess of 128 bits.

  Finally, a label for a named-number enumeration must consist of one
  or more letters or digits, up to a maximum of 64 characters, and the
  initial character must be a lower-case letter.  (However, labels
  longer than 32 characters are not recommended.)  Note that hyphens
  are not allowed by this specification.

7.1.5.  IpAddress

  The IpAddress type represents a 32-bit internet address.  It is
  represented as an OCTET STRING of length 4, in network byte-order.





McCloghrie, et al.          Standards Track                    [Page 22]





RFC 2578                         SMIv2                        April 1999


  Note that the IpAddress type is a tagged type for historical reasons.
  Network addresses should be represented using an invocation of the
  TEXTUAL-CONVENTION macro [3].

7.1.6.  Counter32

  The Counter32 type represents a non-negative integer which
  monotonically increases until it reaches a maximum value of 2^32-1
  (4294967295 decimal), when it wraps around and starts increasing
  again from zero.

  Counters have no defined "initial" value, and thus, a single value of
  a Counter has (in general) no information content.  Discontinuities
  in the monotonically increasing value normally occur at re-
  initialization of the management system, and at other times as
  specified in the description of an object-type using this ASN.1 type.
  If such other times can occur, for example, the creation of an object
  instance at times other than re-initialization, then a corresponding
  object should be defined, with an appropriate SYNTAX clause, to
  indicate the last discontinuity.  Examples of appropriate SYNTAX
  clause include:  TimeStamp (a textual convention defined in [3]),
  DateAndTime (another textual convention from [3]) or TimeTicks.

  The value of the MAX-ACCESS clause for objects with a SYNTAX clause
  value of Counter32 is either "read-only" or "accessible-for-notify".

  A DEFVAL clause is not allowed for objects with a SYNTAX clause value
  of Counter32.

7.1.7.  Gauge32

  The Gauge32 type represents a non-negative integer, which may
  increase or decrease, but shall never exceed a maximum value, nor
  fall below a minimum value.  The maximum value can not be greater
  than 2^32-1 (4294967295 decimal), and the minimum value can not be
  smaller than 0.  The value of a Gauge32 has its maximum value
  whenever the information being modeled is greater than or equal to
  its maximum value, and has its minimum value whenever the information
  being modeled is smaller than or equal to its minimum value.  If the
  information being modeled subsequently decreases below (increases
  above) the maximum (minimum) value, the Gauge32 also decreases
  (increases).  (Note that despite of the use of the term "latched" in
  the original definition of this type, it does not become "stuck" at
  its maximum or minimum value.)






McCloghrie, et al.          Standards Track                    [Page 23]





RFC 2578                         SMIv2                        April 1999


7.1.8.  TimeTicks

  The TimeTicks type represents a non-negative integer which represents
  the time, modulo 2^32 (4294967296 decimal), in hundredths of a second
  between two epochs.  When objects are defined which use this ASN.1
  type, the description of the object identifies both of the reference
  epochs.

  For example, [3] defines the TimeStamp textual convention which is
  based on the TimeTicks type.  With a TimeStamp, the first reference
  epoch is defined as the time when sysUpTime [5] was zero, and the
  second reference epoch is defined as the current value of sysUpTime.

  The TimeTicks type may not be sub-typed.

7.1.9.  Opaque

  The Opaque type is provided solely for backward-compatibility, and
  shall not be used for newly-defined object types.

  The Opaque type supports the capability to pass arbitrary ASN.1
  syntax.  A value is encoded using the ASN.1 Basic Encoding Rules [4]
  into a string of octets.  This, in turn, is encoded as an OCTET
  STRING, in effect "double-wrapping" the original ASN.1 value.

  Note that a conforming implementation need only be able to accept and
  recognize opaquely-encoded data.  It need not be able to unwrap the
  data and then interpret its contents.

  A requirement on "standard" MIB modules is that no object may have a
  SYNTAX clause value of Opaque.

7.1.10.  Counter64

  The Counter64 type represents a non-negative integer which
  monotonically increases until it reaches a maximum value of 2^64-1
  (18446744073709551615 decimal), when it wraps around and starts
  increasing again from zero.

  Counters have no defined "initial" value, and thus, a single value of
  a Counter has (in general) no information content.  Discontinuities
  in the monotonically increasing value normally occur at re-
  initialization of the management system, and at other times as
  specified in the description of an object-type using this ASN.1 type.
  If such other times can occur, for example, the creation of an object
  instance at times other than re-initialization, then a corresponding
  object should be defined, with an appropriate SYNTAX clause, to
  indicate the last discontinuity.  Examples of appropriate SYNTAX


McCloghrie, et al.          Standards Track                    [Page 24]





RFC 2578                         SMIv2                        April 1999


  clause are:  TimeStamp (a textual convention defined in [3]),
  DateAndTime (another textual convention from [3]) or TimeTicks.

  The value of the MAX-ACCESS clause for objects with a SYNTAX clause
  value of Counter64 is either "read-only" or "accessible-for-notify".

  A requirement on "standard" MIB modules is that the Counter64 type
  may be used only if the information being modeled would wrap in less
  than one hour if the Counter32 type was used instead.

  A DEFVAL clause is not allowed for objects with a SYNTAX clause value
  of Counter64.

7.1.11.  Unsigned32

  The Unsigned32 type represents integer-valued information between 0
  and 2^32-1 inclusive (0 to 4294967295 decimal).

7.1.12.  Conceptual Tables

  Management operations apply exclusively to scalar objects.  However,
  it is sometimes convenient for developers of management applications
  to impose an imaginary, tabular structure on an ordered collection of
  objects within the MIB.  Each such conceptual table contains zero or
  more rows, and each row may contain one or more scalar objects,
  termed columnar objects.  This conceptualization is formalized by
  using the OBJECT-TYPE macro to define both an object which
  corresponds to a table and an object which corresponds to a row in
  that table.  A conceptual table has SYNTAX of the form:

       SEQUENCE OF <EntryType>

  where <EntryType> refers to the SEQUENCE type of its subordinate
  conceptual row.  A conceptual row has SYNTAX of the form:

       <EntryType>

  where <EntryType> is a SEQUENCE type defined as follows:

       <EntryType> ::= SEQUENCE { <type1>, ... , <typeN> }

  where there is one <type> for each subordinate object, and each
  <type> is of the form:

       <descriptor> <syntax>

  where <descriptor> is the descriptor naming a subordinate object, and
  <syntax> has the value of that subordinate object's SYNTAX clause,


McCloghrie, et al.          Standards Track                    [Page 25]





RFC 2578                         SMIv2                        April 1999


  except that both sub-typing information and the named values for
  enumerated integers or the named bits for the BITS construct, are
  omitted from <syntax>.

  Further, a <type> is always present for every subordinate object.
  (The ASN.1 DEFAULT and OPTIONAL clauses are disallowed in the
  SEQUENCE definition.)  The MAX-ACCESS clause for conceptual tables
  and rows is "not-accessible".

7.1.12.1.  Creation and Deletion of Conceptual Rows

  For newly-defined conceptual rows which allow the creation of new
  object instances and/or the deletion of existing object instances,
  there should be one columnar object with a SYNTAX clause value of
  RowStatus (a textual convention defined in [3]) and a MAX-ACCESS
  clause value of read-create.  By convention, this is termed the
  status column for the conceptual row.

7.2.  Mapping of the UNITS clause

  This UNITS clause, which need not be present, contains a textual
  definition of the units associated with that object.

7.3.  Mapping of the MAX-ACCESS clause

  The MAX-ACCESS clause, which must be present, defines whether it
  makes "protocol sense" to read, write and/or create an instance of
  the object, or to include its value in a notification.  This is the
  maximal level of access for the object.  (This maximal level of
  access is independent of any administrative authorization policy.)

  The value "read-write" indicates that read and write access make
  "protocol sense", but create does not.  The value "read-create"
  indicates that read, write and create access make "protocol sense".
  The value "not-accessible" indicates an auxiliary object (see Section
  7.7).  The value "accessible-for-notify" indicates an object which is
  accessible only via a notification (e.g., snmpTrapOID [5]).

  These values are ordered, from least to greatest:  "not-accessible",
  "accessible-for-notify", "read-only", "read-write", "read-create".

  If any columnar object in a conceptual row has "read-create" as its
  maximal level of access, then no other columnar object of the same
  conceptual row may have a maximal access of "read-write".  (Note that
  "read-create" is a superset of "read-write".)





McCloghrie, et al.          Standards Track                    [Page 26]





RFC 2578                         SMIv2                        April 1999


7.4.  Mapping of the STATUS clause

  The STATUS clause, which must be present, indicates whether this
  definition is current or historic.

  The value "current" means that the definition is current and valid.
  The value "obsolete" means the definition is obsolete and should not
  be implemented and/or can be removed if previously implemented.
  While the value "deprecated" also indicates an obsolete definition,
  it permits new/continued implementation in order to foster
  interoperability with older/existing implementations.

7.5.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a textual
  definition of that object which provides all semantic definitions
  necessary for implementation, and should embody any information which
  would otherwise be communicated in any ASN.1 commentary annotations
  associated with the object.

7.6.  Mapping of the REFERENCE clause

  The REFERENCE clause, which need not be present, contains a textual
  cross-reference to some other document, either another information
  module which defines a related assignment, or some other document
  which provides additional information relevant to this definition.

7.7.  Mapping of the INDEX clause

  The INDEX clause, which must be present if that object corresponds to
  a conceptual row (unless an AUGMENTS clause is present instead), and
  must be absent otherwise, defines instance identification information
  for the columnar objects subordinate to that object.

  The instance identification information in an INDEX clause must
  specify object(s) such that value(s) of those object(s) will
  unambiguously distinguish a conceptual row.  The objects can be
  columnar objects from the same and/or another conceptual table, but
  must not be scalar objects.  Multiple occurrences of the same object
  in a single INDEX clause is strongly discouraged.

  The syntax of the objects in the INDEX clause indicate how to form
  the instance-identifier:

(1)  integer-valued (i.e., having INTEGER as its underlying primitive
    type):  a single sub-identifier taking the integer value (this
    works only for non-negative integers);



McCloghrie, et al.          Standards Track                    [Page 27]





RFC 2578                         SMIv2                        April 1999


(2)  string-valued, fixed-length strings (or variable-length preceded by
    the IMPLIED keyword):  `n' sub-identifiers, where `n' is the length
    of the string (each octet of the string is encoded in a separate
    sub-identifier);

(3)  string-valued, variable-length strings (not preceded by the IMPLIED
    keyword):  `n+1' sub-identifiers, where `n' is the length of the
    string (the first sub-identifier is `n' itself, following this,
    each octet of the string is encoded in a separate sub-identifier);

(4)  object identifier-valued (when preceded by the IMPLIED keyword):
    `n' sub-identifiers, where `n' is the number of sub-identifiers in
    the value (each sub-identifier of the value is copied into a
    separate sub-identifier);

(5)  object identifier-valued (when not preceded by the IMPLIED
    keyword):  `n+1' sub-identifiers, where `n' is the number of sub-
    identifiers in the value (the first sub-identifier is `n' itself,
    following this, each sub-identifier in the value is copied);

(6)  IpAddress-valued:  4 sub-identifiers, in the familiar a.b.c.d
    notation.

  Note that the IMPLIED keyword can only be present for an object
  having a variable-length syntax (e.g., variable-length strings or
  object identifier-valued objects), Further, the IMPLIED keyword can
  only be associated with the last object in the INDEX clause.
  Finally, the IMPLIED keyword may not be used on a variable-length
  string object if that string might have a value of zero-length.

  Since a single value of a Counter has (in general) no information
  content (see section 7.1.6 and 7.1.10), objects defined using the
  syntax, Counter32 or Counter64, must not be specified in an INDEX

  clause. If an object defined using the BITS construct is used in an
  INDEX clause, it is considered a variable-length string.

  Instances identified by use of integer-valued objects should be
  numbered starting from one (i.e., not from zero).  The use of zero as
  a value for an integer-valued index object should be avoided, except
  in special cases.

  Objects which are both specified in the INDEX clause of a conceptual
  row and also columnar objects of the same conceptual row are termed
  auxiliary objects.  The MAX-ACCESS clause for auxiliary objects is
  "not-accessible", except in the following circumstances:




McCloghrie, et al.          Standards Track                    [Page 28]





RFC 2578                         SMIv2                        April 1999


(1)  within a MIB module originally written to conform to SMIv1, and
    later converted to conform to SMIv2; or

(2)  a conceptual row must contain at least one columnar object which is
    not an auxiliary object.  In the event that all of a conceptual
    row's columnar objects are also specified in its INDEX clause, then
    one of them must be accessible, i.e., have a MAX-ACCESS clause of
    "read-only". (Note that this situation does not arise for a
    conceptual row allowing create access, since such a row will have a
    status column which will not be an auxiliary object.)

  Note that objects specified in a conceptual row's INDEX clause need
  not be columnar objects of that conceptual row.  In this situation,
  the DESCRIPTION clause of the conceptual row must include a textual
  explanation of how the objects which are included in the INDEX clause
  but not columnar objects of that conceptual row, are used in uniquely
  identifying instances of the conceptual row's columnar objects.

7.8.  Mapping of the AUGMENTS clause

  The AUGMENTS clause, which must not be present unless the object
  corresponds to a conceptual row, is an alternative to the INDEX
  clause.  Every object corresponding to a conceptual row has either an
  INDEX clause or an AUGMENTS clause.

  If an object corresponding to a conceptual row has an INDEX clause,
  that row is termed a base conceptual row; alternatively, if the
  object has an AUGMENTS clause, the row is said to be a conceptual row
  augmentation, where the AUGMENTS clause names the object
  corresponding to the base conceptual row which is augmented by this
  conceptual row augmentation.  (Thus, a conceptual row augmentation
  cannot itself be augmented.)  Instances of subordinate columnar
  objects of a conceptual row augmentation are identified according to
  the INDEX clause of the base conceptual row corresponding to the
  object named in the AUGMENTS clause.  Further, instances of
  subordinate columnar objects of a conceptual row augmentation exist
  according to the same semantics as instances of subordinate columnar
  objects of the base conceptual row being augmented.  As such, note
  that creation of a base conceptual row implies the correspondent
  creation of any conceptual row augmentations.

  For example, a MIB designer might wish to define additional columns
  in an "enterprise-specific" MIB which logically extend a conceptual
  row in a "standard" MIB.  The "standard" MIB definition of the
  conceptual row would include the INDEX clause and the "enterprise-
  specific" MIB would contain the definition of a conceptual row using
  the AUGMENTS clause.  On the other hand, it would be incorrect to use
  the AUGMENTS clause for the relationship between RFC 2233's ifTable


McCloghrie, et al.          Standards Track                    [Page 29]





RFC 2578                         SMIv2                        April 1999


  and the many media-specific MIBs which extend it for specific media
  (e.g., the dot3Table in RFC 2358), since not all interfaces are of
  the same media.

  Note that a base conceptual row may be augmented by multiple
  conceptual row augmentations.

7.8.1.  Relation between INDEX and AUGMENTS clauses

  When defining instance identification information for a conceptual
  table:

(1)  If there is a one-to-one correspondence between the conceptual rows
    of this table and an existing table, then the AUGMENTS clause
    should be used.

(2)  Otherwise, if there is a sparse relationship between the conceptual
    rows of this table and an existing table, then an INDEX clause
    should be used which is identical to that in the existing table.
    For example, the relationship between RFC 2233's ifTable and a
    media-specific MIB which extends the ifTable for a specific media
    (e.g., the dot3Table in RFC 2358), is a sparse relationship.

(3)  Otherwise, if no existing objects have the required syntax and
    semantics, then auxiliary objects should be defined within the
    conceptual row for the new table, and those objects should be used
    within the INDEX clause for the conceptual row.

7.9.  Mapping of the DEFVAL clause

  The DEFVAL clause, which need not be present, defines an acceptable
  default value which may be used at the discretion of an agent when an
  object instance is created.  That is, the value is a "hint" to
  implementors.

  During conceptual row creation, if an instance of a columnar object
  is not present as one of the operands in the correspondent management
  protocol set operation, then the value of the DEFVAL clause, if
  present, indicates an acceptable default value that an agent might
  use (especially for a read-only object).

  Note that with this definition of the DEFVAL clause, it is
  appropriate to use it for any columnar object of a read-create table.
  It is also permitted to use it for scalar objects dynamically created
  by an agent, or for columnar objects of a read-write table
  dynamically created by an agent.




McCloghrie, et al.          Standards Track                    [Page 30]





RFC 2578                         SMIv2                        April 1999


  The value of the DEFVAL clause must, of course, correspond to the
  SYNTAX clause for the object.  If the value is an OBJECT IDENTIFIER,
  then it must be expressed as a single ASN.1 identifier, and not as a
  collection of sub-identifiers.

  Note that if an operand to the management protocol set operation is
  an instance of a read-only object, then the error `notWritable' [6]
  will be returned.  As such, the DEFVAL clause can be used to provide
  an acceptable default value that an agent might use.

  By way of example, consider the following possible DEFVAL clauses:

       ObjectSyntax       DEFVAL clause
       ----------------   ------------
       Integer32          DEFVAL { 1 }
                          -- same for Gauge32, TimeTicks, Unsigned32
       INTEGER            DEFVAL { valid } -- enumerated value
       OCTET STRING       DEFVAL { 'ffffffffffff'H }
       DisplayString      DEFVAL { "SNMP agent" }
       IpAddress          DEFVAL { 'c0210415'H } -- 192.33.4.21
       OBJECT IDENTIFIER  DEFVAL { sysDescr }
       BITS               DEFVAL { { primary, secondary } }
                          -- enumerated values that are set
       BITS               DEFVAL { { } }
                          -- no enumerated values are set

  A binary string used in a DEFVAL clause for an OCTET STRING must be
  either an integral multiple of eight or zero bits in length;
  similarly, a hexadecimal string must be an even number of hexadecimal
  digits.  The value of a character string used in a DEFVAL clause must
  not contain tab characters or line terminator characters.

  Object types with SYNTAX of Counter32 and Counter64 may not have
  DEFVAL clauses, since they do not have defined initial values.
  However, it is recommended that they be initialized to zero.

7.10.  Mapping of the OBJECT-TYPE value

  The value of an invocation of the OBJECT-TYPE macro is the name of
  the object, which is an OBJECT IDENTIFIER, an administratively
  assigned name.

  When an OBJECT IDENTIFIER is assigned to an object:

(1)  If the object corresponds to a conceptual table, then only a single
    assignment, that for a conceptual row, is present immediately
    beneath that object.  The administratively assigned name for the
    conceptual row object is derived by appending a sub-identifier of


McCloghrie, et al.          Standards Track                    [Page 31]





RFC 2578                         SMIv2                        April 1999


    "1" to the administratively assigned name for the conceptual table.

(2)  If the object corresponds to a conceptual row, then at least one
    assignment, one for each column in the conceptual row, is present
    beneath that object.  The administratively assigned name for each
    column is derived by appending a unique, positive sub-identifier to
    the administratively assigned name for the conceptual row.

(3)  Otherwise, no other OBJECT IDENTIFIERs which are subordinate to the
    object may be assigned.

  Note that the final sub-identifier of any administratively assigned
  name for an object shall be positive.  A zero-valued  final sub-
  identifier is reserved for future use.

7.11.  Usage Example

  Consider how one might define a conceptual table and its
  subordinates.  (This example uses the RowStatus textual convention
  defined in [3].)

  evalSlot OBJECT-TYPE
      SYNTAX      Integer32 (0..2147483647)
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The index number of the first unassigned entry in the
              evaluation table, or the value of zero indicating that
              all entries are assigned.

              A management station should create new entries in the
              evaluation table using this algorithm:  first, issue a
              management protocol retrieval operation to determine the
              value of evalSlot; and, second, issue a management
              protocol set operation to create an instance of the
              evalStatus object setting its value to createAndGo(4) or
              createAndWait(5).  If this latter operation succeeds,
              then the management station may continue modifying the
              instances corresponding to the newly created conceptual
              row, without fear of collision with other management
              stations."
     ::= { eval 1 }

  evalTable OBJECT-TYPE
      SYNTAX      SEQUENCE OF EvalEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION


McCloghrie, et al.          Standards Track                    [Page 32]





RFC 2578                         SMIv2                        April 1999


              "The (conceptual) evaluation table."
     ::= { eval 2 }

  evalEntry OBJECT-TYPE
      SYNTAX      EvalEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
              "An entry (conceptual row) in the evaluation table."
     INDEX   { evalIndex }
     ::= { evalTable 1 }

  EvalEntry ::=
      SEQUENCE {
          evalIndex       Integer32,
          evalString      DisplayString,
          evalValue       Integer32,
          evalStatus      RowStatus
      }

  evalIndex OBJECT-TYPE
      SYNTAX      Integer32 (1..2147483647)
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
              "The auxiliary variable used for identifying instances of
              the columnar objects in the evaluation table."
          ::= { evalEntry 1 }

  evalString OBJECT-TYPE
      SYNTAX      DisplayString
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
              "The string to evaluate."
          ::= { evalEntry 2 }

  evalValue OBJECT-TYPE
      SYNTAX      Integer32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The value when evalString was last evaluated, or zero if
               no such value is available."
      DEFVAL  { 0 }
          ::= { evalEntry 3 }

  evalStatus OBJECT-TYPE


McCloghrie, et al.          Standards Track                    [Page 33]





RFC 2578                         SMIv2                        April 1999


      SYNTAX      RowStatus
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
              "The status column used for creating, modifying, and
              deleting instances of the columnar objects in the
              evaluation table."
   DEFVAL  { active }
       ::= { evalEntry 4 }

8.  Mapping of the NOTIFICATION-TYPE macro

  The NOTIFICATION-TYPE macro is used to define the information
  contained within an unsolicited transmission of management
  information (i.e., within either a SNMPv2-Trap-PDU or InformRequest-
  PDU).  It should be noted that the expansion of the NOTIFICATION-TYPE
  macro is something which conceptually happens during implementation
  and not during run-time.

8.1.  Mapping of the OBJECTS clause

  The OBJECTS clause, which need not be present, defines an ordered
  sequence of MIB object types.  One and only one object instance for
  each occurrence of each object type must be present, and in the
  specified order, in every instance of the notification.  If the same
  object type occurs multiple times in a notification's ordered
  sequence, then an object instance is present for each of them.  An
  object type specified in this clause must not have an MAX-ACCESS
  clause of "not-accessible".  The notification's DESCRIPTION clause
  must specify the information/meaning conveyed by each occurrence of
  each object type in the sequence.  The DESCRIPTION clause must also
  specify which object instance is present for each object type in the
  notification.

  Note that an agent is allowed, at its own discretion, to append as
  many additional objects as it considers useful to the end of the
  notification (i.e., after the objects defined by the OBJECTS clause).

8.2.  Mapping of the STATUS clause

  The STATUS clause, which must be present, indicates whether this
  definition is current or historic.

  The value "current" means that the definition is current and valid.
  The value "obsolete" means the definition is obsolete and should not
  be implemented and/or can be removed if previously implemented.
  While the value "deprecated" also indicates an obsolete definition,
  it permits new/continued implementation in order to foster


McCloghrie, et al.          Standards Track                    [Page 34]





RFC 2578                         SMIv2                        April 1999


  interoperability with older/existing implementations.

8.3.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a textual
  definition of the notification which provides all semantic
  definitions necessary for implementation, and should embody any
  information which would otherwise be communicated in any ASN.1
  commentary annotations associated with the notification.  In
  particular, the DESCRIPTION clause should document which instances of
  the objects mentioned in the OBJECTS clause should be contained
  within notifications of this type.

8.4.  Mapping of the REFERENCE clause

  The REFERENCE clause, which need not be present, contains a textual
  cross-reference to some other document, either another information
  module which defines a related assignment, or some other document
  which provides additional information relevant to this definition.

8.5.  Mapping of the NOTIFICATION-TYPE value

  The value of an invocation of the NOTIFICATION-TYPE macro is the name
  of the notification, which is an OBJECT IDENTIFIER, an
  administratively assigned name.  In order to achieve compatibility
  with SNMPv1 traps, both when converting SMIv1 information modules
  to/from this SMI, and in the procedures employed by multi-lingual
  systems and proxy forwarding applications, the next to last sub-
  identifier in the name of any newly-defined notification must have
  the value zero.

  Sections 4.2.6 and 4.2.7 of [6] describe how the NOTIFICATION-TYPE
  macro is used to generate a SNMPv2-Trap-PDU or InformRequest-PDU,
  respectively.

8.6.  Usage Example

  Consider how a configuration change notification might be described:

  entityMIBTraps      OBJECT IDENTIFIER ::= { entityMIB 2 }
  entityMIBTrapPrefix OBJECT IDENTIFIER ::= { entityMIBTraps 0 }

  entConfigChange NOTIFICATION-TYPE
      STATUS             current
      DESCRIPTION
              "An entConfigChange trap is sent when the value of
              entLastChangeTime changes. It can be utilized by an NMS to
              trigger logical/physical entity table maintenance polls.


McCloghrie, et al.          Standards Track                    [Page 35]





RFC 2578                         SMIv2                        April 1999



              An agent must not generate more than one entConfigChange
              'trap-event' in a five second period, where a 'trap-event'
              is the transmission of a single trap PDU to a list of
              trap destinations.  If additional configuration changes
              occur within the five second 'throttling' period, then
              these trap-events should be suppressed by the agent. An
              NMS should periodically check the value of
              entLastChangeTime to detect any missed entConfigChange
              trap-events, e.g. due to throttling or transmission loss."
     ::= { entityMIBTrapPrefix 1 }

  According to this invocation, the notification authoritatively
  identified as

       { entityMIBTrapPrefix 1 }

  is used to report a particular type of configuration change.

9.  Refined Syntax

  Some macros have clauses which allows syntax to be refined,
  specifically: the SYNTAX clause of the OBJECT-TYPE macro, and the
  SYNTAX/WRITE-SYNTAX clauses of the MODULE-COMPLIANCE and AGENT-
  CAPABILITIES macros [2].  However, not all refinements of syntax are
  appropriate.  In particular, the object's primitive or application
  type must not be changed.

  Further, the following restrictions apply:

                         Restrictions to Refinement of
    object syntax         range   enumeration     size
    -----------------     -----   -----------     ----
              INTEGER      (1)        (2)           -
            Integer32      (1)         -            -
           Unsigned32      (1)         -            -
         OCTET STRING       -          -           (3)
    OBJECT IDENTIFIER       -          -            -
                 BITS       -         (2)           -
            IpAddress       -          -            -
            Counter32       -          -            -
            Counter64       -          -            -
              Gauge32      (1)         -            -
            TimeTicks       -          -            -

 where:




McCloghrie, et al.          Standards Track                    [Page 36]





RFC 2578                         SMIv2                        April 1999


(1)  the range of permitted values may be refined by raising the lower-
    bounds, by reducing the upper-bounds, and/or by reducing the
    alternative value/range choices;

(2)  the enumeration of named-values may be refined by removing one or
    more named-values (note that for BITS, a refinement may cause the
    enumerations to no longer be contiguous); or,

(3)  the size in octets of the value may be refined by raising the
    lower-bounds, by reducing the upper-bounds, and/or by reducing the
    alternative size choices.

  No other types of refinements can be specified in the SYNTAX clause.
  However, the DESCRIPTION clause is available to specify additional
  restrictions which can not be expressed in the SYNTAX clause.
  Further details on (and examples of) sub-typing are provided in
  Appendix A.

10.  Extending an Information Module

  As experience is gained with an information module, it may be
  desirable to revise that information module.  However, changes are
  not allowed if they have any potential to cause interoperability
  problems "over the wire" between an implementation using an original
  specification and an implementation using an updated
  specification(s).

  For any change, the invocation of the MODULE-IDENTITY macro must be
  updated to include information about the revision: specifically,
  updating the LAST-UPDATED clause, adding a pair of REVISION and
  DESCRIPTION clauses (see section 5.5), and making any necessary
  changes to existing clauses, including the ORGANIZATION and CONTACT-
  INFO clauses.

  Note that any definition contained in an information module is
  available to be IMPORT-ed by any other information module, and is
  referenced in an IMPORTS clause via the module name.  Thus, a module
  name should not be changed.  Specifically, the module name (e.g.,
  "FIZBIN-MIB" in the example of Section 5.7) should not be changed
  when revising an information module (except to correct typographical
  errors), and definitions should not be moved from one information
  module to another.

  Also note that obsolete definitions must not be removed from MIB
  modules since their descriptors may still be referenced by other
  information modules, and the OBJECT IDENTIFIERs used to name them
  must never be re-assigned.



McCloghrie, et al.          Standards Track                    [Page 37]





RFC 2578                         SMIv2                        April 1999


10.1.  Object Assignments

  If any non-editorial change is made to any clause of a object
  assignment, then the OBJECT IDENTIFIER value associated with that
  object assignment must also be changed, along with its associated
  descriptor.

10.2.  Object Definitions

  An object definition may be revised in any of the following ways:

(1)  A SYNTAX clause containing an enumerated INTEGER may have new
    enumerations added or existing labels changed.  Similarly, named
    bits may be added or existing labels changed for the BITS
    construct.

(2)  The value of a SYNTAX clause may be replaced by a textual
    convention, providing the textual convention is defined to use the
    same primitive ASN.1 type, has the same set of values, and has
    identical semantics.

(3)  A STATUS clause value of "current" may be revised as "deprecated"
    or "obsolete".  Similarly, a STATUS clause value of "deprecated"
    may be revised as "obsolete".  When making such a change, the
    DESCRIPTION clause should be updated to explain the rationale.

(4)  A DEFVAL clause may be added or updated.

(5)  A REFERENCE clause may be added or updated.

(6)  A UNITS clause may be added.

(7)  A conceptual row may be augmented by adding new columnar objects at
    the end of the row, and making the corresponding update to the
    SEQUENCE definition.

(8)  Clarifications and additional information may be included in the
    DESCRIPTION clause.

(9)  Entirely new objects may be defined, named with previously
    unassigned OBJECT IDENTIFIER values.

  Otherwise, if the semantics of any previously defined object are
  changed (i.e., if a non-editorial change is made to any clause other
  than those specifically allowed above), then the OBJECT IDENTIFIER
  value associated with that object must also be changed.




McCloghrie, et al.          Standards Track                    [Page 38]





RFC 2578                         SMIv2                        April 1999


  Note that changing the descriptor associated with an existing object
  is considered a semantic change, as these strings may be used in an
  IMPORTS statement.

10.3.  Notification Definitions

  A notification definition may be revised in any of the following
  ways:

(1)  A REFERENCE clause may be added or updated.

(2)  A STATUS clause value of "current" may be revised as "deprecated"
    or "obsolete".  Similarly, a STATUS clause value of "deprecated"
    may be revised as "obsolete".  When making such a change, the
    DESCRIPTION clause should be updated to explain the rationale.

(3)  A DESCRIPTION clause may be clarified.

  Otherwise, if the semantics of any previously defined notification
  are changed (i.e., if a non-editorial change is made to any clause
  other those specifically allowed above), then the OBJECT IDENTIFIER
  value associated with that notification must also be changed.

  Note that changing the descriptor associated with an existing
  notification is considered a semantic change, as these strings may be
  used in an IMPORTS statement.
























McCloghrie, et al.          Standards Track                    [Page 39]





RFC 2578                         SMIv2                        April 1999


11.  Appendix A: Detailed Sub-typing Rules


11.1.  Syntax Rules

  The syntax rules for sub-typing are given below.  Note that while
  this syntax is based on ASN.1, it includes some extensions beyond
  what is allowed in ASN.1, and a number of ASN.1 constructs are not
  allowed by this syntax.

       <integerSubType>
           ::= <empty>
             | "(" <range> ["|" <range>]... ")"

       <octetStringSubType>
           ::= <empty>
             | "(" "SIZE" "(" <range> ["|" <range>]... ")" ")"

       <range>
           ::= <value>
             | <value> ".." <value>

       <value>
           ::= "-" <number>
             | <number>
             | <hexString>
             | <binString>

       where:
           <empty>     is the empty string
           <number>    is a non-negative integer
           <hexString> is a hexadecimal string (e.g., '0F0F'H)
           <binString> is a binary string (e.g, '1010'B)

           <range> is further restricted as follows:
               - any <value> used in a SIZE clause must be non-negative.
               - when a pair of values is specified, the first value
                 must be less than the second value.
               - when multiple ranges are specified, the ranges may
                 not overlap but may touch. For example, (1..4 | 4..9)
                 is invalid, and (1..4 | 5..9) is valid.
               - the ranges must be a subset of the maximum range of the
                 base type.







McCloghrie, et al.          Standards Track                    [Page 40]





RFC 2578                         SMIv2                        April 1999


11.2.  Examples

  Some examples of legal sub-typing:

           Integer32 (-20..100)
           Integer32 (0..100 | 300..500)
           Integer32 (300..500 | 0..100)
           Integer32 (0 | 2 | 4 | 6 | 8 | 10)
           OCTET STRING (SIZE(0..100))
           OCTET STRING (SIZE(0..100 | 300..500))
           OCTET STRING (SIZE(0 | 2 | 4 | 6 | 8 | 10))
           SYNTAX   TimeInterval (0..100)
           SYNTAX   DisplayString (SIZE(0..32))

  (Note the last two examples above are not valid in a TEXTUAL
  CONVENTION, see [3].)

  Some examples of illegal sub-typing:

       Integer32 (150..100)         -- first greater than second
       Integer32 (0..100 | 50..500) -- ranges overlap
       Integer32 (0 | 2 | 0 )       -- value duplicated
       Integer32 (MIN..-1 | 1..MAX) -- MIN and MAX not allowed
       Integer32 (SIZE (0..34))     -- must not use SIZE
       OCTET STRING (0..100)        -- must use SIZE
       OCTET STRING (SIZE(-10..100)) -- negative SIZE

12.  Security Considerations

  This document defines a language with which to write and read
  descriptions of management information.  The language itself has no
  security impact on the Internet.



13.  Editors' Addresses

  Keith McCloghrie
  Cisco Systems, Inc.
  170 West Tasman Drive
  San Jose, CA  95134-1706
  USA
  Phone: +1 408 526 5260
  EMail: [email protected]






McCloghrie, et al.          Standards Track                    [Page 41]





RFC 2578                         SMIv2                        April 1999


  David Perkins
  SNMPinfo
  3763 Benton Street
  Santa Clara, CA 95051
  USA
  Phone: +1 408 221-8702
  EMail: [email protected]

  Juergen Schoenwaelder
  TU Braunschweig
  Bueltenweg 74/75
  38106 Braunschweig
  Germany
  Phone: +49 531 391-3283
  EMail: [email protected]


14.  References

[1]  Information processing systems - Open Systems Interconnection -
    Specification of Abstract Syntax Notation One (ASN.1),
    International Organization for Standardization.  International
    Standard 8824, (December, 1987).

[2]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M.
    and S. Waldbusser, "Conformance Statements for SMIv2", STD 58,
    RFC 2580, April 1999.

[3]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M.
    and S. Waldbusser, "Textual Conventions for SMIv2", STD 58,
    RFC 2579, April 1999.

[4]  Information processing systems - Open Systems Interconnection -
    Specification of Basic Encoding Rules for Abstract Syntax Notation
    One (ASN.1), International Organization for Standardization.
    International Standard 8825, (December, 1987).

[5]  The SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M. and
    S. Waldbusser, "Management Information Base for Version 2 of the
    Simple Network Management Protocol (SNMPv2)", RFC 1907, January
    1996.

[6]  The SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M. and
    S. Waldbusser, "Protocol Operations for Version 2 of the Simple
    Network Management Protocol (SNMPv2)", RFC 1905, January 1996.





McCloghrie, et al.          Standards Track                    [Page 42]





RFC 2578                         SMIv2                        April 1999


15.  Full Copyright Statement

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."























McCloghrie, et al.          Standards Track                    [Page 43]













Network Working Group                 Editors of this version:
Request for Comments: 2579                                 K. McCloghrie
STD: 58                                                    Cisco Systems
Obsoletes: 1903                                               D. Perkins
Category: Standards Track                                       SNMPinfo
                                                       J. Schoenwaelder
                                                        TU Braunschweig
                                     Authors of previous version:
                                                                J. Case
                                                          SNMP Research
                                                          K. McCloghrie
                                                          Cisco Systems
                                                                M. Rose
                                                 First Virtual Holdings
                                                          S. Waldbusser
                                         International Network Services
                                                             April 1999


                    Textual Conventions for SMIv2


Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999).  All Rights Reserved.


Table of Contents

  1 Introduction ..................................................2
  1.1 A Note on Terminology .......................................2
  2 Definitions ...................................................2
  3 Mapping of the TEXTUAL-CONVENTION macro ......................20
  3.1 Mapping of the DISPLAY-HINT clause .........................21
  3.2 Mapping of the STATUS clause ...............................22
  3.3 Mapping of the DESCRIPTION clause ..........................23
  3.4 Mapping of the REFERENCE clause ............................23
  3.5 Mapping of the SYNTAX clause ...............................23
  4 Sub-typing of Textual Conventions ............................23
  5 Revising a Textual Convention Definition .....................23


McCloghrie, et al.          Standards Track                     [Page 1]





RFC 2579             Textual Conventions for SMIv2            April 1999


  6 Security Considerations ......................................24
  7 Editors' Addresses ...........................................25
  8 References ...................................................25
  9 Full Copyright Statement .....................................26

1.  Introduction

  Management information is viewed as a collection of managed objects,
  residing in a virtual information store, termed the Management
  Information Base (MIB).  Collections of related objects are defined
  in MIB modules.  These modules are written using an adapted subset of
  OSI's Abstract Syntax Notation One, ASN.1 (1988) [1], termed the
  Structure of Management Information (SMI) [2].

  When designing a MIB module, it is often useful to define new types
  similar to those defined in the SMI.  In comparison to a type defined
  in the SMI, each of these new types has a different name, a similar
  syntax, but a more precise semantics.  These newly defined types are
  termed textual conventions, and are used for the convenience of
  humans reading the MIB module.  It is the purpose of this document to
  define the initial set of textual conventions available to all MIB
  modules.

  Objects defined using a textual convention are always encoded by
  means of the rules that define their primitive type.  However,
  textual conventions often have special semantics associated with
  them.  As such, an ASN.1 macro, TEXTUAL-CONVENTION, is used to
  concisely convey the syntax and semantics of a textual convention.

1.1.  A Note on Terminology

  For the purpose of exposition, the original Structure of Management
  Information, as described in RFCs 1155 (STD 16), 1212 (STD 16), and
  RFC 1215, is termed the SMI version 1 (SMIv1).  The current version
  of the Structure of Management Information is termed SMI version 2
  (SMIv2).

2.  Definitions

SNMPv2-TC DEFINITIONS ::= BEGIN

IMPORTS
   TimeTicks         FROM SNMPv2-SMI;


-- definition of textual conventions

TEXTUAL-CONVENTION MACRO ::=


McCloghrie, et al.          Standards Track                     [Page 2]





RFC 2579             Textual Conventions for SMIv2            April 1999


BEGIN
   TYPE NOTATION ::=
                 DisplayPart
                 "STATUS" Status
                 "DESCRIPTION" Text
                 ReferPart
                 "SYNTAX" Syntax

   VALUE NOTATION ::=
                  value(VALUE Syntax)      -- adapted ASN.1

   DisplayPart ::=
                 "DISPLAY-HINT" Text
               | empty

   Status ::=
                 "current"
               | "deprecated"
               | "obsolete"

   ReferPart ::=
                 "REFERENCE" Text
               | empty

   -- a character string as defined in [2]
   Text ::= value(IA5String)

   Syntax ::=   -- Must be one of the following:
                      -- a base type (or its refinement), or
                      -- a BITS pseudo-type
                 type
               | "BITS" "{" NamedBits "}"

   NamedBits ::= NamedBit
               | NamedBits "," NamedBit

   NamedBit ::=  identifier "(" number ")" -- number is nonnegative

END




DisplayString ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "255a"
   STATUS       current
   DESCRIPTION
           "Represents textual information taken from the NVT ASCII


McCloghrie, et al.          Standards Track                     [Page 3]





RFC 2579             Textual Conventions for SMIv2            April 1999


           character set, as defined in pages 4, 10-11 of RFC 854.

           To summarize RFC 854, the NVT ASCII repertoire specifies:

             - the use of character codes 0-127 (decimal)

             - the graphics characters (32-126) are interpreted as
               US ASCII

             - NUL, LF, CR, BEL, BS, HT, VT and FF have the special
               meanings specified in RFC 854

             - the other 25 codes have no standard interpretation

             - the sequence 'CR LF' means newline

             - the sequence 'CR NUL' means carriage-return

             - an 'LF' not preceded by a 'CR' means moving to the
               same column on the next line.

             - the sequence 'CR x' for any x other than LF or NUL is
               illegal.  (Note that this also means that a string may
               end with either 'CR LF' or 'CR NUL', but not with CR.)

           Any object defined using this syntax may not exceed 255
           characters in length."
   SYNTAX       OCTET STRING (SIZE (0..255))

PhysAddress ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "1x:"
   STATUS       current
   DESCRIPTION
           "Represents media- or physical-level addresses."
   SYNTAX       OCTET STRING


MacAddress ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "1x:"
   STATUS       current
   DESCRIPTION
           "Represents an 802 MAC address represented in the
           `canonical' order defined by IEEE 802.1a, i.e., as if it
           were transmitted least significant bit first, even though
           802.5 (in contrast to other 802.x protocols) requires MAC
           addresses to be transmitted most significant bit first."
   SYNTAX       OCTET STRING (SIZE (6))



McCloghrie, et al.          Standards Track                     [Page 4]





RFC 2579             Textual Conventions for SMIv2            April 1999


TruthValue ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION
           "Represents a boolean value."
   SYNTAX       INTEGER { true(1), false(2) }

TestAndIncr ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION
           "Represents integer-valued information used for atomic
           operations.  When the management protocol is used to specify
           that an object instance having this syntax is to be
           modified, the new value supplied via the management protocol
           must precisely match the value presently held by the
           instance.  If not, the management protocol set operation
           fails with an error of `inconsistentValue'.  Otherwise, if
           the current value is the maximum value of 2^31-1 (2147483647
           decimal), then the value held by the instance is wrapped to
           zero; otherwise, the value held by the instance is
           incremented by one.  (Note that regardless of whether the
           management protocol set operation succeeds, the variable-
           binding in the request and response PDUs are identical.)

           The value of the ACCESS clause for objects having this
           syntax is either `read-write' or `read-create'.  When an
           instance of a columnar object having this syntax is created,
           any value may be supplied via the management protocol.

           When the network management portion of the system is re-
           initialized, the value of every object instance having this
           syntax must either be incremented from its value prior to
           the re-initialization, or (if the value prior to the re-
           initialization is unknown) be set to a pseudo-randomly
           generated value."
   SYNTAX       INTEGER (0..2147483647)

AutonomousType ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION
           "Represents an independently extensible type identification
           value.  It may, for example, indicate a particular sub-tree
           with further MIB definitions, or define a particular type of
           protocol or hardware."
   SYNTAX       OBJECT IDENTIFIER


InstancePointer ::= TEXTUAL-CONVENTION
   STATUS       obsolete


McCloghrie, et al.          Standards Track                     [Page 5]





RFC 2579             Textual Conventions for SMIv2            April 1999


   DESCRIPTION
           "A pointer to either a specific instance of a MIB object or
           a conceptual row of a MIB table in the managed device.  In
           the latter case, by convention, it is the name of the
           particular instance of the first accessible columnar object
           in the conceptual row.

           The two uses of this textual convention are replaced by
           VariablePointer and RowPointer, respectively."
   SYNTAX       OBJECT IDENTIFIER


VariablePointer ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION
           "A pointer to a specific object instance.  For example,
           sysContact.0 or ifInOctets.3."
   SYNTAX       OBJECT IDENTIFIER


RowPointer ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION
           "Represents a pointer to a conceptual row.  The value is the
           name of the instance of the first accessible columnar object
           in the conceptual row.

           For example, ifIndex.3 would point to the 3rd row in the
           ifTable (note that if ifIndex were not-accessible, then
           ifDescr.3 would be used instead)."
   SYNTAX       OBJECT IDENTIFIER

RowStatus ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION
           "The RowStatus textual convention is used to manage the
           creation and deletion of conceptual rows, and is used as the
           value of the SYNTAX clause for the status column of a
           conceptual row (as described in Section 7.7.1 of [2].)











McCloghrie, et al.          Standards Track                     [Page 6]





RFC 2579             Textual Conventions for SMIv2            April 1999


           The status column has six defined values:

                - `active', which indicates that the conceptual row is
                available for use by the managed device;

                - `notInService', which indicates that the conceptual
                row exists in the agent, but is unavailable for use by
                the managed device (see NOTE below); 'notInService' has
                no implication regarding the internal consistency of
                the row, availability of resources, or consistency with
                the current state of the managed device;

                - `notReady', which indicates that the conceptual row
                exists in the agent, but is missing information
                necessary in order to be available for use by the
                managed device (i.e., one or more required columns in
                the conceptual row have not been instanciated);

                - `createAndGo', which is supplied by a management
                station wishing to create a new instance of a
                conceptual row and to have its status automatically set
                to active, making it available for use by the managed
                device;

                - `createAndWait', which is supplied by a management
                station wishing to create a new instance of a
                conceptual row (but not make it available for use by
                the managed device); and,

                - `destroy', which is supplied by a management station
                wishing to delete all of the instances associated with
                an existing conceptual row.

           Whereas five of the six values (all except `notReady') may
           be specified in a management protocol set operation, only
           three values will be returned in response to a management
           protocol retrieval operation:  `notReady', `notInService' or
           `active'.  That is, when queried, an existing conceptual row
           has only three states:  it is either available for use by
           the managed device (the status column has value `active');
           it is not available for use by the managed device, though
           the agent has sufficient information to attempt to make it
           so (the status column has value `notInService'); or, it is
           not available for use by the managed device, and an attempt
           to make it so would fail because the agent has insufficient
           information (the state column has value `notReady').




McCloghrie, et al.          Standards Track                     [Page 7]





RFC 2579             Textual Conventions for SMIv2            April 1999


                                    NOTE WELL

                This textual convention may be used for a MIB table,
                irrespective of whether the values of that table's
                conceptual rows are able to be modified while it is
                active, or whether its conceptual rows must be taken
                out of service in order to be modified.  That is, it is
                the responsibility of the DESCRIPTION clause of the
                status column to specify whether the status column must
                not be `active' in order for the value of some other
                column of the same conceptual row to be modified.  If
                such a specification is made, affected columns may be
                changed by an SNMP set PDU if the RowStatus would not
                be equal to `active' either immediately before or after
                processing the PDU.  In other words, if the PDU also
                contained a varbind that would change the RowStatus
                value, the column in question may be changed if the
                RowStatus was not equal to `active' as the PDU was
                received, or if the varbind sets the status to a value
                other than 'active'.


           Also note that whenever any elements of a row exist, the
           RowStatus column must also exist.


























McCloghrie, et al.          Standards Track                     [Page 8]





RFC 2579             Textual Conventions for SMIv2            April 1999


           To summarize the effect of having a conceptual row with a
           status column having a SYNTAX clause value of RowStatus,
           consider the following state diagram:


                                        STATE
             +--------------+-----------+-------------+-------------
             |      A       |     B     |      C      |      D
             |              |status col.|status column|
             |status column |    is     |      is     |status column
   ACTION    |does not exist|  notReady | notInService|  is active
--------------+--------------+-----------+-------------+-------------
set status    |noError    ->D|inconsist- |inconsistent-|inconsistent-
column to     |       or     |   entValue|        Value|        Value
createAndGo   |inconsistent- |           |             |
             |         Value|           |             |
--------------+--------------+-----------+-------------+-------------
set status    |noError  see 1|inconsist- |inconsistent-|inconsistent-
column to     |       or     |   entValue|        Value|        Value
createAndWait |wrongValue    |           |             |
--------------+--------------+-----------+-------------+-------------
set status    |inconsistent- |inconsist- |noError      |noError
column to     |         Value|   entValue|             |
active        |              |           |             |
             |              |     or    |             |
             |              |           |             |
             |              |see 2   ->D|see 8     ->D|          ->D
--------------+--------------+-----------+-------------+-------------
set status    |inconsistent- |inconsist- |noError      |noError   ->C
column to     |         Value|   entValue|             |
notInService  |              |           |             |
             |              |     or    |             |      or
             |              |           |             |
             |              |see 3   ->C|          ->C|see 6
--------------+--------------+-----------+-------------+-------------
set status    |noError       |noError    |noError      |noError   ->A
column to     |              |           |             |      or
destroy       |           ->A|        ->A|          ->A|see 7
--------------+--------------+-----------+-------------+-------------
set any other |see 4         |noError    |noError      |see 5
column to some|              |           |             |
value         |              |      see 1|          ->C|          ->D
--------------+--------------+-----------+-------------+-------------

           (1) goto B or C, depending on information available to the
           agent.

           (2) if other variable bindings included in the same PDU,


McCloghrie, et al.          Standards Track                     [Page 9]





RFC 2579             Textual Conventions for SMIv2            April 1999


           provide values for all columns which are missing but
           required, and all columns have acceptable values, then
           return noError and goto D.

           (3) if other variable bindings included in the same PDU,
           provide legal values for all columns which are missing but
           required, then return noError and goto C.

           (4) at the discretion of the agent, the return value may be
           either:

                inconsistentName:  because the agent does not choose to
                create such an instance when the corresponding
                RowStatus instance does not exist, or

                inconsistentValue:  if the supplied value is
                inconsistent with the state of some other MIB object's
                value, or

                noError: because the agent chooses to create the
                instance.

           If noError is returned, then the instance of the status
           column must also be created, and the new state is B or C,
           depending on the information available to the agent.  If
           inconsistentName or inconsistentValue is returned, the row
           remains in state A.

           (5) depending on the MIB definition for the column/table,
           either noError or inconsistentValue may be returned.

           (6) the return value can indicate one of the following
           errors:

                wrongValue: because the agent does not support
                notInService (e.g., an agent which does not support
                createAndWait), or

                inconsistentValue: because the agent is unable to take
                the row out of service at this time, perhaps because it
                is in use and cannot be de-activated.

           (7) the return value can indicate the following error:

                inconsistentValue: because the agent is unable to
                remove the row at this time, perhaps because it is in
                use and cannot be de-activated.



McCloghrie, et al.          Standards Track                    [Page 10]





RFC 2579             Textual Conventions for SMIv2            April 1999


           (8) the transition to D can fail, e.g., if the values of the
           conceptual row are inconsistent, then the error code would
           be inconsistentValue.

           NOTE: Other processing of (this and other varbinds of) the
           set request may result in a response other than noError
           being returned, e.g., wrongValue, noCreation, etc.


                             Conceptual Row Creation

           There are four potential interactions when creating a
           conceptual row:  selecting an instance-identifier which is
           not in use; creating the conceptual row; initializing any
           objects for which the agent does not supply a default; and,
           making the conceptual row available for use by the managed
           device.

           Interaction 1: Selecting an Instance-Identifier

           The algorithm used to select an instance-identifier varies
           for each conceptual row.  In some cases, the instance-
           identifier is semantically significant, e.g., the
           destination address of a route, and a management station
           selects the instance-identifier according to the semantics.

           In other cases, the instance-identifier is used solely to
           distinguish conceptual rows, and a management station
           without specific knowledge of the conceptual row might
           examine the instances present in order to determine an
           unused instance-identifier.  (This approach may be used, but
           it is often highly sub-optimal; however, it is also a
           questionable practice for a naive management station to
           attempt conceptual row creation.)

           Alternately, the MIB module which defines the conceptual row
           might provide one or more objects which provide assistance
           in determining an unused instance-identifier.  For example,
           if the conceptual row is indexed by an integer-value, then
           an object having an integer-valued SYNTAX clause might be
           defined for such a purpose, allowing a management station to
           issue a management protocol retrieval operation.  In order
           to avoid unnecessary collisions between competing management
           stations, `adjacent' retrievals of this object should be
           different.

           Finally, the management station could select a pseudo-random
           number to use as the index.  In the event that this index


McCloghrie, et al.          Standards Track                    [Page 11]





RFC 2579             Textual Conventions for SMIv2            April 1999


           was already in use and an inconsistentValue was returned in
           response to the management protocol set operation, the
           management station should simply select a new pseudo-random
           number and retry the operation.

           A MIB designer should choose between the two latter
           algorithms based on the size of the table (and therefore the
           efficiency of each algorithm).  For tables in which a large
           number of entries are expected, it is recommended that a MIB
           object be defined that returns an acceptable index for
           creation.  For tables with small numbers of entries, it is
           recommended that the latter pseudo-random index mechanism be
           used.

           Interaction 2: Creating the Conceptual Row

           Once an unused instance-identifier has been selected, the
           management station determines if it wishes to create and
           activate the conceptual row in one transaction or in a
           negotiated set of interactions.

           Interaction 2a: Creating and Activating the Conceptual Row

           The management station must first determine the column
           requirements, i.e., it must determine those columns for
           which it must or must not provide values.  Depending on the
           complexity of the table and the management station's
           knowledge of the agent's capabilities, this determination
           can be made locally by the management station.  Alternately,
           the management station issues a management protocol get
           operation to examine all columns in the conceptual row that
           it wishes to create.  In response, for each column, there
           are three possible outcomes:

                - a value is returned, indicating that some other
                management station has already created this conceptual
                row.  We return to interaction 1.

                - the exception `noSuchInstance' is returned,
                indicating that the agent implements the object-type
                associated with this column, and that this column in at
                least one conceptual row would be accessible in the MIB
                view used by the retrieval were it to exist. For those
                columns to which the agent provides read-create access,
                the `noSuchInstance' exception tells the management
                station that it should supply a value for this column
                when the conceptual row is to be created.



McCloghrie, et al.          Standards Track                    [Page 12]





RFC 2579             Textual Conventions for SMIv2            April 1999


                - the exception `noSuchObject' is returned, indicating
                that the agent does not implement the object-type
                associated with this column or that there is no
                conceptual row for which this column would be
                accessible in the MIB view used by the retrieval.  As
                such, the management station can not issue any
                management protocol set operations to create an
                instance of this column.

           Once the column requirements have been determined, a
           management protocol set operation is accordingly issued.
           This operation also sets the new instance of the status
           column to `createAndGo'.

           When the agent processes the set operation, it verifies that
           it has sufficient information to make the conceptual row
           available for use by the managed device.  The information
           available to the agent is provided by two sources:  the
           management protocol set operation which creates the
           conceptual row, and, implementation-specific defaults
           supplied by the agent (note that an agent must provide
           implementation-specific defaults for at least those objects
           which it implements as read-only).  If there is sufficient
           information available, then the conceptual row is created, a
           `noError' response is returned, the status column is set to
           `active', and no further interactions are necessary (i.e.,
           interactions 3 and 4 are skipped).  If there is insufficient
           information, then the conceptual row is not created, and the
           set operation fails with an error of `inconsistentValue'.
           On this error, the management station can issue a management
           protocol retrieval operation to determine if this was
           because it failed to specify a value for a required column,
           or, because the selected instance of the status column
           already existed.  In the latter case, we return to
           interaction 1.  In the former case, the management station
           can re-issue the set operation with the additional
           information, or begin interaction 2 again using
           `createAndWait' in order to negotiate creation of the
           conceptual row.











McCloghrie, et al.          Standards Track                    [Page 13]





RFC 2579             Textual Conventions for SMIv2            April 1999


                                    NOTE WELL

                Regardless of the method used to determine the column
                requirements, it is possible that the management
                station might deem a column necessary when, in fact,
                the agent will not allow that particular columnar
                instance to be created or written.  In this case, the
                management protocol set operation will fail with an
                error such as `noCreation' or `notWritable'.  In this
                case, the management station decides whether it needs
                to be able to set a value for that particular columnar
                instance.  If not, the management station re-issues the
                management protocol set operation, but without setting
                a value for that particular columnar instance;
                otherwise, the management station aborts the row
                creation algorithm.

           Interaction 2b: Negotiating the Creation of the Conceptual
           Row

           The management station issues a management protocol set
           operation which sets the desired instance of the status
           column to `createAndWait'.  If the agent is unwilling to
           process a request of this sort, the set operation fails with
           an error of `wrongValue'.  (As a consequence, such an agent
           must be prepared to accept a single management protocol set
           operation, i.e., interaction 2a above, containing all of the
           columns indicated by its column requirements.)  Otherwise,
           the conceptual row is created, a `noError' response is
           returned, and the status column is immediately set to either
           `notInService' or `notReady', depending on whether it has
           sufficient information to (attempt to) make the conceptual
           row available for use by the managed device.  If there is
           sufficient information available, then the status column is
           set to `notInService'; otherwise, if there is insufficient
           information, then the status column is set to `notReady'.
           Regardless, we proceed to interaction 3.

           Interaction 3: Initializing non-defaulted Objects

           The management station must now determine the column
           requirements.  It issues a management protocol get operation
           to examine all columns in the created conceptual row.  In
           the response, for each column, there are three possible
           outcomes:





McCloghrie, et al.          Standards Track                    [Page 14]





RFC 2579             Textual Conventions for SMIv2            April 1999


                - a value is returned, indicating that the agent
                implements the object-type associated with this column
                and had sufficient information to provide a value.  For
                those columns to which the agent provides read-create
                access (and for which the agent allows their values to
                be changed after their creation), a value return tells
                the management station that it may issue additional
                management protocol set operations, if it desires, in
                order to change the value associated with this column.

                - the exception `noSuchInstance' is returned,
                indicating that the agent implements the object-type
                associated with this column, and that this column in at
                least one conceptual row would be accessible in the MIB
                view used by the retrieval were it to exist. However,
                the agent does not have sufficient information to
                provide a value, and until a value is provided, the
                conceptual row may not be made available for use by the
                managed device.  For those columns to which the agent
                provides read-create access, the `noSuchInstance'
                exception tells the management station that it must
                issue additional management protocol set operations, in
                order to provide a value associated with this column.

                - the exception `noSuchObject' is returned, indicating
                that the agent does not implement the object-type
                associated with this column or that there is no
                conceptual row for which this column would be
                accessible in the MIB view used by the retrieval.  As
                such, the management station can not issue any
                management protocol set operations to create an
                instance of this column.

           If the value associated with the status column is
           `notReady', then the management station must first deal with
           all `noSuchInstance' columns, if any.  Having done so, the
           value of the status column becomes `notInService', and we
           proceed to interaction 4.












McCloghrie, et al.          Standards Track                    [Page 15]





RFC 2579             Textual Conventions for SMIv2            April 1999


           Interaction 4: Making the Conceptual Row Available

           Once the management station is satisfied with the values
           associated with the columns of the conceptual row, it issues
           a management protocol set operation to set the status column
           to `active'.  If the agent has sufficient information to
           make the conceptual row available for use by the managed
           device, the management protocol set operation succeeds (a
           `noError' response is returned).  Otherwise, the management
           protocol set operation fails with an error of
           `inconsistentValue'.

                                    NOTE WELL

                A conceptual row having a status column with value
                `notInService' or `notReady' is unavailable to the
                managed device.  As such, it is possible for the
                managed device to create its own instances during the
                time between the management protocol set operation
                which sets the status column to `createAndWait' and the
                management protocol set operation which sets the status
                column to `active'.  In this case, when the management
                protocol set operation is issued to set the status
                column to `active', the values held in the agent
                supersede those used by the managed device.

           If the management station is prevented from setting the
           status column to `active' (e.g., due to management station
           or network failure) the conceptual row will be left in the
           `notInService' or `notReady' state, consuming resources
           indefinitely.  The agent must detect conceptual rows that
           have been in either state for an abnormally long period of
           time and remove them.  It is the responsibility of the
           DESCRIPTION clause of the status column to indicate what an
           abnormally long period of time would be.  This period of
           time should be long enough to allow for human response time
           (including `think time') between the creation of the
           conceptual row and the setting of the status to `active'.
           In the absence of such information in the DESCRIPTION
           clause, it is suggested that this period be approximately 5
           minutes in length.  This removal action applies not only to
           newly-created rows, but also to previously active rows which
           are set to, and left in, the notInService state for a
           prolonged period exceeding that which is considered normal
           for such a conceptual row.





McCloghrie, et al.          Standards Track                    [Page 16]





RFC 2579             Textual Conventions for SMIv2            April 1999


                            Conceptual Row Suspension

           When a conceptual row is `active', the management station
           may issue a management protocol set operation which sets the
           instance of the status column to `notInService'.  If the
           agent is unwilling to do so, the set operation fails with an
           error of `wrongValue' or `inconsistentValue'.  Otherwise,
           the conceptual row is taken out of service, and a `noError'
           response is returned.  It is the responsibility of the
           DESCRIPTION clause of the status column to indicate under
           what circumstances the status column should be taken out of
           service (e.g., in order for the value of some other column
           of the same conceptual row to be modified).


                             Conceptual Row Deletion

           For deletion of conceptual rows, a management protocol set
           operation is issued which sets the instance of the status
           column to `destroy'.  This request may be made regardless of
           the current value of the status column (e.g., it is possible
           to delete conceptual rows which are either `notReady',
           `notInService' or `active'.)  If the operation succeeds,
           then all instances associated with the conceptual row are
           immediately removed."
   SYNTAX       INTEGER {
                    -- the following two values are states:
                    -- these values may be read or written
                    active(1),
                    notInService(2),

                    -- the following value is a state:
                    -- this value may be read, but not written
                    notReady(3),

                    -- the following three values are
                    -- actions: these values may be written,
                    --   but are never read
                    createAndGo(4),
                    createAndWait(5),
                    destroy(6)
                }

TimeStamp ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION
           "The value of the sysUpTime object at which a specific
           occurrence happened.  The specific occurrence must be


McCloghrie, et al.          Standards Track                    [Page 17]





RFC 2579             Textual Conventions for SMIv2            April 1999


           defined in the description of any object defined using this
           type.

           If sysUpTime is reset to zero as a result of a re-
           initialization of the network management (sub)system, then
           the values of all TimeStamp objects are also reset.
           However, after approximately 497 days without a re-
           initialization, the sysUpTime object will reach 2^^32-1 and
           then increment around to zero; in this case, existing values
           of TimeStamp objects do not change.  This can lead to
           ambiguities in the value of TimeStamp objects."
   SYNTAX       TimeTicks


TimeInterval ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION
           "A period of time, measured in units of 0.01 seconds."
   SYNTAX       INTEGER (0..2147483647)

DateAndTime ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "2d-1d-1d,1d:1d:1d.1d,1a1d:1d"
   STATUS       current
   DESCRIPTION
           "A date-time specification.

           field  octets  contents                  range
           -----  ------  --------                  -----
             1      1-2   year*                     0..65536
             2       3    month                     1..12
             3       4    day                       1..31
             4       5    hour                      0..23
             5       6    minutes                   0..59
             6       7    seconds                   0..60
                          (use 60 for leap-second)
             7       8    deci-seconds              0..9
             8       9    direction from UTC        '+' / '-'
             9      10    hours from UTC*           0..13
            10      11    minutes from UTC          0..59

           * Notes:
           - the value of year is in network-byte order
           - daylight saving time in New Zealand is +13

           For example, Tuesday May 26, 1992 at 1:30:15 PM EDT would be
           displayed as:

                            1992-5-26,13:30:15.0,-4:0


McCloghrie, et al.          Standards Track                    [Page 18]





RFC 2579             Textual Conventions for SMIv2            April 1999


           Note that if only local time is known, then timezone
           information (fields 8-10) is not present."
   SYNTAX       OCTET STRING (SIZE (8 | 11))


StorageType ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION
           "Describes the memory realization of a conceptual row.  A
           row which is volatile(2) is lost upon reboot.  A row which
           is either nonVolatile(3), permanent(4) or readOnly(5), is
           backed up by stable storage.  A row which is permanent(4)
           can be changed but not deleted.  A row which is readOnly(5)
           cannot be changed nor deleted.

           If the value of an object with this syntax is either
           permanent(4) or readOnly(5), it cannot be written.
           Conversely, if the value is either other(1), volatile(2) or
           nonVolatile(3), it cannot be modified to be permanent(4) or
           readOnly(5).  (All illegal modifications result in a
           'wrongValue' error.)

           Every usage of this textual convention is required to
           specify the columnar objects which a permanent(4) row must
           at a minimum allow to be writable."
   SYNTAX       INTEGER {
                    other(1),       -- eh?
                    volatile(2),    -- e.g., in RAM
                    nonVolatile(3), -- e.g., in NVRAM
                    permanent(4),   -- e.g., partially in ROM
                    readOnly(5)     -- e.g., completely in ROM
                }


















McCloghrie, et al.          Standards Track                    [Page 19]





RFC 2579             Textual Conventions for SMIv2            April 1999


TDomain ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION
         "Denotes a kind of transport service.

         Some possible values, such as snmpUDPDomain, are defined in
         the SNMPv2-TM MIB module.  Other possible values are defined
         in other MIB modules."
   REFERENCE    "The SNMPv2-TM MIB module is defined in RFC 1906."
   SYNTAX       OBJECT IDENTIFIER


TAddress ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION
         "Denotes a transport service address.

         A TAddress value is always interpreted within the context of a
         TDomain value.  Thus, each definition of a TDomain value must
         be accompanied by a definition of a textual convention for use
         with that TDomain.  Some possible textual conventions, such as
         SnmpUDPAddress for snmpUDPDomain, are defined in the SNMPv2-TM
         MIB module.  Other possible textual conventions are defined in
         other MIB modules."
   REFERENCE    "The SNMPv2-TM MIB module is defined in RFC 1906."
   SYNTAX       OCTET STRING (SIZE (1..255))


END

3.  Mapping of the TEXTUAL-CONVENTION macro

  The TEXTUAL-CONVENTION macro is used to convey the syntax and
  semantics associated with a textual convention.  It should be noted
  that the expansion of the TEXTUAL-CONVENTION macro is something which
  conceptually happens during implementation and not during run-time.

  The name of a textual convention must consist of one or more letters
  or digits, with the initial character being an upper case letter.
  The name must not conflict with any of the reserved words listed in
  section 3.7 of [2], should not consist of all upper case letters, and
  shall not exceed 64 characters in length.  (However, names longer
  than 32 characters are not recommended.)  The hyphen is not allowed
  in the name of a textual convention (except for use in information
  modules converted from SMIv1 which allowed hyphens in ASN.1 type
  assignments).  Further, all names used for the textual conventions
  defined in all "standard" information modules shall be unique.



McCloghrie, et al.          Standards Track                    [Page 20]





RFC 2579             Textual Conventions for SMIv2            April 1999


3.1.  Mapping of the DISPLAY-HINT clause

  The DISPLAY-HINT clause, which need not be present, gives a hint as
  to how the value of an instance of an object with the syntax defined
  using this textual convention might be displayed.  The DISPLAY-HINT
  clause must not be present if the Textual Convention is defined with
  a syntax of:  OBJECT IDENTIFIER, IpAddress, Counter32, Counter64, or
  any enumerated syntax (BITS or INTEGER).  The determination of
  whether it makes sense for other syntax types is dependent on the
  specific definition of the Textual Convention.

  When the syntax has an underlying primitive type of INTEGER, the hint
  consists of an integer-format specification, containing two parts.
  The first part is a single character suggesting a display format,
  either: `x' for hexadecimal, or `d' for decimal, or `o' for octal, or
  `b' for binary.  For all types, when rendering the value, leading
  zeros are omitted, and for negative values, a minus sign is rendered
  immediately before the digits.  The second part is always omitted for
  `x', `o' and `b', and need not be present for `d'.  If present, the
  second part starts with a hyphen and is followed by a decimal number,
  which defines the implied decimal point when rendering the value.
  For example:

       Hundredths ::= TEXTUAL-CONVENTION
           DISPLAY-HINT "d-2"
           ...
           SYNTAX     INTEGER (0..10000)

  suggests that a Hundredths value of 1234 be rendered as "12.34"


  When the syntax has an underlying primitive type of OCTET STRING, the
  hint consists of one or more octet-format specifications.  Each
  specification consists of five parts, with each part using and
  removing zero or more of the next octets from the value and producing
  the next zero or more characters to be displayed.  The octets within
  the value are processed in order of significance, most significant
  first.

  The five parts of a octet-format specification are:

(1)  the (optional) repeat indicator; if present, this part is a `*',
    and indicates that the current octet of the value is to be used as
    the repeat count.  The repeat count is an unsigned integer (which
    may be zero) which specifies how many times the remainder of this
    octet-format specification should be successively applied.  If the
    repeat indicator is not present, the repeat count is one.



McCloghrie, et al.          Standards Track                    [Page 21]





RFC 2579             Textual Conventions for SMIv2            April 1999


(2)  the octet length: one or more decimal digits specifying the number
    of octets of the value to be used and formatted by this octet-
    specification.  Note that the octet length can be zero.  If less
    than this number of octets remain in the value, then the lesser
    number of octets are used.

(3)  the display format, either:  `x' for hexadecimal, `d' for decimal,
    `o' for octal, `a' for ascii, or `t' for UTF-8.  If the octet
    length part is greater than one, and the display format part refers
    to a numeric format, then network-byte ordering (big-endian
    encoding) is used interpreting the octets in the value.  The octets
    processed by the `t' display format do not necessarily form an
    integral number of UTF-8 characters.  Trailing octets which do not
    form a valid UTF-8 encoded character are discarded.

(4)  the (optional) display separator character; if present, this part
    is a single character which is produced for display after each
    application of this octet-specification; however, this character is
    not produced for display if it would be immediately followed by the
    display of the repeat terminator character for this octet-
    specification.  This character can be any character other than a
    decimal digit and a `*'.

(5)  the (optional) repeat terminator character, which can be present
    only if the display separator character is present and this octet-
    specification begins with a repeat indicator; if present, this part
    is a single character which is produced after all the zero or more
    repeated applications (as given by the repeat count) of this
    octet-specification.  This character can be any character other
    than a decimal digit and a `*'.

  Output of a display separator character or a repeat terminator
  character is suppressed if it would occur as the last character of
  the display.

  If the octets of the value are exhausted before all the octet-format
  specification have been used, then the excess specifications are
  ignored.  If additional octets remain in the value after interpreting
  all the octet-format specifications, then the last octet-format
  specification is re-interpreted to process the additional octets,
  until no octets remain in the value.

3.2.  Mapping of the STATUS clause

  The STATUS clause, which must be present, indicates whether this
  definition is current or historic.

  The value "current" means that the definition is current and valid.


McCloghrie, et al.          Standards Track                    [Page 22]





RFC 2579             Textual Conventions for SMIv2            April 1999


  The value "obsolete" means the definition is obsolete and should not
  be implemented and/or can be removed if previously implemented.
  While the value "deprecated" also indicates an obsolete definition,
  it permits new/continued implementation in order to foster
  interoperability with older/existing implementations.

3.3.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a textual
  definition of the textual convention, which provides all semantic
  definitions necessary for implementation, and should embody any
  information which would otherwise be communicated in any ASN.1
  commentary annotations associated with the object.

3.4.  Mapping of the REFERENCE clause

  The REFERENCE clause, which need not be present, contains a textual
  cross-reference to some other document, either another information
  module which defines a related assignment, or some other document
  which provides additional information relevant to this definition.

3.5.  Mapping of the SYNTAX clause

  The SYNTAX clause, which must be present, defines abstract data
  structure corresponding to the textual convention.  The data
  structure must be one of the alternatives defined in the ObjectSyntax
  CHOICE or the BITS construct (see section 7.1 in [2]).  Note that
  this means that the SYNTAX clause of a Textual Convention can not
  refer to a previously defined Textual Convention.

  An extended subset of the full capabilities of ASN.1 (1988) sub-
  typing is allowed, as appropriate to the underlying ASN.1 type.  Any
  such restriction on size, range or enumerations specified in this
  clause represents the maximal level of support which makes "protocol
  sense".  Restrictions on sub-typing are specified in detail in
  Section 9 and Appendix A of [2].

4.  Sub-typing of Textual Conventions

  The SYNTAX clause of a TEXTUAL CONVENTION macro may be sub-typed in
  the same way as the SYNTAX clause of an OBJECT-TYPE macro (see
  section 11 of [2]).

5.  Revising a Textual Convention Definition

  It may be desirable to revise the definition of a textual convention
  after experience is gained with it.  However, changes are not allowed
  if they have any potential to cause interoperability problems "over


McCloghrie, et al.          Standards Track                    [Page 23]





RFC 2579             Textual Conventions for SMIv2            April 1999


  the wire" between an implementation using an original specification
  and an implementation using an updated specification(s).  Such
  changes can only be accommodated by defining a new textual convention
  (i.e., a new name).

  The following revisions are allowed:

(1)  A SYNTAX clause containing an enumerated INTEGER may have new
    enumerations added or existing labels changed.  Similarly, named
    bits may be added or existing labels changed for the BITS
    construct.

(2)  A STATUS clause value of "current" may be revised as "deprecated"
    or "obsolete".  Similarly, a STATUS clause value of "deprecated"
    may be revised as "obsolete".  When making such a change, the
    DESCRIPTION clause should be updated to explain the rationale.

(3)  A REFERENCE clause may be added or updated.

(4)  A DISPLAY-HINTS clause may be added or updated.

(5)  Clarifications and additional information may be included in the
    DESCRIPTION clause.

(6)  Any editorial change.

  Note that with the introduction of the TEXTUAL-CONVENTION macro,
  there is no longer any need to define types in the following manner:

       DisplayString ::= OCTET STRING (SIZE (0..255))

  When revising an information module containing a definition such as
  this, that definition should be replaced by a TEXTUAL-CONVENTION
  macro.

6.  Security Considerations

  This document defines the means to define new data types for the
  language used to write and read descriptions of management
  information.  These data types have no security impact on the
  Internet.









McCloghrie, et al.          Standards Track                    [Page 24]





RFC 2579             Textual Conventions for SMIv2            April 1999


7.  Editors' Addresses

  Keith McCloghrie
  Cisco Systems, Inc.
  170 West Tasman Drive
  San Jose, CA  95134-1706
  USA
  Phone: +1 408 526 5260
  EMail: [email protected]

  David Perkins
  SNMPinfo
  3763 Benton Street
  Santa Clara, CA 95051
  USA
  Phone: +1 408 221-8702
  EMail: [email protected]

  Juergen Schoenwaelder
  TU Braunschweig
  Bueltenweg 74/75
  38106 Braunschweig
  Germany
  Phone: +49 531 391-3283
  EMail: [email protected]


8.  References

[1]  Information processing systems - Open Systems Interconnection -
    Specification of Abstract Syntax Notation One (ASN.1),
    International Organization for Standardization.  International
    Standard 8824, (December, 1987).

[2]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M.
    and S. Waldbusser, "Structure of Management Information Version 2
    (SMIv2)", STD 58, RFC 2578, April 1999.

[3]  The SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M. and
    Waldbusser, S., "Transport Mappings for Version 2 of the" Simple
    Network Management Protocol (SNMPv2)", RFC 1906, January 1996.









McCloghrie, et al.          Standards Track                    [Page 25]





RFC 2579             Textual Conventions for SMIv2            April 1999


9.  Full Copyright Statement

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."























McCloghrie, et al.          Standards Track                    [Page 26]







Network Working Group                 Editors of this version:
Request for Comments: 2580                                 K. McCloghrie
STD: 58                                                    Cisco Systems
Obsoletes: 1904                                               D. Perkins
Category: Standards Track                                       SNMPinfo
                                                       J. Schoenwaelder
                                                        TU Braunschweig
                                     Authors of previous version:
                                                                J. Case
                                                          SNMP Research
                                                          K. McCloghrie
                                                          Cisco Systems
                                                                M. Rose
                                                 First Virtual Holdings
                                                          S. Waldbusser
                                         International Network Services
                                                             April 1999



                   Conformance Statements for SMIv2


Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1999).  All Rights Reserved.


Table of Contents

  1 Introduction .....................................................3
  1.1 A Note on Terminology ..........................................3
  2 Definitions ......................................................3
  2.1 The OBJECT-GROUP macro .........................................3
  2.2 The NOTIFICATION-GROUP macro ...................................4
  2.3 The MODULE-COMPLIANCE macro ....................................5
  2.4 The AGENT-CAPABILITIES macro ...................................7
  3 Mapping of the OBJECT-GROUP macro ...............................10
  3.1 Mapping of the OBJECTS clause .................................10
  3.2 Mapping of the STATUS clause ..................................11
  3.3 Mapping of the DESCRIPTION clause .............................11
  3.4 Mapping of the REFERENCE clause ...............................11



McCloghrie, et al.          Standards Track                     [Page 1]





RFC 2580            Conformance Statements for SMIv2          April 1999


  3.5 Mapping of the OBJECT-GROUP value .............................11
  3.6 Usage Example .................................................12
  4 Mapping of the NOTIFICATION-GROUP macro .........................12
  4.1 Mapping of the NOTIFICATIONS clause ...........................12
  4.2 Mapping of the STATUS clause ..................................13
  4.3 Mapping of the DESCRIPTION clause .............................13
  4.4 Mapping of the REFERENCE clause ...............................13
  4.5 Mapping of the NOTIFICATION-GROUP value .......................13
  4.6 Usage Example .................................................13
  5 Mapping of the MODULE-COMPLIANCE macro ..........................14
  5.1 Mapping of the STATUS clause ..................................14
  5.2 Mapping of the DESCRIPTION clause .............................14
  5.3 Mapping of the REFERENCE clause ...............................15
  5.4 Mapping of the MODULE clause ..................................15
  5.4.1 Mapping of the MANDATORY-GROUPS clause ......................15
  5.4.2 Mapping of the GROUP clause .................................15
  5.4.3 Mapping of the OBJECT clause ................................16
  5.4.3.1 Mapping of the SYNTAX clause ..............................16
  5.4.3.2 Mapping of the WRITE-SYNTAX clause ........................16
  5.4.3.3 Mapping of the MIN-ACCESS clause ..........................16
  5.4.4 Mapping of the DESCRIPTION clause ...........................17
  5.5 Mapping of the MODULE-COMPLIANCE value ........................17
  5.6 Usage Example .................................................17
  6 Mapping of the AGENT-CAPABILITIES macro .........................19
  6.1 Mapping of the PRODUCT-RELEASE clause .........................19
  6.2 Mapping of the STATUS clause ..................................19
  6.3 Mapping of the DESCRIPTION clause .............................20
  6.4 Mapping of the REFERENCE clause ...............................20
  6.5 Mapping of the SUPPORTS clause ................................20
  6.5.1 Mapping of the INCLUDES clause ..............................20
  6.5.2 Mapping of the VARIATION clause .............................20
  6.5.2.1 Mapping of the SYNTAX clause ..............................21
  6.5.2.2 Mapping of the WRITE-SYNTAX clause ........................21
  6.5.2.3 Mapping of the ACCESS clause ..............................21
  6.5.2.4 Mapping of the CREATION-REQUIRES clause ...................22
  6.5.2.5 Mapping of the DEFVAL clause ..............................22
  6.5.2.6 Mapping of the DESCRIPTION clause .........................22
  6.6 Mapping of the AGENT-CAPABILITIES value .......................22
  6.7 Usage Example .................................................23
  7 Extending an Information Module .................................25
  7.1 Conformance Groups ............................................25
  7.2 Compliance Definitions ........................................26
  7.3 Capabilities Definitions ......................................26
  8 Security Considerations .........................................27
  9 Editors' Addresses ..............................................27
  10 References .....................................................28
  11 Full Copyright Statement .......................................29


McCloghrie, et al.          Standards Track                     [Page 2]





RFC 2580            Conformance Statements for SMIv2          April 1999


1.  Introduction

  Management information is viewed as a collection of managed objects,
  residing in a virtual information store, termed the Management
  Information Base (MIB).  Collections of related objects are defined
  in MIB modules.  These modules are written using an adapted subset of
  OSI's Abstract Syntax Notation One, ASN.1 (1988) [1], termed the
  Structure of Management Information (SMI) [2].

  It may be useful to define the acceptable lower-bounds of
  implementation, along with the actual level of implementation
  achieved.  It is the purpose of this document to define the notation
  used for these purposes.

1.1.  A Note on Terminology

  For the purpose of exposition, the original Structure of Management
  Information, as described in RFCs 1156 (STD 16), 1212 (STD 16), and
  RFC 1215, is termed the SMI version 1 (SMIv1).  The current version
  of the Structure of Management Information is termed SMI version 2
  (SMIv2).

2.  Definitions

SNMPv2-CONF DEFINITIONS ::= BEGIN

IMPORTS ObjectName, NotificationName, ObjectSyntax
                                              FROM SNMPv2-SMI;

-- definitions for conformance groups

OBJECT-GROUP MACRO ::=
BEGIN
   TYPE NOTATION ::=
                 ObjectsPart
                 "STATUS" Status
                 "DESCRIPTION" Text
                 ReferPart

   VALUE NOTATION ::=
                 value(VALUE OBJECT IDENTIFIER)

   ObjectsPart ::=
                 "OBJECTS" "{" Objects "}"
   Objects ::=
                 Object
               | Objects "," Object
   Object ::=


McCloghrie, et al.          Standards Track                     [Page 3]





RFC 2580            Conformance Statements for SMIv2          April 1999


                 value(ObjectName)

   Status ::=
                 "current"
               | "deprecated"
               | "obsolete"

   ReferPart ::=
                 "REFERENCE" Text
               | empty

   -- a character string as defined in [2]
   Text ::= value(IA5String)
END

-- more definitions for conformance groups

NOTIFICATION-GROUP MACRO ::=
BEGIN
   TYPE NOTATION ::=
                 NotificationsPart
                 "STATUS" Status
                 "DESCRIPTION" Text
                 ReferPart

   VALUE NOTATION ::=
                 value(VALUE OBJECT IDENTIFIER)

   NotificationsPart ::=
                 "NOTIFICATIONS" "{" Notifications "}"
   Notifications ::=
                 Notification
               | Notifications "," Notification
   Notification ::=
                 value(NotificationName)

   Status ::=
                 "current"
               | "deprecated"
               | "obsolete"

   ReferPart ::=
                 "REFERENCE" Text
               | empty

   -- a character string as defined in [2]
   Text ::= value(IA5String)
END


McCloghrie, et al.          Standards Track                     [Page 4]





RFC 2580            Conformance Statements for SMIv2          April 1999


-- definitions for compliance statements

MODULE-COMPLIANCE MACRO ::=
BEGIN
   TYPE NOTATION ::=
                 "STATUS" Status
                 "DESCRIPTION" Text
                 ReferPart
                 ModulePart

   VALUE NOTATION ::=
                 value(VALUE OBJECT IDENTIFIER)

   Status ::=
                 "current"
               | "deprecated"
               | "obsolete"

   ReferPart ::=
                 "REFERENCE" Text
               | empty

   ModulePart ::=
                 Modules
   Modules ::=
                 Module
               | Modules Module
   Module ::=
                 -- name of module --
                 "MODULE" ModuleName
                 MandatoryPart
                 CompliancePart

   ModuleName ::=
                 -- identifier must start with uppercase letter
                 identifier ModuleIdentifier
                 -- must not be empty unless contained
                 -- in MIB Module
               | empty
   ModuleIdentifier ::=
                 value(OBJECT IDENTIFIER)
               | empty

   MandatoryPart ::=
                 "MANDATORY-GROUPS" "{" Groups "}"
               | empty

   Groups ::=


McCloghrie, et al.          Standards Track                     [Page 5]





RFC 2580            Conformance Statements for SMIv2          April 1999


                 Group
               | Groups "," Group
   Group ::=
                 value(OBJECT IDENTIFIER)

   CompliancePart ::=
                 Compliances
               | empty

   Compliances ::=
                 Compliance
               | Compliances Compliance
   Compliance ::=
                 ComplianceGroup
               | Object

   ComplianceGroup ::=
                 "GROUP" value(OBJECT IDENTIFIER)
                 "DESCRIPTION" Text

   Object ::=
                 "OBJECT" value(ObjectName)
                 SyntaxPart
                 WriteSyntaxPart
                 AccessPart
                 "DESCRIPTION" Text

   -- must be a refinement for object's SYNTAX clause
   SyntaxPart ::= "SYNTAX" Syntax
               | empty

   -- must be a refinement for object's SYNTAX clause
   WriteSyntaxPart ::= "WRITE-SYNTAX" Syntax
               | empty

   Syntax ::=    -- Must be one of the following:
                      -- a base type (or its refinement),
                      -- a textual convention (or its refinement), or
                      -- a BITS pseudo-type
                 type
               | "BITS" "{" NamedBits "}"

   NamedBits ::= NamedBit
               | NamedBits "," NamedBit

   NamedBit ::= identifier "(" number ")" -- number is nonnegative

   AccessPart ::=


McCloghrie, et al.          Standards Track                     [Page 6]





RFC 2580            Conformance Statements for SMIv2          April 1999


                 "MIN-ACCESS" Access
               | empty
   Access ::=
                 "not-accessible"
               | "accessible-for-notify"
               | "read-only"
               | "read-write"
               | "read-create"

   -- a character string as defined in [2]
   Text ::= value(IA5String)
END

-- definitions for capabilities statements

AGENT-CAPABILITIES MACRO ::=
BEGIN
   TYPE NOTATION ::=
                 "PRODUCT-RELEASE" Text
                 "STATUS" Status
                 "DESCRIPTION" Text
                 ReferPart
                 ModulePart

   VALUE NOTATION ::=
                 value(VALUE OBJECT IDENTIFIER)

   Status ::=
                 "current"
               | "obsolete"

   ReferPart ::=
                 "REFERENCE" Text
               | empty

   ModulePart ::=
                 Modules
               | empty
   Modules ::=
                 Module
               | Modules Module
   Module ::=
                 -- name of module --
                 "SUPPORTS" ModuleName
                 "INCLUDES" "{" Groups "}"
                 VariationPart

   ModuleName ::=


McCloghrie, et al.          Standards Track                     [Page 7]





RFC 2580            Conformance Statements for SMIv2          April 1999


                 -- identifier must start with uppercase letter
                 identifier ModuleIdentifier
   ModuleIdentifier ::=
                 value(OBJECT IDENTIFIER)
               | empty

   Groups ::=
                 Group
               | Groups "," Group
   Group ::=
                 value(OBJECT IDENTIFIER)

   VariationPart ::=
                 Variations
               | empty
   Variations ::=
                 Variation
               | Variations Variation

   Variation ::=
                 ObjectVariation
               | NotificationVariation

   NotificationVariation ::=
                 "VARIATION" value(NotificationName)
                 AccessPart
                 "DESCRIPTION" Text

   ObjectVariation ::=
                 "VARIATION" value(ObjectName)
                 SyntaxPart
                 WriteSyntaxPart
                 AccessPart
                 CreationPart
                 DefValPart
                 "DESCRIPTION" Text

   -- must be a refinement for object's SYNTAX clause
   SyntaxPart ::= "SYNTAX" Syntax
               | empty

   WriteSyntaxPart ::= "WRITE-SYNTAX" Syntax
               | empty

   Syntax ::=    -- Must be one of the following:
                      -- a base type (or its refinement),
                      -- a textual convention (or its refinement), or
                      -- a BITS pseudo-type


McCloghrie, et al.          Standards Track                     [Page 8]





RFC 2580            Conformance Statements for SMIv2          April 1999


                 type
               | "BITS" "{" NamedBits "}"

   NamedBits ::= NamedBit
               | NamedBits "," NamedBit

   NamedBit ::= identifier "(" number ")" -- number is nonnegative

   AccessPart ::=
                 "ACCESS" Access
               | empty

   Access ::=
                 "not-implemented"
               -- only "not-implemented" for notifications
               | "accessible-for-notify"
               | "read-only"
               | "read-write"
               | "read-create"
               -- following is for backward-compatibility only
               | "write-only"

   CreationPart ::=
                 "CREATION-REQUIRES" "{" Cells "}"
               | empty
   Cells ::=
                 Cell
               | Cells "," Cell
   Cell ::=
                 value(ObjectName)

   DefValPart ::= "DEFVAL" "{" Defvalue "}"
               | empty

   Defvalue ::=  -- must be valid for the object's syntax
                 -- in this macro's SYNTAX clause, if present,
                 -- or if not, in object's OBJECT-TYPE macro
                 value(ObjectSyntax)
               | "{" BitsValue "}"

   BitsValue ::= BitNames
               | empty

   BitNames ::=  BitName
               | BitNames "," BitName

   BitName ::= identifier



McCloghrie, et al.          Standards Track                     [Page 9]





RFC 2580            Conformance Statements for SMIv2          April 1999


   -- a character string as defined in [2]
   Text ::= value(IA5String)
END

END


3.  Mapping of the OBJECT-GROUP macro

  For conformance purposes, it is useful to define a collection of
  related managed objects.  The OBJECT-GROUP macro is used to define
  each such collection of related objects.  It should be noted that the
  expansion of the OBJECT-GROUP macro is something which conceptually
  happens during implementation and not during run-time.

  To "implement" an object, an agent must return a reasonably accurate
  value for management protocol retrieval operations; similarly, if the
  object is writable, then in response to a management protocol set
  operation, an agent must accordingly be able to reasonably influence
  the underlying managed entity.  If an agent can not implement an
  object, the management protocol provides for it to return an
  exception or error, e.g, noSuchObject [4].  Under no circumstances
  shall an agent return a value for objects which it does not implement
  -- it must always return the appropriate exception or error, as
  described in the protocol specification [4].

  Note that the OBJECT-GROUP macro itself provides no conformance
  information.  Rather, conformance information is specified through
  the inclusion of defined groups in a MODULE-COMPLIANCE macro.

3.1.  Mapping of the OBJECTS clause

  The OBJECTS clause, which must be present, is used to specify each
  object contained in the conformance group.  Each of the specified
  objects must be defined in the same information module as the
  OBJECT-GROUP macro appears, and must have a MAX-ACCESS clause value
  of "accessible-for-notify", "read-only", "read-write", or "read-
  create".

  It is required that every object defined in an information module
  with a MAX-ACCESS clause other than "not-accessible" be contained in
  at least one object group.  This avoids the common error of adding a
  new object to an information module and forgetting to add the new
  object to a group.






McCloghrie, et al.          Standards Track                    [Page 10]





RFC 2580            Conformance Statements for SMIv2          April 1999


3.2.  Mapping of the STATUS clause

  The STATUS clause, which must be present, indicates whether this
  definition is current or historic.

  The value "current" means that the definition is current and valid.
  The value "obsolete" means the definition is obsolete and the group
  should no longer be used for defining conformance.  While the value
  "deprecated" also indicates an obsolete definition, it permits
  new/continued use of conformance definitions using this group.

3.3.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a textual
  definition of that group, along with a description of any relations
  to other groups.  Note that generic compliance requirements should
  not be stated in this clause.  However, implementation relationships
  between this group and other groups may be defined in this clause.

3.4.  Mapping of the REFERENCE clause

  The REFERENCE clause, which need not be present, contains a textual
  cross-reference to some other document, either another information
  module which defines a related assignment, or some other document
  which provides additional information relevant to this definition.

3.5.  Mapping of the OBJECT-GROUP value

  The value of an invocation of the OBJECT-GROUP macro is the name of
  the group, which is an OBJECT IDENTIFIER, an administratively
  assigned name.



















McCloghrie, et al.          Standards Track                    [Page 11]





RFC 2580            Conformance Statements for SMIv2          April 1999


3.6.  Usage Example

  The SNMP Group [3] is described:

  snmpGroup OBJECT-GROUP
      OBJECTS { snmpInPkts,
                snmpInBadVersions,
                snmpInASNParseErrs,
                snmpBadOperations,
                snmpSilentDrops,
                snmpProxyDrops,
                snmpEnableAuthenTraps }
      STATUS  current
      DESCRIPTION
              "A collection of objects providing basic instrumentation
              and control of an agent."
     ::= { snmpMIBGroups 8 }


  According to this invocation, the conformance group named

       { snmpMIBGroups 8 }

  contains 7 objects.

4.  Mapping of the NOTIFICATION-GROUP macro

  For conformance purposes, it is useful to define a collection of
  notifications.  The NOTIFICATION-GROUP macro serves this purpose.  It
  should be noted that the expansion of the NOTIFICATION-GROUP macro is
  something which conceptually happens during implementation and not
  during run-time.

4.1.  Mapping of the NOTIFICATIONS clause

  The NOTIFICATIONS clause, which must be present, is used to specify
  each notification contained in the conformance group.  Each of the
  specified notifications must be defined in the same information
  module as the NOTIFICATION-GROUP macro appears.

  It is required that every notification defined in an information
  module be contained in at least one notification group.







McCloghrie, et al.          Standards Track                    [Page 12]





RFC 2580            Conformance Statements for SMIv2          April 1999


4.2.  Mapping of the STATUS clause

  The STATUS clause, which must be present, indicates whether this
  definition is current or historic.

  The value "current" means that the definition is current and valid.
  The value "obsolete" means the definition is obsolete and this group
  should no longer be used for defining conformance.  While the value
  "deprecated" also indicates an obsolete definition, it permits
  new/continued use of conformance definitions using this group.

4.3.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a textual
  definition of the group, along with a description of any relations to
  other groups.  Note that generic compliance requirements should not
  be stated in this clause.  However, implementation relationships
  between this group and other groups may be defined in this clause.

4.4.  Mapping of the REFERENCE clause

  The REFERENCE clause, which need not be present, contains a textual
  cross-reference to some other document, either another information
  module which defines a related assignment, or some other document
  which provides additional information relevant to this definition.

4.5.  Mapping of the NOTIFICATION-GROUP value

  The value of an invocation of the NOTIFICATION-GROUP macro is the
  name of the group, which is an OBJECT IDENTIFIER, an administratively
  assigned name.

4.6.  Usage Example

  The SNMP Basic Notifications Group [3] is described:















McCloghrie, et al.          Standards Track                    [Page 13]





RFC 2580            Conformance Statements for SMIv2          April 1999


  snmpBasicNotificationsGroup NOTIFICATION-GROUP
      NOTIFICATIONS { coldStart, authenticationFailure }
      STATUS        current
      DESCRIPTION
              "The two notifications which an agent is required to
              implement."
     ::= { snmpMIBGroups 7 }

  According to this invocation, the conformance group named

       { snmpMIBGroups 7 }

  contains 2 notifications.

5.  Mapping of the MODULE-COMPLIANCE macro

  The MODULE-COMPLIANCE macro is used to convey a minimum set of
  requirements with respect to implementation of one or more MIB
  modules.  It should be noted that the expansion of the MODULE-
  COMPLIANCE macro is something which conceptually happens during
  implementation and not during run-time.

  A requirement on all "standard" MIB modules is that a corresponding
  MODULE-COMPLIANCE specification is also defined, either in the same
  information module or in a companion information module.

5.1.  Mapping of the STATUS clause

  The STATUS clause, which must be present, indicates whether this
  definition is current or historic.

  The value "current" means that the definition is current and valid.
  The value "obsolete" means the definition is obsolete, and this
  MODULE-COMPLIANCE specification no longer specifies a valid
  definition of conformance.  While the value "deprecated" also
  indicates an obsolete definition, it permits new/continued use of the
  MODULE-COMPLIANCE specification.

5.2.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a textual
  definition of this compliance statement and should embody any
  information which would otherwise be communicated in any ASN.1
  commentary annotations associated with the statement.






McCloghrie, et al.          Standards Track                    [Page 14]





RFC 2580            Conformance Statements for SMIv2          April 1999


5.3.  Mapping of the REFERENCE clause

  The REFERENCE clause, which need not be present, contains a textual
  cross-reference to some other document, either another information
  module which defines a related assignment, or some other document
  which provides additional information relevant to this definition.

5.4.  Mapping of the MODULE clause

  The MODULE clause, which must be present, is repeatedly used to name
  each MIB module for which compliance requirements are being
  specified.  Each MIB module is named by its module name, and
  optionally, by its associated OBJECT IDENTIFIER as well.  The module
  name can be omitted when the MODULE-COMPLIANCE invocation occurs
  inside a MIB module, to refer to the encompassing MIB module.

5.4.1.  Mapping of the MANDATORY-GROUPS clause

  The MANDATORY-GROUPS clause, which need not be present, names the one
  or more object or notification groups within the correspondent MIB
  module which are unconditionally mandatory for implementation.  If an
  agent claims compliance to the MIB module, then it must implement
  each and every object and notification within each conformance group
  listed.  That is, if an agent returns a noSuchObject exception in
  response to a management protocol get operation [4] for any object
  within any mandatory conformance group for every possible MIB view,
  or if the agent cannot generate each notification listed in any
  conformance group under the appropriate circumstances, then that
  agent is not a conformant implementation of the MIB module.

5.4.2.  Mapping of the GROUP clause

  The GROUP clause, which need not be present, is repeatedly used to
  name each object and notification group which is conditionally
  mandatory for compliance to the MIB module.  The GROUP clause can
  also be used to name unconditionally optional groups.  A group named
  in a GROUP clause must be absent from the correspondent MANDATORY-
  GROUPS clause.

  Conditionally mandatory groups include those which are mandatory only
  if a particular protocol is implemented, or only if another group is
  implemented.  A GROUP clause's DESCRIPTION specifies the conditions
  under which the group is conditionally mandatory.

  A group which is named in neither a MANDATORY-GROUPS clause nor a
  GROUP clause, is unconditionally optional for compliance to the MIB
  module.



McCloghrie, et al.          Standards Track                    [Page 15]





RFC 2580            Conformance Statements for SMIv2          April 1999


5.4.3.  Mapping of the OBJECT clause

  The OBJECT clause, which need not be present, is repeatedly used to
  specify each MIB object for which compliance has a refined
  requirement with respect to the MIB module definition.  The MIB
  object must be present in one of the conformance groups named in the
  correspondent MANDATORY-GROUPS clause or GROUP clauses.

  By definition, each object specified in an OBJECT clause follows a
  MODULE clause which names the information module in which that object
  is defined.  Therefore, the use of an IMPORTS statement, to specify
  from where such objects are imported, is redundant and is not
  required in an information module.

5.4.3.1.  Mapping of the SYNTAX clause

  The SYNTAX clause, which need not be present, is used to provide a
  refined SYNTAX for the object named in the correspondent OBJECT
  clause.  Note that if this clause and a WRITE-SYNTAX clause are both
  present, then this clause only applies when instances of the object
  named in the correspondent OBJECT clause are read.

  Consult Section 9 of [2] for more information on refined syntax.

5.4.3.2.  Mapping of the WRITE-SYNTAX clause

  The WRITE-SYNTAX clause, which need not be present, is used to
  provide a refined SYNTAX for the object named in the correspondent
  OBJECT clause when instances of that object are written.

  Consult Section 9 of [2] for more information on refined syntax.

5.4.3.3.  Mapping of the MIN-ACCESS clause

  The MIN-ACCESS clause, which need not be present, is used to define
  the minimal level of access for the object named in the correspondent
  OBJECT clause.  If this clause is absent, the minimal level of access
  is the same as the maximal level specified in the correspondent
  invocation of the OBJECT-TYPE macro.  If present, this clause must
  not specify a greater level of access than is specified in the
  correspondent invocation of the OBJECT-TYPE macro.

  The level of access for certain types of objects is fixed according
  to their syntax definition.  These types include: conceptual tables
  and rows, auxiliary objects, and objects with the syntax of
  Counter32, Counter64 (and possibly, certain types of textual
  conventions).  A MIN-ACCESS clause should not be present for such



McCloghrie, et al.          Standards Track                    [Page 16]





RFC 2580            Conformance Statements for SMIv2          April 1999


  objects.

  An implementation is compliant if the level of access it provides is
  greater or equal to the minimal level in the MODULE-COMPLIANCE macro
  and less or equal to the maximal level in the OBJECT-TYPE macro.

5.4.4.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause must be present for each use of the GROUP or
  OBJECT clause.  For an OBJECT clause, it contains a textual
  description of the refined compliance requirement.  For a GROUP
  clause, it contains a textual description of the conditions under
  which the group is conditionally mandatory or unconditionally
  optional.

5.5.  Mapping of the MODULE-COMPLIANCE value

  The value of an invocation of the MODULE-COMPLIANCE macro is an
  OBJECT IDENTIFIER.  As such, this value may be authoritatively used
  when referring to the compliance statement embodied by that
  invocation of the macro.

5.6.  Usage Example

  The compliance statement contained in the (hypothetical) XYZv2-MIB
  might be:

  xyzMIBCompliance MODULE-COMPLIANCE
      STATUS  current
      DESCRIPTION
              "The compliance statement for XYZv2 entities which
              implement the XYZv2 MIB."
     MODULE  -- compliance to the containing MIB module
         MANDATORY-GROUPS { xyzSystemGroup,
                            xyzStatsGroup, xyzTrapGroup,
                            xyzSetGroup,
                            xyzBasicNotificationsGroup }

         GROUP   xyzV1Group
         DESCRIPTION
             "The xyzV1 group is mandatory only for those
              XYZv2 entities which also implement XYZv1."
 ::= { xyzMIBCompliances 1 }

  According to this invocation, to claim alignment with the compliance
  statement named

       { xyzMIBCompliances 1 }


McCloghrie, et al.          Standards Track                    [Page 17]





RFC 2580            Conformance Statements for SMIv2          April 1999


  a system must implement the XYZv2-MIB's xyzSystemGroup,
  xyzStatsGroup, xyzTrapGroup, and xyzSetGroup object conformance
  groups, as well as the xyzBasicNotificationsGroup notifications
  group.  Furthermore, if the XYZv2 entity also implements XYZv1, then
  it must also support the XYZv1Group group, if compliance is to be
  claimed.












































McCloghrie, et al.          Standards Track                    [Page 18]





RFC 2580            Conformance Statements for SMIv2          April 1999


6.  Mapping of the AGENT-CAPABILITIES macro

  The AGENT-CAPABILITIES macro is used to convey a set of capabilities
  present in an agent.  It should be noted that the expansion of the
  AGENT-CAPABILITIES macro is something which conceptually happens
  during implementation and not during run-time.

  When a MIB module is written, it is divided into units of conformance
  termed groups.  If an agent claims to implement a group, then it must
  implement each and every object, or each and every notification,
  within that group.  Of course, for whatever reason, an agent might
  implement only a subset of the groups within a MIB module.  In
  addition, the definition of some MIB objects/notifications leave some
  aspects of the definition to the discretion of an implementor.

  Practical experience has demonstrated a need for concisely describing
  the capabilities of an agent with respect to one or more MIB modules.
  The AGENT-CAPABILITIES macro allows an agent implementor to describe
  the precise level of support which an agent claims in regards to a
  MIB group, and to bind that description to the value of an instance
  of sysORID [3].  In particular, some objects may have restricted or
  augmented syntax or access-levels.

  If the AGENT-CAPABILITIES invocation is given to a management-station
  implementor, then that implementor can build management applications
  which optimize themselves when communicating with a particular agent.
  For example, the management-station can maintain a database of these
  invocations.  When a management-station interacts with an agent, it
  retrieves from the agent the values of all instances of sysORID [3].
  Based on this, it consults the database to locate each entry matching
  one of the retrieved values of sysORID.  Using the located entries,
  the management application can now optimize its behavior accordingly.

  Note that the AGENT-CAPABILITIES macro specifies refinements or
  variations with respect to OBJECT-TYPE and NOTIFICATION-TYPE macros
  in MIB modules, NOT with respect to MODULE-COMPLIANCE macros in
  compliance statements.

6.1.  Mapping of the PRODUCT-RELEASE clause

  The PRODUCT-RELEASE clause, which must be present, contains a textual
  description of the product release which includes this set of
  capabilities.

6.2.  Mapping of the STATUS clause

  The STATUS clause, which must be present, indicates whether this



McCloghrie, et al.          Standards Track                    [Page 19]





RFC 2580            Conformance Statements for SMIv2          April 1999


  definition is current or historic.

  The value "current" means that the definition is current and valid.
  The value "obsolete" means the definition is obsolete and this
  capabilities statement is no longer in use.

6.3.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a textual
  description of this set of capabilities.

6.4.  Mapping of the REFERENCE clause

  The REFERENCE clause, which need not be present, contains a textual
  cross-reference to some other document, either another information
  module which defines a related assignment, or some other document
  which provides additional information relevant to this definition.

6.5.  Mapping of the SUPPORTS clause

  The SUPPORTS clause, which need not be present, is repeatedly used to
  name each MIB module for which the agent claims a complete or partial
  implementation.  Each MIB module is named by its module name, and
  optionally, by its associated OBJECT IDENTIFIER (as registered by the
  MODULE-IDENTITY macro, see [2]) as well.

6.5.1.  Mapping of the INCLUDES clause

  The INCLUDES clause, which must follow each and every use of the
  SUPPORTS clause, is used to name each MIB group associated with the
  SUPPORTS clause, which the agent claims to implement.

6.5.2.  Mapping of the VARIATION clause

  The VARIATION clause, which need not be present, is repeatedly used
  to name each object or notification which the agent implements in
  some variant or refined fashion with respect to the correspondent
  invocation of the OBJECT-TYPE or NOTIFICATION-TYPE macro.

  Note that the variation concept is meant for generic implementation
  restrictions, e.g., if the variation for an object depends on the
  values of other objects, then this should be noted in the appropriate
  DESCRIPTION clause.

  By definition, each object specified in a VARIATION clause follows a
  SUPPORTS clause which names the information module in which that
  object is defined.  Therefore, the use of an IMPORTS statement, to
  specify from where such objects are imported, is redundant and is not


McCloghrie, et al.          Standards Track                    [Page 20]





RFC 2580            Conformance Statements for SMIv2          April 1999


  required in an information module.

6.5.2.1.  Mapping of the SYNTAX clause

  The SYNTAX clause, which need not be present, is used to provide a
  refined SYNTAX for the object named in the correspondent VARIATION
  clause.  Note that if this clause and a WRITE-SYNTAX clause are both
  present, then this clause only applies when instances of the object
  named in the correspondent VARIATION clause are read.

  Consult Section 9 of [2] for more information on refined syntax.

  Note that for enumerated INTEGERs and for the BITS construct, the
  changes allowed when updating a MIB module include the addition of
  enumerations and/or changing the labels of existing enumerations (see
  Section 10.2 of [2]).  This type of change can cause problems for an
  AGENT-CAPABILITIES macro written against the old revision of a MIB
  module.  One way to avoid such problems is to explicitly list all
  objects having an enumerated syntax in a VARIATION clause, even when
  all enumerations are currently supported.

6.5.2.2.  Mapping of the WRITE-SYNTAX clause

  The WRITE-SYNTAX clause, which need not be present, is used to
  provide a refined SYNTAX for the object named in the correspondent
  VARIATION clause when instances of that object are written.

  Consult Section 9 of [2] for more information on refined syntax.

6.5.2.3.  Mapping of the ACCESS clause

  The ACCESS clause, which need not be present, is used to indicate the
  agent provides less than the maximal level of access to the object or
  notification named in the correspondent VARIATION clause.

  The only value applicable to notifications is "not-implemented".

  The value "not-implemented" indicates the agent does not implement
  the object or notification, and in the ordering of possible values is
  equivalent to "not-accessible".

  The value "write-only" is provided solely for backward compatibility,
  and shall not be used for newly-defined object types.  In the
  ordering of possible values, "write-only" is less than "not-
  accessible".





McCloghrie, et al.          Standards Track                    [Page 21]





RFC 2580            Conformance Statements for SMIv2          April 1999


6.5.2.4.  Mapping of the CREATION-REQUIRES clause

  The CREATION-REQUIRES clause, which need not be present, is used to
  name the columnar objects of a conceptual row to which values must be
  explicitly assigned, by a management protocol set operation, before
  the agent will allow the instance of the status column of that row to
  be set to `active'.  (Consult the definition of RowStatus [5].)

  If the conceptual row does not have a status column (i.e., the
  objects corresponding to the conceptual table were defined using the
  mechanisms in [6,7]), then the CREATION-REQUIRES clause, which need
  not be present, is used to name the columnar objects of a conceptual
  row to which values must be explicitly assigned, by a management
  protocol set operation, before the agent will create new instances of
  objects in that row.

  This clause must not be present unless the object named in the
  correspondent VARIATION clause is a conceptual row, i.e., has a
  syntax which resolves to a SEQUENCE containing columnar objects.  The
  objects named in the value of this clause usually will refer to
  columnar objects in that row.  However, objects unrelated to the
  conceptual row may also be specified.

  All objects which are named in the CREATION-REQUIRES clause for a
  conceptual row, and which are columnar objects of that row, must have
  an access level of "read-create".

6.5.2.5.  Mapping of the DEFVAL clause

  The DEFVAL clause, which need not be present, is used to provide a
  alternate DEFVAL value for the object named in the correspondent
  VARIATION clause.  The semantics of this value are identical to those
  of the OBJECT-TYPE macro's DEFVAL clause.

6.5.2.6.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present for each use of the
  VARIATION clause, contains a textual description of the variant or
  refined implementation of the object or notification.

6.6.  Mapping of the AGENT-CAPABILITIES value

  The value of an invocation of the AGENT-CAPABILITIES macro is an
  OBJECT IDENTIFIER, which names the value of sysORID [3] for which
  this capabilities statement is valid.





McCloghrie, et al.          Standards Track                    [Page 22]





RFC 2580            Conformance Statements for SMIv2          April 1999


6.7.  Usage Example

  Consider how a capabilities statement for an agent might be
  described:

  exampleAgent AGENT-CAPABILITIES
      PRODUCT-RELEASE      "ACME Agent release 1.1 for 4BSD."
      STATUS               current
      DESCRIPTION          "ACME agent for 4BSD."

      SUPPORTS             SNMPv2-MIB
          INCLUDES         { systemGroup, snmpGroup, snmpSetGroup,
                             snmpBasicNotificationsGroup }

          VARIATION        coldStart
              DESCRIPTION  "A coldStart trap is generated on all
                           reboots."

      SUPPORTS             IF-MIB
          INCLUDES         { ifGeneralGroup, ifPacketGroup }

          VARIATION        ifAdminStatus
              SYNTAX       INTEGER { up(1), down(2) }
              DESCRIPTION  "Unable to set test mode on 4BSD."

          VARIATION        ifOperStatus
              SYNTAX       INTEGER { up(1), down(2) }
              DESCRIPTION  "Information limited on 4BSD."

      SUPPORTS             IP-MIB
          INCLUDES         { ipGroup, icmpGroup }

          VARIATION        ipDefaultTTL
              SYNTAX       INTEGER (255..255)
              DESCRIPTION  "Hard-wired on 4BSD."

          VARIATION        ipInAddrErrors
              ACCESS       not-implemented
              DESCRIPTION  "Information not available on 4BSD."

          VARIATION        ipNetToMediaEntry
              CREATION-REQUIRES { ipNetToMediaPhysAddress }
              DESCRIPTION  "Address mappings on 4BSD require
                           both protocol and media addresses."

      SUPPORTS             TCP-MIB
          INCLUDES         { tcpGroup }
          VARIATION        tcpConnState


McCloghrie, et al.          Standards Track                    [Page 23]





RFC 2580            Conformance Statements for SMIv2          April 1999


              ACCESS       read-only
              DESCRIPTION  "Unable to set this on 4BSD."

      SUPPORTS             UDP-MIB
          INCLUDES         { udpGroup }

      SUPPORTS             EVAL-MIB
          INCLUDES         { functionsGroup, expressionsGroup }
          VARIATION        exprEntry
              CREATION-REQUIRES { evalString, evalStatus }
              DESCRIPTION  "Conceptual row creation is supported."

      ::= { acmeAgents 1 }


  According to this invocation, an agent with a sysORID value of

       { acmeAgents 1 }

  supports objects defined in six MIB modules.

  From SNMPv2-MIB, five conformance groups are supported.

  From IF-MIB, the ifGeneralGroup and ifPacketGroup groups are
  supported.  However, the objects ifAdminStatus and ifOperStatus have
  a restricted syntax.

  From IP-MIB, all objects in the ipGroup and icmpGroup are supported
  except ipInAddrErrors, while ipDefaultTTL has a restricted range, and
  when creating a new instance in the ipNetToMediaTable, the set-
  request must create an instance of ipNetToMediaPhysAddress.

  From TCP-MIB, the tcpGroup is supported except that tcpConnState is
  available only for reading.

  From UDP-MIB, the udpGroup is fully supported.

  From the EVAL-MIB, all the objects contained in the functionsGroup
  and expressionsGroup conformance groups are supported, without
  variation.  In addition, creation of new instances in the expr table
  is supported, and requires both of the objects:  evalString and
  evalStatus, to be assigned a value.








McCloghrie, et al.          Standards Track                    [Page 24]





RFC 2580            Conformance Statements for SMIv2          April 1999


7.  Extending an Information Module

  As experience is gained with a published information module, it may
  be desirable to revise that information module.

  Section 10 of [2] defines the rules for extending an information
  module.  The remainder of this section defines how conformance
  groups, compliance statements, and capabilities statements may be
  extended.

7.1.  Conformance Groups

  It may be desirable to revise the definition of a conformance group
  (an OBJECT-GROUP or a NOTIFICATION-GROUP) after experience is gained
  with it.  However, conformance groups can be referenced by compliance
  and/or capabilities definitions.  Therefore, a change to a
  conformance group is not allowed if it has the potential to cause a
  reference to the group's original definition to be different from a
  reference to the updated definition.  Such changes can only be
  accommodated by defining a new conformance group with a new
  descriptor and a new OBJECT IDENTIFIER value.

  The following revisions are allowed:

(1)  A STATUS clause value of "current" may be revised as "deprecated"
    or "obsolete".  Similarly, a STATUS clause value of "deprecated"
    may be revised as "obsolete".  When making such a change, the
    DESCRIPTION clause should be updated to explain the rationale.

(2)  A REFERENCE clause may be added or updated.

(3)  Clarifications and additional information may be included in the
    DESCRIPTION clause.

(4)  Any editorial change.

  It is not necessary to change the STATUS value of a conformance group
  when the status of a member of the group is changed.

7.2.  Compliance Definitions

  It may be desirable to revise the definition of a compliance
  definition (MODULE-COMPLIANCE) after experience is gained with it.
  However, changes are not allowed if they cause the requirements
  specified by the original definition to be different from the
  requirements of the updated definition.  Such changes can only be
  accommodated by defining a new compliance definition with a new



McCloghrie, et al.          Standards Track                    [Page 25]





RFC 2580            Conformance Statements for SMIv2          April 1999


  descriptor and a new OBJECT IDENTIFIER value.

  The following revisions are allowed:

(1)  A STATUS clause value of "current" may be revised as "deprecated"
    or "obsolete".  Similarly, a STATUS clause value of "deprecated"
    may be revised as "obsolete".  When making such a change, the
    DESCRIPTION clause should be updated to explain the rationale.

(2)  A REFERENCE clause may be added or updated.

(3)  Clarifications and additional information may be included in the
    DESCRIPTION clause(s).

(4)  Any editorial change.

  It is not necessary to change the STATUS value of a compliance
  definition due to a change in the STATUS value of a definition it
  references.

7.3.  Capabilities Definitions

  It may be desirable to revise the definition of a capabilities
  definition (AGENT-CAPABILITIES) after experience is gained with it.
  However, changes are not allowed if they cause the capabilities
  specified by the original specification to be different from the
  capabilities of the updated specification.  Such changes can only be
  accommodated by defining a new capabilities definition with a new
  descriptor and a new OBJECT IDENTIFIER value.

  The following revisions are allowed:

(1)  A STATUS clause value of "current" may be revised as "obsolete".
    When making such a change, the DESCRIPTION clause should be updated
    to explain the rationale.

(2)  A REFERENCE clause may be added or updated.

(3)  Clarifications and additional information may be included in the
    DESCRIPTION clause(s).

(4)  Any editorial change.

  It is not necessary to change the STATUS value of a capabilities
  definition due to a change in the STATUS value of a definition it
  references.




McCloghrie, et al.          Standards Track                    [Page 26]





RFC 2580            Conformance Statements for SMIv2          April 1999


8.  Security Considerations

  This document defines the means to define conformance requirements
  for implementing on documents describing management information.
  This method of defining conformance requirements has no security
  impact on the Internet.


9.  Editors' Addresses

  Keith McCloghrie
  Cisco Systems, Inc.
  170 West Tasman Drive
  San Jose, CA  95134-1706
  USA
  Phone: +1 408 526 5260
  EMail: [email protected]

  David Perkins
  SNMPinfo
  3763 Benton Street
  Santa Clara, CA 95051
  USA
  Phone: +1 408 221-8702
  Email: [email protected]

  Juergen Schoenwaelder
  TU Braunschweig
  Bueltenweg 74/75
  38106 Braunschweig
  Germany
  Phone: +49 531 391-3283
  EMail: [email protected]

















McCloghrie, et al.          Standards Track                    [Page 27]





RFC 2580            Conformance Statements for SMIv2          April 1999


10.  References

[1]  Information processing systems - Open Systems Interconnection -
    Specification of Abstract Syntax Notation One (ASN.1),
    International Organization for Standardization.  International
    Standard 8824, (December, 1987).

[2]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M.
    and S. Waldbusser, "Structure of Management Information Version 2
    (SMIv2)", STD 58, RFC 2578, April 1999.

[3]  The SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M. and
    S. Waldbusser, "Management Information Base for Version 2 of the
    Simple Network Management Protocol (SNMPv2)", RFC 1907, January
    1996.

[4]  The SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M. and
    S. Waldbusser, "Protocol Operations for Version 2 of the Simple
    Network Management Protocol (SNMPv2)", RFC 1905, January 1996.

[5]  McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M.
    and S. Waldbusser, "Textual Conventions for SMIv2", STD 58,
    RFC 2579, April 1999.

[6]  Rose, M. and K. McCloghrie, "Structure and Identification of
    Management Information for TCP/IP-based internets", STD 16, RFC
    1155, May 1990.

[7]  Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD 16, RFC
    1212, March 1991.




















McCloghrie, et al.          Standards Track                    [Page 28]





RFC 2580            Conformance Statements for SMIv2          April 1999


11.  Full Copyright Statement

  Copyright (C) The Internet Society (1999).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."























McCloghrie, et al.          Standards Track                    [Page 29]