Network Working Group                                             J. Moy
Request for Comments: 2328                   Ascend Communications, Inc.
STD: 54                                                       April 1998
Obsoletes: 2178
Category: Standards Track


                            OSPF Version 2


Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is
   unlimited.

Copyright Notice

   Copyright (C) The Internet Society (1998).  All Rights Reserved.

Abstract

   This memo documents version 2 of the OSPF protocol.  OSPF is a
   link-state routing protocol.  It is designed to be run internal to a
   single Autonomous System.  Each OSPF router maintains an identical
   database describing the Autonomous System's topology.  From this
   database, a routing table is calculated by constructing a shortest-
   path tree.

   OSPF recalculates routes quickly in the face of topological changes,
   utilizing a minimum of routing protocol traffic.  OSPF provides
   support for equal-cost multipath.  An area routing capability is
   provided, enabling an additional level of routing protection and a
   reduction in routing protocol traffic.  In addition, all OSPF
   routing protocol exchanges are authenticated.

   The differences between this memo and RFC 2178 are explained in
   Appendix G. All differences are backward-compatible in nature.




Moy                         Standards Track                     [Page 1]

RFC 2328                     OSPF Version 2                   April 1998


   Implementations of this memo and of RFCs 2178, 1583, and 1247 will
   interoperate.

   Please send comments to [email protected].

Table of Contents

   1        Introduction ........................................... 6
   1.1      Protocol Overview ...................................... 6
   1.2      Definitions of commonly used terms ..................... 8
   1.3      Brief history of link-state routing technology ........ 11
   1.4      Organization of this document ......................... 12
   1.5      Acknowledgments ....................................... 12
   2        The link-state database: organization and calculations  13
   2.1      Representation of routers and networks ................ 13
   2.1.1    Representation of non-broadcast networks .............. 15
   2.1.2    An example link-state database ........................ 18
   2.2      The shortest-path tree ................................ 21
   2.3      Use of external routing information ................... 23
   2.4      Equal-cost multipath .................................. 26
   3        Splitting the AS into Areas ........................... 26
   3.1      The backbone of the Autonomous System ................. 27
   3.2      Inter-area routing .................................... 27
   3.3      Classification of routers ............................. 28
   3.4      A sample area configuration ........................... 29
   3.5      IP subnetting support ................................. 35
   3.6      Supporting stub areas ................................. 37
   3.7      Partitions of areas ................................... 38
   4        Functional Summary .................................... 40
   4.1      Inter-area routing .................................... 41
   4.2      AS external routes .................................... 41
   4.3      Routing protocol packets .............................. 42
   4.4      Basic implementation requirements ..................... 43
   4.5      Optional OSPF capabilities ............................ 46
   5        Protocol data structures .............................. 47
   6        The Area Data Structure ............................... 49
   7        Bringing Up Adjacencies ............................... 52
   7.1      The Hello Protocol .................................... 52
   7.2      The Synchronization of Databases ...................... 53
   7.3      The Designated Router ................................. 54
   7.4      The Backup Designated Router .......................... 56
   7.5      The graph of adjacencies .............................. 56



Moy                         Standards Track                     [Page 2]

RFC 2328                     OSPF Version 2                   April 1998


   8        Protocol Packet Processing ............................ 58
   8.1      Sending protocol packets .............................. 58
   8.2      Receiving protocol packets ............................ 61
   9        The Interface Data Structure .......................... 63
   9.1      Interface states ...................................... 67
   9.2      Events causing interface state changes ................ 70
   9.3      The Interface state machine ........................... 72
   9.4      Electing the Designated Router ........................ 75
   9.5      Sending Hello packets ................................. 77
   9.5.1    Sending Hello packets on NBMA networks ................ 79
   10       The Neighbor Data Structure ........................... 80
   10.1     Neighbor states ....................................... 83
   10.2     Events causing neighbor state changes ................. 87
   10.3     The Neighbor state machine ............................ 89
   10.4     Whether to become adjacent ............................ 95
   10.5     Receiving Hello Packets ............................... 96
   10.6     Receiving Database Description Packets ................ 99
   10.7     Receiving Link State Request Packets ................. 102
   10.8     Sending Database Description Packets ................. 103
   10.9     Sending Link State Request Packets ................... 104
   10.10    An Example ........................................... 105
   11       The Routing Table Structure .......................... 107
   11.1     Routing table lookup ................................. 111
   11.2     Sample routing table, without areas .................. 111
   11.3     Sample routing table, with areas ..................... 112
   12       Link State Advertisements (LSAs) ..................... 115
   12.1     The LSA Header ....................................... 116
   12.1.1   LS age ............................................... 116
   12.1.2   Options .............................................. 117
   12.1.3   LS type .............................................. 117
   12.1.4   Link State ID ........................................ 117
   12.1.5   Advertising Router ................................... 119
   12.1.6   LS sequence number ................................... 120
   12.1.7   LS checksum .......................................... 121
   12.2     The link state database .............................. 121
   12.3     Representation of TOS ................................ 122
   12.4     Originating LSAs ..................................... 123
   12.4.1   Router-LSAs .......................................... 126
   12.4.1.1 Describing point-to-point interfaces ................. 130
   12.4.1.2 Describing broadcast and NBMA interfaces ............. 130
   12.4.1.3 Describing virtual links ............................. 131
   12.4.1.4 Describing Point-to-MultiPoint interfaces ............ 131



Moy                         Standards Track                     [Page 3]

RFC 2328                     OSPF Version 2                   April 1998


   12.4.1.5 Examples of router-LSAs .............................. 132
   12.4.2   Network-LSAs ......................................... 133
   12.4.2.1 Examples of network-LSAs ............................. 134
   12.4.3   Summary-LSAs ......................................... 135
   12.4.3.1 Originating summary-LSAs into stub areas ............. 137
   12.4.3.2 Examples of summary-LSAs ............................. 138
   12.4.4   AS-external-LSAs ..................................... 139
   12.4.4.1 Examples of AS-external-LSAs ......................... 140
   13       The Flooding Procedure ............................... 143
   13.1     Determining which LSA is newer ....................... 146
   13.2     Installing LSAs in the database ...................... 147
   13.3     Next step in the flooding procedure .................. 148
   13.4     Receiving self-originated LSAs ....................... 151
   13.5     Sending Link State Acknowledgment packets ............ 152
   13.6     Retransmitting LSAs .................................. 154
   13.7     Receiving link state acknowledgments ................. 155
   14       Aging The Link State Database ........................ 156
   14.1     Premature aging of LSAs .............................. 157
   15       Virtual Links ........................................ 158
   16       Calculation of the routing table ..................... 160
   16.1     Calculating the shortest-path tree for an area ....... 161
   16.1.1   The next hop calculation ............................. 167
   16.2     Calculating the inter-area routes .................... 178
   16.3     Examining transit areas' summary-LSAs ................ 170
   16.4     Calculating AS external routes ....................... 173
   16.4.1   External path preferences ............................ 175
   16.5     Incremental updates -- summary-LSAs .................. 175
   16.6     Incremental updates -- AS-external-LSAs .............. 177
   16.7     Events generated as a result of routing table changes  177
   16.8     Equal-cost multipath ................................. 178
            Footnotes ............................................ 179
            References ........................................... 183
   A        OSPF data formats .................................... 185
   A.1      Encapsulation of OSPF packets ........................ 185
   A.2      The Options field .................................... 187
   A.3      OSPF Packet Formats .................................. 189
   A.3.1    The OSPF packet header ............................... 190
   A.3.2    The Hello packet ..................................... 193
   A.3.3    The Database Description packet ...................... 195
   A.3.4    The Link State Request packet ........................ 197
   A.3.5    The Link State Update packet ......................... 199
   A.3.6    The Link State Acknowledgment packet ................. 201



Moy                         Standards Track                     [Page 4]

RFC 2328                     OSPF Version 2                   April 1998


   A.4      LSA formats .......................................... 203
   A.4.1    The LSA header ....................................... 204
   A.4.2    Router-LSAs .......................................... 206
   A.4.3    Network-LSAs ......................................... 210
   A.4.4    Summary-LSAs ......................................... 212
   A.4.5    AS-external-LSAs ..................................... 214
   B        Architectural Constants .............................. 217
   C        Configurable Constants ............................... 219
   C.1      Global parameters .................................... 219
   C.2      Area parameters ...................................... 220
   C.3      Router interface parameters .......................... 221
   C.4      Virtual link parameters .............................. 224
   C.5      NBMA network parameters .............................. 224
   C.6      Point-to-MultiPoint network parameters ............... 225
   C.7      Host route parameters ................................ 226
   D        Authentication ....................................... 227
   D.1      Null authentication .................................. 227
   D.2      Simple password authentication ....................... 228
   D.3      Cryptographic authentication ......................... 228
   D.4      Message generation ................................... 231
   D.4.1    Generating Null authentication ....................... 231
   D.4.2    Generating Simple password authentication ............ 232
   D.4.3    Generating Cryptographic authentication .............. 232
   D.5      Message verification ................................. 234
   D.5.1    Verifying Null authentication ........................ 234
   D.5.2    Verifying Simple password authentication ............. 234
   D.5.3    Verifying Cryptographic authentication ............... 235
   E        An algorithm for assigning Link State IDs ............ 236
   F        Multiple interfaces to the same network/subnet ....... 239
   G        Differences from RFC 2178 ............................ 240
   G.1      Flooding modifications ............................... 240
   G.2      Changes to external path preferences ................. 241
   G.3      Incomplete resolution of virtual next hops ........... 241
   G.4      Routing table lookup ................................. 241
            Security Considerations .............................. 243
            Author's Address ..................................... 243
            Full Copyright Statement ............................. 244








Moy                         Standards Track                     [Page 5]

RFC 2328                     OSPF Version 2                   April 1998


1.  Introduction

   This document is a specification of the Open Shortest Path First
   (OSPF) TCP/IP internet routing protocol.  OSPF is classified as an
   Interior Gateway Protocol (IGP).  This means that it distributes
   routing information between routers belonging to a single Autonomous
   System.  The OSPF protocol is based on link-state or SPF technology.
   This is a departure from the Bellman-Ford base used by traditional
   TCP/IP internet routing protocols.

   The OSPF protocol was developed by the OSPF working group of the
   Internet Engineering Task Force.  It has been designed expressly for
   the TCP/IP internet environment, including explicit support for CIDR
   and the tagging of externally-derived routing information.  OSPF
   also provides for the authentication of routing updates, and
   utilizes IP multicast when sending/receiving the updates.  In
   addition, much work has been done to produce a protocol that
   responds quickly to topology changes, yet involves small amounts of
   routing protocol traffic.

   1.1.  Protocol overview

       OSPF routes IP packets based solely on the destination IP
       address found in the IP packet header.  IP packets are routed
       "as is" -- they are not encapsulated in any further protocol
       headers as they transit the Autonomous System.  OSPF is a
       dynamic routing protocol.  It quickly detects topological
       changes in the AS (such as router interface failures) and
       calculates new loop-free routes after a period of convergence.
       This period of convergence is short and involves a minimum of
       routing traffic.

       In a link-state routing protocol, each router maintains a
       database describing the Autonomous System's topology.  This
       database is referred to as the link-state database. Each
       participating router has an identical database.  Each individual
       piece of this database is a particular router's local state
       (e.g., the router's usable interfaces and reachable neighbors).
       The router distributes its local state throughout the Autonomous
       System by flooding.





Moy                         Standards Track                     [Page 6]

RFC 2328                     OSPF Version 2                   April 1998


       All routers run the exact same algorithm, in parallel.  From the
       link-state database, each router constructs a tree of shortest
       paths with itself as root.  This shortest-path tree gives the
       route to each destination in the Autonomous System.  Externally
       derived routing information appears on the tree as leaves.

       When several equal-cost routes to a destination exist, traffic
       is distributed equally among them.  The cost of a route is
       described by a single dimensionless metric.

       OSPF allows sets of networks to be grouped together.  Such a
       grouping is called an area.  The topology of an area is hidden
       from the rest of the Autonomous System.  This information hiding
       enables a significant reduction in routing traffic.  Also,
       routing within the area is determined only by the area's own
       topology, lending the area protection from bad routing data.  An
       area is a generalization of an IP subnetted network.

       OSPF enables the flexible configuration of IP subnets.  Each
       route distributed by OSPF has a destination and mask.  Two
       different subnets of the same IP network number may have
       different sizes (i.e., different masks).  This is commonly
       referred to as variable length subnetting.  A packet is routed
       to the best (i.e., longest or most specific) match.  Host routes
       are considered to be subnets whose masks are "all ones"
       (0xffffffff).

       All OSPF protocol exchanges are authenticated.  This means that
       only trusted routers can participate in the Autonomous System's
       routing.  A variety of authentication schemes can be used; in
       fact, separate authentication schemes can be configured for each
       IP subnet.

       Externally derived routing data (e.g., routes learned from an
       Exterior Gateway Protocol such as BGP; see [Ref23]) is
       advertised throughout the Autonomous System.  This externally
       derived data is kept separate from the OSPF protocol's link
       state data.  Each external route can also be tagged by the
       advertising router, enabling the passing of additional
       information between routers on the boundary of the Autonomous
       System.




Moy                         Standards Track                     [Page 7]

RFC 2328                     OSPF Version 2                   April 1998


   1.2.  Definitions of commonly used terms

       This section provides definitions for terms that have a specific
       meaning to the OSPF protocol and that are used throughout the
       text.  The reader unfamiliar with the Internet Protocol Suite is
       referred to [Ref13] for an introduction to IP.


       Router
           A level three Internet Protocol packet switch.  Formerly
           called a gateway in much of the IP literature.

       Autonomous System
           A group of routers exchanging routing information via a
           common routing protocol.  Abbreviated as AS.

       Interior Gateway Protocol
           The routing protocol spoken by the routers belonging to an
           Autonomous system.  Abbreviated as IGP.  Each Autonomous
           System has a single IGP.  Separate Autonomous Systems may be
           running different IGPs.

       Router ID
           A 32-bit number assigned to each router running the OSPF
           protocol.  This number uniquely identifies the router within
           an Autonomous System.

       Network
           In this memo, an IP network/subnet/supernet.  It is possible
           for one physical network to be assigned multiple IP
           network/subnet numbers.  We consider these to be separate
           networks.  Point-to-point physical networks are an exception
           - they are considered a single network no matter how many
           (if any at all) IP network/subnet numbers are assigned to
           them.

       Network mask
           A 32-bit number indicating the range of IP addresses
           residing on a single IP network/subnet/supernet.  This
           specification displays network masks as hexadecimal numbers.





Moy                         Standards Track                     [Page 8]

RFC 2328                     OSPF Version 2                   April 1998


           For example, the network mask for a class C IP network is
           displayed as 0xffffff00.  Such a mask is often displayed
           elsewhere in the literature as 255.255.255.0.

       Point-to-point networks
           A network that joins a single pair of routers.  A 56Kb
           serial line is an example of a point-to-point network.

       Broadcast networks
           Networks supporting many (more than two) attached routers,
           together with the capability to address a single physical
           message to all of the attached routers (broadcast).
           Neighboring routers are discovered dynamically on these nets
           using OSPF's Hello Protocol.  The Hello Protocol itself
           takes advantage of the broadcast capability.  The OSPF
           protocol makes further use of multicast capabilities, if
           they exist.  Each pair of routers on a broadcast network is
           assumed to be able to communicate directly. An ethernet is
           an example of a broadcast network.

       Non-broadcast networks
           Networks supporting many (more than two) routers, but having
           no broadcast capability.  Neighboring routers are maintained
           on these nets using OSPF's Hello Protocol.  However, due to
           the lack of broadcast capability, some configuration
           information may be necessary to aid in the discovery of
           neighbors.  On non-broadcast networks, OSPF protocol packets
           that are normally multicast need to be sent to each
           neighboring router, in turn. An X.25 Public Data Network
           (PDN) is an example of a non-broadcast network.

           OSPF runs in one of two modes over non-broadcast networks.
           The first mode, called non-broadcast multi-access or NBMA,
           simulates the operation of OSPF on a broadcast network. The
           second mode, called Point-to-MultiPoint, treats the non-
           broadcast network as a collection of point-to-point links.
           Non-broadcast networks are referred to as NBMA networks or
           Point-to-MultiPoint networks, depending on OSPF's mode of
           operation over the network.






Moy                         Standards Track                     [Page 9]

RFC 2328                     OSPF Version 2                   April 1998


       Interface
           The connection between a router and one of its attached
           networks.  An interface has state information associated
           with it, which is obtained from the underlying lower level
           protocols and the routing protocol itself.  An interface to
           a network has associated with it a single IP address and
           mask (unless the network is an unnumbered point-to-point
           network).  An interface is sometimes also referred to as a
           link.

       Neighboring routers
           Two routers that have interfaces to a common network.
           Neighbor relationships are maintained by, and usually
           dynamically discovered by, OSPF's Hello Protocol.

       Adjacency
           A relationship formed between selected neighboring routers
           for the purpose of exchanging routing information.  Not
           every pair of neighboring routers become adjacent.

       Link state advertisement
           Unit of data describing the local state of a router or
           network. For a router, this includes the state of the
           router's interfaces and adjacencies.  Each link state
           advertisement is flooded throughout the routing domain. The
           collected link state advertisements of all routers and
           networks forms the protocol's link state database.
           Throughout this memo, link state advertisement is
           abbreviated as LSA.

       Hello Protocol
           The part of the OSPF protocol used to establish and maintain
           neighbor relationships.  On broadcast networks the Hello
           Protocol can also dynamically discover neighboring routers.

       Flooding
           The part of the OSPF protocol that distributes and
           synchronizes the link-state database between OSPF routers.

       Designated Router
           Each broadcast and NBMA network that has at least two
           attached routers has a Designated Router.  The Designated



Moy                         Standards Track                    [Page 10]

RFC 2328                     OSPF Version 2                   April 1998


           Router generates an LSA for the network and has other
           special responsibilities in the running of the protocol.
           The Designated Router is elected by the Hello Protocol.

           The Designated Router concept enables a reduction in the
           number of adjacencies required on a broadcast or NBMA
           network.  This in turn reduces the amount of routing
           protocol traffic and the size of the link-state database.

       Lower-level protocols
           The underlying network access protocols that provide
           services to the Internet Protocol and in turn the OSPF
           protocol.  Examples of these are the X.25 packet and frame
           levels for X.25 PDNs, and the ethernet data link layer for
           ethernets.


   1.3.  Brief history of link-state routing technology

       OSPF is a link state routing protocol.  Such protocols are also
       referred to in the literature as SPF-based or distributed-
       database protocols.  This section gives a brief description of
       the developments in link-state technology that have influenced
       the OSPF protocol.

       The first link-state routing protocol was developed for use in
       the ARPANET packet switching network.  This protocol is
       described in [Ref3].  It has formed the starting point for all
       other link-state protocols.  The homogeneous ARPANET
       environment, i.e., single-vendor packet switches connected by
       synchronous serial lines, simplified the design and
       implementation of the original protocol.

       Modifications to this protocol were proposed in [Ref4].  These
       modifications dealt with increasing the fault tolerance of the
       routing protocol through, among other things, adding a checksum
       to the LSAs (thereby detecting database corruption).  The paper
       also included means for reducing the routing traffic overhead in
       a link-state protocol.  This was accomplished by introducing
       mechanisms which enabled the interval between LSA originations
       to be increased by an order of magnitude.




Moy                         Standards Track                    [Page 11]

RFC 2328                     OSPF Version 2                   April 1998


       A link-state algorithm has also been proposed for use as an ISO
       IS-IS routing protocol.  This protocol is described in [Ref2].
       The protocol includes methods for data and routing traffic
       reduction when operating over broadcast networks.  This is
       accomplished by election of a Designated Router for each
       broadcast network, which then originates an LSA for the network.

       The OSPF Working Group of the IETF has extended this work in
       developing the OSPF protocol.  The Designated Router concept has
       been greatly enhanced to further reduce the amount of routing
       traffic required.  Multicast capabilities are utilized for
       additional routing bandwidth reduction.  An area routing scheme
       has been developed enabling information
       hiding/protection/reduction.  Finally, the algorithms have been
       tailored for efficient operation in TCP/IP internets.


   1.4.  Organization of this document

       The first three sections of this specification give a general
       overview of the protocol's capabilities and functions.  Sections
       4-16 explain the protocol's mechanisms in detail.  Packet
       formats, protocol constants and configuration items are
       specified in the appendices.

       Labels such as HelloInterval encountered in the text refer to
       protocol constants.  They may or may not be configurable.
       Architectural constants are summarized in Appendix B.
       Configurable constants are summarized in Appendix C.

       The detailed specification of the protocol is presented in terms
       of data structures.  This is done in order to make the
       explanation more precise.  Implementations of the protocol are
       required to support the functionality described, but need not
       use the precise data structures that appear in this memo.


   1.5.  Acknowledgments

       The author would like to thank Ran Atkinson, Fred Baker, Jeffrey
       Burgan, Rob Coltun, Dino Farinacci, Vince Fuller, Phanindra
       Jujjavarapu, Milo Medin, Tom Pusateri, Kannan Varadhan, Zhaohui



Moy                         Standards Track                    [Page 12]

RFC 2328                     OSPF Version 2                   April 1998


       Zhang and the rest of the OSPF Working Group for the ideas and
       support they have given to this project.

       The OSPF Point-to-MultiPoint interface is based on work done by
       Fred Baker.

       The OSPF Cryptographic Authentication option was developed by
       Fred Baker and Ran Atkinson.


2.  The Link-state Database: organization and calculations

   The following subsections describe the organization of OSPF's link-
   state database, and the routing calculations that are performed on
   the database in order to produce a router's routing table.


   2.1.  Representation of routers and networks

       The Autonomous System's link-state database describes a directed
       graph.  The vertices of the graph consist of routers and
       networks.  A graph edge connects two routers when they are
       attached via a physical point-to-point network.  An edge
       connecting a router to a network indicates that the router has
       an interface on the network. Networks can be either transit or
       stub networks. Transit networks are those capable of carrying
       data traffic that is neither locally originated nor locally
       destined. A transit network is represented by a graph vertex
       having both incoming and outgoing edges. A stub network's vertex
       has only incoming edges.

       The neighborhood of each network node in the graph depends on
       the network's type (point-to-point, broadcast, NBMA or Point-
       to-MultiPoint) and the number of routers having an interface to
       the network.  Three cases are depicted in Figure 1a.  Rectangles
       indicate routers.  Circles and oblongs indicate networks.
       Router names are prefixed with the letters RT and network names
       with the letter N.  Router interface names are prefixed by the
       letter I.  Lines between routers indicate point-to-point
       networks.  The left side of the figure shows networks with their
       connected routers, with the resulting graphs shown on the right.




Moy                         Standards Track                    [Page 13]

RFC 2328                     OSPF Version 2                   April 1998





                                                 **FROM**

                                          *      |RT1|RT2|
               +---+Ia    +---+           *   ------------
               |RT1|------|RT2|           T   RT1|   | X |
               +---+    Ib+---+           O   RT2| X |   |
                                          *    Ia|   | X |
                                          *    Ib| X |   |

                    Physical point-to-point networks


                                                 **FROM**
                     +---+                *
                     |RT7|                *      |RT7| N3|
                     +---+                T   ------------
                       |                  O   RT7|   |   |
           +----------------------+       *    N3| X |   |
                      N3                  *

                             Stub networks

                                                 **FROM**
               +---+      +---+
               |RT3|      |RT4|              |RT3|RT4|RT5|RT6|N2 |
               +---+      +---+        *  ------------------------
                 |    N2    |          *  RT3|   |   |   |   | X |
           +----------------------+    T  RT4|   |   |   |   | X |
                 |          |          O  RT5|   |   |   |   | X |
               +---+      +---+        *  RT6|   |   |   |   | X |
               |RT5|      |RT6|        *   N2| X | X | X | X |   |
               +---+      +---+

                         Broadcast or NBMA networks



                   Figure 1a: Network map components




Moy                         Standards Track                    [Page 14]

RFC 2328                     OSPF Version 2                   April 1998


            Networks and routers are represented by vertices.
            An edge connects Vertex A to Vertex B iff the
            intersection of Column A and Row B is marked with
                                 an X.



       The top of Figure 1a shows two routers connected by a point-to-
       point link. In the resulting link-state database graph, the two
       router vertices are directly connected by a pair of edges, one
       in each direction. Interfaces to point-to-point networks need
       not be assigned IP addresses.  When interface addresses are
       assigned, they are modelled as stub links, with each router
       advertising a stub connection to the other router's interface
       address. Optionally, an IP subnet can be assigned to the point-
       to-point network. In this case, both routers advertise a stub
       link to the IP subnet, instead of advertising each others' IP
       interface addresses.

       The middle of Figure 1a shows a network with only one attached
       router (i.e., a stub network). In this case, the network appears
       on the end of a stub connection in the link-state database's
       graph.

       When multiple routers are attached to a broadcast network, the
       link-state database graph shows all routers bidirectionally
       connected to the network vertex. This is pictured at the bottom
       of Figure 1a.

       Each network (stub or transit) in the graph has an IP address
       and associated network mask.  The mask indicates the number of
       nodes on the network.  Hosts attached directly to routers
       (referred to as host routes) appear on the graph as stub
       networks.  The network mask for a host route is always
       0xffffffff, which indicates the presence of a single node.


       2.1.1.  Representation of non-broadcast networks

           As mentioned previously, OSPF can run over non-broadcast
           networks in one of two modes: NBMA or Point-to-MultiPoint.
           The choice of mode determines the way that the Hello



Moy                         Standards Track                    [Page 15]

RFC 2328                     OSPF Version 2                   April 1998


           protocol and flooding work over the non-broadcast network,
           and the way that the network is represented in the link-
           state database.

           In NBMA mode, OSPF emulates operation over a broadcast
           network: a Designated Router is elected for the NBMA
           network, and the Designated Router originates an LSA for the
           network. The graph representation for broadcast networks and
           NBMA networks is identical. This representation is pictured
           in the middle of Figure 1a.

           NBMA mode is the most efficient way to run OSPF over non-
           broadcast networks, both in terms of link-state database
           size and in terms of the amount of routing protocol traffic.
           However, it has one significant restriction: it requires all
           routers attached to the NBMA network to be able to
           communicate directly. This restriction may be met on some
           non-broadcast networks, such as an ATM subnet utilizing
           SVCs. But it is often not met on other non-broadcast
           networks, such as PVC-only Frame Relay networks. On non-
           broadcast networks where not all routers can communicate
           directly you can break the non-broadcast network into
           logical subnets, with the routers on each subnet being able
           to communicate directly, and then run each separate subnet
           as an NBMA network (see [Ref15]). This however requires
           quite a bit of administrative overhead, and is prone to
           misconfiguration. It is probably better to run such a non-
           broadcast network in Point-to-Multipoint mode.

           In Point-to-MultiPoint mode, OSPF treats all router-to-
           router connections over the non-broadcast network as if they
           were point-to-point links. No Designated Router is elected
           for the network, nor is there an LSA generated for the
           network. In fact, a vertex for the Point-to-MultiPoint
           network does not appear in the graph of the link-state
           database.

           Figure 1b illustrates the link-state database representation
           of a Point-to-MultiPoint network. On the left side of the
           figure, a Point-to-MultiPoint network is pictured. It is
           assumed that all routers can communicate directly, except
           for routers RT4 and RT5. I3 though I6 indicate the routers'



Moy                         Standards Track                    [Page 16]

RFC 2328                     OSPF Version 2                   April 1998


           IP interface addresses on the Point-to-MultiPoint network.
           In the graphical representation of the link-state database,
           routers that can communicate directly over the Point-to-
           MultiPoint network are joined by bidirectional edges, and
           each router also has a stub connection to its own IP
           interface address (which is in contrast to the
           representation of real point-to-point links; see Figure 1a).

           On some non-broadcast networks, use of Point-to-MultiPoint
           mode and data-link protocols such as Inverse ARP (see
           [Ref14]) will allow autodiscovery of OSPF neighbors even
           though broadcast support is not available.






                                                 **FROM**
               +---+      +---+
               |RT3|      |RT4|              |RT3|RT4|RT5|RT6|
               +---+      +---+        *  --------------------
               I3|    N2    |I4        *  RT3|   | X | X | X |
           +----------------------+    T  RT4| X |   |   | X |
               I5|          |I6        O  RT5| X |   |   | X |
               +---+      +---+        *  RT6| X | X | X |   |
               |RT5|      |RT6|        *   I3| X |   |   |   |
               +---+      +---+            I4|   | X |   |   |
                                           I5|   |   | X |   |
                                           I6|   |   |   | X |



                   Figure 1b: Network map components
                      Point-to-MultiPoint networks

            All routers can communicate directly over N2, except
               routers RT4 and RT5. I3 through I6 indicate IP
                          interface addresses






Moy                         Standards Track                    [Page 17]

RFC 2328                     OSPF Version 2                   April 1998


       2.1.2.  An example link-state database

           Figure 2 shows a sample map of an Autonomous System.  The
           rectangle labelled H1 indicates a host, which has a SLIP
           connection to Router RT12.  Router RT12 is therefore
           advertising a host route.  Lines between routers indicate
           physical point-to-point networks.  The only point-to-point
           network that has been assigned interface addresses is the
           one joining Routers RT6 and RT10.  Routers RT5 and RT7 have
           BGP connections to other Autonomous Systems.  A set of BGP-
           learned routes have been displayed for both of these
           routers.

           A cost is associated with the output side of each router
           interface.  This cost is configurable by the system
           administrator.  The lower the cost, the more likely the
           interface is to be used to forward data traffic.  Costs are
           also associated with the externally derived routing data
           (e.g., the BGP-learned routes).

           The directed graph resulting from the map in Figure 2 is
           depicted in Figure 3.  Arcs are labelled with the cost of
           the corresponding router output interface.  Arcs having no
           labelled cost have a cost of 0.  Note that arcs leading from
           networks to routers always have cost 0; they are significant
           nonetheless.  Note also that the externally derived routing
           data appears on the graph as stubs.

           The link-state database is pieced together from LSAs
           generated by the routers.  In the associated graphical
           representation, the neighborhood of each router or transit
           network is represented in a single, separate LSA.  Figure 4
           shows these LSAs graphically. Router RT12 has an interface
           to two broadcast networks and a SLIP line to a host.
           Network N6 is a broadcast network with three attached
           routers.  The cost of all links from Network N6 to its
           attached routers is 0.  Note that the LSA for Network N6 is
           actually generated by one of the network's attached routers:
           the router that has been elected Designated Router for the
           network.





Moy                         Standards Track                    [Page 18]

RFC 2328                     OSPF Version 2                   April 1998



                +
                | 3+---+                     N12      N14
              N1|--|RT1|\ 1                    \ N13 /
                |  +---+ \                     8\ |8/8
                +         \ ____                 \|/
                           /    \   1+---+8    8+---+6
                          *  N3  *---|RT4|------|RT5|--------+
                           \____/    +---+      +---+        |
                 +         /   |                  |7         |
                 | 3+---+ /    |                  |          |
               N2|--|RT2|/1    |1                 |6         |
                 |  +---+    +---+8            6+---+        |
                 +           |RT3|--------------|RT6|        |
                             +---+              +---+        |
                               |2               Ia|7         |
                               |                  |          |
                          +---------+             |          |
                              N4                  |          |
                                                  |          |
                                                  |          |
                      N11                         |          |
                  +---------+                     |          |
                       |                          |          |    N12
                       |3                         |          |6 2/
                     +---+                        |        +---+/
                     |RT9|                        |        |RT7|---N15
                     +---+                        |        +---+ 9
                       |1                   +     |          |1
                      _|__                  |   Ib|5       __|_
                     /    \      1+----+2   |  3+----+1   /    \
                    *  N9  *------|RT11|----|---|RT10|---*  N6  *
                     \____/       +----+    |   +----+    \____/
                       |                    |                |
                       |1                   +                |1
            +--+   10+----+                N8              +---+
            |H1|-----|RT12|                                |RT8|
            +--+SLIP +----+                                +---+
                       |2                                    |4
                       |                                     |
                  +---------+                            +--------+
                      N10                                    N7



Moy                         Standards Track                    [Page 19]

RFC 2328                     OSPF Version 2                   April 1998


                   Figure 2: A sample Autonomous System

                               **FROM**

                |RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|
                |1 |2 |3 |4 |5 |6 |7 |8 |9 |10|11|12|N3|N6|N8|N9|
             ----- ---------------------------------------------
             RT1|  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |  |
             RT2|  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |  |
             RT3|  |  |  |  |  |6 |  |  |  |  |  |  |0 |  |  |  |
             RT4|  |  |  |  |8 |  |  |  |  |  |  |  |0 |  |  |  |
             RT5|  |  |  |8 |  |6 |6 |  |  |  |  |  |  |  |  |  |
             RT6|  |  |8 |  |7 |  |  |  |  |5 |  |  |  |  |  |  |
             RT7|  |  |  |  |6 |  |  |  |  |  |  |  |  |0 |  |  |
         *   RT8|  |  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |
         *   RT9|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |
         T  RT10|  |  |  |  |  |7 |  |  |  |  |  |  |  |0 |0 |  |
         O  RT11|  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |0 |
         *  RT12|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |
         *    N1|3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
              N2|  |3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
              N3|1 |1 |1 |1 |  |  |  |  |  |  |  |  |  |  |  |  |
              N4|  |  |2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
              N6|  |  |  |  |  |  |1 |1 |  |1 |  |  |  |  |  |  |
              N7|  |  |  |  |  |  |  |4 |  |  |  |  |  |  |  |  |
              N8|  |  |  |  |  |  |  |  |  |3 |2 |  |  |  |  |  |
              N9|  |  |  |  |  |  |  |  |1 |  |1 |1 |  |  |  |  |
             N10|  |  |  |  |  |  |  |  |  |  |  |2 |  |  |  |  |
             N11|  |  |  |  |  |  |  |  |3 |  |  |  |  |  |  |  |
             N12|  |  |  |  |8 |  |2 |  |  |  |  |  |  |  |  |  |
             N13|  |  |  |  |8 |  |  |  |  |  |  |  |  |  |  |  |
             N14|  |  |  |  |8 |  |  |  |  |  |  |  |  |  |  |  |
             N15|  |  |  |  |  |  |9 |  |  |  |  |  |  |  |  |  |
              H1|  |  |  |  |  |  |  |  |  |  |  |10|  |  |  |  |


                    Figure 3: The resulting directed graph

                Networks and routers are represented by vertices.
                An edge of cost X connects Vertex A to Vertex B iff
                the intersection of Column A and Row B is marked
                                    with an X.



Moy                         Standards Track                    [Page 20]

RFC 2328                     OSPF Version 2                   April 1998


                    **FROM**                       **FROM**

                 |RT12|N9|N10|H1|                 |RT9|RT11|RT12|N9|
          *  --------------------          *  ----------------------
          *  RT12|    |  |   |  |          *   RT9|   |    |    |0 |
          T    N9|1   |  |   |  |          T  RT11|   |    |    |0 |
          O   N10|2   |  |   |  |          O  RT12|   |    |    |0 |
          *    H1|10  |  |   |  |          *    N9|   |    |    |  |
          *                                *
               RT12's router-LSA              N9's network-LSA

                 Figure 4: Individual link state components

             Networks and routers are represented by vertices.
             An edge of cost X connects Vertex A to Vertex B iff
             the intersection of Column A and Row B is marked
                                 with an X.

   2.2.  The shortest-path tree

       When no OSPF areas are configured, each router in the Autonomous
       System has an identical link-state database, leading to an
       identical graphical representation.  A router generates its
       routing table from this graph by calculating a tree of shortest
       paths with the router itself as root.  Obviously, the shortest-
       path tree depends on the router doing the calculation.  The
       shortest-path tree for Router RT6 in our example is depicted in
       Figure 5.

       The tree gives the entire path to any destination network or
       host.  However, only the next hop to the destination is used in
       the forwarding process.  Note also that the best route to any
       router has also been calculated.  For the processing of external
       data, we note the next hop and distance to any router
       advertising external routes.  The resulting routing table for
       Router RT6 is pictured in Table 2.  Note that there is a
       separate route for each end of a numbered point-to-point network
       (in this case, the serial line between Routers RT6 and RT10).


       Routes to networks belonging to other AS'es (such as N12) appear
       as dashed lines on the shortest path tree in Figure 5.  Use of



Moy                         Standards Track                    [Page 21]

RFC 2328                     OSPF Version 2                   April 1998



                               RT6(origin)
                   RT5 o------------o-----------o Ib
                      /|\    6      |\     7
                    8/8|8\          | \
                    /  |  \        6|  \
                   o   |   o        |   \7
                  N12  o  N14       |    \
                      N13        2  |     \
                           N4 o-----o RT3  \
                                   /        \    5
                                 1/     RT10 o-------o Ia
                                 /           |\
                      RT4 o-----o N3        3| \1
                               /|            |  \ N6     RT7
                              / |         N8 o   o---------o
                             /  |            |   |        /|
                        RT2 o   o RT1        |   |      2/ |9
                           /    |            |   |RT8   /  |
                          /3    |3      RT11 o   o     o   o
                         /      |            |   |    N12 N15
                     N2 o       o N1        1|   |4
                                             |   |
                                          N9 o   o N7
                                            /|
                                           / |
                       N11      RT9       /  |RT12
                        o--------o-------o   o--------o H1
                            3                |   10
                                             |2
                                             |
                                             o N10


                    Figure 5: The SPF tree for Router RT6

             Edges that are not marked with a cost have a cost of
             of zero (these are network-to-router links). Routes
             to networks N12-N15 are external information that is
                        considered in Section 2.3





Moy                         Standards Track                    [Page 22]

RFC 2328                     OSPF Version 2                   April 1998


                  Destination   Next  Hop   Distance
                  __________________________________
                  N1            RT3         10
                  N2            RT3         10
                  N3            RT3         7
                  N4            RT3         8
                  Ib            *           7
                  Ia            RT10        12
                  N6            RT10        8
                  N7            RT10        12
                  N8            RT10        10
                  N9            RT10        11
                  N10           RT10        13
                  N11           RT10        14
                  H1            RT10        21
                  __________________________________
                  RT5           RT5         6
                  RT7           RT10        8


   Table 2: The portion of Router RT6's routing table listing local
                            destinations.

       this externally derived routing information is considered in the
       next section.


   2.3.  Use of external routing information

       After the tree is created the external routing information is
       examined.  This external routing information may originate from
       another routing protocol such as BGP, or be statically
       configured (static routes).  Default routes can also be included
       as part of the Autonomous System's external routing information.

       External routing information is flooded unaltered throughout the
       AS.  In our example, all the routers in the Autonomous System
       know that Router RT7 has two external routes, with metrics 2 and
       9.

       OSPF supports two types of external metrics.  Type 1 external
       metrics are expressed in the same units as OSPF interface cost



Moy                         Standards Track                    [Page 23]

RFC 2328                     OSPF Version 2                   April 1998


       (i.e., in terms of the link state metric).  Type 2 external
       metrics are an order of magnitude larger; any Type 2 metric is
       considered greater than the cost of any path internal to the AS.
       Use of Type 2 external metrics assumes that routing between
       AS'es is the major cost of routing a packet, and eliminates the
       need for conversion of external costs to internal link state
       metrics.

       As an example of Type 1 external metric processing, suppose that
       the Routers RT7 and RT5 in Figure 2 are advertising Type 1
       external metrics.  For each advertised external route, the total
       cost from Router RT6 is calculated as the sum of the external
       route's advertised cost and the distance from Router RT6 to the
       advertising router.  When two routers are advertising the same
       external destination, RT6 picks the advertising router providing
       the minimum total cost. RT6 then sets the next hop to the
       external destination equal to the next hop that would be used
       when routing packets to the chosen advertising router.

       In Figure 2, both Router RT5 and RT7 are advertising an external
       route to destination Network N12.  Router RT7 is preferred since
       it is advertising N12 at a distance of 10 (8+2) to Router RT6,
       which is better than Router RT5's 14 (6+8).  Table 3 shows the
       entries that are added to the routing table when external routes
       are examined:



                        Destination   Next  Hop   Distance
                        __________________________________
                        N12           RT10        10
                        N13           RT5         14
                        N14           RT5         14
                        N15           RT10        17


                Table 3: The portion of Router RT6's routing table
                          listing external destinations.


       Processing of Type 2 external metrics is simpler.  The AS
       boundary router advertising the smallest external metric is



Moy                         Standards Track                    [Page 24]

RFC 2328                     OSPF Version 2                   April 1998


       chosen, regardless of the internal distance to the AS boundary
       router.  Suppose in our example both Router RT5 and Router RT7
       were advertising Type 2 external routes.  Then all traffic
       destined for Network N12 would be forwarded to Router RT7, since
       2 < 8.  When several equal-cost Type 2 routes exist, the
       internal distance to the advertising routers is used to break
       the tie.

       Both Type 1 and Type 2 external metrics can be present in the AS
       at the same time.  In that event, Type 1 external metrics always
       take precedence.

       This section has assumed that packets destined for external
       destinations are always routed through the advertising AS
       boundary router.  This is not always desirable.  For example,
       suppose in Figure 2 there is an additional router attached to
       Network N6, called Router RTX.  Suppose further that RTX does
       not participate in OSPF routing, but does exchange BGP
       information with the AS boundary router RT7.  Then, Router RT7
       would end up advertising OSPF external routes for all
       destinations that should be routed to RTX.  An extra hop will
       sometimes be introduced if packets for these destinations need
       always be routed first to Router RT7 (the advertising router).

       To deal with this situation, the OSPF protocol allows an AS
       boundary router to specify a "forwarding address" in its AS-
       external-LSAs.  In the above example, Router RT7 would specify
       RTX's IP address as the "forwarding address" for all those
       destinations whose packets should be routed directly to RTX.

       The "forwarding address" has one other application.  It enables
       routers in the Autonomous System's interior to function as
       "route servers".  For example, in Figure 2 the router RT6 could
       become a route server, gaining external routing information
       through a combination of static configuration and external
       routing protocols.  RT6 would then start advertising itself as
       an AS boundary router, and would originate a collection of OSPF
       AS-external-LSAs.  In each AS-external-LSA, Router RT6 would
       specify the correct Autonomous System exit point to use for the
       destination through appropriate setting of the LSA's "forwarding
       address" field.




Moy                         Standards Track                    [Page 25]

RFC 2328                     OSPF Version 2                   April 1998


   2.4.  Equal-cost multipath

       The above discussion has been simplified by considering only a
       single route to any destination.  In reality, if multiple
       equal-cost routes to a destination exist, they are all
       discovered and used.  This requires no conceptual changes to the
       algorithm, and its discussion is postponed until we consider the
       tree-building process in more detail.

       With equal cost multipath, a router potentially has several
       available next hops towards any given destination.


3.  Splitting the AS into Areas

   OSPF allows collections of contiguous networks and hosts to be
   grouped together.  Such a group, together with the routers having
   interfaces to any one of the included networks, is called an area.
   Each area runs a separate copy of the basic link-state routing
   algorithm.  This means that each area has its own link-state
   database and corresponding graph, as explained in the previous
   section.

   The topology of an area is invisible from the outside of the area.
   Conversely, routers internal to a given area know nothing of the
   detailed topology external to the area.  This isolation of knowledge
   enables the protocol to effect a marked reduction in routing traffic
   as compared to treating the entire Autonomous System as a single
   link-state domain.

   With the introduction of areas, it is no longer true that all
   routers in the AS have an identical link-state database.  A router
   actually has a separate link-state database for each area it is
   connected to.  (Routers connected to multiple areas are called area
   border routers).  Two routers belonging to the same area have, for
   that area, identical area link-state databases.

   Routing in the Autonomous System takes place on two levels,
   depending on whether the source and destination of a packet reside
   in the same area (intra-area routing is used) or different areas
   (inter-area routing is used).  In intra-area routing, the packet is
   routed solely on information obtained within the area; no routing



Moy                         Standards Track                    [Page 26]

RFC 2328                     OSPF Version 2                   April 1998


   information obtained from outside the area can be used.  This
   protects intra-area routing from the injection of bad routing
   information.  We discuss inter-area routing in Section 3.2.


   3.1.  The backbone of the Autonomous System

       The OSPF backbone is the special OSPF Area 0 (often written as
       Area 0.0.0.0, since OSPF Area ID's are typically formatted as IP
       addresses). The OSPF backbone always contains all area border
       routers. The backbone is responsible for distributing routing
       information between non-backbone areas. The backbone must be
       contiguous. However, it need not be physically contiguous;
       backbone connectivity can be established/maintained through the
       configuration of virtual links.

       Virtual links can be configured between any two backbone routers
       that have an interface to a common non-backbone area.  Virtual
       links belong to the backbone.  The protocol treats two routers
       joined by a virtual link as if they were connected by an
       unnumbered point-to-point backbone network.  On the graph of the
       backbone, two such routers are joined by arcs whose costs are
       the intra-area distances between the two routers.  The routing
       protocol traffic that flows along the virtual link uses intra-
       area routing only.


   3.2.  Inter-area routing

       When routing a packet between two non-backbone areas the
       backbone is used.  The path that the packet will travel can be
       broken up into three contiguous pieces: an intra-area path from
       the source to an area border router, a backbone path between the
       source and destination areas, and then another intra-area path
       to the destination.  The algorithm finds the set of such paths
       that have the smallest cost.

       Looking at this another way, inter-area routing can be pictured
       as forcing a star configuration on the Autonomous System, with
       the backbone as hub and each of the non-backbone areas as
       spokes.




Moy                         Standards Track                    [Page 27]

RFC 2328                     OSPF Version 2                   April 1998


       The topology of the backbone dictates the backbone paths used
       between areas.  The topology of the backbone can be enhanced by
       adding virtual links.  This gives the system administrator some
       control over the routes taken by inter-area traffic.

       The correct area border router to use as the packet exits the
       source area is chosen in exactly the same way routers
       advertising external routes are chosen.  Each area border router
       in an area summarizes for the area its cost to all networks
       external to the area.  After the SPF tree is calculated for the
       area, routes to all inter-area destinations are calculated by
       examining the summaries of the area border routers.


   3.3.  Classification of routers

       Before the introduction of areas, the only OSPF routers having a
       specialized function were those advertising external routing
       information, such as Router RT5 in Figure 2.  When the AS is
       split into OSPF areas, the routers are further divided according
       to function into the following four overlapping categories:


       Internal routers
           A router with all directly connected networks belonging to
           the same area. These routers run a single copy of the basic
           routing algorithm.

       Area border routers
           A router that attaches to multiple areas.  Area border
           routers run multiple copies of the basic algorithm, one copy
           for each attached area. Area border routers condense the
           topological information of their attached areas for
           distribution to the backbone.  The backbone in turn
           distributes the information to the other areas.

       Backbone routers
           A router that has an interface to the backbone area.  This
           includes all routers that interface to more than one area
           (i.e., area border routers).  However, backbone routers do
           not have to be area border routers.  Routers with all
           interfaces connecting to the backbone area are supported.



Moy                         Standards Track                    [Page 28]

RFC 2328                     OSPF Version 2                   April 1998


       AS boundary routers
           A router that exchanges routing information with routers
           belonging to other Autonomous Systems.  Such a router
           advertises AS external routing information throughout the
           Autonomous System.  The paths to each AS boundary router are
           known by every router in the AS.  This classification is
           completely independent of the previous classifications: AS
           boundary routers may be internal or area border routers, and
           may or may not participate in the backbone.


   3.4.  A sample area configuration

       Figure 6 shows a sample area configuration.  The first area
       consists of networks N1-N4, along with their attached routers
       RT1-RT4.  The second area consists of networks N6-N8, along with
       their attached routers RT7, RT8, RT10 and RT11.  The third area
       consists of networks N9-N11 and Host H1, along with their
       attached routers RT9, RT11 and RT12.  The third area has been
       configured so that networks N9-N11 and Host H1 will all be
       grouped into a single route, when advertised external to the
       area (see Section 3.5 for more details).

       In Figure 6, Routers RT1, RT2, RT5, RT6, RT8, RT9 and RT12 are
       internal routers.  Routers RT3, RT4, RT7, RT10 and RT11 are area
       border routers.  Finally, as before, Routers RT5 and RT7 are AS
       boundary routers.

       Figure 7 shows the resulting link-state database for the Area 1.
       The figure completely describes that area's intra-area routing.
       It also shows the complete view of the internet for the two
       internal routers RT1 and RT2.  It is the job of the area border
       routers, RT3 and RT4, to advertise into Area 1 the distances to
       all destinations external to the area.  These are indicated in
       Figure 7 by the dashed stub routes.  Also, RT3 and RT4 must
       advertise into Area 1 the location of the AS boundary routers
       RT5 and RT7.  Finally, AS-external-LSAs from RT5 and RT7 are
       flooded throughout the entire AS, and in particular throughout
       Area 1.  These LSAs are included in Area 1's database, and yield
       routes to Networks N12-N15.

       Routers RT3 and RT4 must also summarize Area 1's topology for



Moy                         Standards Track                    [Page 29]

RFC 2328                     OSPF Version 2                   April 1998



            ...........................
            .   +                     .
            .   | 3+---+              .      N12      N14
            . N1|--|RT1|\ 1           .        \ N13 /
            .   |  +---+ \            .        8\ |8/8
            .   +         \ ____      .          \|/
            .              /    \   1+---+8    8+---+6
            .             *  N3  *---|RT4|------|RT5|--------+
            .              \____/    +---+      +---+        |
            .    +         /      \   .           |7         |
            .    | 3+---+ /        \  .           |          |
            .  N2|--|RT2|/1        1\ .           |6         |
            .    |  +---+            +---+8    6+---+        |
            .    +                   |RT3|------|RT6|        |
            .                        +---+      +---+        |
            .                      2/ .         Ia|7         |
            .                      /  .           |          |
            .             +---------+ .           |          |
            .Area 1           N4      .           |          |
            ...........................           |          |
         ..........................               |          |
         .            N11         .               |          |
         .        +---------+     .               |          |
         .             |          .               |          |    N12
         .             |3         .             Ib|5         |6 2/
         .           +---+        .             +----+     +---+/
         .           |RT9|        .    .........|RT10|.....|RT7|---N15.
         .           +---+        .    .        +----+     +---+ 9    .
         .             |1         .    .    +  /3    1\      |1       .
         .            _|__        .    .    | /        \   __|_       .
         .           /    \      1+----+2   |/          \ /    \      .
         .          *  N9  *------|RT11|----|            *  N6  *     .
         .           \____/       +----+    |             \____/      .
         .             |          .    .    |                |        .
         .             |1         .    .    +                |1       .
         .  +--+   10+----+       .    .   N8              +---+      .
         .  |H1|-----|RT12|       .    .                   |RT8|      .
         .  +--+SLIP +----+       .    .                   +---+      .
         .             |2         .    .                     |4       .
         .             |          .    .                     |        .
         .        +---------+     .    .                 +--------+   .



Moy                         Standards Track                    [Page 30]

RFC 2328                     OSPF Version 2                   April 1998


         .            N10         .    .                     N7       .
         .                        .    .Area 2                        .
         .Area 3                  .    ................................
         ..........................

                   Figure 6: A sample OSPF area configuration

       distribution to the backbone.  Their backbone LSAs are shown in
       Table 4.  These summaries show which networks are contained in
       Area 1 (i.e., Networks N1-N4), and the distance to these
       networks from the routers RT3 and RT4 respectively.


       The link-state database for the backbone is shown in Figure 8.
       The set of routers pictured are the backbone routers.  Router
       RT11 is a backbone router because it belongs to two areas.  In
       order to make the backbone connected, a virtual link has been
       configured between Routers R10 and R11.

       The area border routers RT3, RT4, RT7, RT10 and RT11 condense
       the routing information of their attached non-backbone areas for
       distribution via the backbone; these are the dashed stubs that
       appear in Figure 8.  Remember that the third area has been
       configured to condense Networks N9-N11 and Host H1 into a single
       route.  This yields a single dashed line for networks N9-N11 and
       Host H1 in Figure 8.  Routers RT5 and RT7 are AS boundary
       routers; their externally derived information also appears on
       the graph in Figure 8 as stubs.



                    Network   RT3 adv.   RT4 adv.
                    _____________________________
                    N1        4          4
                    N2        4          4
                    N3        1          1
                    N4        2          3

             Table 4: Networks advertised to the backbone
                       by Routers RT3 and RT4.





Moy                         Standards Track                    [Page 31]

RFC 2328                     OSPF Version 2                   April 1998



                              **FROM**

                         |RT|RT|RT|RT|RT|RT|
                         |1 |2 |3 |4 |5 |7 |N3|
                      ----- -------------------
                      RT1|  |  |  |  |  |  |0 |
                      RT2|  |  |  |  |  |  |0 |
                      RT3|  |  |  |  |  |  |0 |
                  *   RT4|  |  |  |  |  |  |0 |
                  *   RT5|  |  |14|8 |  |  |  |
                  T   RT7|  |  |20|14|  |  |  |
                  O    N1|3 |  |  |  |  |  |  |
                  *    N2|  |3 |  |  |  |  |  |
                  *    N3|1 |1 |1 |1 |  |  |  |
                       N4|  |  |2 |  |  |  |  |
                    Ia,Ib|  |  |20|27|  |  |  |
                       N6|  |  |16|15|  |  |  |
                       N7|  |  |20|19|  |  |  |
                       N8|  |  |18|18|  |  |  |
                N9-N11,H1|  |  |29|36|  |  |  |
                      N12|  |  |  |  |8 |2 |  |
                      N13|  |  |  |  |8 |  |  |
                      N14|  |  |  |  |8 |  |  |
                      N15|  |  |  |  |  |9 |  |

                     Figure 7: Area 1's Database.

             Networks and routers are represented by vertices.
             An edge of cost X connects Vertex A to Vertex B iff
             the intersection of Column A and Row B is marked
                              with an X.













Moy                         Standards Track                    [Page 32]

RFC 2328                     OSPF Version 2                   April 1998


                                 **FROM**

                           |RT|RT|RT|RT|RT|RT|RT
                           |3 |4 |5 |6 |7 |10|11|
                        ------------------------
                        RT3|  |  |  |6 |  |  |  |
                        RT4|  |  |8 |  |  |  |  |
                        RT5|  |8 |  |6 |6 |  |  |
                        RT6|8 |  |7 |  |  |5 |  |
                        RT7|  |  |6 |  |  |  |  |
                    *  RT10|  |  |  |7 |  |  |2 |
                    *  RT11|  |  |  |  |  |3 |  |
                    T    N1|4 |4 |  |  |  |  |  |
                    O    N2|4 |4 |  |  |  |  |  |
                    *    N3|1 |1 |  |  |  |  |  |
                    *    N4|2 |3 |  |  |  |  |  |
                         Ia|  |  |  |  |  |5 |  |
                         Ib|  |  |  |7 |  |  |  |
                         N6|  |  |  |  |1 |1 |3 |
                         N7|  |  |  |  |5 |5 |7 |
                         N8|  |  |  |  |4 |3 |2 |
                  N9-N11,H1|  |  |  |  |  |  |11|
                        N12|  |  |8 |  |2 |  |  |
                        N13|  |  |8 |  |  |  |  |
                        N14|  |  |8 |  |  |  |  |
                        N15|  |  |  |  |9 |  |  |


                    Figure 8: The backbone's database.

             Networks and routers are represented by vertices.
             An edge of cost X connects Vertex A to Vertex B iff
             the intersection of Column A and Row B is marked
                                with an X.

       The backbone enables the exchange of summary information between
       area border routers.  Every area border router hears the area
       summaries from all other area border routers.  It then forms a
       picture of the distance to all networks outside of its area by
       examining the collected LSAs, and adding in the backbone
       distance to each advertising router.




Moy                         Standards Track                    [Page 33]

RFC 2328                     OSPF Version 2                   April 1998


       Again using Routers RT3 and RT4 as an example, the procedure
       goes as follows: They first calculate the SPF tree for the
       backbone.  This gives the distances to all other area border
       routers.  Also noted are the distances to networks (Ia and Ib)
       and AS boundary routers (RT5 and RT7) that belong to the
       backbone.  This calculation is shown in Table 5.


       Next, by looking at the area summaries from these area border
       routers, RT3 and RT4 can determine the distance to all networks
       outside their area.  These distances are then advertised
       internally to the area by RT3 and RT4.  The advertisements that
       Router RT3 and RT4 will make into Area 1 are shown in Table 6.
       Note that Table 6 assumes that an area range has been configured
       for the backbone which groups Ia and Ib into a single LSA.


       The information imported into Area 1 by Routers RT3 and RT4
       enables an internal router, such as RT1, to choose an area
       border router intelligently.  Router RT1 would use RT4 for
       traffic to Network N6, RT3 for traffic to Network N10, and would


                             dist  from   dist  from
                             RT3          RT4
                  __________________________________
                  to  RT3    *            21
                  to  RT4    22           *
                  to  RT7    20           14
                  to  RT10   15           22
                  to  RT11   18           25
                  __________________________________
                  to  Ia     20           27
                  to  Ib     15           22
                  __________________________________
                  to  RT5    14           8
                  to  RT7    20           14

                Table 5: Backbone distances calculated
                       by Routers RT3 and RT4.





Moy                         Standards Track                    [Page 34]

RFC 2328                     OSPF Version 2                   April 1998




                  Destination   RT3 adv.   RT4 adv.
                  _________________________________
                  Ia,Ib         20         27
                  N6            16         15
                  N7            20         19
                  N8            18         18
                  N9-N11,H1     29         36
                  _________________________________
                  RT5           14         8
                  RT7           20         14

             Table 6: Destinations advertised into Area 1
                       by Routers RT3 and RT4.

       load share between the two for traffic to Network N8.

       Router RT1 can also determine in this manner the shortest path
       to the AS boundary routers RT5 and RT7.  Then, by looking at RT5
       and RT7's AS-external-LSAs, Router RT1 can decide between RT5 or
       RT7 when sending to a destination in another Autonomous System
       (one of the networks N12-N15).

       Note that a failure of the line between Routers RT6 and RT10
       will cause the backbone to become disconnected.  Configuring a
       virtual link between Routers RT7 and RT10 will give the backbone
       more connectivity and more resistance to such failures.


   3.5.  IP subnetting support

       OSPF attaches an IP address mask to each advertised route.  The
       mask indicates the range of addresses being described by the
       particular route.  For example, a summary-LSA for the
       destination 128.185.0.0 with a mask of 0xffff0000 actually is
       describing a single route to the collection of destinations
       128.185.0.0 - 128.185.255.255.  Similarly, host routes are
       always advertised with a mask of 0xffffffff, indicating the
       presence of only a single destination.





Moy                         Standards Track                    [Page 35]

RFC 2328                     OSPF Version 2                   April 1998


       Including the mask with each advertised destination enables the
       implementation of what is commonly referred to as variable-
       length subnetting.  This means that a single IP class A, B, or C
       network number can be broken up into many subnets of various
       sizes.  For example, the network 128.185.0.0 could be broken up
       into 62 variable-sized subnets: 15 subnets of size 4K, 15
       subnets of size 256, and 32 subnets of size 8.  Table 7 shows
       some of the resulting network addresses together with their
       masks.



                 Network address   IP address mask   Subnet size
                 _______________________________________________
                 128.185.16.0      0xfffff000        4K
                 128.185.1.0       0xffffff00        256
                 128.185.0.8       0xfffffff8        8


                        Table 7: Some sample subnet sizes.


       There are many possible ways of dividing up a class A, B, and C
       network into variable sized subnets.  The precise procedure for
       doing so is beyond the scope of this specification.  This
       specification however establishes the following guideline: When
       an IP packet is forwarded, it is always forwarded to the network
       that is the best match for the packet's destination.  Here best
       match is synonymous with the longest or most specific match.
       For example, the default route with destination of 0.0.0.0 and
       mask 0x00000000 is always a match for every IP destination.  Yet
       it is always less specific than any other match.  Subnet masks
       must be assigned so that the best match for any IP destination
       is unambiguous.

       Attaching an address mask to each route also enables the support
       of IP supernetting. For example, a single physical network
       segment could be assigned the [address,mask] pair
       [192.9.4.0,0xfffffc00]. The segment would then be single IP
       network, containing addresses from the four consecutive class C
       network numbers 192.9.4.0 through 192.9.7.0. Such addressing is
       now becoming commonplace with the advent of CIDR (see [Ref10]).



Moy                         Standards Track                    [Page 36]

RFC 2328                     OSPF Version 2                   April 1998


       In order to get better aggregation at area boundaries, area
       address ranges can be employed (see Section C.2 for more
       details).  Each address range is defined as an [address,mask]
       pair.  Many separate networks may then be contained in a single
       address range, just as a subnetted network is composed of many
       separate subnets.  Area border routers then summarize the area
       contents (for distribution to the backbone) by advertising a
       single route for each address range.  The cost of the route is
       the maximum cost to any of the networks falling in the specified
       range.

       For example, an IP subnetted network might be configured as a
       single OSPF area.  In that case, a single address range could be
       configured:  a class A, B, or C network number along with its
       natural IP mask.  Inside the area, any number of variable sized
       subnets could be defined.  However, external to the area a
       single route for the entire subnetted network would be
       distributed, hiding even the fact that the network is subnetted
       at all.  The cost of this route is the maximum of the set of
       costs to the component subnets.


   3.6.  Supporting stub areas

       In some Autonomous Systems, the majority of the link-state
       database may consist of AS-external-LSAs.  An OSPF AS-external-
       LSA is usually flooded throughout the entire AS.  However, OSPF
       allows certain areas to be configured as "stub areas".  AS-
       external-LSAs are not flooded into/throughout stub areas;
       routing to AS external destinations in these areas is based on a
       (per-area) default only.  This reduces the link-state database
       size, and therefore the memory requirements, for a stub area's
       internal routers.

       In order to take advantage of the OSPF stub area support,
       default routing must be used in the stub area.  This is
       accomplished as follows.  One or more of the stub area's area
       border routers must advertise a default route into the stub area
       via summary-LSAs.  These summary defaults are flooded throughout
       the stub area, but no further.  (For this reason these defaults
       pertain only to the particular stub area).  These summary
       default routes will be used for any destination that is not



Moy                         Standards Track                    [Page 37]

RFC 2328                     OSPF Version 2                   April 1998


       explicitly reachable by an intra-area or inter-area path (i.e.,
       AS external destinations).

       An area can be configured as a stub when there is a single exit
       point from the area, or when the choice of exit point need not
       be made on a per-external-destination basis.  For example, Area
       3 in Figure 6 could be configured as a stub area, because all
       external traffic must travel though its single area border
       router RT11.  If Area 3 were configured as a stub, Router RT11
       would advertise a default route for distribution inside Area 3
       (in a summary-LSA), instead of flooding the AS-external-LSAs for
       Networks N12-N15 into/throughout the area.

       The OSPF protocol ensures that all routers belonging to an area
       agree on whether the area has been configured as a stub.  This
       guarantees that no confusion will arise in the flooding of AS-
       external-LSAs.

       There are a couple of restrictions on the use of stub areas.
       Virtual links cannot be configured through stub areas.  In
       addition, AS boundary routers cannot be placed internal to stub
       areas.


   3.7.  Partitions of areas

       OSPF does not actively attempt to repair area partitions.  When
       an area becomes partitioned, each component simply becomes a
       separate area.  The backbone then performs routing between the
       new areas.  Some destinations reachable via intra-area routing
       before the partition will now require inter-area routing.

       However, in order to maintain full routing after the partition,
       an address range must not be split across multiple components of
       the area partition. Also, the backbone itself must not
       partition.  If it does, parts of the Autonomous System will
       become unreachable.  Backbone partitions can be repaired by
       configuring virtual links (see Section 15).

       Another way to think about area partitions is to look at the
       Autonomous System graph that was introduced in Section 2.  Area
       IDs can be viewed as colors for the graph's edges.[1] Each edge



Moy                         Standards Track                    [Page 38]

RFC 2328                     OSPF Version 2                   April 1998


       of the graph connects to a network, or is itself a point-to-
       point network.  In either case, the edge is colored with the
       network's Area ID.

       A group of edges, all having the same color, and interconnected
       by vertices, represents an area.  If the topology of the
       Autonomous System is intact, the graph will have several regions
       of color, each color being a distinct Area ID.

       When the AS topology changes, one of the areas may become
       partitioned.  The graph of the AS will then have multiple
       regions of the same color (Area ID).  The routing in the
       Autonomous System will continue to function as long as these
       regions of same color are connected by the single backbone
       region.






























Moy                         Standards Track                    [Page 39]

RFC 2328                     OSPF Version 2                   April 1998


4.  Functional Summary

   A separate copy of OSPF's basic routing algorithm runs in each area.
   Routers having interfaces to multiple areas run multiple copies of
   the algorithm.  A brief summary of the routing algorithm follows.

   When a router starts, it first initializes the routing protocol data
   structures.  The router then waits for indications from the lower-
   level protocols that its interfaces are functional.

   A router then uses the OSPF's Hello Protocol to acquire neighbors.
   The router sends Hello packets to its neighbors, and in turn
   receives their Hello packets.  On broadcast and point-to-point
   networks, the router dynamically detects its neighboring routers by
   sending its Hello packets to the multicast address AllSPFRouters.
   On non-broadcast networks, some configuration information may be
   necessary in order to discover neighbors.  On broadcast and NBMA
   networks the Hello Protocol also elects a Designated router for the
   network.

   The router will attempt to form adjacencies with some of its newly
   acquired neighbors.  Link-state databases are synchronized between
   pairs of adjacent routers.  On broadcast and NBMA networks, the
   Designated Router determines which routers should become adjacent.

   Adjacencies control the distribution of routing information.
   Routing updates are sent and received only on adjacencies.

   A router periodically advertises its state, which is also called
   link state.  Link state is also advertised when a router's state
   changes.  A router's adjacencies are reflected in the contents of
   its LSAs.  This relationship between adjacencies and link state
   allows the protocol to detect dead routers in a timely fashion.

   LSAs are flooded throughout the area.  The flooding algorithm is
   reliable, ensuring that all routers in an area have exactly the same
   link-state database.  This database consists of the collection of
   LSAs originated by each router belonging to the area.  From this
   database each router calculates a shortest-path tree, with itself as
   root.  This shortest-path tree in turn yields a routing table for
   the protocol.




Moy                         Standards Track                    [Page 40]

RFC 2328                     OSPF Version 2                   April 1998


   4.1.  Inter-area routing

       The previous section described the operation of the protocol
       within a single area.  For intra-area routing, no other routing
       information is pertinent.  In order to be able to route to
       destinations outside of the area, the area border routers inject
       additional routing information into the area.  This additional
       information is a distillation of the rest of the Autonomous
       System's topology.

       This distillation is accomplished as follows: Each area border
       router is by definition connected to the backbone.  Each area
       border router summarizes the topology of its attached non-
       backbone areas for transmission on the backbone, and hence to
       all other area border routers.  An area border router then has
       complete topological information concerning the backbone, and
       the area summaries from each of the other area border routers.
       From this information, the router calculates paths to all
       inter-area destinations.  The router then advertises these paths
       into its attached areas.  This enables the area's internal
       routers to pick the best exit router when forwarding traffic
       inter-area destinations.


   4.2.  AS external routes

       Routers that have information regarding other Autonomous Systems
       can flood this information throughout the AS.  This external
       routing information is distributed verbatim to every
       participating router.  There is one exception: external routing
       information is not flooded into "stub" areas (see Section 3.6).

       To utilize external routing information, the path to all routers
       advertising external information must be known throughout the AS
       (excepting the stub areas).  For that reason, the locations of
       these AS boundary routers are summarized by the (non-stub) area
       border routers.








Moy                         Standards Track                    [Page 41]

RFC 2328                     OSPF Version 2                   April 1998


   4.3.  Routing protocol packets

       The OSPF protocol runs directly over IP, using IP protocol 89.
       OSPF does not provide any explicit fragmentation/reassembly
       support.  When fragmentation is necessary, IP
       fragmentation/reassembly is used.  OSPF protocol packets have
       been designed so that large protocol packets can generally be
       split into several smaller protocol packets.  This practice is
       recommended; IP fragmentation should be avoided whenever
       possible.

       Routing protocol packets should always be sent with the IP TOS
       field set to 0.  If at all possible, routing protocol packets
       should be given preference over regular IP data traffic, both
       when being sent and received.  As an aid to accomplishing this,
       OSPF protocol packets should have their IP precedence field set
       to the value Internetwork Control (see [Ref5]).

       All OSPF protocol packets share a common protocol header that is
       described in Appendix A.  The OSPF packet types are listed below
       in Table 8.  Their formats are also described in Appendix A.



            Type   Packet  name           Protocol  function
            __________________________________________________________
            1      Hello                  Discover/maintain  neighbors
            2      Database Description   Summarize database contents
            3      Link State Request     Database download
            4      Link State Update      Database update
            5      Link State Ack         Flooding acknowledgment


                           Table 8: OSPF packet types.


       OSPF's Hello protocol uses Hello packets to discover and
       maintain neighbor relationships.  The Database Description and
       Link State Request packets are used in the forming of
       adjacencies.  OSPF's reliable update mechanism is implemented by
       the Link State Update and Link State Acknowledgment packets.




Moy                         Standards Track                    [Page 42]

RFC 2328                     OSPF Version 2                   April 1998


       Each Link State Update packet carries a set of new link state
       advertisements (LSAs) one hop further away from their point of
       origination.  A single Link State Update packet may contain the
       LSAs of several routers.  Each LSA is tagged with the ID of the
       originating router and a checksum of its link state contents.
       Each LSA also has a type field; the different types of OSPF LSAs
       are listed below in Table 9.

       OSPF routing packets (with the exception of Hellos) are sent
       only over adjacencies.  This means that all OSPF protocol
       packets travel a single IP hop, except those that are sent over
       virtual adjacencies.  The IP source address of an OSPF protocol
       packet is one end of a router adjacency, and the IP destination
       address is either the other end of the adjacency or an IP
       multicast address.


   4.4.  Basic implementation requirements

       An implementation of OSPF requires the following pieces of
       system support:


       Timers
           Two different kind of timers are required.  The first kind,
           called "single shot timers", fire once and cause a protocol
           event to be processed.  The second kind, called "interval
           timers", fire at continuous intervals.  These are used for
           the sending of packets at regular intervals.  A good example
           of this is the regular broadcast of Hello packets. The
           granularity of both kinds of timers is one second.

           Interval timers should be implemented to avoid drift.  In
           some router implementations, packet processing can affect
           timer execution.  When multiple routers are attached to a
           single network, all doing broadcasts, this can lead to the
           synchronization of routing packets (which should be
           avoided).  If timers cannot be implemented to avoid drift,
           small random amounts should be added to/subtracted from the
           interval timer at each firing.





Moy                         Standards Track                    [Page 43]

RFC 2328                     OSPF Version 2                   April 1998




       LS     LSA                LSA description
       type   name
       ________________________________________________________
       1      Router-LSAs        Originated by all routers.
                                 This LSA describes
                                 the collected states of the
                                 router's interfaces to an
                                 area. Flooded throughout a
                                 single area only.
       ________________________________________________________
       2      Network-LSAs       Originated for broadcast
                                 and NBMA networks by
                                 the Designated Router. This
                                 LSA contains the
                                 list of routers connected
                                 to the network. Flooded
                                 throughout a single area only.
       ________________________________________________________
       3,4    Summary-LSAs       Originated by area border
                                 routers, and flooded through-
                                 out the LSA's associated
                                 area. Each summary-LSA
                                 describes a route to a
                                 destination outside the area,
                                 yet still inside the AS
                                 (i.e., an inter-area route).
                                 Type 3 summary-LSAs describe
                                 routes to networks. Type 4
                                 summary-LSAs describe
                                 routes to AS boundary routers.
       ________________________________________________________
       5      AS-external-LSAs   Originated by AS boundary
                                 routers, and flooded through-
                                 out the AS. Each
                                 AS-external-LSA describes
                                 a route to a destination in
                                 another Autonomous System.
                                 Default routes for the AS can
                                 also be described by
                                 AS-external-LSAs.



Moy                         Standards Track                    [Page 44]

RFC 2328                     OSPF Version 2                   April 1998


           Table 9: OSPF link state advertisements (LSAs).



       IP multicast
           Certain OSPF packets take the form of IP multicast
           datagrams.  Support for receiving and sending IP multicast
           datagrams, along with the appropriate lower-level protocol
           support, is required.  The IP multicast datagrams used by
           OSPF never travel more than one hop. For this reason, the
           ability to forward IP multicast datagrams is not required.
           For information on IP multicast, see [Ref7].

       Variable-length subnet support
           The router's IP protocol support must include the ability to
           divide a single IP class A, B, or C network number into many
           subnets of various sizes.  This is commonly called
           variable-length subnetting; see Section 3.5 for details.

       IP supernetting support
           The router's IP protocol support must include the ability to
           aggregate contiguous collections of IP class A, B, and C
           networks into larger quantities called supernets.
           Supernetting has been proposed as one way to improve the
           scaling of IP routing in the worldwide Internet. For more
           information on IP supernetting, see [Ref10].

       Lower-level protocol support
           The lower level protocols referred to here are the network
           access protocols, such as the Ethernet data link layer.
           Indications must be passed from these protocols to OSPF as
           the network interface goes up and down.  For example, on an
           ethernet it would be valuable to know when the ethernet
           transceiver cable becomes unplugged.

       Non-broadcast lower-level protocol support
           On non-broadcast networks, the OSPF Hello Protocol can be
           aided by providing an indication when an attempt is made to
           send a packet to a dead or non-existent router.  For
           example, on an X.25 PDN a dead neighboring router may be





Moy                         Standards Track                    [Page 45]

RFC 2328                     OSPF Version 2                   April 1998


           indicated by the reception of a X.25 clear with an
           appropriate cause and diagnostic, and this information would
           be passed to OSPF.

       List manipulation primitives
           Much of the OSPF functionality is described in terms of its
           operation on lists of LSAs.  For example, the collection of
           LSAs that will be retransmitted to an adjacent router until
           acknowledged are described as a list.  Any particular LSA
           may be on many such lists.  An OSPF implementation needs to
           be able to manipulate these lists, adding and deleting
           constituent LSAs as necessary.

       Tasking support
           Certain procedures described in this specification invoke
           other procedures.  At times, these other procedures should
           be executed in-line, that is, before the current procedure
           is finished.  This is indicated in the text by instructions
           to execute a procedure.  At other times, the other
           procedures are to be executed only when the current
           procedure has finished.  This is indicated by instructions
           to schedule a task.


   4.5.  Optional OSPF capabilities

       The OSPF protocol defines several optional capabilities.  A
       router indicates the optional capabilities that it supports in
       its OSPF Hello packets, Database Description packets and in its
       LSAs.  This enables routers supporting a mix of optional
       capabilities to coexist in a single Autonomous System.

       Some capabilities must be supported by all routers attached to a
       specific area.  In this case, a router will not accept a
       neighbor's Hello Packet unless there is a match in reported
       capabilities (i.e., a capability mismatch prevents a neighbor
       relationship from forming).  An example of this is the
       ExternalRoutingCapability (see below).

       Other capabilities can be negotiated during the Database
       Exchange process.  This is accomplished by specifying the
       optional capabilities in Database Description packets.  A



Moy                         Standards Track                    [Page 46]

RFC 2328                     OSPF Version 2                   April 1998


       capability mismatch with a neighbor in this case will result in
       only a subset of the link state database being exchanged between
       the two neighbors.

       The routing table build process can also be affected by the
       presence/absence of optional capabilities.  For example, since
       the optional capabilities are reported in LSAs, routers
       incapable of certain functions can be avoided when building the
       shortest path tree.

       The OSPF optional capabilities defined in this memo are listed
       below.  See Section A.2 for more information.


       ExternalRoutingCapability
           Entire OSPF areas can be configured as "stubs" (see Section
           3.6).  AS-external-LSAs will not be flooded into stub areas.
           This capability is represented by the E-bit in the OSPF
           Options field (see Section A.2).  In order to ensure
           consistent configuration of stub areas, all routers
           interfacing to such an area must have the E-bit clear in
           their Hello packets (see Sections 9.5 and 10.5).


5.  Protocol Data Structures

   The OSPF protocol is described herein in terms of its operation on
   various protocol data structures.  The following list comprises the
   top-level OSPF data structures.  Any initialization that needs to be
   done is noted.  OSPF areas, interfaces and neighbors also have
   associated data structures that are described later in this
   specification.

   Router ID
       A 32-bit number that uniquely identifies this router in the AS.
       One possible implementation strategy would be to use the
       smallest IP interface address belonging to the router. If a
       router's OSPF Router ID is changed, the router's OSPF software
       should be restarted before the new Router ID takes effect.  In
       this case the router should flush its self-originated LSAs from
       the routing domain (see Section 14.1) before restarting, or they
       will persist for up to MaxAge minutes.



Moy                         Standards Track                    [Page 47]

RFC 2328                     OSPF Version 2                   April 1998


   Area structures
       Each one of the areas to which the router is connected has its
       own data structure.  This data structure describes the working
       of the basic OSPF algorithm.  Remember that each area runs a
       separate copy of the basic OSPF algorithm.

   Backbone (area) structure
       The OSPF backbone area is responsible for the dissemination of
       inter-area routing information.

   Virtual links configured
       The virtual links configured with this router as one endpoint.
       In order to have configured virtual links, the router itself
       must be an area border router.  Virtual links are identified by
       the Router ID of the other endpoint -- which is another area
       border router.  These two endpoint routers must be attached to a
       common area, called the virtual link's Transit area.  Virtual
       links are part of the backbone, and behave as if they were
       unnumbered point-to-point networks between the two routers.  A
       virtual link uses the intra-area routing of its Transit area to
       forward packets.  Virtual links are brought up and down through
       the building of the shortest-path trees for the Transit area.

   List of external routes
       These are routes to destinations external to the Autonomous
       System, that have been gained either through direct experience
       with another routing protocol (such as BGP), or through
       configuration information, or through a combination of the two
       (e.g., dynamic external information to be advertised by OSPF
       with configured metric). Any router having these external routes
       is called an AS boundary router.  These routes are advertised by
       the router into the OSPF routing domain via AS-external-LSAs.

   List of AS-external-LSAs
       Part of the link-state database.  These have originated from the
       AS boundary routers.  They comprise routes to destinations
       external to the Autonomous System.  Note that, if the router is
       itself an AS boundary router, some of these AS-external-LSAs
       have been self-originated.






Moy                         Standards Track                    [Page 48]

RFC 2328                     OSPF Version 2                   April 1998


   The routing table
       Derived from the link-state database.  Each entry in the routing
       table is indexed by a destination, and contains the
       destination's cost and a set of paths to use in forwarding
       packets to the destination. A path is described by its type and
       next hop.  For more information, see Section 11.

   Figure 9 shows the collection of data structures present in a
   typical router.  The router pictured is RT10, from the map in Figure
   6.  Note that Router RT10 has a virtual link configured to Router
   RT11, with Area 2 as the link's Transit area.  This is indicated by
   the dashed line in Figure 9.  When the virtual link becomes active,
   through the building of the shortest path tree for Area 2, it
   becomes an interface to the backbone (see the two backbone
   interfaces depicted in Figure 9).

6.  The Area Data Structure

   The area data structure contains all the information used to run the
   basic OSPF routing algorithm. Each area maintains its own link-state
   database. A network belongs to a single area, and a router interface
   connects to a single area. Each router adjacency also belongs to a
   single area.

   The OSPF backbone is the special OSPF area responsible for
   disseminating inter-area routing information.

   The area link-state database consists of the collection of router-
   LSAs, network-LSAs and summary-LSAs that have originated from the
   area's routers.  This information is flooded throughout a single
   area only.  The list of AS-external-LSAs (see Section 5) is also
   considered to be part of each area's link-state database.

   Area ID
       A 32-bit number identifying the area. The Area ID of 0.0.0.0 is
       reserved for the backbone.

   List of area address ranges
       In order to aggregate routing information at area boundaries,
       area address ranges can be employed. Each address range is
       specified by an [address,mask] pair and a status indication of
       either Advertise or DoNotAdvertise (see Section 12.4.3).



Moy                         Standards Track                    [Page 49]

RFC 2328                     OSPF Version 2                   April 1998





                             +----+
                             |RT10|------+
                             +----+       \+-------------+
                            /      \       |Routing Table|
                           /        \      +-------------+
                          /          \
             +------+    /            \    +--------+
             |Area 2|---+              +---|Backbone|
             +------+***********+          +--------+
            /        \           *        /          \
           /          \           *      /            \
      +---------+  +---------+    +------------+       +------------+
      |Interface|  |Interface|    |Virtual Link|       |Interface Ib|
      |  to N6  |  |  to N8  |    |   to RT11  |       +------------+
      +---------+  +---------+    +------------+             |
          /  \           |               |                   |
         /    \          |               |                   |
  +--------+ +--------+  |        +-------------+      +------------+
  |Neighbor| |Neighbor|  |        |Neighbor RT11|      |Neighbor RT6|
  |  RT8   | |  RT7   |  |        +-------------+      +------------+
  +--------+ +--------+  |
                         |
                    +-------------+
                    |Neighbor RT11|
                    +-------------+


               Figure 9: Router RT10's Data structures

   Associated router interfaces
       This router's interfaces connecting to the area.  A router
       interface belongs to one and only one area (or the backbone).
       For the backbone area this list includes all the virtual links.
       A virtual link is identified by the Router ID of its other
       endpoint; its cost is the cost of the shortest intra-area path
       through the Transit area that exists between the two routers.






Moy                         Standards Track                    [Page 50]

RFC 2328                     OSPF Version 2                   April 1998


   List of router-LSAs
       A router-LSA is generated by each router in the area.  It
       describes the state of the router's interfaces to the area.

   List of network-LSAs
       One network-LSA is generated for each transit broadcast and NBMA
       network in the area.  A network-LSA describes the set of routers
       currently connected to the network.

   List of summary-LSAs
       Summary-LSAs originate from the area's area border routers.
       They describe routes to destinations internal to the Autonomous
       System, yet external to the area (i.e., inter-area
       destinations).

   Shortest-path tree
       The shortest-path tree for the area, with this router itself as
       root.  Derived from the collected router-LSAs and network-LSAs
       by the Dijkstra algorithm (see Section 16.1).

   TransitCapability
       This parameter indicates whether the area can carry data traffic
       that neither originates nor terminates in the area itself. This
       parameter is calculated when the area's shortest-path tree is
       built (see Section 16.1, where TransitCapability is set to TRUE
       if and only if there are one or more fully adjacent virtual
       links using the area as Transit area), and is used as an input
       to a subsequent step of the routing table build process (see
       Section 16.3). When an area's TransitCapability is set to TRUE,
       the area is said to be a "transit area".

   ExternalRoutingCapability
       Whether AS-external-LSAs will be flooded into/throughout the
       area.  This is a configurable parameter.  If AS-external-LSAs
       are excluded from the area, the area is called a "stub". Within
       stub areas, routing to AS external destinations will be based
       solely on a default summary route.  The backbone cannot be
       configured as a stub area.  Also, virtual links cannot be
       configured through stub areas.  For more information, see
       Section 3.6.





Moy                         Standards Track                    [Page 51]

RFC 2328                     OSPF Version 2                   April 1998


   StubDefaultCost
       If the area has been configured as a stub area, and the router
       itself is an area border router, then the StubDefaultCost
       indicates the cost of the default summary-LSA that the router
       should advertise into the area. See Section 12.4.3 for more
       information.


   Unless otherwise specified, the remaining sections of this document
   refer to the operation of the OSPF protocol within a single area.


7.  Bringing Up Adjacencies

   OSPF creates adjacencies between neighboring routers for the purpose
   of exchanging routing information.  Not every two neighboring
   routers will become adjacent.  This section covers the generalities
   involved in creating adjacencies.  For further details consult
   Section 10.


   7.1.  The Hello Protocol

       The Hello Protocol is responsible for establishing and
       maintaining neighbor relationships.  It also ensures that
       communication between neighbors is bidirectional.  Hello packets
       are sent periodically out all router interfaces.  Bidirectional
       communication is indicated when the router sees itself listed in
       the neighbor's Hello Packet.  On broadcast and NBMA networks,
       the Hello Protocol elects a Designated Router for the network.

       The Hello Protocol works differently on broadcast networks, NBMA
       networks and Point-to-MultiPoint networks.  On broadcast
       networks, each router advertises itself by periodically
       multicasting Hello Packets.  This allows neighbors to be
       discovered dynamically.  These Hello Packets contain the
       router's view of the Designated Router's identity, and the list
       of routers whose Hello Packets have been seen recently.

       On NBMA networks some configuration information may be necessary
       for the operation of the Hello Protocol.  Each router that may
       potentially become Designated Router has a list of all other



Moy                         Standards Track                    [Page 52]

RFC 2328                     OSPF Version 2                   April 1998


       routers attached to the network.  A router, having Designated
       Router potential, sends Hello Packets to all other potential
       Designated Routers when its interface to the NBMA network first
       becomes operational.  This is an attempt to find the Designated
       Router for the network.  If the router itself is elected
       Designated Router, it begins sending Hello Packets to all other
       routers attached to the network.

       On Point-to-MultiPoint networks, a router sends Hello Packets to
       all neighbors with which it can communicate directly. These
       neighbors may be discovered dynamically through a protocol such
       as Inverse ARP (see [Ref14]), or they may be configured.

       After a neighbor has been discovered, bidirectional
       communication ensured, and (if on a broadcast or NBMA network) a
       Designated Router elected, a decision is made regarding whether
       or not an adjacency should be formed with the neighbor (see
       Section 10.4). If an adjacency is to be formed, the first step
       is to synchronize the neighbors' link-state databases.  This is
       covered in the next section.


   7.2.  The Synchronization of Databases

       In a link-state routing algorithm, it is very important for all
       routers' link-state databases to stay synchronized.  OSPF
       simplifies this by requiring only adjacent routers to remain
       synchronized.  The synchronization process begins as soon as the
       routers attempt to bring up the adjacency.  Each router
       describes its database by sending a sequence of Database
       Description packets to its neighbor.  Each Database Description
       Packet describes a set of LSAs belonging to the router's
       database.  When the neighbor sees an LSA that is more recent
       than its own database copy, it makes a note that this newer LSA
       should be requested.

       This sending and receiving of Database Description packets is
       called the "Database Exchange Process".  During this process,
       the two routers form a master/slave relationship.  Each Database
       Description Packet has a sequence number.  Database Description
       Packets sent by the master (polls) are acknowledged by the slave
       through echoing of the sequence number.  Both polls and their



Moy                         Standards Track                    [Page 53]

RFC 2328                     OSPF Version 2                   April 1998


       responses contain summaries of link state data.  The master is
       the only one allowed to retransmit Database Description Packets.
       It does so only at fixed intervals, the length of which is the
       configured per-interface constant RxmtInterval.

       Each Database Description contains an indication that there are
       more packets to follow --- the M-bit.  The Database Exchange
       Process is over when a router has received and sent Database
       Description Packets with the M-bit off.

       During and after the Database Exchange Process, each router has
       a list of those LSAs for which the neighbor has more up-to-date
       instances.  These LSAs are requested in Link State Request
       Packets.  Link State Request packets that are not satisfied are
       retransmitted at fixed intervals of time RxmtInterval.  When the
       Database Description Process has completed and all Link State
       Requests have been satisfied, the databases are deemed
       synchronized and the routers are marked fully adjacent.  At this
       time the adjacency is fully functional and is advertised in the
       two routers' router-LSAs.

       The adjacency is used by the flooding procedure as soon as the
       Database Exchange Process begins.  This simplifies database
       synchronization, and guarantees that it finishes in a
       predictable period of time.


   7.3.  The Designated Router

       Every broadcast and NBMA network has a Designated Router.  The
       Designated Router performs two main functions for the routing
       protocol:

       o   The Designated Router originates a network-LSA on behalf of
           the network.  This LSA lists the set of routers (including
           the Designated Router itself) currently attached to the
           network.  The Link State ID for this LSA (see Section
           12.1.4) is the IP interface address of the Designated
           Router.  The IP network number can then be obtained by using
           the network's subnet/network mask.





Moy                         Standards Track                    [Page 54]

RFC 2328                     OSPF Version 2                   April 1998


       o   The Designated Router becomes adjacent to all other routers
           on the network.  Since the link state databases are
           synchronized across adjacencies (through adjacency bring-up
           and then the flooding procedure), the Designated Router
           plays a central part in the synchronization process.


       The Designated Router is elected by the Hello Protocol.  A
       router's Hello Packet contains its Router Priority, which is
       configurable on a per-interface basis.  In general, when a
       router's interface to a network first becomes functional, it
       checks to see whether there is currently a Designated Router for
       the network.  If there is, it accepts that Designated Router,
       regardless of its Router Priority.  (This makes it harder to
       predict the identity of the Designated Router, but ensures that
       the Designated Router changes less often.  See below.)
       Otherwise, the router itself becomes Designated Router if it has
       the highest Router Priority on the network.  A more detailed
       (and more accurate) description of Designated Router election is
       presented in Section 9.4.

       The Designated Router is the endpoint of many adjacencies.  In
       order to optimize the flooding procedure on broadcast networks,
       the Designated Router multicasts its Link State Update Packets
       to the address AllSPFRouters, rather than sending separate
       packets over each adjacency.

       Section 2 of this document discusses the directed graph
       representation of an area.  Router nodes are labelled with their
       Router ID.  Transit network nodes are actually labelled with the
       IP address of their Designated Router.  It follows that when the
       Designated Router changes, it appears as if the network node on
       the graph is replaced by an entirely new node.  This will cause
       the network and all its attached routers to originate new LSAs.
       Until the link-state databases again converge, some temporary
       loss of connectivity may result.  This may result in ICMP
       unreachable messages being sent in response to data traffic.
       For that reason, the Designated Router should change only
       infrequently.  Router Priorities should be configured so that
       the most dependable router on a network eventually becomes
       Designated Router.




Moy                         Standards Track                    [Page 55]

RFC 2328                     OSPF Version 2                   April 1998


   7.4.  The Backup Designated Router

       In order to make the transition to a new Designated Router
       smoother, there is a Backup Designated Router for each broadcast
       and NBMA network.  The Backup Designated Router is also adjacent
       to all routers on the network, and becomes Designated Router
       when the previous Designated Router fails.  If there were no
       Backup Designated Router, when a new Designated Router became
       necessary, new adjacencies would have to be formed between the
       new Designated Router and all other routers attached to the
       network.  Part of the adjacency forming process is the
       synchronizing of link-state databases, which can potentially
       take quite a long time.  During this time, the network would not
       be available for transit data traffic.  The Backup Designated
       obviates the need to form these adjacencies, since they already
       exist.  This means the period of disruption in transit traffic
       lasts only as long as it takes to flood the new LSAs (which
       announce the new Designated Router).

       The Backup Designated Router does not generate a network-LSA for
       the network.  (If it did, the transition to a new Designated
       Router would be even faster.  However, this is a tradeoff
       between database size and speed of convergence when the
       Designated Router disappears.)

       The Backup Designated Router is also elected by the Hello
       Protocol.  Each Hello Packet has a field that specifies the
       Backup Designated Router for the network.

       In some steps of the flooding procedure, the Backup Designated
       Router plays a passive role, letting the Designated Router do
       more of the work.  This cuts down on the amount of local routing
       traffic.  See Section 13.3 for more information.


   7.5.  The graph of adjacencies

       An adjacency is bound to the network that the two routers have
       in common.  If two routers have multiple networks in common,
       they may have multiple adjacencies between them.





Moy                         Standards Track                    [Page 56]

RFC 2328                     OSPF Version 2                   April 1998


       One can picture the collection of adjacencies on a network as
       forming an undirected graph.  The vertices consist of routers,
       with an edge joining two routers if they are adjacent.  The
       graph of adjacencies describes the flow of routing protocol
       packets, and in particular Link State Update Packets, through
       the Autonomous System.

       Two graphs are possible, depending on whether a Designated
       Router is elected for the network.  On physical point-to-point
       networks, Point-to-MultiPoint networks and virtual links,
       neighboring routers become adjacent whenever they can
       communicate directly.  In contrast, on broadcast and NBMA
       networks only the Designated Router and the Backup Designated
       Router become adjacent to all other routers attached to the
       network.



         +---+            +---+
         |RT1|------------|RT2|            o---------------o
         +---+    N1      +---+           RT1             RT2



                                                RT7
                                                 o---------+
           +---+   +---+   +---+                /|\        |
           |RT7|   |RT3|   |RT4|               / | \       |
           +---+   +---+   +---+              /  |  \      |
             |       |       |               /   |   \     |
        +-----------------------+        RT5o RT6o    oRT4 |
                 |       |     N2            *   *   *     |
               +---+   +---+                  *  *  *      |
               |RT5|   |RT6|                   * * *       |
               +---+   +---+                    ***        |
                                                 o---------+
                                                RT3


                 Figure 10: The graph of adjacencies





Moy                         Standards Track                    [Page 57]

RFC 2328                     OSPF Version 2                   April 1998


       These graphs are shown in Figure 10.  It is assumed that Router
       RT7 has become the Designated Router, and Router RT3 the Backup
       Designated Router, for the Network N2.  The Backup Designated
       Router performs a lesser function during the flooding procedure
       than the Designated Router (see Section 13.3).  This is the
       reason for the dashed lines connecting the Backup Designated
       Router RT3.


8.  Protocol Packet Processing

   This section discusses the general processing of OSPF routing
   protocol packets.  It is very important that the router link-state
   databases remain synchronized.  For this reason, routing protocol
   packets should get preferential treatment over ordinary data
   packets, both in sending and receiving.

   Routing protocol packets are sent along adjacencies only (with the
   exception of Hello packets, which are used to discover the
   adjacencies).  This means that all routing protocol packets travel a
   single IP hop, except those sent over virtual links.

   All routing protocol packets begin with a standard header.  The
   sections below provide details on how to fill in and verify this
   standard header.  Then, for each packet type, the section giving
   more details on that particular packet type's processing is listed.

   8.1.  Sending protocol packets

       When a router sends a routing protocol packet, it fills in the
       fields of the standard OSPF packet header as follows.  For more
       details on the header format consult Section A.3.1:

       Version #
           Set to 2, the version number of the protocol as documented
           in this specification.

       Packet type
           The type of OSPF packet, such as Link state Update or Hello
           Packet.





Moy                         Standards Track                    [Page 58]

RFC 2328                     OSPF Version 2                   April 1998


       Packet length
           The length of the entire OSPF packet in bytes, including the
           standard OSPF packet header.

       Router ID
           The identity of the router itself (who is originating the
           packet).

       Area ID
           The OSPF area that the packet is being sent into.

       Checksum
           The standard IP 16-bit one's complement checksum of the
           entire OSPF packet, excluding the 64-bit authentication
           field.  This checksum is calculated as part of the
           appropriate authentication procedure; for some OSPF
           authentication types, the checksum calculation is omitted.
           See Section D.4 for details.

       AuType and Authentication
           Each OSPF packet exchange is authenticated.  Authentication
           types are assigned by the protocol and are documented in
           Appendix D.  A different authentication procedure can be
           used for each IP network/subnet.  Autype indicates the type
           of authentication procedure in use. The 64-bit
           authentication field is then for use by the chosen
           authentication procedure.  This procedure should be the last
           called when forming the packet to be sent. See Section D.4
           for details.


       The IP destination address for the packet is selected as
       follows.  On physical point-to-point networks, the IP
       destination is always set to the address AllSPFRouters.  On all
       other network types (including virtual links), the majority of
       OSPF packets are sent as unicasts, i.e., sent directly to the
       other end of the adjacency.  In this case, the IP destination is
       just the Neighbor IP address associated with the other end of
       the adjacency (see Section 10).  The only packets not sent as
       unicasts are on broadcast networks; on these networks Hello
       packets are sent to the multicast destination AllSPFRouters, the
       Designated Router and its Backup send both Link State Update



Moy                         Standards Track                    [Page 59]

RFC 2328                     OSPF Version 2                   April 1998


       Packets and Link State Acknowledgment Packets to the multicast
       address AllSPFRouters, while all other routers send both their
       Link State Update and Link State Acknowledgment Packets to the
       multicast address AllDRouters.

       Retransmissions of Link State Update packets are ALWAYS sent
       directly to the neighbor. On multi-access networks, this means
       that retransmissions should be sent to the neighbor's IP
       address.

       The IP source address should be set to the IP address of the
       sending interface.  Interfaces to unnumbered point-to-point
       networks have no associated IP address.  On these interfaces,
       the IP source should be set to any of the other IP addresses
       belonging to the router.  For this reason, there must be at
       least one IP address assigned to the router.[2] Note that, for
       most purposes, virtual links act precisely the same as
       unnumbered point-to-point networks.  However, each virtual link
       does have an IP interface address (discovered during the routing
       table build process) which is used as the IP source when sending
       packets over the virtual link.

       For more information on the format of specific OSPF packet
       types, consult the sections listed in Table 10.



            Type   Packet name            detailed section (transmit)
            _________________________________________________________
            1      Hello                  Section  9.5
            2      Database description   Section 10.8
            3      Link state request     Section 10.9
            4      Link state update      Section 13.3
            5      Link state ack         Section 13.5


     Table 10: Sections describing OSPF protocol packet transmission.








Moy                         Standards Track                    [Page 60]

RFC 2328                     OSPF Version 2                   April 1998


   8.2.  Receiving protocol packets

       Whenever a protocol packet is received by the router it is
       marked with the interface it was received on.  For routers that
       have virtual links configured, it may not be immediately obvious
       which interface to associate the packet with.  For example,
       consider the Router RT11 depicted in Figure 6.  If RT11 receives
       an OSPF protocol packet on its interface to Network N8, it may
       want to associate the packet with the interface to Area 2, or
       with the virtual link to Router RT10 (which is part of the
       backbone).  In the following, we assume that the packet is
       initially associated with the non-virtual  link.[3]

       In order for the packet to be accepted at the IP level, it must
       pass a number of tests, even before the packet is passed to OSPF
       for processing:


       o   The IP checksum must be correct.

       o   The packet's IP destination address must be the IP address
           of the receiving interface, or one of the IP multicast
           addresses AllSPFRouters or AllDRouters.

       o   The IP protocol specified must be OSPF (89).

       o   Locally originated packets should not be passed on to OSPF.
           That is, the source IP address should be examined to make
           sure this is not a multicast packet that the router itself
           generated.


       Next, the OSPF packet header is verified.  The fields specified
       in the header must match those configured for the receiving
       interface.  If they do not, the packet should be discarded:


       o   The version number field must specify protocol version 2.

       o   The Area ID found in the OSPF header must be verified.  If
           both of the following cases fail, the packet should be
           discarded.  The Area ID specified in the header must either:



Moy                         Standards Track                    [Page 61]

RFC 2328                     OSPF Version 2                   April 1998


           (1) Match the Area ID of the receiving interface.  In this
               case, the packet has been sent over a single hop.
               Therefore, the packet's IP source address is required to
               be on the same network as the receiving interface.  This
               can be verified by comparing the packet's IP source
               address to the interface's IP address, after masking
               both addresses with the interface mask.  This comparison
               should not be performed on point-to-point networks. On
               point-to-point networks, the interface addresses of each
               end of the link are assigned independently, if they are
               assigned at all.

           (2) Indicate the backbone.  In this case, the packet has
               been sent over a virtual link.  The receiving router
               must be an area border router, and the Router ID
               specified in the packet (the source router) must be the
               other end of a configured virtual link.  The receiving
               interface must also attach to the virtual link's
               configured Transit area.  If all of these checks
               succeed, the packet is accepted and is from now on
               associated with the virtual link (and the backbone
               area).

       o   Packets whose IP destination is AllDRouters should only be
           accepted if the state of the receiving interface is DR or
           Backup (see Section 9.1).

       o   The AuType specified in the packet must match the AuType
           specified for the associated area.

       o   The packet must be authenticated.  The authentication
           procedure is indicated by the setting of AuType (see
           Appendix D).  The authentication procedure may use one or
           more Authentication keys, which can be configured on a per-
           interface basis.  The authentication procedure may also
           verify the checksum field in the OSPF packet header (which,
           when used, is set to the standard IP 16-bit one's complement
           checksum of the OSPF packet's contents after excluding the
           64-bit authentication field).  If the authentication
           procedure fails, the packet should be discarded.





Moy                         Standards Track                    [Page 62]

RFC 2328                     OSPF Version 2                   April 1998


       If the packet type is Hello, it should then be further processed
       by the Hello Protocol (see Section 10.5).  All other packet
       types are sent/received only on adjacencies.  This means that
       the packet must have been sent by one of the router's active
       neighbors.  If the receiving interface connects to a broadcast
       network, Point-to-MultiPoint network or NBMA network the sender
       is identified by the IP source address found in the packet's IP
       header.  If the receiving interface connects to a point-to-point
       network or a virtual link, the sender is identified by the
       Router ID (source router) found in the packet's OSPF header.
       The data structure associated with the receiving interface
       contains the list of active neighbors.  Packets not matching any
       active neighbor are discarded.

       At this point all received protocol packets are associated with
       an active neighbor.  For the further input processing of
       specific packet types, consult the sections listed in Table 11.



             Type   Packet name            detailed section (receive)
             ________________________________________________________
             1      Hello                  Section 10.5
             2      Database description   Section 10.6
             3      Link state request     Section 10.7
             4      Link state update      Section 13
             5      Link state ack         Section 13.7


     Table 11: Sections describing OSPF protocol packet reception.



9.  The Interface Data Structure

   An OSPF interface is the connection between a router and a network.
   We assume a single OSPF interface to each attached network/subnet,
   although supporting multiple interfaces on a single network is
   considered in Appendix F. Each interface structure has at most one
   IP interface address.





Moy                         Standards Track                    [Page 63]

RFC 2328                     OSPF Version 2                   April 1998


   An OSPF interface can be considered to belong to the area that
   contains the attached network.  All routing protocol packets
   originated by the router over this interface are labelled with the
   interface's Area ID.  One or more router adjacencies may develop
   over an interface.  A router's LSAs reflect the state of its
   interfaces and their associated adjacencies.

   The following data items are associated with an interface.  Note
   that a number of these items are actually configuration for the
   attached network; such items must be the same for all routers
   connected to the network.

   Type
       The OSPF interface type is either point-to-point, broadcast,
       NBMA, Point-to-MultiPoint or virtual link.

   State
       The functional level of an interface.  State determines whether
       or not full adjacencies are allowed to form over the interface.
       State is also reflected in the router's LSAs.

   IP interface address
       The IP address associated with the interface.  This appears as
       the IP source address in all routing protocol packets originated
       over this interface.  Interfaces to unnumbered point-to-point
       networks do not have an associated IP address.

   IP interface mask
       Also referred to as the subnet mask, this indicates the portion
       of the IP interface address that identifies the attached
       network.  Masking the IP interface address with the IP interface
       mask yields the IP network number of the attached network.  On
       point-to-point networks and virtual links, the IP interface mask
       is not defined. On these networks, the link itself is not
       assigned an IP network number, and so the addresses of each side
       of the link are assigned independently, if they are assigned at
       all.

   Area ID
       The Area ID of the area to which the attached network belongs.
       All routing protocol packets originating from the interface are
       labelled with this Area ID.



Moy                         Standards Track                    [Page 64]

RFC 2328                     OSPF Version 2                   April 1998


   HelloInterval
       The length of time, in seconds, between the Hello packets that
       the router sends on the interface.  Advertised in Hello packets
       sent out this interface.

   RouterDeadInterval
       The number of seconds before the router's neighbors will declare
       it down, when they stop hearing the router's Hello Packets.
       Advertised in Hello packets sent out this interface.

   InfTransDelay
       The estimated number of seconds it takes to transmit a Link
       State Update Packet over this interface.  LSAs contained in the
       Link State Update packet will have their age incremented by this
       amount before transmission.  This value should take into account
       transmission and propagation delays; it must be greater than
       zero.

   Router Priority
       An 8-bit unsigned integer.  When two routers attached to a
       network both attempt to become Designated Router, the one with
       the highest Router Priority takes precedence.  A router whose
       Router Priority is set to 0 is ineligible to become Designated
       Router on the attached network.  Advertised in Hello packets
       sent out this interface.

   Hello Timer
       An interval timer that causes the interface to send a Hello
       packet.  This timer fires every HelloInterval seconds.  Note
       that on non-broadcast networks a separate Hello packet is sent
       to each qualified neighbor.

   Wait Timer
       A single shot timer that causes the interface to exit the
       Waiting state, and as a consequence select a Designated Router
       on the network.  The length of the timer is RouterDeadInterval
       seconds.

   List of neighboring routers
       The other routers attached to this network.  This list is formed
       by the Hello Protocol.  Adjacencies will be formed to some of




Moy                         Standards Track                    [Page 65]

RFC 2328                     OSPF Version 2                   April 1998


       these neighbors.  The set of adjacent neighbors can be
       determined by an examination of all of the neighbors' states.

   Designated Router
       The Designated Router selected for the attached network.  The
       Designated Router is selected on all broadcast and NBMA networks
       by the Hello Protocol.  Two pieces of identification are kept
       for the Designated Router: its Router ID and its IP interface
       address on the network.  The Designated Router advertises link
       state for the network; this network-LSA is labelled with the
       Designated Router's IP address.  The Designated Router is
       initialized to 0.0.0.0, which indicates the lack of a Designated
       Router.

   Backup Designated Router
       The Backup Designated Router is also selected on all broadcast
       and NBMA networks by the Hello Protocol.  All routers on the
       attached network become adjacent to both the Designated Router
       and the Backup Designated Router.  The Backup Designated Router
       becomes Designated Router when the current Designated Router
       fails.  The Backup Designated Router is initialized to 0.0.0.0,
       indicating the lack of a Backup Designated Router.

   Interface output cost(s)
       The cost of sending a data packet on the interface, expressed in
       the link state metric.  This is advertised as the link cost for
       this interface in the router-LSA. The cost of an interface must
       be greater than zero.

   RxmtInterval
       The number of seconds between LSA retransmissions, for
       adjacencies belonging to this interface.  Also used when
       retransmitting Database Description and Link State Request
       Packets.

   AuType
       The type of authentication used on the attached network/subnet.
       Authentication types are defined in Appendix D.  All OSPF packet
       exchanges are authenticated.  Different authentication schemes
       may be used on different networks/subnets.





Moy                         Standards Track                    [Page 66]

RFC 2328                     OSPF Version 2                   April 1998


   Authentication key
       This configured data allows the authentication procedure to
       generate and/or verify OSPF protocol packets.  The
       Authentication key can be configured on a per-interface basis.
       For example, if the AuType indicates simple password, the
       Authentication key would be a 64-bit clear password which is
       inserted into the OSPF packet header. If instead Autype
       indicates Cryptographic authentication, then the Authentication
       key is a shared secret which enables the generation/verification
       of message digests which are appended to the OSPF protocol
       packets. When Cryptographic authentication is used, multiple
       simultaneous keys are supported in order to achieve smooth key
       transition (see Section D.3).


   9.1.  Interface states

       The various states that router interfaces may attain is
       documented in this section.  The states are listed in order of
       progressing functionality.  For example, the inoperative state
       is listed first, followed by a list of intermediate states
       before the final, fully functional state is achieved.  The
       specification makes use of this ordering by sometimes making
       references such as "those interfaces in state greater than X".
       Figure 11 shows the graph of interface state changes.  The arcs
       of the graph are labelled with the event causing the state
       change.  These events are documented in Section 9.2.  The
       interface state machine is described in more detail in Section
       9.3.


       Down
           This is the initial interface state.  In this state, the
           lower-level protocols have indicated that the interface is
           unusable.  No protocol traffic at all will be sent or
           received on such a interface.  In this state, interface
           parameters should be set to their initial values.  All
           interface timers should be disabled, and there should be no
           adjacencies associated with the interface.

       Loopback
           In this state, the router's interface to the network is



Moy                         Standards Track                    [Page 67]

RFC 2328                     OSPF Version 2                   April 1998



                                 +----+   UnloopInd   +--------+
                                 |Down|<--------------|Loopback|
                                 +----+               +--------+
                                    |
                                    |InterfaceUp
                         +-------+  |               +--------------+
                         |Waiting|<-+-------------->|Point-to-point|
                         +-------+                  +--------------+
                             |
                    WaitTimer|BackupSeen
                             |
                             |
                             |   NeighborChange
         +------+           +-+<---------------- +-------+
         |Backup|<----------|?|----------------->|DROther|
         +------+---------->+-+<-----+           +-------+
                   Neighbor  |       |
                   Change    |       |Neighbor
                             |       |Change
                             |     +--+
                             +---->|DR|
                                   +--+

                     Figure 11: Interface State changes

                In addition to the state transitions pictured,
                Event InterfaceDown always forces Down State, and
                Event LoopInd always forces Loopback State


           looped back.  The interface may be looped back in hardware
           or software.  The interface will be unavailable for regular
           data traffic.  However, it may still be desirable to gain
           information on the quality of this interface, either through
           sending ICMP pings to the interface or through something
           like a bit error test.  For this reason, IP packets may
           still be addressed to an interface in Loopback state.  To







Moy                         Standards Track                    [Page 68]

RFC 2328                     OSPF Version 2                   April 1998


           facilitate this, such interfaces are advertised in router-
           LSAs as single host routes, whose destination is the IP
           interface address.[4]

       Waiting
           In this state, the router is trying to determine the
           identity of the (Backup) Designated Router for the network.
           To do this, the router monitors the Hello Packets it
           receives.  The router is not allowed to elect a Backup
           Designated Router nor a Designated Router until it
           transitions out of Waiting state.  This prevents unnecessary
           changes of (Backup) Designated Router.

       Point-to-point
           In this state, the interface is operational, and connects
           either to a physical point-to-point network or to a virtual
           link.  Upon entering this state, the router attempts to form
           an adjacency with the neighboring router.  Hello Packets are
           sent to the neighbor every HelloInterval seconds.

       DR Other
           The interface is to a broadcast or NBMA network on which
           another router has been selected to be the Designated
           Router.  In this state, the router itself has not been
           selected Backup Designated Router either.  The router forms
           adjacencies to both the Designated Router and the Backup
           Designated Router (if they exist).

       Backup
           In this state, the router itself is the Backup Designated
           Router on the attached network.  It will be promoted to
           Designated Router when the present Designated Router fails.
           The router establishes adjacencies to all other routers
           attached to the network.  The Backup Designated Router
           performs slightly different functions during the Flooding
           Procedure, as compared to the Designated Router (see Section
           13.3).  See Section 7.4 for more details on the functions
           performed by the Backup Designated Router.

       DR  In this state, this router itself is the Designated Router
           on the attached network.  Adjacencies are established to all
           other routers attached to the network.  The router must also



Moy                         Standards Track                    [Page 69]

RFC 2328                     OSPF Version 2                   April 1998


           originate a network-LSA for the network node.  The network-
           LSA will contain links to all routers (including the
           Designated Router itself) attached to the network.  See
           Section 7.3 for more details on the functions performed by
           the Designated Router.


   9.2.  Events causing interface state changes

       State changes can be effected by a number of events.  These
       events are pictured as the labelled arcs in Figure 11.  The
       label definitions are listed below.  For a detailed explanation
       of the effect of these events on OSPF protocol operation,
       consult Section 9.3.


       InterfaceUp
           Lower-level protocols have indicated that the network
           interface is operational.  This enables the interface to
           transition out of Down state.  On virtual links, the
           interface operational indication is actually a result of the
           shortest path calculation (see Section 16.7).

       WaitTimer
           The Wait Timer has fired, indicating the end of the waiting
           period that is required before electing a (Backup)
           Designated Router.

       BackupSeen
           The router has detected the existence or non-existence of a
           Backup Designated Router for the network.  This is done in
           one of two ways.  First, an Hello Packet may be received
           from a neighbor claiming to be itself the Backup Designated
           Router.  Alternatively, an Hello Packet may be received from
           a neighbor claiming to be itself the Designated Router, and
           indicating that there is no Backup Designated Router.  In
           either case there must be bidirectional communication with
           the neighbor, i.e., the router must also appear in the
           neighbor's Hello Packet.  This event signals an end to the
           Waiting state.





Moy                         Standards Track                    [Page 70]

RFC 2328                     OSPF Version 2                   April 1998


       NeighborChange
           There has been a change in the set of bidirectional
           neighbors associated with the interface.  The (Backup)
           Designated Router needs to be recalculated.  The following
           neighbor changes lead to the NeighborChange event.  For an
           explanation of neighbor states, see Section 10.1.

           o   Bidirectional communication has been established to a
               neighbor.  In other words, the state of the neighbor has
               transitioned to 2-Way or higher.

           o   There is no longer bidirectional communication with a
               neighbor.  In other words, the state of the neighbor has
               transitioned to Init or lower.

           o   One of the bidirectional neighbors is newly declaring
               itself as either Designated Router or Backup Designated
               Router.  This is detected through examination of that
               neighbor's Hello Packets.

           o   One of the bidirectional neighbors is no longer
               declaring itself as Designated Router, or is no longer
               declaring itself as Backup Designated Router.  This is
               again detected through examination of that neighbor's
               Hello Packets.

           o   The advertised Router Priority for a bidirectional
               neighbor has changed.  This is again detected through
               examination of that neighbor's Hello Packets.

       LoopInd
           An indication has been received that the interface is now
           looped back to itself.  This indication can be received
           either from network management or from the lower level
           protocols.

       UnloopInd
           An indication has been received that the interface is no
           longer looped back.  As with the LoopInd event, this






Moy                         Standards Track                    [Page 71]

RFC 2328                     OSPF Version 2                   April 1998


           indication can be received either from network management or
           from the lower level protocols.

       InterfaceDown
           Lower-level protocols indicate that this interface is no
           longer functional.  No matter what the current interface
           state is, the new interface state will be Down.

   9.3.  The Interface state machine

       A detailed description of the interface state changes follows.
       Each state change is invoked by an event (Section 9.2).  This
       event may produce different effects, depending on the current
       state of the interface.  For this reason, the state machine
       below is organized by current interface state and received
       event.  Each entry in the state machine describes the resulting
       new interface state and the required set of additional actions.

       When an interface's state changes, it may be necessary to
       originate a new router-LSA.  See Section 12.4 for more details.

       Some of the required actions below involve generating events for
       the neighbor state machine.  For example, when an interface
       becomes inoperative, all neighbor connections associated with
       the interface must be destroyed.  For more information on the
       neighbor state machine, see Section 10.3.


        State(s):  Down

           Event:  InterfaceUp

       New state:  Depends upon action routine

          Action:  Start the interval Hello Timer, enabling the
                   periodic sending of Hello packets out the interface.
                   If the attached network is a physical point-to-point
                   network, Point-to-MultiPoint network or virtual
                   link, the interface state transitions to Point-to-
                   Point.  Else, if the router is not eligible to
                   become Designated Router the interface state
                   transitions to DR Other.



Moy                         Standards Track                    [Page 72]

RFC 2328                     OSPF Version 2                   April 1998


                   Otherwise, the attached network is a broadcast or
                   NBMA network and the router is eligible to become
                   Designated Router.  In this case, in an attempt to
                   discover the attached network's Designated Router
                   the interface state is set to Waiting and the single
                   shot Wait Timer is started.  Additionally, if the
                   network is an NBMA network examine the configured
                   list of neighbors for this interface and generate
                   the neighbor event Start for each neighbor that is
                   also eligible to become Designated Router.


        State(s):  Waiting

           Event:  BackupSeen

       New state:  Depends upon action routine.

          Action:  Calculate the attached network's Backup Designated
                   Router and Designated Router, as shown in Section
                   9.4.  As a result of this calculation, the new state
                   of the interface will be either DR Other, Backup or
                   DR.


        State(s):  Waiting

           Event:  WaitTimer

       New state:  Depends upon action routine.

          Action:  Calculate the attached network's Backup Designated
                   Router and Designated Router, as shown in Section
                   9.4.  As a result of this calculation, the new state
                   of the interface will be either DR Other, Backup or
                   DR.


        State(s):  DR Other, Backup or DR

           Event:  NeighborChange




Moy                         Standards Track                    [Page 73]

RFC 2328                     OSPF Version 2                   April 1998


       New state:  Depends upon action routine.

          Action:  Recalculate the attached network's Backup Designated
                   Router and Designated Router, as shown in Section
                   9.4.  As a result of this calculation, the new state
                   of the interface will be either DR Other, Backup or
                   DR.


        State(s):  Any State

           Event:  InterfaceDown

       New state:  Down

          Action:  All interface variables are reset, and interface
                   timers disabled.  Also, all neighbor connections
                   associated with the interface are destroyed.  This
                   is done by generating the event KillNbr on all
                   associated neighbors (see Section 10.2).


        State(s):  Any State

           Event:  LoopInd

       New state:  Loopback

          Action:  Since this interface is no longer connected to the
                   attached network the actions associated with the
                   above InterfaceDown event are executed.


        State(s):  Loopback

           Event:  UnloopInd

       New state:  Down

          Action:  No actions are necessary.  For example, the
                   interface variables have already been reset upon
                   entering the Loopback state.  Note that reception of



Moy                         Standards Track                    [Page 74]

RFC 2328                     OSPF Version 2                   April 1998


                   an InterfaceUp event is necessary before the
                   interface again becomes fully functional.


   9.4.  Electing the Designated Router

       This section describes the algorithm used for calculating a
       network's Designated Router and Backup Designated Router.  This
       algorithm is invoked by the Interface state machine.  The
       initial time a router runs the election algorithm for a network,
       the network's Designated Router and Backup Designated Router are
       initialized to 0.0.0.0.  This indicates the lack of both a
       Designated Router and a Backup Designated Router.

       The Designated Router election algorithm proceeds as follows:
       Call the router doing the calculation Router X.  The list of
       neighbors attached to the network and having established
       bidirectional communication with Router X is examined.  This
       list is precisely the collection of Router X's neighbors (on
       this network) whose state is greater than or equal to 2-Way (see
       Section 10.1).  Router X itself is also considered to be on the
       list.  Discard all routers from the list that are ineligible to
       become Designated Router.  (Routers having Router Priority of 0
       are ineligible to become Designated Router.)  The following
       steps are then executed, considering only those routers that
       remain on the list:

       (1) Note the current values for the network's Designated Router
           and Backup Designated Router.  This is used later for
           comparison purposes.

       (2) Calculate the new Backup Designated Router for the network
           as follows.  Only those routers on the list that have not
           declared themselves to be Designated Router are eligible to
           become Backup Designated Router.  If one or more of these
           routers have declared themselves Backup Designated Router
           (i.e., they are currently listing themselves as Backup
           Designated Router, but not as Designated Router, in their
           Hello Packets) the one having highest Router Priority is
           declared to be Backup Designated Router.  In case of a tie,
           the one having the highest Router ID is chosen.  If no
           routers have declared themselves Backup Designated Router,



Moy                         Standards Track                    [Page 75]

RFC 2328                     OSPF Version 2                   April 1998


           choose the router having highest Router Priority, (again
           excluding those routers who have declared themselves
           Designated Router), and again use the Router ID to break
           ties.

       (3) Calculate the new Designated Router for the network as
           follows.  If one or more of the routers have declared
           themselves Designated Router (i.e., they are currently
           listing themselves as Designated Router in their Hello
           Packets) the one having highest Router Priority is declared
           to be Designated Router.  In case of a tie, the one having
           the highest Router ID is chosen.  If no routers have
           declared themselves Designated Router, assign the Designated
           Router to be the same as the newly elected Backup Designated
           Router.

       (4) If Router X is now newly the Designated Router or newly the
           Backup Designated Router, or is now no longer the Designated
           Router or no longer the Backup Designated Router, repeat
           steps 2 and 3, and then proceed to step 5.  For example, if
           Router X is now the Designated Router, when step 2 is
           repeated X will no longer be eligible for Backup Designated
           Router election.  Among other things, this will ensure that
           no router will declare itself both Backup Designated Router
           and Designated Router.[5]

       (5) As a result of these calculations, the router itself may now
           be Designated Router or Backup Designated Router.  See
           Sections 7.3 and 7.4 for the additional duties this would
           entail.  The router's interface state should be set
           accordingly.  If the router itself is now Designated Router,
           the new interface state is DR.  If the router itself is now
           Backup Designated Router, the new interface state is Backup.
           Otherwise, the new interface state is DR Other.

       (6) If the attached network is an NBMA network, and the router
           itself has just become either Designated Router or Backup
           Designated Router, it must start sending Hello Packets to
           those neighbors that are not eligible to become Designated
           Router (see Section 9.5.1).  This is done by invoking the
           neighbor event Start for each neighbor having a Router
           Priority of 0.



Moy                         Standards Track                    [Page 76]

RFC 2328                     OSPF Version 2                   April 1998


       (7) If the above calculations have caused the identity of either
           the Designated Router or Backup Designated Router to change,
           the set of adjacencies associated with this interface will
           need to be modified.  Some adjacencies may need to be
           formed, and others may need to be broken.  To accomplish
           this, invoke the event AdjOK?  on all neighbors whose state
           is at least 2-Way.  This will cause their eligibility for
           adjacency to be reexamined (see Sections 10.3 and 10.4).


       The reason behind the election algorithm's complexity is the
       desire for an orderly transition from Backup Designated Router
       to Designated Router, when the current Designated Router fails.
       This orderly transition is ensured through the introduction of
       hysteresis: no new Backup Designated Router can be chosen until
       the old Backup accepts its new Designated Router
       responsibilities.

       The above procedure may elect the same router to be both
       Designated Router and Backup Designated Router, although that
       router will never be the calculating router (Router X) itself.
       The elected Designated Router may not be the router having the
       highest Router Priority, nor will the Backup Designated Router
       necessarily have the second highest Router Priority.  If Router
       X is not itself eligible to become Designated Router, it is
       possible that neither a Backup Designated Router nor a
       Designated Router will be selected in the above procedure.  Note
       also that if Router X is the only attached router that is
       eligible to become Designated Router, it will select itself as
       Designated Router and there will be no Backup Designated Router
       for the network.


   9.5.  Sending Hello packets

       Hello packets are sent out each functioning router interface.
       They are used to discover and maintain neighbor
       relationships.[6] On broadcast and NBMA networks, Hello Packets
       are also used to elect the Designated Router and Backup
       Designated Router.





Moy                         Standards Track                    [Page 77]

RFC 2328                     OSPF Version 2                   April 1998


       The format of an Hello packet is detailed in Section A.3.2.  The
       Hello Packet contains the router's Router Priority (used in
       choosing the Designated Router), and the interval between Hello
       Packets sent out the interface (HelloInterval).  The Hello
       Packet also indicates how often a neighbor must be heard from to
       remain active (RouterDeadInterval).  Both HelloInterval and
       RouterDeadInterval must be the same for all routers attached to
       a common network.  The Hello packet also contains the IP address
       mask of the attached network (Network Mask).  On unnumbered
       point-to-point networks and on virtual links this field should
       be set to 0.0.0.0.

       The Hello packet's Options field describes the router's optional
       OSPF capabilities.  One optional capability is defined in this
       specification (see Sections 4.5 and A.2).  The E-bit of the
       Options field should be set if and only if the attached area is
       capable of processing AS-external-LSAs (i.e., it is not a stub
       area).  If the E-bit is set incorrectly the neighboring routers
       will refuse to accept the Hello Packet (see Section 10.5).
       Unrecognized bits in the Hello Packet's Options field should be
       set to zero.

       In order to ensure two-way communication between adjacent
       routers, the Hello packet contains the list of all routers on
       the network from which Hello Packets have been seen recently.
       The Hello packet also contains the router's current choice for
       Designated Router and Backup Designated Router.  A value of
       0.0.0.0 in these fields means that one has not yet been
       selected.

       On broadcast networks and physical point-to-point networks,
       Hello packets are sent every HelloInterval seconds to the IP
       multicast address AllSPFRouters.  On virtual links, Hello
       packets are sent as unicasts (addressed directly to the other
       end of the virtual link) every HelloInterval seconds. On Point-
       to-MultiPoint networks, separate Hello packets are sent to each
       attached neighbor every HelloInterval seconds. Sending of Hello
       packets on NBMA networks is covered in the next section.







Moy                         Standards Track                    [Page 78]

RFC 2328                     OSPF Version 2                   April 1998


       9.5.1.  Sending Hello packets on NBMA networks

           Static configuration information may be necessary in order
           for the Hello Protocol to function on non-broadcast networks
           (see Sections C.5 and C.6).  On NBMA networks, every
           attached router which is eligible to become Designated
           Router becomes aware of all of its neighbors on the network
           (either through configuration or by some unspecified
           mechanism).  Each neighbor is labelled with the neighbor's
           Designated Router eligibility.

           The interface state must be at least Waiting for any Hello
           Packets to be sent out the NBMA interface.  Hello Packets
           are then sent directly (as unicasts) to some subset of a
           router's neighbors.  Sometimes an Hello Packet is sent
           periodically on a timer; at other times it is sent as a
           response to a received Hello Packet.  A router's hello-
           sending behavior varies depending on whether the router
           itself is eligible to become Designated Router.

           If the router is eligible to become Designated Router, it
           must periodically send Hello Packets to all neighbors that
           are also eligible.  In addition, if the router is itself the
           Designated Router or Backup Designated Router, it must also
           send periodic Hello Packets to all other neighbors.  This
           means that any two eligible routers are always exchanging
           Hello Packets, which is necessary for the correct operation
           of the Designated Router election algorithm.  To minimize
           the number of Hello Packets sent, the number of eligible
           routers on an NBMA network should be kept small.

           If the router is not eligible to become Designated Router,
           it must periodically send Hello Packets to both the
           Designated Router and the Backup Designated Router (if they
           exist).  It must also send an Hello Packet in reply to an
           Hello Packet received from any eligible neighbor (other than
           the current Designated Router and Backup Designated Router).
           This is needed to establish an initial bidirectional
           relationship with any potential Designated Router.

           When sending Hello packets periodically to any neighbor, the
           interval between Hello Packets is determined by the



Moy                         Standards Track                    [Page 79]

RFC 2328                     OSPF Version 2                   April 1998


           neighbor's state.  If the neighbor is in state Down, Hello
           Packets are sent every PollInterval seconds.  Otherwise,
           Hello Packets are sent every HelloInterval seconds.


10.  The Neighbor Data Structure

   An OSPF router converses with its neighboring routers.  Each
   separate conversation is described by a "neighbor data structure".
   Each conversation is bound to a particular OSPF router interface,
   and is identified either by the neighboring router's OSPF Router ID
   or by its Neighbor IP address (see below).  Thus if the OSPF router
   and another router have multiple attached networks in common,
   multiple conversations ensue, each described by a unique neighbor
   data structure.  Each separate conversation is loosely referred to
   in the text as being a separate "neighbor".

   The neighbor data structure contains all information pertinent to
   the forming or formed adjacency between the two neighbors.
   (However, remember that not all neighbors become adjacent.)  An
   adjacency can be viewed as a highly developed conversation between
   two routers.


   State
       The functional level of the neighbor conversation.  This is
       described in more detail in Section 10.1.

   Inactivity Timer
       A single shot timer whose firing indicates that no Hello Packet
       has been seen from this neighbor recently.  The length of the
       timer is RouterDeadInterval seconds.

   Master/Slave
       When the two neighbors are exchanging databases, they form a
       master/slave relationship.  The master sends the first Database
       Description Packet, and is the only part that is allowed to
       retransmit.  The slave can only respond to the master's Database
       Description Packets.  The master/slave relationship is
       negotiated in state ExStart.





Moy                         Standards Track                    [Page 80]

RFC 2328                     OSPF Version 2                   April 1998


   DD Sequence Number
       The DD Sequence number of the Database Description packet that
       is currently being sent to the neighbor.

   Last received Database Description packet
       The initialize(I), more (M) and master(MS) bits, Options field,
       and DD sequence number contained in the last Database
       Description packet received from the neighbor. Used to determine
       whether the next Database Description packet received from the
       neighbor is a duplicate.

   Neighbor ID
       The OSPF Router ID of the neighboring router.  The Neighbor ID
       is learned when Hello packets are received from the neighbor, or
       is configured if this is a virtual adjacency (see Section C.4).

   Neighbor Priority
       The Router Priority of the neighboring router.  Contained in the
       neighbor's Hello packets, this item is used when selecting the
       Designated Router for the attached network.

   Neighbor IP address
       The IP address of the neighboring router's interface to the
       attached network.  Used as the Destination IP address when
       protocol packets are sent as unicasts along this adjacency.
       Also used in router-LSAs as the Link ID for the attached network
       if the neighboring router is selected to be Designated Router
       (see Section 12.4.1).  The Neighbor IP address is learned when
       Hello packets are received from the neighbor.  For virtual
       links, the Neighbor IP address is learned during the routing
       table build process (see Section 15).

   Neighbor Options
       The optional OSPF capabilities supported by the neighbor.
       Learned during the Database Exchange process (see Section 10.6).
       The neighbor's optional OSPF capabilities are also listed in its
       Hello packets.  This enables received Hello Packets to be
       rejected (i.e., neighbor relationships will not even start to
       form) if there is a mismatch in certain crucial OSPF
       capabilities (see Section 10.5).  The optional OSPF capabilities
       are documented in Section 4.5.




Moy                         Standards Track                    [Page 81]

RFC 2328                     OSPF Version 2                   April 1998


   Neighbor's Designated Router
       The neighbor's idea of the Designated Router.  If this is the
       neighbor itself, this is important in the local calculation of
       the Designated Router.  Defined only on broadcast and NBMA
       networks.

   Neighbor's Backup Designated Router
       The neighbor's idea of the Backup Designated Router.  If this is
       the neighbor itself, this is important in the local calculation
       of the Backup Designated Router.  Defined only on broadcast and
       NBMA networks.


   The next set of variables are lists of LSAs.  These lists describe
   subsets of the area link-state database.  This memo defines five
   distinct types of LSAs, all of which may be present in an area
   link-state database: router-LSAs, network-LSAs, and Type 3 and 4
   summary-LSAs (all stored in the area data structure), and AS-
   external-LSAs (stored in the global data structure).


   Link state retransmission list
       The list of LSAs that have been flooded but not acknowledged on
       this adjacency.  These will be retransmitted at intervals until
       they are acknowledged, or until the adjacency is destroyed.

   Database summary list
       The complete list of LSAs that make up the area link-state
       database, at the moment the neighbor goes into Database Exchange
       state.  This list is sent to the neighbor in Database
       Description packets.

   Link state request list
       The list of LSAs that need to be received from this neighbor in
       order to synchronize the two neighbors' link-state databases.
       This list is created as Database Description packets are
       received, and is then sent to the neighbor in Link State Request
       packets.  The list is depleted as appropriate Link State Update
       packets are received.






Moy                         Standards Track                    [Page 82]

RFC 2328                     OSPF Version 2                   April 1998


   10.1.  Neighbor states

       The state of a neighbor (really, the state of a conversation
       being held with a neighboring router) is documented in the
       following sections.  The states are listed in order of
       progressing functionality.  For example, the inoperative state
       is listed first, followed by a list of intermediate states
       before the final, fully functional state is achieved.  The
       specification makes use of this ordering by sometimes making
       references such as "those neighbors/adjacencies in state greater
       than X".  Figures 12 and 13 show the graph of neighbor state
       changes.  The arcs of the graphs are labelled with the event
       causing the state change.  The neighbor events are documented in
       Section 10.2.

       The graph in Figure 12 shows the state changes effected by the
       Hello Protocol.  The Hello Protocol is responsible for neighbor
       acquisition and maintenance, and for ensuring two way
       communication between neighbors.

       The graph in Figure 13 shows the forming of an adjacency.  Not
       every two neighboring routers become adjacent (see Section
       10.4).  The adjacency starts to form when the neighbor is in
       state ExStart.  After the two routers discover their
       master/slave status, the state transitions to Exchange.  At this
       point the neighbor starts to be used in the flooding procedure,
       and the two neighboring routers begin synchronizing their
       databases.  When this synchronization is finished, the neighbor
       is in state Full and we say that the two routers are fully
       adjacent.  At this point the adjacency is listed in LSAs.

       For a more detailed description of neighbor state changes,
       together with the additional actions involved in each change,
       see Section 10.3.


       Down
           This is the initial state of a neighbor conversation.  It
           indicates that there has been no recent information received
           from the neighbor.  On NBMA networks, Hello packets may
           still be sent to "Down" neighbors, although at a reduced
           frequency (see Section 9.5.1).



Moy                         Standards Track                    [Page 83]

RFC 2328                     OSPF Version 2                   April 1998



                                  +----+
                                  |Down|
                                  +----+
                                    |\
                                    | \Start
                                    |  \      +-------+
                            Hello   |   +---->|Attempt|
                           Received |         +-------+
                                    |             |
                            +----+<-+             |HelloReceived
                            |Init|<---------------+
                            +----+<--------+
                               |           |
                               |2-Way      |1-Way
                               |Received   |Received
                               |           |
             +-------+         |        +-----+
             |ExStart|<--------+------->|2-Way|
             +-------+                  +-----+

             Figure 12: Neighbor state changes (Hello Protocol)

                 In addition to the state transitions pictured,
                 Event KillNbr always forces Down State,
                 Event InactivityTimer always forces Down State,
                 Event LLDown always forces Down State


















Moy                         Standards Track                    [Page 84]

RFC 2328                     OSPF Version 2                   April 1998


                                 +-------+
                                 |ExStart|
                                 +-------+
                                   |
                    NegotiationDone|
                                   +->+--------+
                                      |Exchange|
                                   +--+--------+
                                   |
                           Exchange|
                             Done  |
                   +----+          |      +-------+
                   |Full|<---------+----->|Loading|
                   +----+<-+              +-------+
                           |  LoadingDone     |
                           +------------------+

           Figure 13: Neighbor state changes (Database Exchange)

               In addition to the state transitions pictured,
               Event SeqNumberMismatch forces ExStart state,
               Event BadLSReq forces ExStart state,
               Event 1-Way forces Init state,
               Event KillNbr always forces Down State,
               Event InactivityTimer always forces Down State,
               Event LLDown always forces Down State,
               Event AdjOK? leads to adjacency forming/breaking

       Attempt
           This state is only valid for neighbors attached to NBMA
           networks.  It indicates that no recent information has been
           received from the neighbor, but that a more concerted effort
           should be made to contact the neighbor.  This is done by
           sending the neighbor Hello packets at intervals of
           HelloInterval (see Section 9.5.1).

       Init
           In this state, an Hello packet has recently been seen from
           the neighbor.  However, bidirectional communication has not
           yet been established with the neighbor (i.e., the router
           itself did not appear in the neighbor's Hello packet).  All




Moy                         Standards Track                    [Page 85]

RFC 2328                     OSPF Version 2                   April 1998


           neighbors in this state (or higher) are listed in the Hello
           packets sent from the associated interface.

       2-Way
           In this state, communication between the two routers is
           bidirectional.  This has been assured by the operation of
           the Hello Protocol.  This is the most advanced state short
           of beginning adjacency establishment.  The (Backup)
           Designated Router is selected from the set of neighbors in
           state 2-Way or greater.

       ExStart
           This is the first step in creating an adjacency between the
           two neighboring routers.  The goal of this step is to decide
           which router is the master, and to decide upon the initial
           DD sequence number.  Neighbor conversations in this state or
           greater are called adjacencies.

       Exchange
           In this state the router is describing its entire link state
           database by sending Database Description packets to the
           neighbor.  Each Database Description Packet has a DD
           sequence number, and is explicitly acknowledged.  Only one
           Database Description Packet is allowed outstanding at any
           one time.  In this state, Link State Request Packets may
           also be sent asking for the neighbor's more recent LSAs.
           All adjacencies in Exchange state or greater are used by the
           flooding procedure.  In fact, these adjacencies are fully
           capable of transmitting and receiving all types of OSPF
           routing protocol packets.

       Loading
           In this state, Link State Request packets are sent to the
           neighbor asking for the more recent LSAs that have been
           discovered (but not yet received) in the Exchange state.

       Full
           In this state, the neighboring routers are fully adjacent.
           These adjacencies will now appear in router-LSAs and
           network-LSAs.





Moy                         Standards Track                    [Page 86]

RFC 2328                     OSPF Version 2                   April 1998


   10.2.  Events causing neighbor state changes

       State changes can be effected by a number of events.  These
       events are shown in the labels of the arcs in Figures 12 and 13.
       The label definitions are as follows:


       HelloReceived
           An Hello packet has been received from the neighbor.

       Start
           This is an indication that Hello Packets should now be sent
           to the neighbor at intervals of HelloInterval seconds.  This
           event is generated only for neighbors associated with NBMA
           networks.

       2-WayReceived
           Bidirectional communication has been realized between the
           two neighboring routers.  This is indicated by the router
           seeing itself in the neighbor's Hello packet.

       NegotiationDone
           The Master/Slave relationship has been negotiated, and DD
           sequence numbers have been exchanged.  This signals the
           start of the sending/receiving of Database Description
           packets.  For more information on the generation of this
           event, consult Section 10.8.

       ExchangeDone
           Both routers have successfully transmitted a full sequence
           of Database Description packets.  Each router now knows what
           parts of its link state database are out of date.  For more
           information on the generation of this event, consult Section
           10.8.

       BadLSReq
           A Link State Request has been received for an LSA not
           contained in the database.  This indicates an error in the
           Database Exchange process.

       Loading Done
           Link State Updates have been received for all out-of-date



Moy                         Standards Track                    [Page 87]

RFC 2328                     OSPF Version 2                   April 1998


           portions of the database.  This is indicated by the Link
           state request list becoming empty after the Database
           Exchange process has completed.

       AdjOK?
           A decision must be made as to whether an adjacency should be
           established/maintained with the neighbor.  This event will
           start some adjacencies forming, and destroy others.


       The following events cause well developed neighbors to revert to
       lesser states.  Unlike the above events, these events may occur
       when the neighbor conversation is in any of a number of states.


       SeqNumberMismatch
           A Database Description packet has been received that either
           a) has an unexpected DD sequence number, b) unexpectedly has
           the Init bit set or c) has an Options field differing from
           the last Options field received in a Database Description
           packet.  Any of these conditions indicate that some error
           has occurred during adjacency establishment.

       1-Way
           An Hello packet has been received from the neighbor, in
           which the router is not mentioned.  This indicates that
           communication with the neighbor is not bidirectional.

       KillNbr
           This  is  an  indication that  all  communication  with  the
           neighbor  is now  impossible,  forcing  the  neighbor  to
           revert  to  Down  state.

       InactivityTimer
           The inactivity Timer has fired.  This means that no Hello
           packets have been seen recently from the neighbor.  The
           neighbor reverts to Down state.

       LLDown
           This is an indication from the lower level protocols that
           the neighbor is now unreachable.  For example, on an X.25
           network this could be indicated by an X.25 clear indication



Moy                         Standards Track                    [Page 88]

RFC 2328                     OSPF Version 2                   April 1998


           with appropriate cause and diagnostic fields.  This event
           forces the neighbor into Down state.


   10.3.  The Neighbor state machine

       A detailed description of the neighbor state changes follows.
       Each state change is invoked by an event (Section 10.2).  This
       event may produce different effects, depending on the current
       state of the neighbor.  For this reason, the state machine below
       is organized by current neighbor state and received event.  Each
       entry in the state machine describes the resulting new neighbor
       state and the required set of additional actions.

       When a neighbor's state changes, it may be necessary to rerun
       the Designated Router election algorithm.  This is determined by
       whether the interface NeighborChange event is generated (see
       Section 9.2).  Also, if the Interface is in DR state (the router
       is itself Designated Router), changes in neighbor state may
       cause a new network-LSA to be originated (see Section 12.4).

       When the neighbor state machine needs to invoke the interface
       state machine, it should be done as a scheduled task (see
       Section 4.4).  This simplifies things, by ensuring that neither
       state machine will be executed recursively.


        State(s):  Down

           Event:  Start

       New state:  Attempt

          Action:  Send an Hello Packet to the neighbor (this neighbor
                   is always associated with an NBMA network) and start
                   the Inactivity Timer for the neighbor.  The timer's
                   later firing would indicate that communication with
                   the neighbor was not attained.


        State(s):  Attempt




Moy                         Standards Track                    [Page 89]

RFC 2328                     OSPF Version 2                   April 1998


           Event:  HelloReceived

       New state:  Init

          Action:  Restart the Inactivity Timer for the neighbor, since
                   the neighbor has now been heard from.


        State(s):  Down

           Event:  HelloReceived

       New state:  Init

          Action:  Start the Inactivity Timer for the neighbor.  The
                   timer's later firing would indicate that the
                   neighbor is dead.


        State(s):  Init or greater

           Event:  HelloReceived

       New state:  No state change.

          Action:  Restart the Inactivity Timer for the neighbor, since
                   the neighbor has again been heard from.


        State(s):  Init

           Event:  2-WayReceived

       New state:  Depends upon action routine.

          Action:  Determine whether an adjacency should be established
                   with the neighbor (see Section 10.4).  If not, the
                   new neighbor state is 2-Way.

                   Otherwise (an adjacency should be established) the
                   neighbor state transitions to ExStart.  Upon
                   entering this state, the router increments the DD



Moy                         Standards Track                    [Page 90]

RFC 2328                     OSPF Version 2                   April 1998


                   sequence number in the neighbor data structure.  If
                   this is the first time that an adjacency has been
                   attempted, the DD sequence number should be assigned
                   some unique value (like the time of day clock).  It
                   then declares itself master (sets the master/slave
                   bit to master), and starts sending Database
                   Description Packets, with the initialize (I), more
                   (M) and master (MS) bits set.  This Database
                   Description Packet should be otherwise empty.  This
                   Database Description Packet should be retransmitted
                   at intervals of RxmtInterval until the next state is
                   entered (see Section 10.8).


        State(s):  ExStart

           Event:  NegotiationDone

       New state:  Exchange

          Action:  The router must list the contents of its entire area
                   link state database in the neighbor Database summary
                   list.  The area link state database consists of the
                   router-LSAs, network-LSAs and summary-LSAs contained
                   in the area structure, along with the AS-external-
                   LSAs contained in the global structure.  AS-
                   external-LSAs are omitted from a virtual neighbor's
                   Database summary list.  AS-external-LSAs are omitted
                   from the Database summary list if the area has been
                   configured as a stub (see Section 3.6).  LSAs whose
                   age is equal to MaxAge are instead added to the
                   neighbor's Link state retransmission list.  A
                   summary of the Database summary list will be sent to
                   the neighbor in Database Description packets.  Each
                   Database Description Packet has a DD sequence
                   number, and is explicitly acknowledged.  Only one
                   Database Description Packet is allowed outstanding
                   at any one time.  For more detail on the sending and
                   receiving of Database Description packets, see
                   Sections 10.8 and 10.6.





Moy                         Standards Track                    [Page 91]

RFC 2328                     OSPF Version 2                   April 1998


        State(s):  Exchange

           Event:  ExchangeDone

       New state:  Depends upon action routine.

          Action:  If the neighbor Link state request list is empty,
                   the new neighbor state is Full.  No other action is
                   required.  This is an adjacency's final state.

                   Otherwise, the new neighbor state is Loading.  Start
                   (or continue) sending Link State Request packets to
                   the neighbor (see Section 10.9).  These are requests
                   for the neighbor's more recent LSAs (which were
                   discovered but not yet received in the Exchange
                   state).  These LSAs are listed in the Link state
                   request list associated with the neighbor.


        State(s):  Loading

           Event:  Loading Done

       New state:  Full

          Action:  No action required.  This is an adjacency's final
                   state.


        State(s):  2-Way

           Event:  AdjOK?

       New state:  Depends upon action routine.

          Action:  Determine whether an adjacency should be formed with
                   the neighboring router (see Section 10.4).  If not,
                   the neighbor state remains at 2-Way.  Otherwise,
                   transition the neighbor state to ExStart and perform
                   the actions associated with the above state machine
                   entry for state Init and event 2-WayReceived.




Moy                         Standards Track                    [Page 92]

RFC 2328                     OSPF Version 2                   April 1998


        State(s):  ExStart or greater

           Event:  AdjOK?

       New state:  Depends upon action routine.

          Action:  Determine whether the neighboring router should
                   still be adjacent.  If yes, there is no state change
                   and no further action is necessary.

                   Otherwise, the (possibly partially formed) adjacency
                   must be destroyed.  The neighbor state transitions
                   to 2-Way.  The Link state retransmission list,
                   Database summary list and Link state request list
                   are cleared of LSAs.


        State(s):  Exchange or greater

           Event:  SeqNumberMismatch

       New state:  ExStart

          Action:  The (possibly partially formed) adjacency is torn
                   down, and then an attempt is made at
                   reestablishment.  The neighbor state first
                   transitions to ExStart.  The Link state
                   retransmission list, Database summary list and Link
                   state request list are cleared of LSAs.  Then the
                   router increments the DD sequence number in the
                   neighbor data structure, declares itself master
                   (sets the master/slave bit to master), and starts
                   sending Database Description Packets, with the
                   initialize (I), more (M) and master (MS) bits set.
                   This Database Description Packet should be otherwise
                   empty (see Section 10.8).


        State(s):  Exchange or greater

           Event:  BadLSReq




Moy                         Standards Track                    [Page 93]

RFC 2328                     OSPF Version 2                   April 1998


       New state:  ExStart

          Action:  The action for event BadLSReq is exactly the same as
                   for the neighbor event SeqNumberMismatch.  The
                   (possibly partially formed) adjacency is torn down,
                   and then an attempt is made at reestablishment.  For
                   more information, see the neighbor state machine
                   entry that is invoked when event SeqNumberMismatch
                   is generated in state Exchange or greater.


        State(s):  Any state

           Event:  KillNbr

       New state:  Down

          Action:  The Link state retransmission list, Database summary
                   list and Link state request list are cleared of
                   LSAs.  Also, the Inactivity Timer is disabled.


        State(s):  Any state

           Event:  LLDown

       New state:  Down

          Action:  The Link state retransmission list, Database summary
                   list and Link state request list are cleared of
                   LSAs.  Also, the Inactivity Timer is disabled.


        State(s):  Any state

           Event:  InactivityTimer

       New state:  Down

          Action:  The Link state retransmission list, Database summary
                   list and Link state request list are cleared of
                   LSAs.



Moy                         Standards Track                    [Page 94]

RFC 2328                     OSPF Version 2                   April 1998


        State(s):  2-Way or greater

           Event:  1-WayReceived

       New state:  Init

          Action:  The Link state retransmission list, Database summary
                   list and Link state request list are cleared of
                   LSAs.


        State(s):  2-Way or greater

           Event:  2-WayReceived

       New state:  No state change.

          Action:  No action required.


        State(s):  Init

           Event:  1-WayReceived

       New state:  No state change.

          Action:  No action required.


   10.4.  Whether to become adjacent

       Adjacencies are established with some subset of the router's
       neighbors.  Routers connected by point-to-point networks,
       Point-to-MultiPoint networks and virtual links always become
       adjacent.  On broadcast and NBMA networks, all routers become
       adjacent to both the Designated Router and the Backup Designated
       Router.

       The adjacency-forming decision occurs in two places in the
       neighbor state machine.  First, when bidirectional communication
       is initially established with the neighbor, and secondly, when
       the identity of the attached network's (Backup) Designated



Moy                         Standards Track                    [Page 95]

RFC 2328                     OSPF Version 2                   April 1998


       Router changes.  If the decision is made to not attempt an
       adjacency, the state of the neighbor communication stops at 2-
       Way.

       An adjacency should be established with a bidirectional neighbor
       when at least one of the following conditions holds:


       o   The underlying network type is point-to-point

       o   The underlying network type is Point-to-MultiPoint

       o   The underlying network type is virtual link

       o   The router itself is the Designated Router

       o   The router itself is the Backup Designated Router

       o   The neighboring router is the Designated Router

       o   The neighboring router is the Backup Designated Router


   10.5.  Receiving Hello Packets

       This section explains the detailed processing of a received
       Hello Packet.  (See Section A.3.2 for the format of Hello
       packets.)  The generic input processing of OSPF packets will
       have checked the validity of the IP header and the OSPF packet
       header.  Next, the values of the Network Mask, HelloInterval,
       and RouterDeadInterval fields in the received Hello packet must
       be checked against the values configured for the receiving
       interface.  Any mismatch causes processing to stop and the
       packet to be dropped.  In other words, the above fields are
       really describing the attached network's configuration. However,
       there is one exception to the above rule: on point-to-point
       networks and on virtual links, the Network Mask in the received
       Hello Packet should be ignored.

       The receiving interface attaches to a single OSPF area (this
       could be the backbone).  The setting of the E-bit found in the
       Hello Packet's Options field must match this area's



Moy                         Standards Track                    [Page 96]

RFC 2328                     OSPF Version 2                   April 1998


       ExternalRoutingCapability.  If AS-external-LSAs are not flooded
       into/throughout the area (i.e, the area is a "stub") the E-bit
       must be clear in received Hello Packets, otherwise the E-bit
       must be set.  A mismatch causes processing to stop and the
       packet to be dropped.  The setting of the rest of the bits in
       the Hello Packet's Options field should be ignored.

       At this point, an attempt is made to match the source of the
       Hello Packet to one of the receiving interface's neighbors.  If
       the receiving interface connects to a broadcast, Point-to-
       MultiPoint or NBMA network the source is identified by the IP
       source address found in the Hello's IP header.  If the receiving
       interface connects to a point-to-point link or a virtual link,
       the source is identified by the Router ID found in the Hello's
       OSPF packet header.  The interface's current list of neighbors
       is contained in the interface's data structure.  If a matching
       neighbor structure cannot be found, (i.e., this is the first
       time the neighbor has been detected), one is created.  The
       initial state of a newly created neighbor is set to Down.

       When receiving an Hello Packet from a neighbor on a broadcast,
       Point-to-MultiPoint or NBMA network, set the neighbor
       structure's Neighbor ID equal to the Router ID found in the
       packet's OSPF header.  For these network types, the neighbor
       structure's Router Priority field, Neighbor's Designated Router
       field, and Neighbor's Backup Designated Router field are also
       set equal to the corresponding fields found in the received
       Hello Packet; changes in these fields should be noted for
       possible use in the steps below.  When receiving an Hello on a
       point-to-point network (but not on a virtual link) set the
       neighbor structure's Neighbor IP address to the packet's IP
       source address.

       Now the rest of the Hello Packet is examined, generating events
       to be given to the neighbor and interface state machines.  These
       state machines are specified either to be executed or scheduled
       (see Section 4.4).  For example, by specifying below that the
       neighbor state machine be executed in line, several neighbor
       state transitions may be effected by a single received Hello:






Moy                         Standards Track                    [Page 97]

RFC 2328                     OSPF Version 2                   April 1998


       o   Each Hello Packet causes the neighbor state machine to be
           executed with the event HelloReceived.

       o   Then the list of neighbors contained in the Hello Packet is
           examined.  If the router itself appears in this list, the
           neighbor state machine should be executed with the event 2-
           WayReceived.  Otherwise, the neighbor state machine should
           be executed with the event 1-WayReceived, and the processing
           of the packet stops.

       o   Next, if a change in the neighbor's Router Priority field
           was noted, the receiving interface's state machine is
           scheduled with the event NeighborChange.

       o   If the neighbor is both declaring itself to be Designated
           Router (Hello Packet's Designated Router field = Neighbor IP
           address) and the Backup Designated Router field in the
           packet is equal to 0.0.0.0 and the receiving interface is in
           state Waiting, the receiving interface's state machine is
           scheduled with the event BackupSeen.  Otherwise, if the
           neighbor is declaring itself to be Designated Router and it
           had not previously, or the neighbor is not declaring itself
           Designated Router where it had previously, the receiving
           interface's state machine is scheduled with the event
           NeighborChange.

       o   If the neighbor is declaring itself to be Backup Designated
           Router (Hello Packet's Backup Designated Router field =
           Neighbor IP address) and the receiving interface is in state
           Waiting, the receiving interface's state machine is
           scheduled with the event BackupSeen.  Otherwise, if the
           neighbor is declaring itself to be Backup Designated Router
           and it had not previously, or the neighbor is not declaring
           itself Backup Designated Router where it had previously, the
           receiving interface's state machine is scheduled with the
           event NeighborChange.

       On NBMA networks, receipt of an Hello Packet may also cause an
       Hello Packet to be sent back to the neighbor in response. See
       Section 9.5.1 for more details.





Moy                         Standards Track                    [Page 98]

RFC 2328                     OSPF Version 2                   April 1998


   10.6.  Receiving Database Description Packets

       This section explains the detailed processing of a received
       Database Description Packet.  The incoming Database Description
       Packet has already been associated with a neighbor and receiving
       interface by the generic input packet processing (Section 8.2).
       Whether the Database Description packet should be accepted, and
       if so, how it should be further processed depends upon the
       neighbor state.

       If a Database Description packet is accepted, the following
       packet fields should be saved in the corresponding neighbor data
       structure under "last received Database Description packet":
       the packet's initialize(I), more (M) and master(MS) bits,
       Options field, and DD sequence number. If these fields are set
       identically in two consecutive Database Description packets
       received from the neighbor, the second Database Description
       packet is considered to be a "duplicate" in the processing
       described below.

       If the Interface MTU field in the Database Description packet
       indicates an IP datagram size that is larger than the router can
       accept on the receiving interface without fragmentation, the
       Database Description packet is rejected.  Otherwise, if the
       neighbor state is:

       Down
           The packet should be rejected.

       Attempt
           The packet should be rejected.

       Init
           The neighbor state machine should be executed with the event
           2-WayReceived.  This causes an immediate state change to
           either state 2-Way or state ExStart. If the new state is
           ExStart, the processing of the current packet should then
           continue in this new state by falling through to case
           ExStart below.






Moy                         Standards Track                    [Page 99]

RFC 2328                     OSPF Version 2                   April 1998


       2-Way
           The packet should be ignored.  Database Description Packets
           are used only for the purpose of bringing up adjacencies.[7]

       ExStart
           If the received packet matches one of the following cases,
           then the neighbor state machine should be executed with the
           event NegotiationDone (causing the state to transition to
           Exchange), the packet's Options field should be recorded in
           the neighbor structure's Neighbor Options field and the
           packet should be accepted as next in sequence and processed
           further (see below).  Otherwise, the packet should be
           ignored.

           o   The initialize(I), more (M) and master(MS) bits are set,
               the contents of the packet are empty, and the neighbor's
               Router ID is larger than the router's own.  In this case
               the router is now Slave.  Set the master/slave bit to
               slave, and set the neighbor data structure's DD sequence
               number to that specified by the master.

           o   The initialize(I) and master(MS) bits are off, the
               packet's DD sequence number equals the neighbor data
               structure's DD sequence number (indicating
               acknowledgment) and the neighbor's Router ID is smaller
               than the router's own.  In this case the router is
               Master.

       Exchange
           Duplicate Database Description packets are discarded by the
           master, and cause the slave to retransmit the last Database
           Description packet that it had sent. Otherwise (the packet
           is not a duplicate):

           o   If the state of the MS-bit is inconsistent with the
               master/slave state of the connection, generate the
               neighbor event SeqNumberMismatch and stop processing the
               packet.

           o   If the initialize(I) bit is set, generate the neighbor
               event SeqNumberMismatch and stop processing the packet.




Moy                         Standards Track                   [Page 100]

RFC 2328                     OSPF Version 2                   April 1998


           o   If the packet's Options field indicates a different set
               of optional OSPF capabilities than were previously
               received from the neighbor (recorded in the Neighbor
               Options field of the neighbor structure), generate the
               neighbor event SeqNumberMismatch and stop processing the
               packet.

           o   Database Description packets must be processed in
               sequence, as indicated by the packets' DD sequence
               numbers. If the router is master, the next packet
               received should have DD sequence number equal to the DD
               sequence number in the neighbor data structure. If the
               router is slave, the next packet received should have DD
               sequence number equal to one more than the DD sequence
               number stored in the neighbor data structure. In either
               case, if the packet is the next in sequence it should be
               accepted and its contents processed as specified below.

           o   Else, generate the neighbor event SeqNumberMismatch and
               stop processing the packet.

       Loading or Full
           In this state, the router has sent and received an entire
           sequence of Database Description Packets.  The only packets
           received should be duplicates (see above).  In particular,
           the packet's Options field should match the set of optional
           OSPF capabilities previously indicated by the neighbor
           (stored in the neighbor structure's Neighbor Options field).
           Any other packets received, including the reception of a
           packet with the Initialize(I) bit set, should generate the
           neighbor event SeqNumberMismatch.[8] Duplicates should be
           discarded by the master.  The slave must respond to
           duplicates by repeating the last Database Description packet
           that it had sent.


       When the router accepts a received Database Description Packet
       as the next in sequence the packet contents are processed as
       follows.  For each LSA listed, the LSA's LS type is checked for
       validity.  If the LS type is unknown (e.g., not one of the LS
       types 1-5 defined by this specification), or if this is an AS-
       external-LSA (LS type = 5) and the neighbor is associated with a



Moy                         Standards Track                   [Page 101]

RFC 2328                     OSPF Version 2                   April 1998


       stub area, generate the neighbor event SeqNumberMismatch and
       stop processing the packet.  Otherwise, the router looks up the
       LSA in its database to see whether it also has an instance of
       the LSA.  If it does not, or if the database copy is less recent
       (see Section 13.1), the LSA is put on the Link state request
       list so that it can be requested (immediately or at some later
       time) in Link State Request Packets.

       When the router accepts a received Database Description Packet
       as the next in sequence, it also performs the following actions,
       depending on whether it is master or slave:


       Master
           Increments the DD sequence number in the neighbor data
           structure.  If the router has already sent its entire
           sequence of Database Description Packets, and the just
           accepted packet has the more bit (M) set to 0, the neighbor
           event ExchangeDone is generated.  Otherwise, it should send
           a new Database Description to the slave.

       Slave
           Sets the DD sequence number in the neighbor data structure
           to the DD sequence number appearing in the received packet.
           The slave must send a Database Description Packet in reply.
           If the received packet has the more bit (M) set to 0, and
           the packet to be sent by the slave will also have the M-bit
           set to 0, the neighbor event ExchangeDone is generated.
           Note that the slave always generates this event before the
           master.


   10.7.  Receiving Link State Request Packets

       This section explains the detailed processing of received Link
       State Request packets.  Received Link State Request Packets
       specify a list of LSAs that the neighbor wishes to receive.
       Link State Request Packets should be accepted when the neighbor
       is in states Exchange, Loading, or Full.  In all other states
       Link State Request Packets should be ignored.





Moy                         Standards Track                   [Page 102]

RFC 2328                     OSPF Version 2                   April 1998


       Each LSA specified in the Link State Request packet should be
       located in the router's database, and copied into Link State
       Update packets for transmission to the neighbor.  These LSAs
       should NOT be placed on the Link state retransmission list for
       the neighbor.  If an LSA cannot be found in the database,
       something has gone wrong with the Database Exchange process, and
       neighbor event BadLSReq should be generated.


   10.8.  Sending Database Description Packets

       This section describes how Database Description Packets are sent
       to a neighbor. The Database Description packet's Interface MTU
       field is set to the size of the largest IP datagram that can be
       sent out the sending interface, without fragmentation.  Common
       MTUs in use in the Internet can be found in Table 7-1 of
       [Ref22]. Interface MTU should be set to 0 in Database
       Description packets sent over virtual links.

       The router's optional OSPF capabilities (see Section 4.5) are
       transmitted to the neighbor in the Options field of the Database
       Description packet.  The router should maintain the same set of
       optional capabilities throughout the Database Exchange and
       flooding procedures.  If for some reason the router's optional
       capabilities change, the Database Exchange procedure should be
       restarted by reverting to neighbor state ExStart.  One optional
       capability is defined in this specification (see Sections 4.5
       and A.2). The E-bit should be set if and only if the attached
       network belongs to a non-stub area. Unrecognized bits in the
       Options field should be set to zero.

       The sending of Database Description packets depends on the
       neighbor's state.  In state ExStart the router sends empty
       Database Description packets, with the initialize (I), more (M)
       and master (MS) bits set.  These packets are retransmitted every
       RxmtInterval seconds.

       In state Exchange the Database Description Packets actually
       contain summaries of the link state information contained in the
       router's database.  Each LSA in the area's link-state database
       (at the time the neighbor transitions into Exchange state) is
       listed in the neighbor Database summary list.  Each new Database



Moy                         Standards Track                   [Page 103]

RFC 2328                     OSPF Version 2                   April 1998


       Description Packet copies its DD sequence number from the
       neighbor data structure and then describes the current top of
       the Database summary list.  Items are removed from the Database
       summary list when the previous packet is acknowledged.

       In state Exchange, the determination of when to send a Database
       Description packet depends on whether the router is master or
       slave:


       Master
           Database Description packets are sent when either a) the
           slave acknowledges the previous Database Description packet
           by echoing the DD sequence number or b) RxmtInterval seconds
           elapse without an acknowledgment, in which case the previous
           Database Description packet is retransmitted.

       Slave
           Database Description packets are sent only in response to
           Database Description packets received from the master.  If
           the Database Description packet received from the master is
           new, a new Database Description packet is sent, otherwise
           the previous Database Description packet is resent.


       In states Loading and Full the slave must resend its last
       Database Description packet in response to duplicate Database
       Description packets received from the master.  For this reason
       the slave must wait RouterDeadInterval seconds before freeing
       the last Database Description packet.  Reception of a Database
       Description packet from the master after this interval will
       generate a SeqNumberMismatch neighbor event.


   10.9.  Sending Link State Request Packets

       In neighbor states Exchange or Loading, the Link state request
       list contains a list of those LSAs that need to be obtained from
       the neighbor.  To request these LSAs, a router sends the
       neighbor the beginning of the Link state request list, packaged
       in a Link State Request packet.




Moy                         Standards Track                   [Page 104]

RFC 2328                     OSPF Version 2                   April 1998


       When the neighbor responds to these requests with the proper
       Link State Update packet(s), the Link state request list is
       truncated and a new Link State Request packet is sent.  This
       process continues until the Link state request list becomes
       empty. LSAs on the Link state request list that have been
       requested, but not yet received, are packaged into Link State
       Request packets for retransmission at intervals of RxmtInterval.
       There should be at most one Link State Request packet
       outstanding at any one time.

       When the Link state request list becomes empty, and the neighbor
       state is Loading (i.e., a complete sequence of Database
       Description packets has been sent to and received from the
       neighbor), the Loading Done neighbor event is generated.


   10.10.  An Example

       Figure 14 shows an example of an adjacency forming.  Routers RT1
       and RT2 are both connected to a broadcast network.  It is
       assumed that RT2 is the Designated Router for the network, and
       that RT2 has a higher Router ID than Router RT1.

       The neighbor state changes realized by each router are listed on
       the sides of the figure.

       At the beginning of Figure 14, Router RT1's interface to the
       network becomes operational.  It begins sending Hello Packets,
       although it doesn't know the identity of the Designated Router
       or of any other neighboring routers.  Router RT2 hears this
       hello (moving the neighbor to Init state), and in its next Hello
       Packet indicates that it is itself the Designated Router and
       that it has heard Hello Packets from RT1.  This in turn causes
       RT1 to go to state ExStart, as it starts to bring up the
       adjacency.

       RT1 begins by asserting itself as the master.  When it sees that
       RT2 is indeed the master (because of RT2's higher Router ID),
       RT1 transitions to slave state and adopts its neighbor's DD
       sequence number.  Database Description packets are then
       exchanged, with polls coming from the master (RT2) and responses
       from the slave (RT1).  This sequence of Database Description



Moy                         Standards Track                   [Page 105]

RFC 2328                     OSPF Version 2                   April 1998







           +---+                                         +---+
           |RT1|                                         |RT2|
           +---+                                         +---+

           Down                                          Down
                           Hello(DR=0,seen=0)
                      ------------------------------>
                        Hello (DR=RT2,seen=RT1,...)      Init
                      <------------------------------
           ExStart        D-D (Seq=x,I,M,Master)
                      ------------------------------>
                          D-D (Seq=y,I,M,Master)         ExStart
                      <------------------------------
           Exchange       D-D (Seq=y,M,Slave)
                      ------------------------------>
                          D-D (Seq=y+1,M,Master)         Exchange
                      <------------------------------
                          D-D (Seq=y+1,M,Slave)
                      ------------------------------>
                                    ...
                                    ...
                                    ...
                          D-D (Seq=y+n, Master)
                      <------------------------------
                          D-D (Seq=y+n, Slave)
            Loading   ------------------------------>
                                LS Request                Full
                      ------------------------------>
                                LS Update
                      <------------------------------
                                LS Request
                      ------------------------------>
                                LS Update
                      <------------------------------
            Full





Moy                         Standards Track                   [Page 106]

RFC 2328                     OSPF Version 2                   April 1998


                  Figure 14: An adjacency bring-up example





       Packets ends when both the poll and associated response has the
       M-bit off.

       In this example, it is assumed that RT2 has a completely up to
       date database.  In that case, RT2 goes immediately into Full
       state.  RT1 will go into Full state after updating the necessary
       parts of its database.  This is done by sending Link State
       Request Packets, and receiving Link State Update Packets in
       response.  Note that, while RT1 has waited until a complete set
       of Database Description Packets has been received (from RT2)
       before sending any Link State Request Packets, this need not be
       the case.  RT1 could have interleaved the sending of Link State
       Request Packets with the reception of Database Description
       Packets.


11.  The Routing Table Structure

   The routing table data structure contains all the information
   necessary to forward an IP data packet toward its destination.  Each
   routing table entry describes the collection of best paths to a
   particular destination.  When forwarding an IP data packet, the
   routing table entry providing the best match for the packet's IP
   destination is located.  The matching routing table entry then
   provides the next hop towards the packet's destination.  OSPF also
   provides for the existence of a default route (Destination ID =
   DefaultDestination, Address Mask =  0x00000000).  When the default
   route exists, it matches all IP destinations (although any other
   matching entry is a better match).  Finding the routing table entry
   that best matches an IP destination is further described in Section
   11.1.

   There is a single routing table in each router.  Two sample routing
   tables are described in Sections 11.2 and 11.3.  The building of the
   routing table is discussed in Section 16.




Moy                         Standards Track                   [Page 107]

RFC 2328                     OSPF Version 2                   April 1998


   The rest of this section defines the fields found in a routing table
   entry.  The first set of fields describes the routing table entry's
   destination.


   Destination Type
       Destination type is either "network" or "router". Only network
       entries are actually used when forwarding IP data traffic.
       Router routing table entries are used solely as intermediate
       steps in the routing table build process.

       A network is a range of IP addresses, to which IP data traffic
       may be forwarded.  This includes IP networks (class A, B, or C),
       IP subnets, IP supernets and single IP hosts.  The default route
       also falls into this category.

       Router entries are kept for area border routers and AS boundary
       routers.  Routing table entries for area border routers are used
       when calculating the inter-area routes (see Section 16.2), and
       when maintaining configured virtual links (see Section 15).
       Routing table entries for AS boundary routers are used when
       calculating the AS external routes (see Section 16.4).

   Destination ID
       The destination's identifier or name.  This depends on the
       Destination Type.  For networks, the identifier is their
       associated IP address.  For routers, the identifier is the OSPF
       Router ID.[9]

   Address Mask
       Only defined for networks.  The network's IP address together
       with its address mask defines a range of IP addresses.  For IP
       subnets, the address mask is referred to as the subnet mask.
       For host routes, the mask is "all ones" (0xffffffff).

   Optional Capabilities
       When the destination is a router this field indicates the
       optional OSPF capabilities supported by the destination router.
       The only optional capability defined by this specification is
       the ability to process AS-external-LSAs.  For a further
       discussion of OSPF's optional capabilities, see Section 4.5.




Moy                         Standards Track                   [Page 108]

RFC 2328                     OSPF Version 2                   April 1998


   The set of paths to use for a destination may vary based on the OSPF
   area to which the paths belong.  This means that there may be
   multiple routing table entries for the same destination, depending
   on the values of the next field.


   Area
       This field indicates the area whose link state information has
       led to the routing table entry's collection of paths.  This is
       called the entry's associated area.  For sets of AS external
       paths, this field is not defined.  For destinations of type
       "router", there may be separate sets of paths (and therefore
       separate routing table entries) associated with each of several
       areas. For example, this will happen when two area border
       routers share multiple areas in common.  For destinations of
       type "network", only the set of paths associated with the best
       area (the one providing the preferred route) is kept.


   The rest of the routing table entry describes the set of paths to
   the destination.  The following fields pertain to the set of paths
   as a whole.  In other words, each one of the paths contained in a
   routing table entry is of the same path-type and cost (see below).


   Path-type
       There are four possible types of paths used to route traffic to
       the destination, listed here in decreasing order of preference:
       intra-area, inter-area, type 1 external or type 2 external.
       Intra-area paths indicate destinations belonging to one of the
       router's attached areas.  Inter-area paths are paths to
       destinations in other OSPF areas.  These are discovered through
       the examination of received summary-LSAs.  AS external paths are
       paths to destinations external to the AS.  These are detected
       through the examination of received AS-external-LSAs.

   Cost
       The link state cost of the path to the destination.  For all
       paths except type 2 external paths this describes the entire
       path's cost.  For Type 2 external paths, this field describes
       the cost of the portion of the path internal to the AS.  This




Moy                         Standards Track                   [Page 109]

RFC 2328                     OSPF Version 2                   April 1998


       cost is calculated as the sum of the costs of the path's
       constituent links.

   Type 2 cost
       Only valid for type 2 external paths.  For these paths, this
       field indicates the cost of the path's external portion.  This
       cost has been advertised by an AS boundary router, and is the
       most significant part of the total path cost.  For example, a
       type 2 external path with type 2 cost of 5 is always preferred
       over a path with type 2 cost of 10, regardless of the cost of
       the two paths' internal components.

   Link State Origin
       Valid only for intra-area paths, this field indicates the LSA
       (router-LSA or network-LSA) that directly references the
       destination.  For example, if the destination is a transit
       network, this is the transit network's network-LSA.  If the
       destination is a stub network, this is the router-LSA for the
       attached router.  The LSA is discovered during the shortest-path
       tree calculation (see Section 16.1).  Multiple LSAs may
       reference the destination, however a tie-breaking scheme always
       reduces the choice to a single LSA. The Link State Origin field
       is not used by the OSPF protocol, but it is used by the routing
       table calculation in OSPF's Multicast routing extensions
       (MOSPF).

   When multiple paths of equal path-type and cost exist to a
   destination (called elsewhere "equal-cost" paths), they are stored
   in a single routing table entry.  Each one of the "equal-cost" paths
   is distinguished by the following fields:

   Next hop
       The outgoing router interface to use when forwarding traffic to
       the destination.  On broadcast, Point-to-MultiPoint and NBMA
       networks, the next hop also includes the IP address of the next
       router (if any) in the path towards the destination.

   Advertising router
       Valid only for inter-area and AS external paths.  This field
       indicates the Router ID of the router advertising the summary-
       LSA or AS-external-LSA that led to this path.




Moy                         Standards Track                   [Page 110]

RFC 2328                     OSPF Version 2                   April 1998


   11.1.  Routing table lookup

       When an IP data packet is received, an OSPF router finds the
       routing table entry that best matches the packet's destination.
       This routing table entry then provides the outgoing interface
       and next hop router to use in forwarding the packet. This
       section describes the process of finding the best matching
       routing table entry.

       Before the lookup begins, "discard" routing table entries should
       be inserted into the routing table for each of the router's
       active area address ranges (see Section 3.5).  (An area range is
       considered "active" if the range contains one or more networks
       reachable by intra-area paths.) The destination of a "discard"
       entry is the set of addresses described by its associated active
       area address range, and the path type of each "discard" entry is
       set to "inter-area".[10]

       Several routing table entries may match the destination address.
       In this case, the "best match" is the routing table entry that
       provides the most specific (longest) match. Another way of
       saying this is to choose the entry that specifies the narrowest
       range of IP addresses.[11] For example, the entry for the
       address/mask pair of (128.185.1.0, 0xffffff00) is more specific
       than an entry for the pair (128.185.0.0, 0xffff0000). The
       default route is the least specific match, since it matches all
       destinations. (Note that for any single routing table entry,
       multiple paths may be possible. In these cases, the calculations
       in Sections 16.1, 16.2, and 16.4 always yield the paths having
       the most preferential path-type, as described in Section 11).

       If there is no matching routing table entry, or the best match
       routing table entry is one of the above "discard" routing table
       entries, then the packet's IP destination is considered
       unreachable. Instead of being forwarded, the packet should then
       be discarded and an ICMP destination unreachable message should
       be returned to the packet's source.

   11.2.  Sample routing table, without areas

       Consider the Autonomous System pictured in Figure 2.  No OSPF
       areas have been configured.  A single metric is shown per



Moy                         Standards Track                   [Page 111]

RFC 2328                     OSPF Version 2                   April 1998


       outbound interface.  The calculation of Router RT6's routing
       table proceeds as described in Section 2.2.  The resulting
       routing table is shown in Table 12.  Destination types are
       abbreviated: Network as "N", Router as "R".

       There are no instances of multiple equal-cost shortest paths in
       this example.  Also, since there are no areas, there are no
       inter-area paths.

       Routers RT5 and RT7 are AS boundary routers.  Intra-area routes
       have been calculated to Routers RT5 and RT7.  This allows
       external routes to be calculated to the destinations advertised
       by RT5 and RT7 (i.e., Networks N12, N13, N14 and N15).  It is
       assumed all AS-external-LSAs originated by RT5 and RT7 are
       advertising type 1 external metrics.  This results in type 1
       external paths being calculated to destinations N12-N15.



   11.3.  Sample routing table, with areas

       Consider the previous example, this time split into OSPF areas.
       An OSPF area configuration is pictured in Figure 6.  Router
       RT4's routing table will be described for this area
       configuration.  Router RT4 has a connection to Area 1 and a
       backbone connection.  This causes Router RT4 to view the AS as
       the concatenation of the two graphs shown in Figures 7 and 8.
       The resulting routing table is displayed in Table 13.

       Again, Routers RT5 and RT7 are AS boundary routers.  Routers
       RT3, RT4, RT7, RT10 and RT11 are area border routers.  Note that
       there are two routing entries for the area border router RT3,
       since it has two areas in common with RT4 (Area 1 and the
       backbone).

       Backbone paths have been calculated to all area border routers.
       These are used when determining the inter-area routes.  Note
       that all of the inter-area routes are associated with the
       backbone; this is always the case when the calculating router is
       itself an area border router.  Routing information is condensed
       at area boundaries.  In this example, we assume that Area 3 has
       been defined so that networks N9-N11 and the host route to H1



Moy                         Standards Track                   [Page 112]

RFC 2328                     OSPF Version 2                   April 1998




     Type   Dest   Area   Path  Type    Cost   Next     Adv.
                                               Hop(s)   Router(s)
     ____________________________________________________________
     N      N1     0      intra-area    10     RT3      *
     N      N2     0      intra-area    10     RT3      *
     N      N3     0      intra-area    7      RT3      *
     N      N4     0      intra-area    8      RT3      *
     N      Ib     0      intra-area    7      *        *
     N      Ia     0      intra-area    12     RT10     *
     N      N6     0      intra-area    8      RT10     *
     N      N7     0      intra-area    12     RT10     *
     N      N8     0      intra-area    10     RT10     *
     N      N9     0      intra-area    11     RT10     *
     N      N10    0      intra-area    13     RT10     *
     N      N11    0      intra-area    14     RT10     *
     N      H1     0      intra-area    21     RT10     *
     R      RT5    0      intra-area    6      RT5      *
     R      RT7    0      intra-area    8      RT10     *
     ____________________________________________________________
     N      N12    *      type 1 ext.   10     RT10     RT7
     N      N13    *      type 1 ext.   14     RT5      RT5
     N      N14    *      type 1 ext.   14     RT5      RT5
     N      N15    *      type 1 ext.   17     RT10     RT7


              Table 12: The routing table for Router RT6
                        (no configured areas).

       are all condensed to a single route when advertised into the
       backbone (by Router RT11).  Note that the cost of this route is
       the maximum of the set of costs to its individual components.

       There is a virtual link configured between Routers RT10 and
       RT11.  Without this configured virtual link, RT11 would be
       unable to advertise a route for networks N9-N11 and Host H1 into
       the backbone, and there would not be an entry for these networks
       in Router RT4's routing table.

       In this example there are two equal-cost paths to Network N12.
       However, they both use the same next hop (Router RT5).



Moy                         Standards Track                   [Page 113]

RFC 2328                     OSPF Version 2                   April 1998


       Router RT4's routing table would improve (i.e., some of the
       paths in the routing table would become shorter) if an
       additional virtual link were configured between Router RT4 and
       Router RT3.  The new virtual link would itself be associated
       with the first entry for area border router RT3 in Table 13 (an
       intra-area path through Area 1).  This would yield a cost of 1
       for the virtual link.  The routing table entries changes that
       would be caused by the addition of this virtual link are shown


  Type   Dest        Area   Path  Type    Cost   Next      Adv.
                                                 Hops(s)   Router(s)
  __________________________________________________________________
  N      N1          1      intra-area    4      RT1       *
  N      N2          1      intra-area    4      RT2       *
  N      N3          1      intra-area    1      *         *
  N      N4          1      intra-area    3      RT3       *
  R      RT3         1      intra-area    1      *         *
  __________________________________________________________________
  N      Ib          0      intra-area    22     RT5       *
  N      Ia          0      intra-area    27     RT5       *
  R      RT3         0      intra-area    21     RT5       *
  R      RT5         0      intra-area    8      *         *
  R      RT7         0      intra-area    14     RT5       *
  R      RT10        0      intra-area    22     RT5       *
  R      RT11        0      intra-area    25     RT5       *
  __________________________________________________________________
  N      N6          0      inter-area    15     RT5       RT7
  N      N7          0      inter-area    19     RT5       RT7
  N      N8          0      inter-area    18     RT5       RT7
  N      N9-N11,H1   0      inter-area    36     RT5       RT11
  __________________________________________________________________
  N      N12         *      type 1 ext.   16     RT5       RT5,RT7
  N      N13         *      type 1 ext.   16     RT5       RT5
  N      N14         *      type 1 ext.   16     RT5       RT5
  N      N15         *      type 1 ext.   23     RT5       RT7


                 Table 13: Router RT4's routing table
                      in the presence of areas.





Moy                         Standards Track                   [Page 114]

RFC 2328                     OSPF Version 2                   April 1998


       in Table 14.



12.  Link State Advertisements (LSAs)

   Each router in the Autonomous System originates one or more link
   state advertisements (LSAs).  This memo defines five distinct types
   of LSAs, which are described in Section 4.3.  The collection of LSAs
   forms the link-state database.  Each separate type of LSA has a
   separate function.  Router-LSAs and network-LSAs describe how an
   area's routers and networks are interconnected.  Summary-LSAs
   provide a way of condensing an area's routing information.  AS-
   external-LSAs provide a way of transparently advertising
   externally-derived routing information throughout the Autonomous
   System.

   Each LSA begins with a standard 20-byte header.  This LSA header is
   discussed below.







   Type   Dest        Area   Path  Type   Cost   Next     Adv.
                                                 Hop(s)   Router(s)
   ________________________________________________________________
   N      Ib          0      intra-area   16     RT3      *
   N      Ia          0      intra-area   21     RT3      *
   R      RT3         0      intra-area   1      *        *
   R      RT10        0      intra-area   16     RT3      *
   R      RT11        0      intra-area   19     RT3      *
   ________________________________________________________________
   N      N9-N11,H1   0      inter-area   30     RT3      RT11


                 Table 14: Changes resulting from an
                       additional virtual link.





Moy                         Standards Track                   [Page 115]

RFC 2328                     OSPF Version 2                   April 1998


   12.1.  The LSA Header

       The LSA header contains the LS type, Link State ID and
       Advertising Router fields.  The combination of these three
       fields uniquely identifies the LSA.

       There may be several instances of an LSA present in the
       Autonomous System, all at the same time.  It must then be
       determined which instance is more recent.  This determination is
       made by examining the LS sequence, LS checksum and LS age
       fields.  These fields are also contained in the 20-byte LSA
       header.

       Several of the OSPF packet types list LSAs.  When the instance
       is not important, an LSA is referred to by its LS type, Link
       State ID and Advertising Router (see Link State Request
       Packets).  Otherwise, the LS sequence number, LS age and LS
       checksum fields must also be referenced.

       A detailed explanation of the fields contained in the LSA header
       follows.


       12.1.1.  LS age

           This field is the age of the LSA in seconds.  It should be
           processed as an unsigned 16-bit integer.  It is set to 0
           when the LSA is originated.  It must be incremented by
           InfTransDelay on every hop of the flooding procedure.  LSAs
           are also aged as they are held in each router's database.

           The age of an LSA is never incremented past MaxAge.  LSAs
           having age MaxAge are not used in the routing table
           calculation.  When an LSA's age first reaches MaxAge, it is
           reflooded.  An LSA of age MaxAge is finally flushed from the
           database when it is no longer needed to ensure database
           synchronization.  For more information on the aging of LSAs,
           consult Section 14.

           The LS age field is examined when a router receives two
           instances of an LSA, both having identical LS sequence
           numbers and LS checksums.  An instance of age MaxAge is then



Moy                         Standards Track                   [Page 116]

RFC 2328                     OSPF Version 2                   April 1998


           always accepted as most recent; this allows old LSAs to be
           flushed quickly from the routing domain.  Otherwise, if the
           ages differ by more than MaxAgeDiff, the instance having the
           smaller age is accepted as most recent.[12] See Section 13.1
           for more details.


       12.1.2.  Options

           The Options field in the LSA header indicates which optional
           capabilities are associated with the LSA.  OSPF's optional
           capabilities are described in Section 4.5.  One optional
           capability is defined by this specification, represented by
           the E-bit found in the Options field.  The unrecognized bits
           in the Options field should be set to zero.

           The E-bit represents OSPF's ExternalRoutingCapability.  This
           bit should be set in all LSAs associated with the backbone,
           and all LSAs associated with non-stub areas (see Section
           3.6).  It should also be set in all AS-external-LSAs.  It
           should be reset in all router-LSAs, network-LSAs and
           summary-LSAs associated with a stub area.  For all LSAs, the
           setting of the E-bit is for informational purposes only; it
           does not affect the routing table calculation.


       12.1.3.  LS type

           The LS type field dictates the format and function of the
           LSA.  LSAs of different types have different names (e.g.,
           router-LSAs or network-LSAs).  All LSA types defined by this
           memo, except the AS-external-LSAs (LS type = 5), are flooded
           throughout a single area only.  AS-external-LSAs are flooded
           throughout the entire Autonomous System, excepting stub
           areas (see Section 3.6).  Each separate LSA type is briefly
           described below in Table 15.

       12.1.4.  Link State ID

           This field identifies the piece of the routing domain that
           is being described by the LSA.  Depending on the LSA's LS
           type, the Link State ID takes on the values listed in Table



Moy                         Standards Track                   [Page 117]

RFC 2328                     OSPF Version 2                   April 1998




           LS Type   LSA description
           ________________________________________________
           1         These are the router-LSAs.
                     They describe the collected
                      states of the router's
                     interfaces. For more information,
                     consult Section 12.4.1.
           ________________________________________________
           2         These are the network-LSAs.
                     They describe the set of routers
                     attached to the network. For
                     more information, consult
                     Section 12.4.2.
           ________________________________________________
           3 or 4    These are the summary-LSAs.
                     They describe inter-area routes,
                     and enable the condensation of
                     routing information at area
                     borders. Originated by area border
                     routers, the Type 3 summary-LSAs
                     describe routes to networks while the
                     Type 4 summary-LSAs describe routes to
                     AS boundary routers.
           ________________________________________________
           5         These are the AS-external-LSAs.
                     Originated by AS boundary routers,
                     they describe routes
                     to destinations external to the
                     Autonomous System. A default route for
                     the Autonomous System can also be
                     described by an AS-external-LSA.


           Table 15: OSPF link state advertisements (LSAs).

           16.


           Actually, for Type 3 summary-LSAs (LS type = 3) and AS-
           external-LSAs (LS type = 5), the Link State ID may



Moy                         Standards Track                   [Page 118]

RFC 2328                     OSPF Version 2                   April 1998




           LS Type   Link State ID
           _______________________________________________
           1         The originating router's Router ID.
           2         The IP interface address of the
                     network's Designated Router.
           3         The destination network's IP address.
           4         The Router ID of the described AS
                     boundary router.
           5         The destination network's IP address.


                  Table 16: The LSA's Link State ID.

           additionally have one or more of the destination network's
           "host" bits set. For example, when originating an AS-
           external-LSA for the network 10.0.0.0 with mask of
           255.0.0.0, the Link State ID can be set to anything in the
           range 10.0.0.0 through 10.255.255.255 inclusive (although
           10.0.0.0 should be used whenever possible). The freedom to
           set certain host bits allows a router to originate separate
           LSAs for two networks having the same address but different
           masks. See Appendix E for details.

           When the LSA is describing a network (LS type = 2, 3 or 5),
           the network's IP address is easily derived by masking the
           Link State ID with the network/subnet mask contained in the
           body of the LSA.  When the LSA is describing a router (LS
           type = 1 or 4), the Link State ID is always the described
           router's OSPF Router ID.

           When an AS-external-LSA (LS Type = 5) is describing a
           default route, its Link State ID is set to
           DefaultDestination (0.0.0.0).


       12.1.5.  Advertising Router

           This field specifies the OSPF Router ID of the LSA's
           originator.  For router-LSAs, this field is identical to the
           Link State ID field.  Network-LSAs are originated by the



Moy                         Standards Track                   [Page 119]

RFC 2328                     OSPF Version 2                   April 1998


           network's Designated Router.  Summary-LSAs originated by
           area border routers.  AS-external-LSAs are originated by AS
           boundary routers.


       12.1.6.  LS sequence number

           The sequence number field is a signed 32-bit integer.  It is
           used to detect old and duplicate LSAs.  The space of
           sequence numbers is linearly ordered.  The larger the
           sequence number (when compared as signed 32-bit integers)
           the more recent the LSA.  To describe to sequence number
           space more precisely, let N refer in the discussion below to
           the constant 2**31.

           The sequence number -N (0x80000000) is reserved (and
           unused).  This leaves -N + 1 (0x80000001) as the smallest
           (and therefore oldest) sequence number; this sequence number
           is referred to as the constant InitialSequenceNumber. A
           router uses InitialSequenceNumber the first time it
           originates any LSA.  Afterwards, the LSA's sequence number
           is incremented each time the router originates a new
           instance of the LSA.  When an attempt is made to increment
           the sequence number past the maximum value of N - 1
           (0x7fffffff; also referred to as MaxSequenceNumber), the
           current instance of the LSA must first be flushed from the
           routing domain.  This is done by prematurely aging the LSA
           (see Section 14.1) and reflooding it.  As soon as this flood
           has been acknowledged by all adjacent neighbors, a new
           instance can be originated with sequence number of
           InitialSequenceNumber.

           The router may be forced to promote the sequence number of
           one of its LSAs when a more recent instance of the LSA is
           unexpectedly received during the flooding process.  This
           should be a rare event.  This may indicate that an out-of-
           date LSA, originated by the router itself before its last
           restart/reload, still exists in the Autonomous System.  For
           more information see Section 13.4.






Moy                         Standards Track                   [Page 120]

RFC 2328                     OSPF Version 2                   April 1998


       12.1.7.  LS checksum

           This field is the checksum of the complete contents of the
           LSA, excepting the LS age field.  The LS age field is
           excepted so that an LSA's age can be incremented without
           updating the checksum.  The checksum used is the same that
           is used for ISO connectionless datagrams; it is commonly
           referred to as the Fletcher checksum.  It is documented in
           Annex B of [Ref6].  The LSA header also contains the length
           of the LSA in bytes; subtracting the size of the LS age
           field (two bytes) yields the amount of data to checksum.

           The checksum is used to detect data corruption of an LSA.
           This corruption can occur while an LSA is being flooded, or
           while it is being held in a router's memory.  The LS
           checksum field cannot take on the value of zero; the
           occurrence of such a value should be considered a checksum
           failure.  In other words, calculation of the checksum is not
           optional.

           The checksum of an LSA is verified in two cases:  a) when it
           is received in a Link State Update Packet and b) at times
           during the aging of the link state database.  The detection
           of a checksum failure leads to separate actions in each
           case.  See Sections 13 and 14 for more details.

           Whenever the LS sequence number field indicates that two
           instances of an LSA are the same, the LS checksum field is
           examined.  If there is a difference, the instance with the
           larger LS checksum is considered to be most recent.[13] See
           Section 13.1 for more details.


   12.2.  The link state database

       A router has a separate link state database for every area to
       which it belongs. All routers belonging to the same area have
       identical link state databases for the area.

       The databases for each individual area are always dealt with
       separately.  The shortest path calculation is performed
       separately for each area (see Section 16).  Components of the



Moy                         Standards Track                   [Page 121]

RFC 2328                     OSPF Version 2                   April 1998


       area link-state database are flooded throughout the area only.
       Finally, when an adjacency (belonging to Area A) is being
       brought up, only the database for Area A is synchronized between
       the two routers.

       The area database is composed of router-LSAs, network-LSAs and
       summary-LSAs (all listed in the area data structure).  In
       addition, external routes (AS-external-LSAs) are included in all
       non-stub area databases (see Section 3.6).

       An implementation of OSPF must be able to access individual
       pieces of an area database.  This lookup function is based on an
       LSA's LS type, Link State ID and Advertising Router.[14] There
       will be a single instance (the most up-to-date) of each LSA in
       the database.  The database lookup function is invoked during
       the LSA flooding procedure (Section 13) and the routing table
       calculation (Section 16).  In addition, using this lookup
       function the router can determine whether it has itself ever
       originated a particular LSA, and if so, with what LS sequence
       number.

       An LSA is added to a router's database when either a) it is
       received during the flooding process (Section 13) or b) it is
       originated by the router itself (Section 12.4).  An LSA is
       deleted from a router's database when either a) it has been
       overwritten by a newer instance during the flooding process
       (Section 13) or b) the router originates a newer instance of one
       of its self-originated LSAs (Section 12.4) or c) the LSA ages
       out and is flushed from the routing domain (Section 14).
       Whenever an LSA is deleted from the database it must also be
       removed from all neighbors' Link state retransmission lists (see
       Section 10).


   12.3.  Representation of TOS

       For backward compatibility with previous versions of the OSPF
       specification ([Ref9]), TOS-specific information can be included
       in router-LSAs, summary-LSAs and AS-external-LSAs.  The encoding
       of TOS in OSPF LSAs is specified in Table 17. That table relates
       the OSPF encoding to the IP packet header's TOS field (defined
       in [Ref12]).  The OSPF encoding is expressed as a decimal



Moy                         Standards Track                   [Page 122]

RFC 2328                     OSPF Version 2                   April 1998


       integer, and the IP packet header's TOS field is expressed in
       the binary TOS values used in [Ref12].



                   OSPF encoding   RFC 1349 TOS values
                   ___________________________________________
                   0               0000 normal service
                   2               0001 minimize monetary cost
                   4               0010 maximize reliability
                   6               0011
                   8               0100 maximize throughput
                   10              0101
                   12              0110
                   14              0111
                   16              1000 minimize delay
                   18              1001
                   20              1010
                   22              1011
                   24              1100
                   26              1101
                   28              1110
                   30              1111


                       Table 17: Representing TOS in OSPF.


   12.4.  Originating LSAs

       Into any given OSPF area, a router will originate several LSAs.
       Each router originates a router-LSA.  If the router is also the
       Designated Router for any of the area's networks, it will
       originate network-LSAs for those networks.

       Area border routers originate a single summary-LSA for each
       known inter-area destination.  AS boundary routers originate a
       single AS-external-LSA for each known AS external destination.
       Destinations are advertised one at a time so that the change in
       any single route can be flooded without reflooding the entire
       collection of routes.  During the flooding procedure, many LSAs
       can be carried by a single Link State Update packet.



Moy                         Standards Track                   [Page 123]

RFC 2328                     OSPF Version 2                   April 1998


       As an example, consider Router RT4 in Figure 6.  It is an area
       border router, having a connection to Area 1 and the backbone.
       Router RT4 originates 5 distinct LSAs into the backbone (one
       router-LSA, and one summary-LSA for each of the networks N1-N4).
       Router RT4 will also originate 8 distinct LSAs into Area 1 (one
       router-LSA and seven summary-LSAs as pictured in Figure 7).  If
       RT4 has been selected as Designated Router for Network N3, it
       will also originate a network-LSA for N3 into Area 1.

       In this same figure, Router RT5 will be originating 3 distinct
       AS-external-LSAs (one for each of the networks N12-N14).  These
       will be flooded throughout the entire AS, assuming that none of
       the areas have been configured as stubs.  However, if area 3 has
       been configured as a stub area, the AS-external-LSAs for
       networks N12-N14 will not be flooded into area 3 (see Section
       3.6).  Instead, Router RT11 would originate a default summary-
       LSA that would be flooded throughout area 3 (see Section
       12.4.3).  This instructs all of area 3's internal routers to
       send their AS external traffic to RT11.

       Whenever a new instance of an LSA is originated, its LS sequence
       number is incremented, its LS age is set to 0, its LS checksum
       is calculated, and the LSA is added to the link state database
       and flooded out the appropriate interfaces.  See Section 13.2
       for details concerning the installation of the LSA into the link
       state database.  See Section 13.3 for details concerning the
       flooding of newly originated LSAs.


       The ten events that can cause a new instance of an LSA to be
       originated are:


       (1) The LS age field of one of the router's self-originated LSAs
           reaches the value LSRefreshTime. In this case, a new
           instance of the LSA is originated, even though the contents
           of the LSA (apart from the LSA header) will be the same.
           This guarantees periodic originations of all LSAs.  This
           periodic updating of LSAs adds robustness to the link state
           algorithm.  LSAs that solely describe unreachable
           destinations should not be refreshed, but should instead be
           flushed from the routing domain (see Section 14.1).



Moy                         Standards Track                   [Page 124]

RFC 2328                     OSPF Version 2                   April 1998


       When whatever is being described by an LSA changes, a new LSA is
       originated.  However, two instances of the same LSA may not be
       originated within the time period MinLSInterval.  This may
       require that the generation of the next instance be delayed by
       up to MinLSInterval.  The following events may cause the
       contents of an LSA to change.  These events should cause new
       originations if and only if the contents of the new LSA would be
       different:


       (2) An interface's state changes (see Section 9.1).  This may
           mean that it is necessary to produce a new instance of the
           router-LSA.

       (3) An attached network's Designated Router changes.  A new
           router-LSA should be originated.  Also, if the router itself
           is now the Designated Router, a new network-LSA should be
           produced.  If the router itself is no longer the Designated
           Router, any network-LSA that it might have originated for
           the network should be flushed from the routing domain (see
           Section 14.1).

       (4) One of the neighboring routers changes to/from the FULL
           state.  This may mean that it is necessary to produce a new
           instance of the router-LSA.  Also, if the router is itself
           the Designated Router for the attached network, a new
           network-LSA should be produced.


       The next four events concern area border routers only:


       (5) An intra-area route has been added/deleted/modified in the
           routing table.  This may cause a new instance of a summary-
           LSA (for this route) to be originated in each attached area
           (possibly including the backbone).

       (6) An inter-area route has been added/deleted/modified in the
           routing table.  This may cause a new instance of a summary-
           LSA (for this route) to be originated in each attached area
           (but NEVER for the backbone).




Moy                         Standards Track                   [Page 125]

RFC 2328                     OSPF Version 2                   April 1998


       (7) The router becomes newly attached to an area.  The router
           must then originate summary-LSAs into the newly attached
           area for all pertinent intra-area and inter-area routes in
           the router's routing table.  See Section 12.4.3 for more
           details.

       (8) When the state of one of the router's configured virtual
           links changes, it may be necessary to originate a new
           router-LSA into the virtual link's Transit area (see the
           discussion of the router-LSA's bit V in Section 12.4.1), as
           well as originating a new router-LSA into the backbone.


       The last two events concern AS boundary routers (and former AS
       boundary routers) only:


       (9) An external route gained through direct experience with an
           external routing protocol (like BGP) changes.  This will
           cause an AS boundary router to originate a new instance of
           an AS-external-LSA.

       (10)
           A router ceases to be an AS boundary router, perhaps after
           restarting. In this situation the router should flush all
           AS-external-LSAs that it had previously originated.  These
           LSAs can be flushed via the premature aging procedure
           specified in Section 14.1.


       The construction of each type of LSA is explained in detail
       below.  In general, these sections describe the contents of the
       LSA body (i.e., the part coming after the 20-byte LSA header).
       For information concerning the building of the LSA header, see
       Section 12.1.

       12.4.1.  Router-LSAs

           A router originates a router-LSA for each area that it
           belongs to.  Such an LSA describes the collected states of
           the router's links to the area.  The LSA is flooded
           throughout the particular area, and no further.



Moy                         Standards Track                   [Page 126]

RFC 2328                     OSPF Version 2                   April 1998



                 ....................................
                 . 192.1.2                   Area 1 .
                 .     +                            .
                 .     |                            .
                 .     | 3+---+1                    .
                 .  N1 |--|RT1|-----+               .
                 .     |  +---+      \              .
                 .     |              \  _______N3  .
                 .     +               \/       \   .  1+---+
                 .                     * 192.1.1 *------|RT4|
                 .     +               /\_______/   .   +---+
                 .     |              /     |       .
                 .     | 3+---+1     /      |       .
                 .  N2 |--|RT2|-----+      1|       .
                 .     |  +---+           +---+8    .         6+---+
                 .     |                  |RT3|----------------|RT6|
                 .     +                  +---+     .          +---+
                 . 192.1.3                  |2      .   18.10.0.6|7
                 .                          |       .            |
                 .                   +------------+ .
                 .                     192.1.4 (N4) .
                 ....................................


                   Figure 15: Area 1 with IP addresses shown

           The format of a router-LSA is shown in Appendix A (Section
           A.4.2).  The first 20 bytes of the LSA consist of the
           generic LSA header that was discussed in Section 12.1.
           router-LSAs have LS type = 1.

           A router also indicates whether it is an area border router,
           or an AS boundary router, by setting the appropriate bits
           (bit B and bit E, respectively) in its router-LSAs. This
           enables paths to those types of routers to be saved in the
           routing table, for later processing of summary-LSAs and AS-
           external-LSAs.  Bit B should be set whenever the router is
           actively attached to two or more areas, even if the router
           is not currently attached to the OSPF backbone area.  Bit E
           should never be set in a router-LSA for a stub area (stub
           areas cannot contain AS boundary routers).



Moy                         Standards Track                   [Page 127]

RFC 2328                     OSPF Version 2                   April 1998


           In addition, the router sets bit V in its router-LSA for
           Area A if and only if the router is the endpoint of one or
           more fully adjacent virtual links having Area A as their
           Transit area. The setting of bit V enables other routers in
           Area A to discover whether the area supports transit traffic
           (see TransitCapability in Section 6).

           The router-LSA then describes the router's working
           connections (i.e., interfaces or links) to the area.  Each
           link is typed according to the kind of attached network.
           Each link is also labelled with its Link ID.  This Link ID
           gives a name to the entity that is on the other end of the
           link.  Table 18 summarizes the values used for the Type and
           Link ID fields.



                  Link type   Description       Link ID
                  __________________________________________________
                  1           Point-to-point    Neighbor Router ID
                              link
                  2           Link to transit   Interface address of
                              network           Designated Router
                  3           Link to stub      IP network number
                              network
                  4           Virtual link      Neighbor Router ID


                          Table 18: Link descriptions in the
                                     router-LSA.


           In addition, the Link Data field is specified for each link.
           This field gives 32 bits of extra information for the link.
           For links to transit networks, numbered point-to-point links
           and virtual links, this field specifies the IP interface
           address of the associated router interface (this is needed
           by the routing table calculation, see Section 16.1.1).  For
           links to stub networks, this field specifies the stub
           network's IP address mask.  For unnumbered point-to-point
           links, the Link Data field should be set to the unnumbered
           interface's MIB-II [Ref8] ifIndex value.



Moy                         Standards Track                   [Page 128]

RFC 2328                     OSPF Version 2                   April 1998


           Finally, the cost of using the link for output is specified.
           The output cost of a link is configurable.  With the
           exception of links to stub networks, the output cost must
           always be non-zero.

           To further describe the process of building the list of link
           descriptions, suppose a router wishes to build a router-LSA
           for Area A.  The router examines its collection of interface
           data structures.  For each interface, the following steps
           are taken:


           o   If the attached network does not belong to Area A, no
               links are added to the LSA, and the next interface
               should be examined.

           o   If the state of the interface is Down, no links are
               added.

           o   If the state of the interface is Loopback, add a Type 3
               link (stub network) as long as this is not an interface
               to an unnumbered point-to-point network.  The Link ID
               should be set to the IP interface address, the Link Data
               set to the mask 0xffffffff (indicating a host route),
               and the cost set to 0.

           o   Otherwise, the link descriptions added to the router-LSA
               depend on the OSPF interface type. Link descriptions
               used for point-to-point interfaces are specified in
               Section 12.4.1.1, for virtual links in Section 12.4.1.2,
               for broadcast and NBMA interfaces in 12.4.1.3, and for
               Point-to-MultiPoint interfaces in 12.4.1.4.

           After consideration of all the router interfaces, host links
           are added to the router-LSA by examining the list of
           attached hosts belonging to Area A.  A host route is
           represented as a Type 3 link (stub network) whose Link ID is
           the host's IP address, Link Data is the mask of all ones
           (0xffffffff), and cost the host's configured cost (see
           Section C.7).





Moy                         Standards Track                   [Page 129]

RFC 2328                     OSPF Version 2                   April 1998


           12.4.1.1.  Describing point-to-point interfaces

               For point-to-point interfaces, one or more link
               descriptions are added to the router-LSA as follows:

               o   If the neighboring router is fully adjacent, add a
                   Type 1 link (point-to-point). The Link ID should be
                   set to the Router ID of the neighboring router. For
                   numbered point-to-point networks, the Link Data
                   should specify the IP interface address. For
                   unnumbered point-to-point networks, the Link Data
                   field should specify the interface's MIB-II [Ref8]
                   ifIndex value. The cost should be set to the output
                   cost of the point-to-point interface.

               o   In addition, as long as the state of the interface
                   is "Point-to-Point" (and regardless of the
                   neighboring router state), a Type 3 link (stub
                   network) should be added. There are two forms that
                   this stub link can take:

                   Option 1
                       Assuming that the neighboring router's IP
                       address is known, set the Link ID of the Type 3
                       link to the neighbor's IP address, the Link Data
                       to the mask 0xffffffff (indicating a host
                       route), and the cost to the interface's
                       configured output cost.[15]

                   Option 2
                       If a subnet has been assigned to the point-to-
                       point link, set the Link ID of the Type 3 link
                       to the subnet's IP address, the Link Data to the
                       subnet's mask, and the cost to the interface's
                       configured output cost.[16]


           12.4.1.2.  Describing broadcast and NBMA interfaces

               For operational broadcast and NBMA interfaces, a single
               link description is added to the router-LSA as follows:




Moy                         Standards Track                   [Page 130]

RFC 2328                     OSPF Version 2                   April 1998


               o   If the state of the interface is Waiting, add a Type
                   3 link (stub network) with Link ID set to the IP
                   network number of the attached network, Link Data
                   set to the attached network's address mask, and cost
                   equal to the interface's configured output cost.

               o   Else, there has been a Designated Router elected for
                   the attached network.  If the router is fully
                   adjacent to the Designated Router, or if the router
                   itself is Designated Router and is fully adjacent to
                   at least one other router, add a single Type 2 link
                   (transit network) with Link ID set to the IP
                   interface address of the attached network's
                   Designated Router (which may be the router itself),
                   Link Data set to the router's own IP interface
                   address, and cost equal to the interface's
                   configured output cost.  Otherwise, add a link as if
                   the interface state were Waiting (see above).


           12.4.1.3.  Describing virtual links

               For virtual links, a link description is added to the
               router-LSA only when the virtual neighbor is fully
               adjacent. In this case, add a Type 4 link (virtual link)
               with Link ID set to the Router ID of the virtual
               neighbor, Link Data set to the IP interface address
               associated with the virtual link and cost set to the
               cost calculated for the virtual link during the routing
               table calculation (see Section 15).


           12.4.1.4.  Describing Point-to-MultiPoint interfaces

               For operational Point-to-MultiPoint interfaces, one or
               more link descriptions are added to the router-LSA as
               follows:

               o   A single Type 3 link (stub network) is added with
                   Link ID set to the router's own IP interface
                   address, Link Data set to the mask 0xffffffff
                   (indicating a host route), and cost set to 0.



Moy                         Standards Track                   [Page 131]

RFC 2328                     OSPF Version 2                   April 1998


               o   For each fully adjacent neighbor associated with the
                   interface, add an additional Type 1 link (point-to-
                   point) with Link ID set to the Router ID of the
                   neighboring router, Link Data set to the IP
                   interface address and cost equal to the interface's
                   configured output cost.


           12.4.1.5.  Examples of router-LSAs

               Consider the router-LSAs generated by Router RT3, as
               pictured in Figure 6.  The area containing Router RT3
               (Area 1) has been redrawn, with actual network
               addresses, in Figure 15.  Assume that the last byte of
               all of RT3's interface addresses is 3, giving it the
               interface addresses 192.1.1.3 and 192.1.4.3, and that
               the other routers have similar addressing schemes.  In
               addition, assume that all links are functional, and that
               Router IDs are assigned as the smallest IP interface
               address.

               RT3 originates two router-LSAs, one for Area 1 and one
               for the backbone.  Assume that Router RT4 has been
               selected as the Designated router for network 192.1.1.0.
               RT3's router-LSA for Area 1 is then shown below.  It
               indicates that RT3 has two connections to Area 1, the
               first a link to the transit network 192.1.1.0 and the
               second a link to the stub network 192.1.4.0.  Note that
               the transit network is identified by the IP interface of
               its Designated Router (i.e., the Link ID = 192.1.1.4
               which is the Designated Router RT4's IP interface to
               192.1.1.0).  Note also that RT3 has indicated that it is
               an area border router.

       ; RT3's router-LSA for Area 1

       LS age = 0                     ;always true on origination
       Options = (E-bit)              ;
       LS type = 1                    ;indicates router-LSA
       Link State ID = 192.1.1.3      ;RT3's Router ID
       Advertising Router = 192.1.1.3 ;RT3's Router ID
       bit E = 0                      ;not an AS boundary router



Moy                         Standards Track                   [Page 132]

RFC 2328                     OSPF Version 2                   April 1998


       bit B = 1                      ;area border router
       #links = 2
              Link ID = 192.1.1.4     ;IP address of Desig. Rtr.
              Link Data = 192.1.1.3   ;RT3's IP interface to net
              Type = 2                ;connects to transit network
              # TOS metrics = 0
              metric = 1

              Link ID = 192.1.4.0     ;IP Network number
              Link Data = 0xffffff00  ;Network mask
              Type = 3                ;connects to stub network
              # TOS metrics = 0
              metric = 2

                   Next RT3's router-LSA for the backbone is shown.  It
                   indicates that RT3 has a single attachment to the
                   backbone.  This attachment is via an unnumbered
                   point-to-point link to Router RT6.  RT3 has again
                   indicated that it is an area border router.

       ; RT3's router-LSA for the backbone

       LS age = 0                     ;always true on origination
       Options = (E-bit)              ;
       LS type = 1                    ;indicates router-LSA
       Link State ID = 192.1.1.3      ;RT3's router ID
       Advertising Router = 192.1.1.3 ;RT3's router ID
       bit E = 0                      ;not an AS boundary router
       bit B = 1                      ;area border router
       #links = 1
              Link ID = 18.10.0.6     ;Neighbor's Router ID
              Link Data = 0.0.0.3     ;MIB-II ifIndex of P-P link
              Type = 1                ;connects to router
              # TOS metrics = 0
              metric = 8

       12.4.2.  Network-LSAs

           A network-LSA is generated for every transit broadcast or
           NBMA network.  (A transit network is a network having two or
           more attached routers).  The network-LSA describes all the
           routers that are attached to the network.



Moy                         Standards Track                   [Page 133]

RFC 2328                     OSPF Version 2                   April 1998


           The Designated Router for the network originates the LSA.
           The Designated Router originates the LSA only if it is fully
           adjacent to at least one other router on the network.  The
           network-LSA is flooded throughout the area that contains the
           transit network, and no further.  The network-LSA lists
           those routers that are fully adjacent to the Designated
           Router; each fully adjacent router is identified by its OSPF
           Router ID.  The Designated Router includes itself in this
           list.

           The Link State ID for a network-LSA is the IP interface
           address of the Designated Router.  This value, masked by the
           network's address mask (which is also contained in the
           network-LSA) yields the network's IP address.

           A router that has formerly been the Designated Router for a
           network, but is no longer, should flush the network-LSA that
           it had previously originated.  This LSA is no longer used in
           the routing table calculation.  It is flushed by prematurely
           incrementing the LSA's age to MaxAge and reflooding (see
           Section 14.1). In addition, in those rare cases where a
           router's Router ID has changed, any network-LSAs that were
           originated with the router's previous Router ID must be
           flushed. Since the router may have no idea what it's
           previous Router ID might have been, these network-LSAs are
           indicated by having their Link State ID equal to one of the
           router's IP interface addresses and their Advertising Router
           equal to some value other than the router's current Router
           ID (see Section 13.4 for more details).


           12.4.2.1.  Examples of network-LSAs

               Again consider the area configuration in Figure 6.
               Network-LSAs are originated for Network N3 in Area 1,
               Networks N6 and N8 in Area 2, and Network N9 in Area 3.
               Assuming that Router RT4 has been selected as the
               Designated Router for Network N3, the following
               network-LSA is generated by RT4 on behalf of Network N3
               (see Figure 15 for the address assignments):

       ; Network-LSA for Network N3



Moy                         Standards Track                   [Page 134]

RFC 2328                     OSPF Version 2                   April 1998


       LS age = 0                     ;always true on origination
       Options = (E-bit)              ;
       LS type = 2                    ;indicates network-LSA
       Link State ID = 192.1.1.4      ;IP address of Desig. Rtr.
       Advertising Router = 192.1.1.4 ;RT4's Router ID
       Network Mask = 0xffffff00
              Attached Router = 192.1.1.4    ;Router ID
              Attached Router = 192.1.1.1    ;Router ID
              Attached Router = 192.1.1.2    ;Router ID
              Attached Router = 192.1.1.3    ;Router ID

       12.4.3.  Summary-LSAs

           The destination described by a summary-LSA is either an IP
           network, an AS boundary router or a range of IP addresses.
           Summary-LSAs are flooded throughout a single area only.  The
           destination described is one that is external to the area,
           yet still belongs to the Autonomous System.

           Summary-LSAs are originated by area border routers.  The
           precise summary routes to advertise into an area are
           determined by examining the routing table structure (see
           Section 11) in accordance with the algorithm described
           below. Note that only intra-area routes are advertised into
           the backbone, while both intra-area and inter-area routes
           are advertised into the other areas.

           To determine which routes to advertise into an attached Area
           A, each routing table entry is processed as follows.
           Remember that each routing table entry describes a set of
           equal-cost best paths to a particular destination:

           o   Only Destination Types of network and AS boundary router
               are advertised in summary-LSAs.  If the routing table
               entry's Destination Type is area border router, examine
               the next routing table entry.

           o   AS external routes are never advertised in summary-LSAs.
               If the routing table entry has Path-type of type 1
               external or type 2 external, examine the next routing
               table entry.




Moy                         Standards Track                   [Page 135]

RFC 2328                     OSPF Version 2                   April 1998


           o   Else, if the area associated with this set of paths is
               the Area A itself, do not generate a summary-LSA for the
               route.[17]

           o   Else, if the next hops associated with this set of paths
               belong to Area A itself, do not generate a summary-LSA
               for the route.[18] This is the logical equivalent of a
               Distance Vector protocol's split horizon logic.

           o   Else, if the routing table cost equals or exceeds the
               value LSInfinity, a summary-LSA cannot be generated for
               this route.

           o   Else, if the destination of this route is an AS boundary
               router, a summary-LSA should be originated if and only
               if the routing table entry describes the preferred path
               to the AS boundary router (see Step 3 of Section 16.4).
               If so, a Type 4 summary-LSA is originated for the
               destination, with Link State ID equal to the AS boundary
               router's Router ID and metric equal to the routing table
               entry's cost. Note: these LSAs should not be generated
               if Area A has been configured as a stub area.

           o   Else, the Destination type is network. If this is an
               inter-area route, generate a Type 3 summary-LSA for the
               destination, with Link State ID equal to the network's
               address (if necessary, the Link State ID can also have
               one or more of the network's host bits set; see Appendix
               E for details) and metric equal to the routing table
               cost.

           o   The one remaining case is an intra-area route to a
               network.  This means that the network is contained in
               one of the router's directly attached areas.  In
               general, this information must be condensed before
               appearing in summary-LSAs.  Remember that an area has a
               configured list of address ranges, each range consisting
               of an [address,mask] pair and a status indication of
               either Advertise or DoNotAdvertise.  At most a single
               Type 3 summary-LSA is originated for each range. When
               the range's status indicates Advertise, a Type 3
               summary-LSA is generated with Link State ID equal to the



Moy                         Standards Track                   [Page 136]

RFC 2328                     OSPF Version 2                   April 1998


               range's address (if necessary, the Link State ID can
               also have one or more of the range's "host" bits set;
               see Appendix E for details) and cost equal to the
               largest cost of any of the component networks. When the
               range's status indicates DoNotAdvertise, the Type 3
               summary-LSA is suppressed and the component networks
               remain hidden from other areas.

               By default, if a network is not contained in any
               explicitly configured address range, a Type 3 summary-
               LSA is generated with Link State ID equal to the
               network's address (if necessary, the Link State ID can
               also have one or more of the network's "host" bits set;
               see Appendix E for details) and metric equal to the
               network's routing table cost.

               If an area is capable of carrying transit traffic (i.e.,
               its TransitCapability is set to TRUE), routing
               information concerning backbone networks should not be
               condensed before being summarized into the area.  Nor
               should the advertisement of backbone networks into
               transit areas be suppressed.  In other words, the
               backbone's configured ranges should be ignored when
               originating summary-LSAs into transit areas.

           If a router advertises a summary-LSA for a destination which
           then becomes unreachable, the router must then flush the LSA
           from the routing domain by setting its age to MaxAge and
           reflooding (see Section 14.1).  Also, if the destination is
           still reachable, yet can no longer be advertised according
           to the above procedure (e.g., it is now an inter-area route,
           when it used to be an intra-area route associated with some
           non-backbone area; it would thus no longer be advertisable
           to the backbone), the LSA should also be flushed from the
           routing domain.


           12.4.3.1.  Originating summary-LSAs into stub areas

               The algorithm in Section 12.4.3 is optional when Area A
               is an OSPF stub area. Area border routers connecting to
               a stub area can originate summary-LSAs into the area



Moy                         Standards Track                   [Page 137]

RFC 2328                     OSPF Version 2                   April 1998


               according to the Section 12.4.3's algorithm, or can
               choose to originate only a subset of the summary-LSAs,
               possibly under configuration control.  The fewer LSAs
               originated, the smaller the stub area's link state
               database, further reducing the demands on its routers'
               resources. However, omitting LSAs may also lead to sub-
               optimal inter-area routing, although routing will
               continue to function.

               As specified in Section 12.4.3, Type 4 summary-LSAs
               (ASBR-summary-LSAs) are never originated into stub
               areas.

               In a stub area, instead of importing external routes
               each area border router originates a "default summary-
               LSA" into the area. The Link State ID for the default
               summary-LSA is set to DefaultDestination, and the metric
               set to the (per-area) configurable parameter
               StubDefaultCost.  Note that StubDefaultCost need not be
               configured identically in all of the stub area's area
               border routers.


           12.4.3.2.  Examples of summary-LSAs

               Consider again the area configuration in Figure 6.
               Routers RT3, RT4, RT7, RT10 and RT11 are all area border
               routers, and therefore are originating summary-LSAs.
               Consider in particular Router RT4.  Its routing table
               was calculated as the example in Section 11.3.  RT4
               originates summary-LSAs into both the backbone and Area
               1.  Into the backbone, Router RT4 originates separate
               LSAs for each of the networks N1-N4.  Into Area 1,
               Router RT4 originates separate LSAs for networks N6-N8
               and the AS boundary routers RT5,RT7.  It also condenses
               host routes Ia and Ib into a single summary-LSA.
               Finally, the routes to networks N9,N10,N11 and Host H1
               are advertised by a single summary-LSA.  This
               condensation was originally performed by the router
               RT11.





Moy                         Standards Track                   [Page 138]

RFC 2328                     OSPF Version 2                   April 1998


               These LSAs are illustrated graphically in Figures 7 and
               8.  Two of the summary-LSAs originated by Router RT4
               follow.  The actual IP addresses for the networks and
               routers in question have been assigned in Figure 15.

       ; Summary-LSA for Network N1,
       ; originated by Router RT4 into the backbone

       LS age = 0                  ;always true on origination
       Options = (E-bit)           ;
       LS type = 3                 ;Type 3 summary-LSA
       Link State ID = 192.1.2.0   ;N1's IP network number
       Advertising Router = 192.1.1.4       ;RT4's ID
       metric = 4

       ; Summary-LSA for AS boundary router RT7
       ; originated by Router RT4 into Area 1

       LS age = 0                  ;always true on origination
       Options = (E-bit)           ;
       LS type = 4                 ;Type 4 summary-LSA
       Link State ID = Router RT7's ID
       Advertising Router = 192.1.1.4       ;RT4's ID
       metric = 14

       12.4.4.  AS-external-LSAs

           AS-external-LSAs describe routes to destinations external to
           the Autonomous System.  Most AS-external-LSAs describe
           routes to specific external destinations; in these cases the
           LSA's Link State ID is set to the destination network's IP
           address (if necessary, the Link State ID can also have one
           or more of the network's "host" bits set; see Appendix E for
           details).  However, a default route for the Autonomous
           System can be described in an AS-external-LSA by setting the
           LSA's Link State ID to DefaultDestination (0.0.0.0).  AS-
           external-LSAs are originated by AS boundary routers.  An AS
           boundary router originates a single AS-external-LSA for each
           external route that it has learned, either through another
           routing protocol (such as BGP), or through configuration
           information.




Moy                         Standards Track                   [Page 139]

RFC 2328                     OSPF Version 2                   April 1998


           AS-external-LSAs are the only type of LSAs that are flooded
           throughout the entire Autonomous System; all other types of
           LSAs are specific to a single area.  However, AS-external-
           LSAs are not flooded into/throughout stub areas (see Section
           3.6).  This enables a reduction in link state database size
           for routers internal to stub areas.

           The metric that is advertised for an external route can be
           one of two types.  Type 1 metrics are comparable to the link
           state metric.  Type 2 metrics are assumed to be larger than
           the cost of any intra-AS path.

           If a router advertises an AS-external-LSA for a destination
           which then becomes unreachable, the router must then flush
           the LSA from the routing domain by setting its age to MaxAge
           and reflooding (see Section 14.1).


           12.4.4.1.  Examples of AS-external-LSAs

               Consider once again the AS pictured in Figure 6.  There
               are two AS boundary routers: RT5 and RT7.  Router RT5
               originates three AS-external-LSAs, for networks N12-N14.
               Router RT7 originates two AS-external-LSAs, for networks
               N12 and N15.  Assume that RT7 has learned its route to
               N12 via BGP, and that it wishes to advertise a Type 2
               metric to the AS.  RT7 would then originate the
               following LSA for N12:

       ; AS-external-LSA for Network N12,
       ; originated by Router RT7

       LS age = 0                  ;always true on origination
       Options = (E-bit)           ;
       LS type = 5                 ;AS-external-LSA
       Link State ID = N12's IP network number
       Advertising Router = Router RT7's ID
       bit E = 1                   ;Type 2 metric
       metric = 2
       Forwarding address = 0.0.0.0





Moy                         Standards Track                   [Page 140]

RFC 2328                     OSPF Version 2                   April 1998


                   In the above example, the forwarding address field
                   has been set to 0.0.0.0, indicating that packets for
                   the external destination should be forwarded to the
                   advertising OSPF router (RT7).  This is not always
                   desirable.  Consider the example pictured in Figure
                   16.  There are three OSPF routers (RTA, RTB and RTC)
                   connected to a common network.  Only one of these
                   routers, RTA, is exchanging BGP information with the
                   non-OSPF router RTX.  RTA must then originate AS-
                   external-LSAs for those destinations it has learned
                   from RTX.  By using the AS-external-LSA's forwarding
                   address field, RTA can specify that packets for
                   these destinations be forwarded directly to RTX.
                   Without this feature, Routers RTB and RTC would take
                   an extra hop to get to these destinations.

                   Note that when the forwarding address field is non-
                   zero, it should point to a router belonging to
                   another Autonomous System.

                   A forwarding address can also be specified for the
                   default route.  For example, in figure 16 RTA may
                   want to specify that all externally-destined packets
                   should by default be forwarded to its BGP peer RTX.
                   The resulting AS-external-LSA is pictured below.
                   Note that the Link State ID is set to
                   DefaultDestination.

       ; Default route, originated by Router RTA
       ; Packets forwarded through RTX

       LS age = 0                  ;always true on origination
       Options = (E-bit)           ;
       LS type = 5                 ;AS-external-LSA
       Link State ID = DefaultDestination  ; default route
       Advertising Router = Router RTA's ID
       bit E = 1                   ;Type 2 metric
       metric = 1
       Forwarding address = RTX's IP address

                   In figure 16, suppose instead that both RTA and RTB
                   exchange BGP information with RTX.  In this case,



Moy                         Standards Track                   [Page 141]

RFC 2328                     OSPF Version 2                   April 1998


                   RTA and RTB would originate the same set of AS-
                   external-LSAs.  These LSAs, if they specify the same
                   metric, would be functionally equivalent since they
                   would specify the same destination and forwarding
                   address (RTX).  This leads to a clear duplication of
                   effort.  If only one of RTA or RTB originated the
                   set of AS-external-LSAs, the routing would remain
                   the same, and the size of the link state database
                   would decrease.  However, it must be unambiguously
                   defined as to which router originates the LSAs
                   (otherwise neither may, or the identity of the
                   originator may oscillate).  The following rule is
                   thereby established: if two routers, both reachable
                   from one another, originate functionally equivalent
                   AS-external-LSAs (i.e., same destination, cost and
                   non-zero forwarding address), then the LSA
                   originated by the router having the highest OSPF
                   Router ID is used.  The router having the lower OSPF
                   Router ID can then flush its LSA.  Flushing an LSA
                   is discussed in Section 14.1.


                               +
                               |
                     +---+.....|.BGP
                     |RTA|-----|.....+---+
                     +---+     |-----|RTX|
                               |     +---+
                     +---+     |
                     |RTB|-----|
                     +---+     |
                               |
                     +---+     |
                     |RTC|-----|
                     +---+     |
                               |
                               +


              Figure 16: Forwarding address example





Moy                         Standards Track                   [Page 142]

RFC 2328                     OSPF Version 2                   April 1998


13.  The Flooding Procedure

   Link State Update packets provide the mechanism for flooding LSAs.
   A Link State Update packet may contain several distinct LSAs, and
   floods each LSA one hop further from its point of origination.  To
   make the flooding procedure reliable, each LSA must be acknowledged
   separately.  Acknowledgments are transmitted in Link State
   Acknowledgment packets.  Many separate acknowledgments can also be
   grouped together into a single packet.

   The flooding procedure starts when a Link State Update packet has
   been received.  Many consistency checks have been made on the
   received packet before being handed to the flooding procedure (see
   Section 8.2).  In particular, the Link State Update packet has been
   associated with a particular neighbor, and a particular area.  If
   the neighbor is in a lesser state than Exchange, the packet should
   be dropped without further processing.

   All types of LSAs, other than AS-external-LSAs, are associated with
   a specific area.  However, LSAs do not contain an area field.  An
   LSA's area must be deduced from the Link State Update packet header.

   For each LSA contained in a Link State Update packet, the following
   steps are taken:


   (1) Validate the LSA's LS checksum.  If the checksum turns out to be
       invalid, discard the LSA and get the next one from the Link
       State Update packet.

   (2) Examine the LSA's LS type.  If the LS type is unknown, discard
       the LSA and get the next one from the Link State Update Packet.
       This specification defines LS types 1-5 (see Section 4.3).

   (3) Else if this is an AS-external-LSA (LS type = 5), and the area
       has been configured as a stub area, discard the LSA and get the
       next one from the Link State Update Packet.  AS-external-LSAs
       are not flooded into/throughout stub areas (see Section 3.6).

   (4) Else if the LSA's LS age is equal to MaxAge, and there is
       currently no instance of the LSA in the router's link state
       database, and none of router's neighbors are in states Exchange



Moy                         Standards Track                   [Page 143]

RFC 2328                     OSPF Version 2                   April 1998


       or Loading, then take the following actions: a) Acknowledge the
       receipt of the LSA by sending a Link State Acknowledgment packet
       back to the sending neighbor (see Section 13.5), and b) Discard
       the LSA and examine the next LSA (if any) listed in the Link
       State Update packet.

   (5) Otherwise, find the instance of this LSA that is currently
       contained in the router's link state database.  If there is no
       database copy, or the received LSA is more recent than the
       database copy (see Section 13.1 below for the determination of
       which LSA is more recent) the following steps must be performed:

       (a) If there is already a database copy, and if the database
           copy was received via flooding and installed less than
           MinLSArrival seconds ago, discard the new LSA (without
           acknowledging it) and examine the next LSA (if any) listed
           in the Link State Update packet.

       (b) Otherwise immediately flood the new LSA out some subset of
           the router's interfaces (see Section 13.3).  In some cases
           (e.g., the state of the receiving interface is DR and the
           LSA was received from a router other than the Backup DR) the
           LSA will be flooded back out the receiving interface.  This
           occurrence should be noted for later use by the
           acknowledgment process (Section 13.5).

       (c) Remove the current database copy from all neighbors' Link
           state retransmission lists.

       (d) Install the new LSA in the link state database (replacing
           the current database copy).  This may cause the routing
           table calculation to be scheduled.  In addition, timestamp
           the new LSA with the current time (i.e., the time it was
           received).  The flooding procedure cannot overwrite the
           newly installed LSA until MinLSArrival seconds have elapsed.
           The LSA installation process is discussed further in Section
           13.2.

       (e) Possibly acknowledge the receipt of the LSA by sending a
           Link State Acknowledgment packet back out the receiving
           interface.  This is explained below in Section 13.5.




Moy                         Standards Track                   [Page 144]

RFC 2328                     OSPF Version 2                   April 1998


       (f) If this new LSA indicates that it was originated by the
           receiving router itself (i.e., is considered a self-
           originated LSA), the router must take special action, either
           updating the LSA or in some cases flushing it from the
           routing domain. For a description of how self-originated
           LSAs are detected and subsequently handled, see Section
           13.4.

   (6) Else, if there is an instance of the LSA on the sending
       neighbor's Link state request list, an error has occurred in the
       Database Exchange process.  In this case, restart the Database
       Exchange process by generating the neighbor event BadLSReq for
       the sending neighbor and stop processing the Link State Update
       packet.

   (7) Else, if the received LSA is the same instance as the database
       copy (i.e., neither one is more recent) the following two steps
       should be performed:

       (a) If the LSA is listed in the Link state retransmission list
           for the receiving adjacency, the router itself is expecting
           an acknowledgment for this LSA.  The router should treat the
           received LSA as an acknowledgment by removing the LSA from
           the Link state retransmission list.  This is termed an
           "implied acknowledgment".  Its occurrence should be noted
           for later use by the acknowledgment process (Section 13.5).

       (b) Possibly acknowledge the receipt of the LSA by sending a
           Link State Acknowledgment packet back out the receiving
           interface.  This is explained below in Section 13.5.

   (8) Else, the database copy is more recent.  If the database copy
       has LS age equal to MaxAge and LS sequence number equal to
       MaxSequenceNumber, simply discard the received LSA without
       acknowledging it. (In this case, the LSA's LS sequence number is
       wrapping, and the MaxSequenceNumber LSA must be completely
       flushed before any new LSA instance can be introduced).
       Otherwise, as long as the database copy has not been sent in a
       Link State Update within the last MinLSArrival seconds, send the
       database copy back to the sending neighbor, encapsulated within
       a Link State Update Packet. The Link State Update Packet should
       be sent directly to the neighbor. In so doing, do not put the



Moy                         Standards Track                   [Page 145]

RFC 2328                     OSPF Version 2                   April 1998


       database copy of the LSA on the neighbor's link state
       retransmission list, and do not acknowledge the received (less
       recent) LSA instance.


   13.1.  Determining which LSA is newer

       When a router encounters two instances of an LSA, it must
       determine which is more recent.  This occurred above when
       comparing a received LSA to its database copy.  This comparison
       must also be done during the Database Exchange procedure which
       occurs during adjacency bring-up.

       An LSA is identified by its LS type, Link State ID and
       Advertising Router.  For two instances of the same LSA, the LS
       sequence number, LS age, and LS checksum fields are used to
       determine which instance is more recent:


       o   The LSA having the newer LS sequence number is more recent.
           See Section 12.1.6 for an explanation of the LS sequence
           number space.  If both instances have the same LS sequence
           number, then:

       o   If the two instances have different LS checksums, then the
           instance having the larger LS checksum (when considered as a
           16-bit unsigned integer) is considered more recent.

       o   Else, if only one of the instances has its LS age field set
           to MaxAge, the instance of age MaxAge is considered to be
           more recent.

       o   Else, if the LS age fields of the two instances differ by
           more than MaxAgeDiff, the instance having the smaller
           (younger) LS age is considered to be more recent.

       o   Else, the two instances are considered to be identical.








Moy                         Standards Track                   [Page 146]

RFC 2328                     OSPF Version 2                   April 1998


   13.2.  Installing LSAs in the database

       Installing a new LSA in the database, either as the result of
       flooding or a newly self-originated LSA, may cause the OSPF
       routing table structure to be recalculated.  The contents of the
       new LSA should be compared to the old instance, if present.  If
       there is no difference, there is no need to recalculate the
       routing table. When comparing an LSA to its previous instance,
       the following are all considered to be differences in contents:

           o   The LSA's Options field has changed.

           o   One of the LSA instances has LS age set to MaxAge, and
               the other does not.

           o   The length field in the LSA header has changed.

           o   The body of the LSA (i.e., anything outside the 20-byte
               LSA header) has changed. Note that this excludes changes
               in LS Sequence Number and LS Checksum.

       If the contents are different, the following pieces of the
       routing table must be recalculated, depending on the new LSA's
       LS type field:


       Router-LSAs and network-LSAs
           The entire routing table must be recalculated, starting with
           the shortest path calculations for each area (not just the
           area whose link-state database has changed).  The reason
           that the shortest path calculation cannot be restricted to
           the single changed area has to do with the fact that AS
           boundary routers may belong to multiple areas.  A change in
           the area currently providing the best route may force the
           router to use an intra-area route provided by a different
           area.[19]

       Summary-LSAs
           The best route to the destination described by the summary-
           LSA must be recalculated (see Section 16.5).  If this
           destination is an AS boundary router, it may also be
           necessary to re-examine all the AS-external-LSAs.



Moy                         Standards Track                   [Page 147]

RFC 2328                     OSPF Version 2                   April 1998


       AS-external-LSAs
           The best route to the destination described by the AS-
           external-LSA must be recalculated (see Section 16.6).


       Also, any old instance of the LSA must be removed from the
       database when the new LSA is installed.  This old instance must
       also be removed from all neighbors' Link state retransmission
       lists (see Section 10).


   13.3.  Next step in the flooding procedure

       When a new (and more recent) LSA has been received, it must be
       flooded out some set of the router's interfaces.  This section
       describes the second part of flooding procedure (the first part
       being the processing that occurred in Section 13), namely,
       selecting the outgoing interfaces and adding the LSA to the
       appropriate neighbors' Link state retransmission lists.  Also
       included in this part of the flooding procedure is the
       maintenance of the neighbors' Link state request lists.

       This section is equally applicable to the flooding of an LSA
       that the router itself has just originated (see Section 12.4).
       For these LSAs, this section provides the entirety of the
       flooding procedure (i.e., the processing of Section 13 is not
       performed, since, for example, the LSA has not been received
       from a neighbor and therefore does not need to be acknowledged).

       Depending upon the LSA's LS type, the LSA can be flooded out
       only certain interfaces.  These interfaces, defined by the
       following, are called the eligible interfaces:


       AS-external-LSAs (LS Type = 5)
           AS-external-LSAs are flooded throughout the entire AS, with
           the exception of stub areas (see Section 3.6).  The eligible
           interfaces are all the router's interfaces, excluding
           virtual links and those interfaces attaching to stub areas.

       All other LS types
           All other types are specific to a single area (Area A).  The



Moy                         Standards Track                   [Page 148]

RFC 2328                     OSPF Version 2                   April 1998


           eligible interfaces are all those interfaces attaching to
           the Area A.  If Area A is the backbone, this includes all
           the virtual links.


       Link state databases must remain synchronized over all
       adjacencies associated with the above eligible interfaces.  This
       is accomplished by executing the following steps on each
       eligible interface.  It should be noted that this procedure may
       decide not to flood an LSA out a particular interface, if there
       is a high probability that the attached neighbors have already
       received the LSA.  However, in these cases the flooding
       procedure must be absolutely sure that the neighbors eventually
       do receive the LSA, so the LSA is still added to each
       adjacency's Link state retransmission list.  For each eligible
       interface:


       (1) Each of the neighbors attached to this interface are
           examined, to determine whether they must receive the new
           LSA.  The following steps are executed for each neighbor:

           (a) If the neighbor is in a lesser state than Exchange, it
               does not participate in flooding, and the next neighbor
               should be examined.

           (b) Else, if the adjacency is not yet full (neighbor state
               is Exchange or Loading), examine the Link state request
               list associated with this adjacency.  If there is an
               instance of the new LSA on the list, it indicates that
               the neighboring router has an instance of the LSA
               already.  Compare the new LSA to the neighbor's copy:

               o   If the new LSA is less recent, then examine the next
                   neighbor.

               o   If the two copies are the same instance, then delete
                   the LSA from the Link state request list, and
                   examine the next neighbor.[20]

               o   Else, the new LSA is more recent.  Delete the LSA
                   from the Link state request list.



Moy                         Standards Track                   [Page 149]

RFC 2328                     OSPF Version 2                   April 1998


           (c) If the new LSA was received from this neighbor, examine
               the next neighbor.

           (d) At this point we are not positive that the neighbor has
               an up-to-date instance of this new LSA.  Add the new LSA
               to the Link state retransmission list for the adjacency.
               This ensures that the flooding procedure is reliable;
               the LSA will be retransmitted at intervals until an
               acknowledgment is seen from the neighbor.

       (2) The router must now decide whether to flood the new LSA out
           this interface.  If in the previous step, the LSA was NOT
           added to any of the Link state retransmission lists, there
           is no need to flood the LSA out the interface and the next
           interface should be examined.

       (3) If the new LSA was received on this interface, and it was
           received from either the Designated Router or the Backup
           Designated Router, chances are that all the neighbors have
           received the LSA already.  Therefore, examine the next
           interface.

       (4) If the new LSA was received on this interface, and the
           interface state is Backup (i.e., the router itself is the
           Backup Designated Router), examine the next interface.  The
           Designated Router will do the flooding on this interface.
           However, if the Designated Router fails the router (i.e.,
           the Backup Designated Router) will end up retransmitting the
           updates.

       (5) If this step is reached, the LSA must be flooded out the
           interface.  Send a Link State Update packet (including the
           new LSA as contents) out the interface.  The LSA's LS age
           must be incremented by InfTransDelay (which must be > 0)
           when it is copied into the outgoing Link State Update packet
           (until the LS age field reaches the maximum value of
           MaxAge).

           On broadcast networks, the Link State Update packets are
           multicast.  The destination IP address specified for the
           Link State Update Packet depends on the state of the
           interface.  If the interface state is DR or Backup, the



Moy                         Standards Track                   [Page 150]

RFC 2328                     OSPF Version 2                   April 1998


           address AllSPFRouters should be used.  Otherwise, the
           address AllDRouters should be used.

           On non-broadcast networks, separate Link State Update
           packets must be sent, as unicasts, to each adjacent neighbor
           (i.e., those in state Exchange or greater).  The destination
           IP addresses for these packets are the neighbors' IP
           addresses.


   13.4.  Receiving self-originated LSAs

       It is a common occurrence for a router to receive self-
       originated LSAs via the flooding procedure. A self-originated
       LSA is detected when either 1) the LSA's Advertising Router is
       equal to the router's own Router ID or 2) the LSA is a network-
       LSA and its Link State ID is equal to one of the router's own IP
       interface addresses.

       However, if the received self-originated LSA is newer than the
       last instance that the router actually originated, the router
       must take special action.  The reception of such an LSA
       indicates that there are LSAs in the routing domain that were
       originated by the router before the last time it was restarted.
       In most cases, the router must then advance the LSA's LS
       sequence number one past the received LS sequence number, and
       originate a new instance of the LSA.

       It may be the case the router no longer wishes to originate the
       received LSA. Possible examples include: 1) the LSA is a
       summary-LSA or AS-external-LSA and the router no longer has an
       (advertisable) route to the destination, 2) the LSA is a
       network-LSA but the router is no longer Designated Router for
       the network or 3) the LSA is a network-LSA whose Link State ID
       is one of the router's own IP interface addresses but whose
       Advertising Router is not equal to the router's own Router ID
       (this latter case should be rare, and it indicates that the
       router's Router ID has changed since originating the LSA).  In
       all these cases, instead of updating the LSA, the LSA should be
       flushed from the routing domain by incrementing the received
       LSA's LS age to MaxAge and reflooding (see Section 14.1).




Moy                         Standards Track                   [Page 151]

RFC 2328                     OSPF Version 2                   April 1998


   13.5.  Sending Link State Acknowledgment packets

       Each newly received LSA must be acknowledged.  This is usually
       done by sending Link State Acknowledgment packets.  However,
       acknowledgments can also be accomplished implicitly by sending
       Link State Update packets (see step 7a of Section 13).

       Many acknowledgments may be grouped together into a single Link
       State Acknowledgment packet.  Such a packet is sent back out the
       interface which received the LSAs.  The packet can be sent in
       one of two ways: delayed and sent on an interval timer, or sent
       directly to a particular neighbor.  The particular
       acknowledgment strategy used depends on the circumstances
       surrounding the receipt of the LSA.

       Sending delayed acknowledgments accomplishes several things: 1)
       it facilitates the packaging of multiple acknowledgments in a
       single Link State Acknowledgment packet, 2) it enables a single
       Link State Acknowledgment packet to indicate acknowledgments to
       several neighbors at once (through multicasting) and 3) it
       randomizes the Link State Acknowledgment packets sent by the
       various routers attached to a common network.  The fixed
       interval between a router's delayed transmissions must be short
       (less than RxmtInterval) or needless retransmissions will ensue.

       Direct acknowledgments are sent directly to a particular
       neighbor in response to the receipt of duplicate LSAs. Direct
       acknowledgments are sent immediately when the duplicate is
       received. On multi-access networks, these acknowledgments are
       sent directly to the neighbor's IP address.

       The precise procedure for sending Link State Acknowledgment
       packets is described in Table 19.  The circumstances surrounding
       the receipt of the LSA are listed in the left column.  The
       acknowledgment action then taken is listed in one of the two
       right columns.  This action depends on the state of the
       concerned interface; interfaces in state Backup behave
       differently from interfaces in all other states.  Delayed
       acknowledgments must be delivered to all adjacent routers
       associated with the interface.  On broadcast networks, this is
       accomplished by sending the delayed Link State Acknowledgment
       packets as multicasts.  The Destination IP address used depends



Moy                         Standards Track                   [Page 152]

RFC 2328                     OSPF Version 2                   April 1998






                                    Action taken in state
  Circumstances            Backup                All other states
  _________________________________________________________________
  LSA  has                 No  acknowledgment    No  acknowledgment
  been  flooded back       sent.                 sent.
  out receiving  in-
  terface  (see Sec-
  tion 13, step 5b).
  _________________________________________________________________
  LSA   is                 Delayed acknowledg-   Delayed       ack-
  more  recent  than       ment sent if adver-   nowledgment sent.
  database copy, but       tisement   received
  was   not  flooded       from    Designated
  back out receiving       Router,  otherwise
  interface                do nothing
  _________________________________________________________________
  LSA is a                 Delayed acknowledg-   No  acknowledgment
  duplicate, and was       ment sent if adver-   sent.
  treated as an  im-       tisement   received
  plied  acknowledg-       from    Designated
  ment (see  Section       Router,  otherwise
  13, step 7a).            do nothing
  _________________________________________________________________
  LSA is a                 Direct acknowledg-    Direct acknowledg-
  duplicate, and was       ment sent.            ment sent.
  not treated as  an
  implied       ack-
  nowledgment.
  _________________________________________________________________
  LSA's LS                 Direct acknowledg-    Direct acknowledg-
  age is equal to          ment sent.            ment sent.
  MaxAge, and there is
  no current instance
  of the LSA
  in the link state
  database, and none
  of router's neighbors
  are in states Exchange



Moy                         Standards Track                   [Page 153]

RFC 2328                     OSPF Version 2                   April 1998


  or Loading (see
  Section 13, step 4).


            Table 19: Sending link state acknowledgements.




       on the state of the interface.  If the interface state is DR or
       Backup, the destination AllSPFRouters is used.  In all other
       states, the destination AllDRouters is used.  On non-broadcast
       networks, delayed Link State Acknowledgment packets must be
       unicast separately over each adjacency (i.e., neighbor whose
       state is >= Exchange).

       The reasoning behind sending the above packets as multicasts is
       best explained by an example.  Consider the network
       configuration depicted in Figure 15.  Suppose RT4 has been
       elected as Designated Router, and RT3 as Backup Designated
       Router for the network N3.  When Router RT4 floods a new LSA to
       Network N3, it is received by routers RT1, RT2, and RT3.  These
       routers will not flood the LSA back onto net N3, but they still
       must ensure that their link-state databases remain synchronized
       with their adjacent neighbors.  So RT1, RT2, and RT4 are waiting
       to see an acknowledgment from RT3.  Likewise, RT4 and RT3 are
       both waiting to see acknowledgments from RT1 and RT2.  This is
       best achieved by sending the acknowledgments as multicasts.

       The reason that the acknowledgment logic for Backup DRs is
       slightly different is because they perform differently during
       the flooding of LSAs (see Section 13.3, step 4).



   13.6.  Retransmitting LSAs

       LSAs flooded out an adjacency are placed on the adjacency's Link
       state retransmission list.  In order to ensure that flooding is
       reliable, these LSAs are retransmitted until they are
       acknowledged.  The length of time between retransmissions is a
       configurable per-interface value, RxmtInterval.  If this is set



Moy                         Standards Track                   [Page 154]

RFC 2328                     OSPF Version 2                   April 1998


       too low for an interface, needless retransmissions will ensue.
       If the value is set too high, the speed of the flooding, in the
       face of lost packets, may be affected.

       Several retransmitted LSAs may fit into a single Link State
       Update packet.  When LSAs are to be retransmitted, only the
       number fitting in a single Link State Update packet should be
       sent.  Another packet of retransmissions can be sent whenever
       some of the LSAs are acknowledged, or on the next firing of the
       retransmission timer.

       Link State Update Packets carrying retransmissions are always
       sent directly to the neighbor. On multi-access networks, this
       means that retransmissions are sent directly to the neighbor's
       IP address.  Each LSA's LS age must be incremented by
       InfTransDelay (which must be > 0) when it is copied into the
       outgoing Link State Update packet (until the LS age field
       reaches the maximum value of MaxAge).

       If an adjacent router goes down, retransmissions may occur until
       the adjacency is destroyed by OSPF's Hello Protocol.  When the
       adjacency is destroyed, the Link state retransmission list is
       cleared.


   13.7.  Receiving link state acknowledgments

       Many consistency checks have been made on a received Link State
       Acknowledgment packet before it is handed to the flooding
       procedure.  In particular, it has been associated with a
       particular neighbor.  If this neighbor is in a lesser state than
       Exchange, the Link State Acknowledgment packet is discarded.

       Otherwise, for each acknowledgment in the Link State
       Acknowledgment packet, the following steps are performed:


       o   Does the LSA acknowledged have an instance on the Link state
           retransmission list for the neighbor?  If not, examine the
           next acknowledgment.  Otherwise:





Moy                         Standards Track                   [Page 155]

RFC 2328                     OSPF Version 2                   April 1998


       o   If the acknowledgment is for the same instance that is
           contained on the list, remove the item from the list and
           examine the next acknowledgment.  Otherwise:

       o   Log the questionable acknowledgment, and examine the next
           one.


14.  Aging The Link State Database

   Each LSA has an LS age field.  The LS age is expressed in seconds.
   An LSA's LS age field is incremented while it is contained in a
   router's database.  Also, when copied into a Link State Update
   Packet for flooding out a particular interface, the LSA's LS age is
   incremented by InfTransDelay.

   An LSA's LS age is never incremented past the value MaxAge.  LSAs
   having age MaxAge are not used in the routing table calculation.  As
   a router ages its link state database, an LSA's LS age may reach
   MaxAge.[21] At this time, the router must attempt to flush the LSA
   from the routing domain.  This is done simply by reflooding the
   MaxAge LSA just as if it was a newly originated LSA (see Section
   13.3).

   When creating a Database summary list for a newly forming adjacency,
   any MaxAge LSAs present in the link state database are added to the
   neighbor's Link state retransmission list instead of the neighbor's
   Database summary list.  See Section 10.3 for more details.

   A MaxAge LSA must be removed immediately from the router's link
   state database as soon as both a) it is no longer contained on any
   neighbor Link state retransmission lists and b) none of the router's
   neighbors are in states Exchange or Loading.

   When, in the process of aging the link state database, an LSA's LS
   age hits a multiple of CheckAge, its LS checksum should be verified.
   If the LS checksum is incorrect, a program or memory error has been
   detected, and at the very least the router itself should be
   restarted.






Moy                         Standards Track                   [Page 156]

RFC 2328                     OSPF Version 2                   April 1998


   14.1.  Premature aging of LSAs

       An LSA can be flushed from the routing domain by setting its LS
       age to MaxAge, while leaving its LS sequence number alone, and
       then reflooding the LSA.  This procedure follows the same course
       as flushing an LSA whose LS age has naturally reached the value
       MaxAge (see Section 14).  In particular, the MaxAge LSA is
       removed from the router's link state database as soon as a) it
       is no longer contained on any neighbor Link state retransmission
       lists and b) none of the router's neighbors are in states
       Exchange or Loading.  We call the setting of an LSA's LS age to
       MaxAge "premature aging".

       Premature aging is used when it is time for a self-originated
       LSA's sequence number field to wrap.  At this point, the current
       LSA instance (having LS sequence number MaxSequenceNumber) must
       be prematurely aged and flushed from the routing domain before a
       new instance with sequence number equal to InitialSequenceNumber
       can be originated.  See Section 12.1.6 for more information.

       Premature aging can also be used when, for example, one of the
       router's previously advertised external routes is no longer
       reachable.  In this circumstance, the router can flush its AS-
       external-LSA from the routing domain via premature aging. This
       procedure is preferable to the alternative, which is to
       originate a new LSA for the destination specifying a metric of
       LSInfinity.  Premature aging is also be used when unexpectedly
       receiving self-originated LSAs during the flooding procedure
       (see Section 13.4).

       A router may only prematurely age its own self-originated LSAs.
       The router may not prematurely age LSAs that have been
       originated by other routers. An LSA is considered self-
       originated when either 1) the LSA's Advertising Router is equal
       to the router's own Router ID or 2) the LSA is a network-LSA and
       its Link State ID is equal to one of the router's own IP
       interface addresses.








Moy                         Standards Track                   [Page 157]

RFC 2328                     OSPF Version 2                   April 1998


15.  Virtual Links

   The single backbone area (Area ID = 0.0.0.0) cannot be disconnected,
   or some areas of the Autonomous System will become unreachable.  To
   establish/maintain connectivity of the backbone, virtual links can
   be configured through non-backbone areas.  Virtual links serve to
   connect physically separate components of the backbone.  The two
   endpoints of a virtual link are area border routers.  The virtual
   link must be configured in both routers.  The configuration
   information in each router consists of the other virtual endpoint
   (the other area border router), and the non-backbone area the two
   routers have in common (called the Transit area).  Virtual links
   cannot be configured through stub areas (see Section 3.6).

   The virtual link is treated as if it were an unnumbered point-to-
   point network belonging to the backbone and joining the two area
   border routers.  An attempt is made to establish an adjacency over
   the virtual link.  When this adjacency is established, the virtual
   link will be included in backbone router-LSAs, and OSPF packets
   pertaining to the backbone area will flow over the adjacency.  Such
   an adjacency has been referred to in this document as a "virtual
   adjacency".

   In each endpoint router, the cost and viability of the virtual link
   is discovered by examining the routing table entry for the other
   endpoint router.  (The entry's associated area must be the
   configured Transit area).  This is called the virtual link's
   corresponding routing table entry.  The InterfaceUp event occurs for
   a virtual link when its corresponding routing table entry becomes
   reachable.  Conversely, the InterfaceDown event occurs when its
   routing table entry becomes unreachable.  In other words, the
   virtual link's viability is determined by the existence of an
   intra-area path, through the Transit area, between the two
   endpoints.  Note that a virtual link whose underlying path has cost
   greater than hexadecimal 0xffff (the maximum size of an interface
   cost in a router-LSA) should be considered inoperational (i.e.,
   treated the same as if the path did not exist).

   The other details concerning virtual links are as follows:

   o   AS-external-LSAs are NEVER flooded over virtual adjacencies.
       This would be duplication of effort, since the same AS-



Moy                         Standards Track                   [Page 158]

RFC 2328                     OSPF Version 2                   April 1998


       external-LSAs are already flooded throughout the virtual link's
       Transit area.  For this same reason, AS-external-LSAs are not
       summarized over virtual adjacencies during the Database Exchange
       process.

   o   The cost of a virtual link is NOT configured.  It is defined to
       be the cost of the intra-area path between the two defining area
       border routers.  This cost appears in the virtual link's
       corresponding routing table entry.  When the cost of a virtual
       link changes, a new router-LSA should be originated for the
       backbone area.

   o   Just as the virtual link's cost and viability are determined by
       the routing table build process (through construction of the
       routing table entry for the other endpoint), so are the IP
       interface address for the virtual interface and the virtual
       neighbor's IP address.  These are used when sending OSPF
       protocol packets over the virtual link. Note that when one (or
       both) of the virtual link endpoints connect to the Transit area
       via an unnumbered point-to-point link, it may be impossible to
       calculate either the virtual interface's IP address and/or the
       virtual neighbor's IP address, thereby causing the virtual link
       to fail.

   o   In each endpoint's router-LSA for the backbone, the virtual link
       is represented as a Type 4 link whose Link ID is set to the
       virtual neighbor's OSPF Router ID and whose Link Data is set to
       the virtual interface's IP address.  See Section 12.4.1 for more
       information.

   o   A non-backbone area can carry transit data traffic (i.e., is
       considered a "transit area") if and only if it serves as the
       Transit area for one or more fully adjacent virtual links (see
       TransitCapability in Sections 6 and 16.1). Such an area requires
       special treatment when summarizing backbone networks into it
       (see Section 12.4.3), and during the routing calculation (see
       Section 16.3).

   o   The time between link state retransmissions, RxmtInterval, is
       configured for a virtual link.  This should be well over the
       expected round-trip delay between the two routers.  This may be




Moy                         Standards Track                   [Page 159]

RFC 2328                     OSPF Version 2                   April 1998


       hard to estimate for a virtual link; it is better to err on the
       side of making it too large.


16.  Calculation of the routing table

   This section details the OSPF routing table calculation.  Using its
   attached areas' link state databases as input, a router runs the
   following algorithm, building its routing table step by step.  At
   each step, the router must access individual pieces of the link
   state databases (e.g., a router-LSA originated by a certain router).
   This access is performed by the lookup function discussed in Section
   12.2.  The lookup process may return an LSA whose LS age is equal to
   MaxAge.  Such an LSA should not be used in the routing table
   calculation, and is treated just as if the lookup process had
   failed.

   The OSPF routing table's organization is explained in Section 11.
   Two examples of the routing table build process are presented in
   Sections 11.2 and 11.3.  This process can be broken into the
   following steps:

   (1) The present routing table is invalidated.  The routing table is
       built again from scratch.  The old routing table is saved so
       that changes in routing table entries can be identified.

   (2) The intra-area routes are calculated by building the shortest-
       path tree for each attached area.  In particular, all routing
       table entries whose Destination Type is "area border router" are
       calculated in this step.  This step is described in two parts.
       At first the tree is constructed by only considering those links
       between routers and transit networks.  Then the stub networks
       are incorporated into the tree. During the area's shortest-path
       tree calculation, the area's TransitCapability is also
       calculated for later use in Step 4.

   (3) The inter-area routes are calculated, through examination of
       summary-LSAs.  If the router is attached to multiple areas
       (i.e., it is an area border router), only backbone summary-LSAs
       are examined.





Moy                         Standards Track                   [Page 160]

RFC 2328                     OSPF Version 2                   April 1998


   (4) In area border routers connecting to one or more transit areas
       (i.e, non-backbone areas whose TransitCapability is found to be
       TRUE), the transit areas' summary-LSAs are examined to see
       whether better paths exist using the transit areas than were
       found in Steps 2-3 above.

   (5) Routes to external destinations are calculated, through
       examination of AS-external-LSAs.  The locations of the AS
       boundary routers (which originate the AS-external-LSAs) have
       been determined in steps 2-4.


   Steps 2-5 are explained in further detail below.

   Changes made to routing table entries as a result of these
   calculations can cause the OSPF protocol to take further actions.
   For example, a change to an intra-area route will cause an area
   border router to originate new summary-LSAs (see Section 12.4).  See
   Section 16.7 for a complete list of the OSPF protocol actions
   resulting from routing table changes.


   16.1.  Calculating the shortest-path tree for an area

       This calculation yields the set of intra-area routes associated
       with an area (called hereafter Area A).  A router calculates the
       shortest-path tree using itself as the root.[22] The formation
       of the shortest path tree is done here in two stages.  In the
       first stage, only links between routers and transit networks are
       considered.  Using the Dijkstra algorithm, a tree is formed from
       this subset of the link state database.  In the second stage,
       leaves are added to the tree by considering the links to stub
       networks.

       The procedure will be explained using the graph terminology that
       was introduced in Section 2.  The area's link state database is
       represented as a directed graph.  The graph's vertices are
       routers, transit networks and stub networks.  The first stage of
       the procedure concerns only the transit vertices (routers and
       transit networks) and their connecting links.  Throughout the
       shortest path calculation, the following data is also associated
       with each transit vertex:



Moy                         Standards Track                   [Page 161]

RFC 2328                     OSPF Version 2                   April 1998


       Vertex (node) ID
           A 32-bit number which together with the vertex type (router
           or network) uniquely identifies the vertex.  For router
           vertices the Vertex ID is the router's OSPF Router ID.  For
           network vertices, it is the IP address of the network's
           Designated Router.

       An LSA
           Each transit vertex has an associated LSA.  For router
           vertices, this is a router-LSA.  For transit networks, this
           is a network-LSA (which is actually originated by the
           network's Designated Router).  In any case, the LSA's Link
           State ID is always equal to the above Vertex ID.

       List of next hops
           The list of next hops for the current set of shortest paths
           from the root to this vertex.  There can be multiple
           shortest paths due to the equal-cost multipath capability.
           Each next hop indicates the outgoing router interface to use
           when forwarding traffic to the destination.  On broadcast,
           Point-to-MultiPoint and NBMA networks, the next hop also
           includes the IP address of the next router (if any) in the
           path towards the destination.

       Distance from root
           The link state cost of the current set of shortest paths
           from the root to the vertex.  The link state cost of a path
           is calculated as the sum of the costs of the path's
           constituent links (as advertised in router-LSAs and
           network-LSAs).  One path is said to be "shorter" than
           another if it has a smaller link state cost.


       The first stage of the procedure (i.e., the Dijkstra algorithm)
       can now be summarized as follows. At each iteration of the
       algorithm, there is a list of candidate vertices.  Paths from
       the root to these vertices have been found, but not necessarily
       the shortest ones.  However, the paths to the candidate vertex
       that is closest to the root are guaranteed to be shortest; this
       vertex is added to the shortest-path tree, removed from the
       candidate list, and its adjacent vertices are examined for
       possible addition to/modification of the candidate list.  The



Moy                         Standards Track                   [Page 162]

RFC 2328                     OSPF Version 2                   April 1998


       algorithm then iterates again.  It terminates when the candidate
       list becomes empty.

       The following steps describe the algorithm in detail.  Remember
       that we are computing the shortest path tree for Area A.  All
       references to link state database lookup below are from Area A's
       database.

       (1) Initialize the algorithm's data structures.  Clear the list
           of candidate vertices.  Initialize the shortest-path tree to
           only the root (which is the router doing the calculation).
           Set Area A's TransitCapability to FALSE.

       (2) Call the vertex just added to the tree vertex V.  Examine
           the LSA associated with vertex V.  This is a lookup in the
           Area A's link state database based on the Vertex ID.  If
           this is a router-LSA, and bit V of the router-LSA (see
           Section A.4.2) is set, set Area A's TransitCapability to
           TRUE.  In any case, each link described by the LSA gives the
           cost to an adjacent vertex.  For each described link, (say
           it joins vertex V to vertex W):

           (a) If this is a link to a stub network, examine the next
               link in V's LSA.  Links to stub networks will be
               considered in the second stage of the shortest path
               calculation.

           (b) Otherwise, W is a transit vertex (router or transit
               network).  Look up the vertex W's LSA (router-LSA or
               network-LSA) in Area A's link state database.  If the
               LSA does not exist, or its LS age is equal to MaxAge, or
               it does not have a link back to vertex V, examine the
               next link in V's LSA.[23]

           (c) If vertex W is already on the shortest-path tree,
               examine the next link in the LSA.

           (d) Calculate the link state cost D of the resulting path
               from the root to vertex W.  D is equal to the sum of the
               link state cost of the (already calculated) shortest
               path to vertex V and the advertised cost of the link
               between vertices V and W.  If D is:



Moy                         Standards Track                   [Page 163]

RFC 2328                     OSPF Version 2                   April 1998


               o   Greater than the value that already appears for
                   vertex W on the candidate list, then examine the
                   next link.

               o   Equal to the value that appears for vertex W on the
                   candidate list, calculate the set of next hops that
                   result from using the advertised link.  Input to
                   this calculation is the destination (W), and its
                   parent (V).  This calculation is shown in Section
                   16.1.1.  This set of hops should be added to the
                   next hop values that appear for W on the candidate
                   list.

               o   Less than the value that appears for vertex W on the
                   candidate list, or if W does not yet appear on the
                   candidate list, then set the entry for W on the
                   candidate list to indicate a distance of D from the
                   root.  Also calculate the list of next hops that
                   result from using the advertised link, setting the
                   next hop values for W accordingly.  The next hop
                   calculation is described in Section 16.1.1; it takes
                   as input the destination (W) and its parent (V).

       (3) If at this step the candidate list is empty, the shortest-
           path tree (of transit vertices) has been completely built
           and this stage of the procedure terminates.  Otherwise,
           choose the vertex belonging to the candidate list that is
           closest to the root, and add it to the shortest-path tree
           (removing it from the candidate list in the process). Note
           that when there is a choice of vertices closest to the root,
           network vertices must be chosen before router vertices in
           order to necessarily find all equal-cost paths. This is
           consistent with the tie-breakers that were introduced in the
           modified Dijkstra algorithm used by OSPF's Multicast routing
           extensions (MOSPF).

       (4) Possibly modify the routing table.  For those routing table
           entries modified, the associated area will be set to Area A,
           the path type will be set to intra-area, and the cost will
           be set to the newly discovered shortest path's calculated
           distance.




Moy                         Standards Track                   [Page 164]

RFC 2328                     OSPF Version 2                   April 1998


           If the newly added vertex is an area border router or AS
           boundary router, a routing table entry is added whose
           destination type is "router".  The Options field found in
           the associated router-LSA is copied into the routing table
           entry's Optional capabilities field. Call the newly added
           vertex Router X.  If Router X is the endpoint of one of the
           calculating router's virtual links, and the virtual link
           uses Area A as Transit area:  the virtual link is declared
           up, the IP address of the virtual interface is set to the IP
           address of the outgoing interface calculated above for
           Router X, and the virtual neighbor's IP address is set to
           Router X's interface address (contained in Router X's
           router-LSA) that points back to the root of the shortest-
           path tree; equivalently, this is the interface that points
           back to Router X's parent vertex on the shortest-path tree
           (similar to the calculation in Section 16.1.1).

           If the newly added vertex is a transit network, the routing
           table entry for the network is located.  The entry's
           Destination ID is the IP network number, which can be
           obtained by masking the Vertex ID (Link State ID) with its
           associated subnet mask (found in the body of the associated
           network-LSA).  If the routing table entry already exists
           (i.e., there is already an intra-area route to the
           destination installed in the routing table), multiple
           vertices have mapped to the same IP network.  For example,
           this can occur when a new Designated Router is being
           established.  In this case, the current routing table entry
           should be overwritten if and only if the newly found path is
           just as short and the current routing table entry's Link
           State Origin has a smaller Link State ID than the newly
           added vertex' LSA.

           If there is no routing table entry for the network (the
           usual case), a routing table entry for the IP network should
           be added.  The routing table entry's Link State Origin
           should be set to the newly added vertex' LSA.

       (5) Iterate the algorithm by returning to Step 2.






Moy                         Standards Track                   [Page 165]

RFC 2328                     OSPF Version 2                   April 1998


       The stub networks are added to the tree in the procedure's
       second stage.  In this stage, all router vertices are again
       examined.  Those that have been determined to be unreachable in
       the above first phase are discarded.  For each reachable router
       vertex (call it V), the associated router-LSA is found in the
       link state database.  Each stub network link appearing in the
       LSA is then examined, and the following steps are executed:

       (1) Calculate the distance D of stub network from the root.  D
           is equal to the distance from the root to the router vertex
           (calculated in stage 1), plus the stub network link's
           advertised cost.  Compare this distance to the current best
           cost to the stub network.  This is done by looking up the
           stub network's current routing table entry.  If the
           calculated distance D is larger, go on to examine the next
           stub network link in the LSA.

       (2) If this step is reached, the stub network's routing table
           entry must be updated.  Calculate the set of next hops that
           would result from using the stub network link.  This
           calculation is shown in Section 16.1.1; input to this
           calculation is the destination (the stub network) and the
           parent vertex (the router vertex).  If the distance D is the
           same as the current routing table cost, simply add this set
           of next hops to the routing table entry's list of next hops.
           In this case, the routing table already has a Link State
           Origin.  If this Link State Origin is a router-LSA whose
           Link State ID is smaller than V's Router ID, reset the Link
           State Origin to V's router-LSA.

           Otherwise D is smaller than the routing table cost.
           Overwrite the current routing table entry by setting the
           routing table entry's cost to D, and by setting the entry's
           list of next hops to the newly calculated set.  Set the
           routing table entry's Link State Origin to V's router-LSA.
           Then go on to examine the next stub network link.


       For all routing table entries added/modified in the second
       stage, the associated area will be set to Area A and the path
       type will be set to intra-area.  When the list of reachable
       router-LSAs is exhausted, the second stage is completed.  At



Moy                         Standards Track                   [Page 166]

RFC 2328                     OSPF Version 2                   April 1998


       this time, all intra-area routes associated with Area A have
       been determined.

       The specification does not require that the above two stage
       method be used to calculate the shortest path tree.  However, if
       another algorithm is used, an identical tree must be produced.
       For this reason, it is important to note that links between
       transit vertices must be bidirectional in order to be included
       in the above tree.  It should also be mentioned that more
       efficient algorithms exist for calculating the tree; for
       example, the incremental SPF algorithm described in [Ref1].


       16.1.1.  The next hop calculation

           This section explains how to calculate the current set of
           next hops to use for a destination.  Each next hop consists
           of the outgoing interface to use in forwarding packets to
           the destination together with the IP address of the next hop
           router (if any).  The next hop calculation is invoked each
           time a shorter path to the destination is discovered.  This
           can happen in either stage of the shortest-path tree
           calculation (see Section 16.1).  In stage 1 of the
           shortest-path tree calculation a shorter path is found as
           the destination is added to the candidate list, or when the
           destination's entry on the candidate list is modified (Step
           2d of Stage 1).  In stage 2 a shorter path is discovered
           each time the destination's routing table entry is modified
           (Step 2 of Stage 2).

           The set of next hops to use for the destination may be
           recalculated several times during the shortest-path tree
           calculation, as shorter and shorter paths are discovered.
           In the end, the destination's routing table entry will
           always reflect the next hops resulting from the absolute
           shortest path(s).

           Input to the next hop calculation is a) the destination and
           b) its parent in the current shortest path between the root
           (the calculating router) and the destination.  The parent is
           always a transit vertex (i.e., always a router or a transit
           network).



Moy                         Standards Track                   [Page 167]

RFC 2328                     OSPF Version 2                   April 1998


           If there is at least one intervening router in the current
           shortest path between the destination and the root, the
           destination simply inherits the set of next hops from the
           parent.  Otherwise, there are two cases.  In the first case,
           the parent vertex is the root (the calculating router
           itself).  This means that the destination is either a
           directly connected network or directly connected router.
           The outgoing interface in this case is simply the OSPF
           interface connecting to the destination network/router. If
           the destination is a router which connects to the
           calculating router via a Point-to-MultiPoint network, the
           destination's next hop IP address(es) can be determined by
           examining the destination's router-LSA: each link pointing
           back to the calculating router and having a Link Data field
           belonging to the Point-to-MultiPoint network provides an IP
           address of the next hop router. If the destination is a
           directly connected network, or a router which connects to
           the calculating router via a point-to-point interface, no
           next hop IP address is required. If the destination is a
           router connected to the calculating router via a virtual
           link, the setting of the next hop should be deferred until
           the calculation in Section 16.3.

           In the second case, the parent vertex is a network that
           directly connects the calculating router to the destination
           router.  The list of next hops is then determined by
           examining the destination's router-LSA.  For each link in
           the router-LSA that points back to the parent network, the
           link's Link Data field provides the IP address of a next hop
           router.  The outgoing interface to use can then be derived
           from the next hop IP address (or it can be inherited from
           the parent network).


   16.2.  Calculating the inter-area routes

       The inter-area routes are calculated by examining summary-LSAs.
       If the router has active attachments to multiple areas, only
       backbone summary-LSAs are examined.  Routers attached to a
       single area examine that area's summary-LSAs.  In either case,
       the summary-LSAs examined below are all part of a single area's
       link state database (call it Area A).



Moy                         Standards Track                   [Page 168]

RFC 2328                     OSPF Version 2                   April 1998


       Summary-LSAs are originated by the area border routers.  Each
       summary-LSA in Area A is considered in turn.  Remember that the
       destination described by a summary-LSA is either a network (Type
       3 summary-LSAs) or an AS boundary router (Type 4 summary-LSAs).
       For each summary-LSA:


       (1) If the cost specified by the LSA is LSInfinity, or if the
           LSA's LS age is equal to MaxAge, then examine the the next
           LSA.

       (2) If the LSA was originated by the calculating router itself,
           examine the next LSA.

       (3) If it is a Type 3 summary-LSA, and the collection of
           destinations described by the summary-LSA equals one of the
           router's configured area address ranges (see Section 3.5),
           and the particular area address range is active, then the
           summary-LSA should be ignored.  "Active" means that there
           are one or more reachable (by intra-area paths) networks
           contained in the area range.

       (4) Else, call the destination described by the LSA N (for Type
           3 summary-LSAs, N's address is obtained by masking the LSA's
           Link State ID with the network/subnet mask contained in the
           body of the LSA), and the area border originating the LSA
           BR.  Look up the routing table entry for BR having Area A as
           its associated area.  If no such entry exists for router BR
           (i.e., BR is unreachable in Area A), do nothing with this
           LSA and consider the next in the list.  Else, this LSA
           describes an inter-area path to destination N, whose cost is
           the distance to BR plus the cost specified in the LSA. Call
           the cost of this inter-area path IAC.

       (5) Next, look up the routing table entry for the destination N.
           (If N is an AS boundary router, look up the "router" routing
           table entry associated with Area A).  If no entry exists for
           N or if the entry's path type is "type 1 external" or "type
           2 external", then install the inter-area path to N, with
           associated area Area A, cost IAC, next hop equal to the list
           of next hops to router BR, and Advertising router equal to
           BR.



Moy                         Standards Track                   [Page 169]

RFC 2328                     OSPF Version 2                   April 1998


       (6) Else, if the paths present in the table are intra-area
           paths, do nothing with the LSA (intra-area paths are always
           preferred).

       (7) Else, the paths present in the routing table are also
           inter-area paths.  Install the new path through BR if it is
           cheaper, overriding the paths in the routing table.
           Otherwise, if the new path is the same cost, add it to the
           list of paths that appear in the routing table entry.

   16.3.  Examining transit areas' summary-LSAs

       This step is only performed by area border routers attached to
       one or more non-backbone areas that are capable of carrying
       transit traffic (i.e., "transit areas", or those areas whose
       TransitCapability parameter has been set to TRUE in Step 2 of
       the Dijkstra algorithm (see Section 16.1).

       The purpose of the calculation below is to examine the transit
       areas to see whether they provide any better (shorter) paths
       than the paths previously calculated in Sections 16.1 and 16.2.
       Any paths found that are better than or equal to previously
       discovered paths are installed in the routing table.

       The calculation also determines the actual next hop(s) for those
       destinations whose next hop was calculated as a virtual link in
       Sections 16.1 and 16.2.  After completion of the calculation
       below, any paths calculated in Sections 16.1 and 16.2 that still
       have unresolved virtual next hops should be discarded.

       The calculation proceeds as follows. All the transit areas'
       summary-LSAs are examined in turn.  Each such summary-LSA
       describes a route through a transit area Area A to a Network N
       (N's address is obtained by masking the LSA's Link State ID with
       the network/subnet mask contained in the body of the LSA) or in
       the case of a Type 4 summary-LSA, to an AS boundary router N.
       Suppose also that the summary-LSA was originated by an area
       border router BR.

       (1) If the cost advertised by the summary-LSA is LSInfinity, or
           if the LSA's LS age is equal to MaxAge, then examine the
           next LSA.



Moy                         Standards Track                   [Page 170]

RFC 2328                     OSPF Version 2                   April 1998


       (2) If the summary-LSA was originated by the calculating router
           itself, examine the next LSA.

       (3) Look up the routing table entry for N. (If N is an AS
           boundary router, look up the "router" routing table entry
           associated with the backbone area). If it does not exist, or
           if the route type is other than intra-area or inter-area, or
           if the area associated with the routing table entry is not
           the backbone area, then examine the next LSA. In other
           words, this calculation only updates backbone intra-area
           routes found in Section 16.1 and inter-area routes found in
           Section 16.2.

       (4) Look up the routing table entry for the advertising router
           BR associated with the Area A. If it is unreachable, examine
           the next LSA. Otherwise, the cost to destination N is the
           sum of the cost in BR's Area A routing table entry and the
           cost advertised in the LSA. Call this cost IAC.

       (5) If this cost is less than the cost occurring in N's routing
           table entry, overwrite N's list of next hops with those used
           for BR, and set N's routing table cost to IAC. Else, if IAC
           is the same as N's current cost, add BR's list of next hops
           to N's list of next hops. In any case, the area associated
           with N's routing table entry must remain the backbone area,
           and the path type (either intra-area or inter-area) must
           also remain the same.

       It is important to note that the above calculation never makes
       unreachable destinations reachable, but instead just potentially
       finds better paths to already reachable destinations.  The
       calculation installs any better cost found into the routing
       table entry, from which it may be readvertised in summary-LSAs
       to other areas.

       As an example of the calculation, consider the Autonomous System
       pictured in Figure 17.  There is a single non-backbone area
       (Area 1) that physically divides the backbone into two separate
       pieces. To maintain connectivity of the backbone, a virtual link
       has been configured between routers RT1 and RT4. On the right
       side of the figure, Network N1 belongs to the backbone. The
       dotted lines indicate that there is a much shorter intra-area



Moy                         Standards Track                   [Page 171]

RFC 2328                     OSPF Version 2                   April 1998



                     ........................
                     . Area 1 (transit)     .            +
                     .                      .            |
                     .      +---+1        1+---+100      |
                     .      |RT2|----------|RT4|=========|
                     .    1/+---+********* +---+         |
                     .    /*******          .            |
                     .  1/*Virtual          .            |
                  1+---+/*  Link            .         Net|work
            =======|RT1|*                   .            | N1
                   +---+\                   .            |
                     .   \                  .            |
                     .    \                 .            |
                     .    1\+---+1        1+---+20       |
                     .      |RT3|----------|RT5|=========|
                     .      +---+          +---+         |
                     .                      .            |
                     ........................            +

                   Figure 17: Routing through transit areas

       backbone path between router RT5 and Network N1 (cost 20) than
       there is between Router RT4 and Network N1 (cost 100). Both
       Router RT4 and Router RT5 will inject summary-LSAs for Network
       N1 into Area 1.

       After the shortest-path tree has been calculated for the
       backbone in Section 16.1, Router RT1 (left end of the virtual
       link) will have calculated a path through Router RT4 for all
       data traffic destined for Network N1. However, since Router RT5
       is so much closer to Network N1, all routers internal to Area 1
       (e.g., Routers RT2 and RT3) will forward their Network N1
       traffic towards Router RT5, instead of RT4. And indeed, after
       examining Area 1's summary-LSAs by the above calculation, Router
       RT1 will also forward Network N1 traffic towards RT5. Note that
       in this example the virtual link enables transit data traffic to
       be forwarded through Area 1, but the actual path the transit
       data traffic takes does not follow the virtual link.  In other
       words, virtual links allow transit traffic to be forwarded
       through an area, but do not dictate the precise path that the
       traffic will take.



Moy                         Standards Track                   [Page 172]

RFC 2328                     OSPF Version 2                   April 1998


   16.4.  Calculating AS external routes

       AS external routes are calculated by examining AS-external-LSAs.
       Each of the AS-external-LSAs is considered in turn.  Most AS-
       external-LSAs describe routes to specific IP destinations.  An
       AS-external-LSA can also describe a default route for the
       Autonomous System (Destination ID = DefaultDestination,
       network/subnet mask = 0x00000000).  For each AS-external-LSA:


       (1) If the cost specified by the LSA is LSInfinity, or if the
           LSA's LS age is equal to MaxAge, then examine the next LSA.

       (2) If the LSA was originated by the calculating router itself,
           examine the next LSA.

       (3) Call the destination described by the LSA N.  N's address is
           obtained by masking the LSA's Link State ID with the
           network/subnet mask contained in the body of the LSA.  Look
           up the routing table entries (potentially one per attached
           area) for the AS boundary router (ASBR) that originated the
           LSA. If no entries exist for router ASBR (i.e., ASBR is
           unreachable), do nothing with this LSA and consider the next
           in the list.

           Else, this LSA describes an AS external path to destination
           N.  Examine the forwarding address specified in the AS-
           external-LSA.  This indicates the IP address to which
           packets for the destination should be forwarded.

           If the forwarding address is set to 0.0.0.0, packets should
           be sent to the ASBR itself. Among the multiple routing table
           entries for the ASBR, select the preferred entry as follows.
           If RFC1583Compatibility is set to "disabled", prune the set
           of routing table entries for the ASBR as described in
           Section 16.4.1. In any case, among the remaining routing
           table entries, select the routing table entry with the least
           cost; when there are multiple least cost routing table
           entries the entry whose associated area has the largest OSPF
           Area ID (when considered as an unsigned 32-bit integer) is
           chosen.




Moy                         Standards Track                   [Page 173]

RFC 2328                     OSPF Version 2                   April 1998


           If the forwarding address is non-zero, look up the
           forwarding address in the routing table.[24] The matching
           routing table entry must specify an intra-area or inter-area
           path; if no such path exists, do nothing with the LSA and
           consider the next in the list.

       (4) Let X be the cost specified by the preferred routing table
           entry for the ASBR/forwarding address, and Y the cost
           specified in the LSA.  X is in terms of the link state
           metric, and Y is a type 1 or 2 external metric.

       (5) Look up the routing table entry for the destination N.  If
           no entry exists for N, install the AS external path to N,
           with next hop equal to the list of next hops to the
           forwarding address, and advertising router equal to ASBR.
           If the external metric type is 1, then the path-type is set
           to type 1 external and the cost is equal to X+Y.  If the
           external metric type is 2, the path-type is set to type 2
           external, the link state component of the route's cost is X,
           and the type 2 cost is Y.

       (6) Compare the AS external path described by the LSA with the
           existing paths in N's routing table entry, as follows. If
           the new path is preferred, it replaces the present paths in
           N's routing table entry.  If the new path is of equal
           preference, it is added to N's routing table entry's list of
           paths.

           (a) Intra-area and inter-area paths are always preferred
               over AS external paths.

           (b) Type 1 external paths are always preferred over type 2
               external paths. When all paths are type 2 external
               paths, the paths with the smallest advertised type 2
               metric are always preferred.

           (c) If the new AS external path is still indistinguishable
               from the current paths in the N's routing table entry,
               and RFC1583Compatibility is set to "disabled", select
               the preferred paths based on the intra-AS paths to the
               ASBR/forwarding addresses, as specified in Section
               16.4.1.



Moy                         Standards Track                   [Page 174]

RFC 2328                     OSPF Version 2                   April 1998


           (d) If the new AS external path is still indistinguishable
               from the current paths in the N's routing table entry,
               select the preferred path based on a least cost
               comparison.  Type 1 external paths are compared by
               looking at the sum of the distance to the forwarding
               address and the advertised type 1 metric (X+Y).  Type 2
               external paths advertising equal type 2 metrics are
               compared by looking at the distance to the forwarding
               addresses.

       16.4.1.  External path preferences

           When multiple intra-AS paths are available to
           ASBRs/forwarding addresses, the following rules indicate
           which paths are preferred. These rules apply when the same
           ASBR is reachable through multiple areas, or when trying to
           decide which of several AS-external-LSAs should be
           preferred. In the former case the paths all terminate at the
           same ASBR, while in the latter the paths terminate at
           separate ASBRs/forwarding addresses. In either case, each
           path is represented by a separate routing table entry as
           defined in Section 11.

           This section only applies when RFC1583Compatibility is set
           to "disabled".

           The path preference rules, stated from highest to lowest
           preference, are as follows. Note that as a result of these
           rules, there may still be multiple paths of the highest
           preference. In this case, the path to use must be determined
           based on cost, as described in Section 16.4.

           o   Intra-area paths using non-backbone areas are always the
               most preferred.

           o   The other paths, intra-area backbone paths and inter-
               area paths, are of equal preference.

   16.5.  Incremental updates -- summary-LSAs

       When a new summary-LSA is received, it is not necessary to
       recalculate the entire routing table.  Call the destination



Moy                         Standards Track                   [Page 175]

RFC 2328                     OSPF Version 2                   April 1998


       described by the summary-LSA N (N's address is obtained by
       masking the LSA's Link State ID with the network/subnet mask
       contained in the body of the LSA), and let Area A be the area to
       which the LSA belongs. There are then two separate cases:

       Case 1: Area A is the backbone and/or the router is not an area
           border router.
           In this case, the following calculations must be performed.
           First, if there is presently an inter-area route to the
           destination N, N's routing table entry is invalidated,
           saving the entry's values for later comparisons. Then the
           calculation in Section 16.2 is run again for the single
           destination N. In this calculation, all of Area A's
           summary-LSAs that describe a route to N are examined.  In
           addition, if the router is an area border router attached to
           one or more transit areas, the calculation in Section 16.3
           must be run again for the single destination.  If the
           results of these calculations have changed the cost/path to
           an AS boundary router (as would be the case for a Type 4
           summary-LSA) or to any forwarding addresses, all AS-
           external-LSAs will have to be reexamined by rerunning the
           calculation in Section 16.4.  Otherwise, if N is now newly
           unreachable, the calculation in Section 16.4 must be rerun
           for the single destination N, in case an alternate external
           route to N exists.

       Case 2: Area A is a transit area and the router is an area
           border router.
           In this case, the following calculations must be performed.
           First, if N's routing table entry presently contains one or
           more inter-area paths that utilize the transit area Area A,
           these paths should be removed. If this removes all paths
           from the routing table entry, the entry should be
           invalidated.  The entry's old values should be saved for
           later comparisons. Next the calculation in Section 16.3 must
           be run again for the single destination N. If the results of
           this calculation have caused the cost to N to increase, the
           complete routing table calculation must be rerun starting
           with the Dijkstra algorithm specified in Section 16.1.
           Otherwise, if the cost/path to an AS boundary router (as
           would be the case for a Type 4 summary-LSA) or to any
           forwarding addresses has changed, all AS-external-LSAs will



Moy                         Standards Track                   [Page 176]

RFC 2328                     OSPF Version 2                   April 1998


           have to be reexamined by rerunning the calculation in
           Section 16.4.  Otherwise, if N is now newly unreachable, the
           calculation in Section 16.4 must be rerun for the single
           destination N, in case an alternate external route to N
           exists.

   16.6.  Incremental updates -- AS-external-LSAs

       When a new AS-external-LSA is received, it is not necessary to
       recalculate the entire routing table.  Call the destination
       described by the AS-external-LSA N.  N's address is obtained by
       masking the LSA's Link State ID with the network/subnet mask
       contained in the body of the LSA. If there is already an intra-
       area or inter-area route to the destination, no recalculation is
       necessary (internal routes take precedence).

       Otherwise, the procedure in Section 16.4 will have to be
       performed, but only for those AS-external-LSAs whose destination
       is N.  Before this procedure is performed, the present routing
       table entry for N should be invalidated.

   16.7.  Events generated as a result of routing table changes

       Changes to routing table entries sometimes cause the OSPF area
       border routers to take additional actions.  These routers need
       to act on the following routing table changes:

       o   The cost or path type of a routing table entry has changed.
           If the destination described by this entry is a Network or
           AS boundary router, and this is not simply a change of AS
           external routes, new summary-LSAs may have to be generated
           (potentially one for each attached area, including the
           backbone).  See Section 12.4.3 for more information.  If a
           previously advertised entry has been deleted, or is no
           longer advertisable to a particular area, the LSA must be
           flushed from the routing domain by setting its LS age to
           MaxAge and reflooding (see Section 14.1).

       o   A routing table entry associated with a configured virtual
           link has changed.  The destination of such a routing table
           entry is an area border router.  The change indicates a
           modification to the virtual link's cost or viability.



Moy                         Standards Track                   [Page 177]

RFC 2328                     OSPF Version 2                   April 1998


           If the entry indicates that the area border router is newly
           reachable, the corresponding virtual link is now
           operational.  An InterfaceUp event should be generated for
           the virtual link, which will cause a virtual adjacency to
           begin to form (see Section 10.3).  At this time the virtual
           link's IP interface address and the virtual neighbor's
           Neighbor IP address are also calculated.

           If the entry indicates that the area border router is no
           longer reachable, the virtual link and its associated
           adjacency should be destroyed.  This means an InterfaceDown
           event should be generated for the associated virtual link.

           If the cost of the entry has changed, and there is a fully
           established virtual adjacency, a new router-LSA for the
           backbone must be originated.  This in turn may cause further
           routing table changes.

   16.8.  Equal-cost multipath

       The OSPF protocol maintains multiple equal-cost routes to all
       destinations.  This can be seen in the steps used above to
       calculate the routing table, and in the definition of the
       routing table structure.

       Each one of the multiple routes will be of the same type
       (intra-area, inter-area, type 1 external or type 2 external),
       cost, and will have the same associated area.  However, each
       route may specify a separate next hop and Advertising router.

       There is no requirement that a router running OSPF keep track of
       all possible equal-cost routes to a destination.  An
       implementation may choose to keep only a fixed number of routes
       to any given destination.  This does not affect any of the
       algorithms presented in this specification.










Moy                         Standards Track                   [Page 178]

RFC 2328                     OSPF Version 2                   April 1998


Footnotes


   [1]The graph's vertices represent either routers, transit networks,
   or stub networks.  Since routers may belong to multiple areas, it is
   not possible to color the graph's vertices.

   [2]It is possible for all of a router's interfaces to be unnumbered
   point-to-point links.  In this case, an IP address must be assigned
   to the router.  This address will then be advertised in the router's
   router-LSA as a host route.

   [3]Note that in these cases both interfaces, the non-virtual and the
   virtual, would have the same IP address.

   [4]Note that no host route is generated for, and no IP packets can
   be addressed to, interfaces to unnumbered point-to-point networks.
   This is regardless of such an interface's state.

   [5]It is instructive to see what happens when the Designated Router
   for the network crashes.  Call the Designated Router for the network
   RT1, and the Backup Designated Router RT2.  If Router RT1 crashes
   (or maybe its interface to the network dies), the other routers on
   the network will detect RT1's absence within RouterDeadInterval
   seconds.  All routers may not detect this at precisely the same
   time; the routers that detect RT1's absence before RT2 does will,
   for a time, select RT2 to be both Designated Router and Backup
   Designated Router.  When RT2 detects that RT1 is gone it will move
   itself to Designated Router.  At this time, the remaining router
   having highest Router Priority will be selected as Backup Designated
   Router.

   [6]On point-to-point networks, the lower level protocols indicate
   whether the neighbor is up and running.  Likewise, existence of the
   neighbor on virtual links is indicated by the routing table
   calculation.  However, in both these cases, the Hello Protocol is
   still used.  This ensures that communication between the neighbors
   is bidirectional, and that each of the neighbors has a functioning
   routing protocol layer.

   [7]When the identity of the Designated Router is changing, it may be
   quite common for a neighbor in this state to send the router a



Moy                         Standards Track                   [Page 179]

RFC 2328                     OSPF Version 2                   April 1998


   Database Description packet; this means that there is some momentary
   disagreement on the Designated Router's identity.

   [8]Note that it is possible for a router to resynchronize any of its
   fully established adjacencies by setting the adjacency's state back
   to ExStart.  This will cause the other end of the adjacency to
   process a SeqNumberMismatch event, and therefore to also go back to
   ExStart state.

   [9]The address space of IP networks and the address space of OSPF
   Router IDs may overlap.  That is, a network may have an IP address
   which is identical (when considered as a 32-bit number) to some
   router's Router ID.

   [10]"Discard" entries are necessary to ensure that route
   summarization at area boundaries will not cause packet looping.

   [11]It is assumed that, for two different address ranges matching
   the destination, one range is more specific than the other. Non-
   contiguous subnet masks can be configured to violate this
   assumption. Such subnet mask configurations cannot be handled by the
   OSPF protocol.

   [12]MaxAgeDiff is an architectural constant.  It indicates the
   maximum dispersion of ages, in seconds, that can occur for a single
   LSA instance as it is flooded throughout the routing domain.  If two
   LSAs differ by more than this, they are assumed to be different
   instances of the same LSA.  This can occur when a router restarts
   and loses track of the LSA's previous LS sequence number.  See
   Section 13.4 for more details.

   [13]When two LSAs have different LS checksums, they are assumed to
   be separate instances.  This can occur when a router restarts, and
   loses track of the LSA's previous LS sequence number.  In the case
   where the two LSAs have the same LS sequence number, it is not
   possible to determine which LSA is actually newer.  However, if the
   wrong LSA is accepted as newer, the originating router will simply
   originate another instance.  See Section 13.4 for further details.

   [14]There is one instance where a lookup must be done based on
   partial information.  This is during the routing table calculation,
   when a network-LSA must be found based solely on its Link State ID.



Moy                         Standards Track                   [Page 180]

RFC 2328                     OSPF Version 2                   April 1998


   The lookup in this case is still well defined, since no two
   network-LSAs can have the same Link State ID.

   [15]This is the way RFC 1583 specified point-to-point
   representation.  It has three advantages: a) it does not require
   allocating a subnet to the point-to-point link, b) it tends to bias
   the routing so that packets destined for the point-to-point
   interface will actually be received over the interface (which is
   useful for diagnostic purposes) and c) it allows network
   bootstrapping of a neighbor, without requiring that the bootstrap
   program contain an OSPF implementation.

   [16]This is the more traditional point-to-point representation used
   by protocols such as RIP.

   [17]This clause covers the case: Inter-area routes are not
   summarized to the backbone.  This is because inter-area routes are
   always associated with the backbone area.

   [18]This clause is only invoked when a non-backbone Area A supports
   transit data traffic (i.e., has TransitCapability set to TRUE).  For
   example, in the area configuration of Figure 6, Area 2 can support
   transit traffic due to the configured virtual link between Routers
   RT10 and RT11. As a result, Router RT11 need only originate a single
   summary-LSA into Area 2 (having the collapsed destination N9-
   N11,H1), since all of Router RT11's other eligible routes have next
   hops belonging to Area 2 itself (and as such only need be advertised
   by other area border routers; in this case, Routers RT10 and RT7).

   [19]By keeping more information in the routing table, it is possible
   for an implementation to recalculate the shortest path tree for only
   a single area.  In fact, there are incremental algorithms that allow
   an implementation to recalculate only a portion of a single area's
   shortest path tree [Ref1].  However, these algorithms are beyond the
   scope of this specification.

   [20]This is how the Link state request list is emptied, which
   eventually causes the neighbor state to transition to Full.  See
   Section 10.9 for more details.

   [21]It should be a relatively rare occurrence for an LSA's LS age to
   reach MaxAge in this fashion.  Usually, the LSA will be replaced by



Moy                         Standards Track                   [Page 181]

RFC 2328                     OSPF Version 2                   April 1998


   a more recent instance before it ages out.

   [22]Strictly speaking, because of equal-cost multipath, the
   algorithm does not create a tree.  We continue to use the "tree"
   terminology because that is what occurs most often in the existing
   literature.

   [23]Note that the presence of any link back to V is sufficient; it
   need not be the matching half of the link under consideration from V
   to W. This is enough to ensure that, before data traffic flows
   between a pair of neighboring routers, their link state databases
   will be synchronized.

   [24]When the forwarding address is non-zero, it should point to a
   router belonging to another Autonomous System.  See Section 12.4.4
   for more details.





























Moy                         Standards Track                   [Page 182]

RFC 2328                     OSPF Version 2                   April 1998


References

   [Ref1]  McQuillan, J., I. Richer and E. Rosen, "ARPANET Routing
           Algorithm Improvements", BBN Technical Report 3803, April
           1978.

   [Ref2]  Digital Equipment Corporation, "Information processing
           systems -- Data communications -- Intermediate System to
           Intermediate System Intra-Domain Routing Protocol", October
           1987.

   [Ref3]  McQuillan, J., et.al., "The New Routing Algorithm for the
           ARPANET", IEEE Transactions on Communications, May 1980.

   [Ref4]  Perlman, R., "Fault-Tolerant Broadcast of Routing
           Information", Computer Networks, December 1983.

   [Ref5]  Postel, J., "Internet Protocol", STD 5, RFC 791, September
           1981.

   [Ref6]  McKenzie, A., "ISO Transport Protocol specification ISO DP
           8073", RFC 905, April 1984.

   [Ref7]  Deering, S., "Host extensions for IP multicasting", STD 5,
           RFC 1112, May 1988.

   [Ref8]  McCloghrie, K., and M. Rose, "Management Information Base
           for network management of TCP/IP-based internets: MIB-II",
           STD 17, RFC 1213, March 1991.

   [Ref9]  Moy, J., "OSPF Version 2", RFC 1583, March 1994.

   [Ref10] Fuller, V., T. Li, J. Yu, and K. Varadhan, "Classless
           Inter-Domain Routing (CIDR): an Address Assignment and
           Aggregation Strategy", RFC1519, September 1993.

   [Ref11] Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC
           1700, October 1994.

   [Ref12] Almquist, P., "Type of Service in the Internet Protocol
           Suite", RFC 1349, July 1992.




Moy                         Standards Track                   [Page 183]

RFC 2328                     OSPF Version 2                   April 1998


   [Ref13] Leiner, B., et.al., "The DARPA Internet Protocol Suite", DDN
           Protocol Handbook, April 1985.

   [Ref14] Bradley, T., and C. Brown, "Inverse Address Resolution
           Protocol", RFC 1293, January 1992.

   [Ref15] deSouza, O., and M. Rodrigues, "Guidelines for Running OSPF
           Over Frame Relay Networks", RFC 1586, March 1994.

   [Ref16] Bellovin, S., "Security Problems in the TCP/IP Protocol
           Suite", ACM Computer Communications Review, Volume 19,
           Number 2, pp. 32-38, April 1989.

   [Ref17] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
           April 1992.

   [Ref18] Moy, J., "Multicast Extensions to OSPF", RFC 1584, March
           1994.

   [Ref19] Coltun, R., and V. Fuller, "The OSPF NSSA Option", RFC 1587,
           March 1994.

   [Ref20] Ferguson, D., "The OSPF External Attributes LSA", work in
           progress.

   [Ref21] Moy, J., "Extending OSPF to Support Demand Circuits", RFC
           1793, April 1995.

   [Ref22] Mogul, J., and S. Deering, "Path MTU Discovery", RFC 1191,
           November 1990.

   [Ref23] Rekhter, Y., and T. Li, "A Border Gateway Protocol 4 (BGP-
           4)", RFC 1771, March 1995.

   [Ref24] Hinden, R., "Internet Routing Protocol Standardization
           Criteria", BBN, October 1991.

   [Ref25] Moy, J., "OSPF Version 2", RFC 2178, July 1997.

   [Ref26] Rosen, E., "Vulnerabilities of Network Control Protocols: An
           Example", Computer Communication Review, July 1981.




Moy                         Standards Track                   [Page 184]

RFC 2328                     OSPF Version 2                   April 1998


A. OSPF data formats

   This appendix describes the format of OSPF protocol packets and OSPF
   LSAs.  The OSPF protocol runs directly over the IP network layer.
   Before any data formats are described, the details of the OSPF
   encapsulation are explained.

   Next the OSPF Options field is described.  This field describes
   various capabilities that may or may not be supported by pieces of
   the OSPF routing domain. The OSPF Options field is contained in OSPF
   Hello packets, Database Description packets and in OSPF LSAs.

   OSPF packet formats are detailed in Section A.3.  A description of
   OSPF LSAs appears in Section A.4.

A.1 Encapsulation of OSPF packets

   OSPF runs directly over the Internet Protocol's network layer.  OSPF
   packets are therefore encapsulated solely by IP and local data-link
   headers.

   OSPF does not define a way to fragment its protocol packets, and
   depends on IP fragmentation when transmitting packets larger than
   the network MTU. If necessary, the length of OSPF packets can be up
   to 65,535 bytes (including the IP header).  The OSPF packet types
   that are likely to be large (Database Description Packets, Link
   State Request, Link State Update, and Link State Acknowledgment
   packets) can usually be split into several separate protocol
   packets, without loss of functionality.  This is recommended; IP
   fragmentation should be avoided whenever possible.  Using this
   reasoning, an attempt should be made to limit the sizes of OSPF
   packets sent over virtual links to 576 bytes unless Path MTU
   Discovery is being performed (see [Ref22]).

   The other important features of OSPF's IP encapsulation are:

   o   Use of IP multicast.  Some OSPF messages are multicast, when
       sent over broadcast networks.  Two distinct IP multicast
       addresses are used.  Packets sent to these multicast addresses
       should never be forwarded; they are meant to travel a single hop
       only.  To ensure that these packets will not travel multiple
       hops, their IP TTL must be set to 1.



Moy                         Standards Track                   [Page 185]

RFC 2328                     OSPF Version 2                   April 1998


       AllSPFRouters
           This multicast address has been assigned the value
           224.0.0.5.  All routers running OSPF should be prepared to
           receive packets sent to this address.  Hello packets are
           always sent to this destination.  Also, certain OSPF
           protocol packets are sent to this address during the
           flooding procedure.

       AllDRouters
           This multicast address has been assigned the value
           224.0.0.6.  Both the Designated Router and Backup Designated
           Router must be prepared to receive packets destined to this
           address.  Certain OSPF protocol packets are sent to this
           address during the flooding procedure.

   o   OSPF is IP protocol number 89.  This number has been registered
       with the Network Information Center.  IP protocol number
       assignments are documented in [Ref11].

   o   All OSPF routing protocol packets are sent using the normal
       service TOS value of binary 0000 defined in [Ref12].

   o   Routing protocol packets are sent with IP precedence set to
       Internetwork Control.  OSPF protocol packets should be given
       precedence over regular IP data traffic, in both sending and
       receiving.  Setting the IP precedence field in the IP header to
       Internetwork Control [Ref5] may help implement this objective.


















Moy                         Standards Track                   [Page 186]

RFC 2328                     OSPF Version 2                   April 1998


A.2 The Options field

   The OSPF Options field is present in OSPF Hello packets, Database
   Description packets and all LSAs.  The Options field enables OSPF
   routers to support (or not support) optional capabilities, and to
   communicate their capability level to other OSPF routers.  Through
   this mechanism routers of differing capabilities can be mixed within
   an OSPF routing domain.

   When used in Hello packets, the Options field allows a router to
   reject a neighbor because of a capability mismatch.  Alternatively,
   when capabilities are exchanged in Database Description packets a
   router can choose not to forward certain LSAs to a neighbor because
   of its reduced functionality.  Lastly, listing capabilities in LSAs
   allows routers to forward traffic around reduced functionality
   routers, by excluding them from parts of the routing table
   calculation.

   Five bits of the OSPF Options field have been assigned, although
   only one (the E-bit) is described completely by this memo. Each bit
   is described briefly below. Routers should reset (i.e.  clear)
   unrecognized bits in the Options field when sending Hello packets or
   Database Description packets and when originating LSAs. Conversely,
   routers encountering unrecognized Option bits in received Hello
   Packets, Database Description packets or LSAs should ignore the
   capability and process the packet/LSA normally.

                      +------------------------------------+
                      | * | * | DC | EA | N/P | MC | E | * |
                      +------------------------------------+

                            The Options field


   E-bit
       This bit describes the way AS-external-LSAs are flooded, as
       described in Sections 3.6, 9.5, 10.8 and 12.1.2 of this memo.

   MC-bit
       This bit describes whether IP multicast datagrams are forwarded
       according to the specifications in [Ref18].




Moy                         Standards Track                   [Page 187]

RFC 2328                     OSPF Version 2                   April 1998


   N/P-bit
       This bit describes the handling of Type-7 LSAs, as specified in
       [Ref19].

   EA-bit
       This bit describes the router's willingness to receive and
       forward External-Attributes-LSAs, as specified in [Ref20].

   DC-bit
       This bit describes the router's handling of demand circuits, as
       specified in [Ref21].


































Moy                         Standards Track                   [Page 188]

RFC 2328                     OSPF Version 2                   April 1998


A.3 OSPF Packet Formats

   There are five distinct OSPF packet types.  All OSPF packet types
   begin with a standard 24 byte header.  This header is described
   first.  Each packet type is then described in a succeeding section.
   In these sections each packet's division into fields is displayed,
   and then the field definitions are enumerated.

   All OSPF packet types (other than the OSPF Hello packets) deal with
   lists of LSAs.  For example, Link State Update packets implement the
   flooding of LSAs throughout the OSPF routing domain.  Because of
   this, OSPF protocol packets cannot be parsed unless the format of
   LSAs is also understood.  The format of LSAs is described in Section
   A.4.

   The receive processing of OSPF packets is detailed in Section 8.2.
   The sending of OSPF packets is explained in Section 8.1.




























Moy                         Standards Track                   [Page 189]

RFC 2328                     OSPF Version 2                   April 1998


A.3.1 The OSPF packet header

   Every OSPF packet starts with a standard 24 byte header.  This
   header contains all the information necessary to determine whether
   the packet should be accepted for further processing.  This
   determination is described in Section 8.2 of the specification.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Version #   |     Type      |         Packet length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Router ID                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Area ID                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Checksum            |             AuType            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



   Version #
       The OSPF version number.  This specification documents version 2
       of the protocol.

   Type
       The OSPF packet types are as follows. See Sections A.3.2 through
       A.3.6 for details.












Moy                         Standards Track                   [Page 190]

RFC 2328                     OSPF Version 2                   April 1998



                         Type   Description
                         ________________________________
                         1      Hello
                         2      Database Description
                         3      Link State Request
                         4      Link State Update
                         5      Link State Acknowledgment




   Packet length
       The length of the OSPF protocol packet in bytes.  This length
       includes the standard OSPF header.

   Router ID
       The Router ID of the packet's source.

   Area ID
       A 32 bit number identifying the area that this packet belongs
       to.  All OSPF packets are associated with a single area.  Most
       travel a single hop only.  Packets travelling over a virtual
       link are labelled with the backbone Area ID of 0.0.0.0.

   Checksum
       The standard IP checksum of the entire contents of the packet,
       starting with the OSPF packet header but excluding the 64-bit
       authentication field.  This checksum is calculated as the 16-bit
       one's complement of the one's complement sum of all the 16-bit
       words in the packet, excepting the authentication field.  If the
       packet's length is not an integral number of 16-bit words, the
       packet is padded with a byte of zero before checksumming.  The
       checksum is considered to be part of the packet authentication
       procedure; for some authentication types the checksum
       calculation is omitted.

   AuType
       Identifies the authentication procedure to be used for the
       packet.  Authentication is discussed in Appendix D of the
       specification.  Consult Appendix D for a list of the currently
       defined authentication types.



Moy                         Standards Track                   [Page 191]

RFC 2328                     OSPF Version 2                   April 1998


   Authentication
       A 64-bit field for use by the authentication scheme. See
       Appendix D for details.










































Moy                         Standards Track                   [Page 192]

RFC 2328                     OSPF Version 2                   April 1998


A.3.2 The Hello packet

   Hello packets are OSPF packet type 1.  These packets are sent
   periodically on all interfaces (including virtual links) in order to
   establish and maintain neighbor relationships.  In addition, Hello
   Packets are multicast on those physical networks having a multicast
   or broadcast capability, enabling dynamic discovery of neighboring
   routers.

   All routers connected to a common network must agree on certain
   parameters (Network mask, HelloInterval and RouterDeadInterval).
   These parameters are included in Hello packets, so that differences
   can inhibit the forming of neighbor relationships.  A detailed
   explanation of the receive processing for Hello packets is presented
   in Section 10.5.  The sending of Hello packets is covered in Section
   9.5.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Version #   |       1       |         Packet length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Router ID                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Area ID                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Checksum            |             AuType            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Network Mask                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         HelloInterval         |    Options    |    Rtr Pri    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     RouterDeadInterval                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Designated Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Backup Designated Router                    |



Moy                         Standards Track                   [Page 193]

RFC 2328                     OSPF Version 2                   April 1998


      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Neighbor                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |


   Network mask
       The network mask associated with this interface.  For example,
       if the interface is to a class B network whose third byte is
       used for subnetting, the network mask is 0xffffff00.

   Options
       The optional capabilities supported by the router, as documented
       in Section A.2.

   HelloInterval
       The number of seconds between this router's Hello packets.

   Rtr Pri
       This router's Router Priority.  Used in (Backup) Designated
       Router election.  If set to 0, the router will be ineligible to
       become (Backup) Designated Router.

   RouterDeadInterval
       The number of seconds before declaring a silent router down.

   Designated Router
       The identity of the Designated Router for this network, in the
       view of the sending router.  The Designated Router is identified
       here by its IP interface address on the network.  Set to 0.0.0.0
       if there is no Designated Router.

   Backup Designated Router
       The identity of the Backup Designated Router for this network,
       in the view of the sending router.  The Backup Designated Router
       is identified here by its IP interface address on the network.
       Set to 0.0.0.0 if there is no Backup Designated Router.

   Neighbor
       The Router IDs of each router from whom valid Hello packets have
       been seen recently on the network.  Recently means in the last
       RouterDeadInterval seconds.



Moy                         Standards Track                   [Page 194]

RFC 2328                     OSPF Version 2                   April 1998


A.3.3 The Database Description packet

   Database Description packets are OSPF packet type 2.  These packets
   are exchanged when an adjacency is being initialized.  They describe
   the contents of the link-state database.  Multiple packets may be
   used to describe the database.  For this purpose a poll-response
   procedure is used.  One of the routers is designated to be the
   master, the other the slave.  The master sends Database Description
   packets (polls) which are acknowledged by Database Description
   packets sent by the slave (responses).  The responses are linked to
   the polls via the packets' DD sequence numbers.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Version #   |       2       |         Packet length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Router ID                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Area ID                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Checksum            |             AuType            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Interface MTU         |    Options    |0|0|0|0|0|I|M|MS
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     DD sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +-                                                             -+
      |                                                               |
      +-                      An LSA Header                          -+
      |                                                               |
      +-                                                             -+
      |                                                               |
      +-                                                             -+
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |



Moy                         Standards Track                   [Page 195]

RFC 2328                     OSPF Version 2                   April 1998


   The format of the Database Description packet is very similar to
   both the Link State Request and Link State Acknowledgment packets.
   The main part of all three is a list of items, each item describing
   a piece of the link-state database.  The sending of Database
   Description Packets is documented in Section 10.8.  The reception of
   Database Description packets is documented in Section 10.6.

   Interface MTU
       The size in bytes of the largest IP datagram that can be sent
       out the associated interface, without fragmentation.  The MTUs
       of common Internet link types can be found in Table 7-1 of
       [Ref22]. Interface MTU should be set to 0 in Database
       Description packets sent over virtual links.

   Options
       The optional capabilities supported by the router, as documented
       in Section A.2.

   I-bit
       The Init bit.  When set to 1, this packet is the first in the
       sequence of Database Description Packets.

   M-bit
       The More bit.  When set to 1, it indicates that more Database
       Description Packets are to follow.

   MS-bit
       The Master/Slave bit.  When set to 1, it indicates that the
       router is the master during the Database Exchange process.
       Otherwise, the router is the slave.

   DD sequence number
       Used to sequence the collection of Database Description Packets.
       The initial value (indicated by the Init bit being set) should
       be unique.  The DD sequence number then increments until the
       complete database description has been sent.

   The rest of the packet consists of a (possibly partial) list of the
   link-state database's pieces.  Each LSA in the database is described
   by its LSA header.  The LSA header is documented in Section A.4.1.
   It contains all the information required to uniquely identify both
   the LSA and the LSA's current instance.



Moy                         Standards Track                   [Page 196]

RFC 2328                     OSPF Version 2                   April 1998


A.3.4 The Link State Request packet

   Link State Request packets are OSPF packet type 3.  After exchanging
   Database Description packets with a neighboring router, a router may
   find that parts of its link-state database are out-of-date.  The
   Link State Request packet is used to request the pieces of the
   neighbor's database that are more up-to-date.  Multiple Link State
   Request packets may need to be used.

   A router that sends a Link State Request packet has in mind the
   precise instance of the database pieces it is requesting. Each
   instance is defined by its LS sequence number, LS checksum, and LS
   age, although these fields are not specified in the Link State
   Request Packet itself.  The router may receive even more recent
   instances in response.

   The sending of Link State Request packets is documented in Section
   10.9.  The reception of Link State Request packets is documented in
   Section 10.7.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Version #   |       3       |         Packet length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Router ID                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Area ID                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Checksum            |             AuType            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          LS type                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Link State ID                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |



Moy                         Standards Track                   [Page 197]

RFC 2328                     OSPF Version 2                   April 1998


   Each LSA requested is specified by its LS type, Link State ID, and
   Advertising Router.  This uniquely identifies the LSA, but not its
   instance.  Link State Request packets are understood to be requests
   for the most recent instance (whatever that might be).









































Moy                         Standards Track                   [Page 198]

RFC 2328                     OSPF Version 2                   April 1998


A.3.5 The Link State Update packet

   Link State Update packets are OSPF packet type 4.  These packets
   implement the flooding of LSAs.  Each Link State Update packet
   carries a collection of LSAs one hop further from their origin.
   Several LSAs may be included in a single packet.

   Link State Update packets are multicast on those physical networks
   that support multicast/broadcast.  In order to make the flooding
   procedure reliable, flooded LSAs are acknowledged in Link State
   Acknowledgment packets.  If retransmission of certain LSAs is
   necessary, the retransmitted LSAs are always sent directly to the
   neighbor.  For more information on the reliable flooding of LSAs,
   consult Section 13.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Version #   |       4       |         Packet length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Router ID                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Area ID                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Checksum            |             AuType            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                            # LSAs                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +-                                                            +-+
      |                             LSAs                              |
      +-                                                            +-+
      |                              ...                              |








Moy                         Standards Track                   [Page 199]

RFC 2328                     OSPF Version 2                   April 1998


   # LSAs
       The number of LSAs included in this update.


   The body of the Link State Update packet consists of a list of LSAs.
   Each LSA begins with a common 20 byte header, described in Section
   A.4.1. Detailed formats of the different types of LSAs are described
   in Section A.4.





































Moy                         Standards Track                   [Page 200]

RFC 2328                     OSPF Version 2                   April 1998


A.3.6 The Link State Acknowledgment packet

   Link State Acknowledgment Packets are OSPF packet type 5.  To make
   the flooding of LSAs reliable, flooded LSAs are explicitly
   acknowledged.  This acknowledgment is accomplished through the
   sending and receiving of Link State Acknowledgment packets.
   Multiple LSAs can be acknowledged in a single Link State
   Acknowledgment packet.

   Depending on the state of the sending interface and the sender of
   the corresponding Link State Update packet, a Link State
   Acknowledgment packet is sent either to the multicast address
   AllSPFRouters, to the multicast address AllDRouters, or as a
   unicast.  The sending of Link State Acknowledgement packets is
   documented in Section 13.5.  The reception of Link State
   Acknowledgement packets is documented in Section 13.7.

   The format of this packet is similar to that of the Data Description
   packet.  The body of both packets is simply a list of LSA headers.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Version #   |       5       |         Packet length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Router ID                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Area ID                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Checksum            |             AuType            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Authentication                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +-                                                             -+
      |                                                               |
      +-                         An LSA Header                       -+
      |                                                               |
      +-                                                             -+



Moy                         Standards Track                   [Page 201]

RFC 2328                     OSPF Version 2                   April 1998


      |                                                               |
      +-                                                             -+
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |


   Each acknowledged LSA is described by its LSA header.  The LSA
   header is documented in Section A.4.1.  It contains all the
   information required to uniquely identify both the LSA and the LSA's
   current instance.


































Moy                         Standards Track                   [Page 202]

RFC 2328                     OSPF Version 2                   April 1998


A.4 LSA formats

   This memo defines five distinct types of LSAs.  Each LSA begins with
   a standard 20 byte LSA header.  This header is explained in Section
   A.4.1.  Succeeding sections then diagram the separate LSA types.

   Each LSA describes a piece of the OSPF routing domain.  Every router
   originates a router-LSA.  In addition, whenever the router is
   elected Designated Router, it originates a network-LSA.  Other types
   of LSAs may also be originated (see Section 12.4).  All LSAs are
   then flooded throughout the OSPF routing domain.  The flooding
   algorithm is reliable, ensuring that all routers have the same
   collection of LSAs.  (See Section 13 for more information concerning
   the flooding algorithm).  This collection of LSAs is called the
   link-state database.

   From the link state database, each router constructs a shortest path
   tree with itself as root.  This yields a routing table (see Section
   11).  For the details of the routing table build process, see
   Section 16.

























Moy                         Standards Track                   [Page 203]

RFC 2328                     OSPF Version 2                   April 1998


A.4.1 The LSA header

   All LSAs begin with a common 20 byte header.  This header contains
   enough information to uniquely identify the LSA (LS type, Link State
   ID, and Advertising Router).  Multiple instances of the LSA may
   exist in the routing domain at the same time.  It is then necessary
   to determine which instance is more recent.  This is accomplished by
   examining the LS age, LS sequence number and LS checksum fields that
   are also contained in the LSA header.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |    Options    |    LS type    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Link State ID                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



   LS age
       The time in seconds since the LSA was originated.

   Options
       The optional capabilities supported by the described portion of
       the routing domain.  OSPF's optional capabilities are documented
       in Section A.2.

   LS type
       The type of the LSA.  Each LSA type has a separate advertisement
       format.  The LSA types defined in this memo are as follows (see
       Section 12.1.3 for further explanation):






Moy                         Standards Track                   [Page 204]

RFC 2328                     OSPF Version 2                   April 1998



                       LS Type   Description
                       ___________________________________
                       1         Router-LSAs
                       2         Network-LSAs
                       3         Summary-LSAs (IP network)
                       4         Summary-LSAs (ASBR)
                       5         AS-external-LSAs




   Link State ID
       This field identifies the portion of the internet environment
       that is being described by the LSA.  The contents of this field
       depend on the LSA's LS type.  For example, in network-LSAs the
       Link State ID is set to the IP interface address of the
       network's Designated Router (from which the network's IP address
       can be derived).  The Link State ID is further discussed in
       Section 12.1.4.

   Advertising Router
       The Router ID of the router that originated the LSA.  For
       example, in network-LSAs this field is equal to the Router ID of
       the network's Designated Router.

   LS sequence number
       Detects old or duplicate LSAs.  Successive instances of an LSA
       are given successive LS sequence numbers.  See Section 12.1.6
       for more details.

   LS checksum
       The Fletcher checksum of the complete contents of the LSA,
       including the LSA header but excluding the LS age field. See
       Section 12.1.7 for more details.

   length
       The length in bytes of the LSA.  This includes the 20 byte LSA
       header.






Moy                         Standards Track                   [Page 205]

RFC 2328                     OSPF Version 2                   April 1998


A.4.2 Router-LSAs

   Router-LSAs are the Type 1 LSAs.  Each router in an area originates
   a router-LSA.  The LSA describes the state and cost of the router's
   links (i.e., interfaces) to the area.  All of the router's links to
   the area must be described in a single router-LSA.  For details
   concerning the construction of router-LSAs, see Section 12.4.1.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |     Options   |       1       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Link State ID                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    0    |V|E|B|        0      |            # links            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Link ID                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Data                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Type      |     # TOS     |            metric             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      TOS      |        0      |          TOS  metric          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Link ID                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Data                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |






Moy                         Standards Track                   [Page 206]

RFC 2328                     OSPF Version 2                   April 1998


   In router-LSAs, the Link State ID field is set to the router's OSPF
   Router ID. Router-LSAs are flooded throughout a single area only.

   bit V
       When set, the router is an endpoint of one or more fully
       adjacent virtual links having the described area as Transit area
       (V is for virtual link endpoint).

   bit E
       When set, the router is an AS boundary router (E is for
       external).

   bit B
       When set, the router is an area border router (B is for border).

   # links
       The number of router links described in this LSA.  This must be
       the total collection of router links (i.e., interfaces) to the
       area.


   The following fields are used to describe each router link (i.e.,
   interface). Each router link is typed (see the below Type field).
   The Type field indicates the kind of link being described.  It may
   be a link to a transit network, to another router or to a stub
   network.  The values of all the other fields describing a router
   link depend on the link's Type.  For example, each link has an
   associated 32-bit Link Data field.  For links to stub networks this
   field specifies the network's IP address mask.  For other link types
   the Link Data field specifies the router interface's IP address.


   Type
       A quick description of the router link.  One of the following.
       Note that host routes are classified as links to stub networks
       with network mask of 0xffffffff.









Moy                         Standards Track                   [Page 207]

RFC 2328                     OSPF Version 2                   April 1998



                Type   Description
                __________________________________________________
                1      Point-to-point connection to another router
                2      Connection to a transit network
                3      Connection to a stub network
                4      Virtual link




   Link ID
       Identifies the object that this router link connects to.  Value
       depends on the link's Type.  When connecting to an object that
       also originates an LSA (i.e., another router or a transit
       network) the Link ID is equal to the neighboring LSA's Link
       State ID.  This provides the key for looking up the neighboring
       LSA in the link state database during the routing table
       calculation. See Section 12.2 for more details.



                      Type   Link ID
                      ______________________________________
                      1      Neighboring router's Router ID
                      2      IP address of Designated Router
                      3      IP network/subnet number
                      4      Neighboring router's Router ID




   Link Data
       Value again depends on the link's Type field. For connections to
       stub networks, Link Data specifies the network's IP address
       mask. For unnumbered point-to-point connections, it specifies
       the interface's MIB-II [Ref8] ifIndex value. For the other link
       types it specifies the router interface's IP address. This
       latter piece of information is needed during the routing table
       build process, when calculating the IP address of the next hop.
       See Section 16.1.1 for more details.




Moy                         Standards Track                   [Page 208]

RFC 2328                     OSPF Version 2                   April 1998


   # TOS
       The number of different TOS metrics given for this link, not
       counting the required link metric (referred to as the TOS 0
       metric in [Ref9]).  For example, if no additional TOS metrics
       are given, this field is set to 0.

   metric
       The cost of using this router link.


   Additional TOS-specific information may also be included, for
   backward compatibility with previous versions of the OSPF
   specification ([Ref9]). Within each link, and for each desired TOS,
   TOS TOS-specific link information may be encoded as follows:

   TOS IP Type of Service that this metric refers to.  The encoding of
       TOS in OSPF LSAs is described in Section 12.3.

   TOS metric
       TOS-specific metric information.

























Moy                         Standards Track                   [Page 209]

RFC 2328                     OSPF Version 2                   April 1998


A.4.3 Network-LSAs

   Network-LSAs are the Type 2 LSAs.  A network-LSA is originated for
   each broadcast and NBMA network in the area which supports two or
   more routers.  The network-LSA is originated by the network's
   Designated Router.  The LSA describes all routers attached to the
   network, including the Designated Router itself.  The LSA's Link
   State ID field lists the IP interface address of the Designated
   Router.

   The distance from the network to all attached routers is zero.  This
   is why metric fields need not be specified in the network-LSA.  For
   details concerning the construction of network-LSAs, see Section
   12.4.2.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |      Options  |      2        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Link State ID                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Network Mask                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Attached Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |



   Network Mask
       The IP address mask for the network.  For example, a class A
       network would have the mask 0xff000000.





Moy                         Standards Track                   [Page 210]

RFC 2328                     OSPF Version 2                   April 1998


   Attached Router
       The Router IDs of each of the routers attached to the network.
       Actually, only those routers that are fully adjacent to the
       Designated Router are listed.  The Designated Router includes
       itself in this list.  The number of routers included can be
       deduced from the LSA header's length field.







































Moy                         Standards Track                   [Page 211]

RFC 2328                     OSPF Version 2                   April 1998


A.4.4 Summary-LSAs

   Summary-LSAs are the Type 3 and 4 LSAs.  These LSAs are originated
   by area border routers. Summary-LSAs describe inter-area
   destinations.  For details concerning the construction of summary-
   LSAs, see Section 12.4.3.

   Type 3 summary-LSAs are used when the destination is an IP network.
   In this case the LSA's Link State ID field is an IP network number
   (if necessary, the Link State ID can also have one or more of the
   network's "host" bits set; see Appendix E for details). When the
   destination is an AS boundary router, a Type 4 summary-LSA is used,
   and the Link State ID field is the AS boundary router's OSPF Router
   ID.  (To see why it is necessary to advertise the location of each
   ASBR, consult Section 16.4.)  Other than the difference in the Link
   State ID field, the format of Type 3 and 4 summary-LSAs is
   identical.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |     Options   |    3 or 4     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Link State ID                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Network Mask                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      0        |                  metric                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     TOS       |                TOS  metric                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |






Moy                         Standards Track                   [Page 212]

RFC 2328                     OSPF Version 2                   April 1998


   For stub areas, Type 3 summary-LSAs can also be used to describe a
   (per-area) default route.  Default summary routes are used in stub
   areas instead of flooding a complete set of external routes.  When
   describing a default summary route, the summary-LSA's Link State ID
   is always set to DefaultDestination (0.0.0.0) and the Network Mask
   is set to 0.0.0.0.

   Network Mask
       For Type 3 summary-LSAs, this indicates the destination
       network's IP address mask.  For example, when advertising the
       location of a class A network the value 0xff000000 would be
       used.  This field is not meaningful and must be zero for Type 4
       summary-LSAs.

   metric
       The cost of this route.  Expressed in the same units as the
       interface costs in the router-LSAs.

   Additional TOS-specific information may also be included, for
   backward compatibility with previous versions of the OSPF
   specification ([Ref9]). For each desired TOS, TOS-specific
   information is encoded as follows:

   TOS IP Type of Service that this metric refers to.  The encoding of
       TOS in OSPF LSAs is described in Section 12.3.

   TOS metric
       TOS-specific metric information.

















Moy                         Standards Track                   [Page 213]

RFC 2328                     OSPF Version 2                   April 1998


A.4.5 AS-external-LSAs

   AS-external-LSAs are the Type 5 LSAs.  These LSAs are originated by
   AS boundary routers, and describe destinations external to the AS.
   For details concerning the construction of AS-external-LSAs, see
   Section 12.4.3.

   AS-external-LSAs usually describe a particular external destination.
   For these LSAs the Link State ID field specifies an IP network
   number (if necessary, the Link State ID can also have one or more of
   the network's "host" bits set; see Appendix E for details).  AS-
   external-LSAs are also used to describe a default route.  Default
   routes are used when no specific route exists to the destination.
   When describing a default route, the Link State ID is always set to
   DefaultDestination (0.0.0.0) and the Network Mask is set to 0.0.0.0.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |     Options   |      5        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Link State ID                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Network Mask                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |E|     0       |                  metric                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Forwarding address                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      External Route Tag                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |E|    TOS      |                TOS  metric                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Forwarding address                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Moy                         Standards Track                   [Page 214]

RFC 2328                     OSPF Version 2                   April 1998


      |                      External Route Tag                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |



   Network Mask
       The IP address mask for the advertised destination.  For
       example, when advertising a class A network the mask 0xff000000
       would be used.

   bit E
       The type of external metric.  If bit E is set, the metric
       specified is a Type 2 external metric.  This means the metric is
       considered larger than any link state path.  If bit E is zero,
       the specified metric is a Type 1 external metric.  This means
       that it is expressed in the same units as the link state metric
       (i.e., the same units as interface cost).

   metric
       The cost of this route.  Interpretation depends on the external
       type indication (bit E above).

   Forwarding address
       Data traffic for the advertised destination will be forwarded to
       this address.  If the Forwarding address is set to 0.0.0.0, data
       traffic will be forwarded instead to the LSA's originator (i.e.,
       the responsible AS boundary router).

   External Route Tag
       A 32-bit field attached to each external route.  This is not
       used by the OSPF protocol itself.  It may be used to communicate
       information between AS boundary routers; the precise nature of
       such information is outside the scope of this specification.

   Additional TOS-specific information may also be included, for
   backward compatibility with previous versions of the OSPF
   specification ([Ref9]). For each desired TOS, TOS-specific
   information is encoded as follows:

   TOS The Type of Service that the following fields concern.  The
       encoding of TOS in OSPF LSAs is described in Section 12.3.



Moy                         Standards Track                   [Page 215]

RFC 2328                     OSPF Version 2                   April 1998


   bit E
       For backward-compatibility with [Ref9].

   TOS metric
       TOS-specific metric information.

   Forwarding address
       For backward-compatibility with [Ref9].

   External Route Tag
       For backward-compatibility with [Ref9].


































Moy                         Standards Track                   [Page 216]

RFC 2328                     OSPF Version 2                   April 1998


B. Architectural Constants

   Several OSPF protocol parameters have fixed architectural values.
   These parameters have been referred to in the text by names such as
   LSRefreshTime.  The same naming convention is used for the
   configurable protocol parameters.  They are defined in Appendix C.

   The name of each architectural constant follows, together with its
   value and a short description of its function.


   LSRefreshTime
       The maximum time between distinct originations of any particular
       LSA.  If the LS age field of one of the router's self-originated
       LSAs reaches the value LSRefreshTime, a new instance of the LSA
       is originated, even though the contents of the LSA (apart from
       the LSA header) will be the same.  The value of LSRefreshTime is
       set to 30 minutes.

   MinLSInterval
       The minimum time between distinct originations of any particular
       LSA.  The value of MinLSInterval is set to 5 seconds.

   MinLSArrival
       For any particular LSA, the minimum time that must elapse
       between reception of new LSA instances during flooding. LSA
       instances received at higher frequencies are discarded. The
       value of MinLSArrival is set to 1 second.

   MaxAge
       The maximum age that an LSA can attain. When an LSA's LS age
       field reaches MaxAge, it is reflooded in an attempt to flush the
       LSA from the routing domain (See Section 14). LSAs of age MaxAge
       are not used in the routing table calculation.  The value of
       MaxAge is set to 1 hour.

   CheckAge
       When the age of an LSA in the link state database hits a
       multiple of CheckAge, the LSA's checksum is verified.  An
       incorrect checksum at this time indicates a serious error.  The
       value of CheckAge is set to 5 minutes.




Moy                         Standards Track                   [Page 217]

RFC 2328                     OSPF Version 2                   April 1998


   MaxAgeDiff
       The maximum time dispersion that can occur, as an LSA is flooded
       throughout the AS.  Most of this time is accounted for by the
       LSAs sitting on router output queues (and therefore not aging)
       during the flooding process.  The value of MaxAgeDiff is set to
       15 minutes.

   LSInfinity
       The metric value indicating that the destination described by an
       LSA is unreachable. Used in summary-LSAs and AS-external-LSAs as
       an alternative to premature aging (see Section 14.1). It is
       defined to be the 24-bit binary value of all ones: 0xffffff.

   DefaultDestination
       The Destination ID that indicates the default route.  This route
       is used when no other matching routing table entry can be found.
       The default destination can only be advertised in AS-external-
       LSAs and in stub areas' type 3 summary-LSAs.  Its value is the
       IP address 0.0.0.0. Its associated Network Mask is also always
       0.0.0.0.

   InitialSequenceNumber
       The value used for LS Sequence Number when originating the first
       instance of any LSA. Its value is the signed 32-bit integer
       0x80000001.

   MaxSequenceNumber
       The maximum value that LS Sequence Number can attain.  Its value
       is the signed 32-bit integer 0x7fffffff.
















Moy                         Standards Track                   [Page 218]

RFC 2328                     OSPF Version 2                   April 1998


C. Configurable Constants

   The OSPF protocol has quite a few configurable parameters.  These
   parameters are listed below.  They are grouped into general
   functional categories (area parameters, interface parameters, etc.).
   Sample values are given for some of the parameters.

   Some parameter settings need to be consistent among groups of
   routers.  For example, all routers in an area must agree on that
   area's parameters, and all routers attached to a network must agree
   on that network's IP network number and mask.

   Some parameters may be determined by router algorithms outside of
   this specification (e.g., the address of a host connected to the
   router via a SLIP line).  From OSPF's point of view, these items are
   still configurable.

   C.1 Global parameters

       In general, a separate copy of the OSPF protocol is run for each
       area.  Because of this, most configuration parameters are
       defined on a per-area basis.  The few global configuration
       parameters are listed below.


       Router ID
           This is a 32-bit number that uniquely identifies the router
           in the Autonomous System.  One algorithm for Router ID
           assignment is to choose the largest or smallest IP address
           assigned to the router.  If a router's OSPF Router ID is
           changed, the router's OSPF software should be restarted
           before the new Router ID takes effect. Before restarting in
           order to change its Router ID, the router should flush its
           self-originated LSAs from the routing domain (see Section
           14.1), or they will persist for up to MaxAge minutes.

       RFC1583Compatibility
           Controls the preference rules used in Section 16.4 when
           choosing among multiple AS-external-LSAs advertising the
           same destination. When set to "enabled", the preference
           rules remain those specified by RFC 1583 ([Ref9]). When set
           to "disabled", the preference rules are those stated in



Moy                         Standards Track                   [Page 219]

RFC 2328                     OSPF Version 2                   April 1998


           Section 16.4.1, which prevent routing loops when AS-
           external-LSAs for the same destination have been originated
           from different areas. Set to "enabled" by default.

           In order to minimize the chance of routing loops, all OSPF
           routers in an OSPF routing domain should have
           RFC1583Compatibility set identically. When there are routers
           present that have not been updated with the functionality
           specified in Section 16.4.1 of this memo, all routers should
           have RFC1583Compatibility set to "enabled". Otherwise, all
           routers should have RFC1583Compatibility set to "disabled",
           preventing all routing loops.

   C.2 Area parameters

       All routers belonging to an area must agree on that area's
       configuration.  Disagreements between two routers will lead to
       an inability for adjacencies to form between them, with a
       resulting hindrance to the flow of routing protocol and data
       traffic.  The following items must be configured for an area:


       Area ID
           This is a 32-bit number that identifies the area.  The Area
           ID of 0.0.0.0 is reserved for the backbone.  If the area
           represents a subnetted network, the IP network number of the
           subnetted network may be used for the Area ID.

       List of address ranges
           An OSPF area is defined as a list of address ranges. Each
           address range consists of the following items:

           [IP address, mask]
                   Describes the collection of IP addresses contained
                   in the address range. Networks and hosts are
                   assigned to an area depending on whether their
                   addresses fall into one of the area's defining
                   address ranges.  Routers are viewed as belonging to
                   multiple areas, depending on their attached
                   networks' area membership.





Moy                         Standards Track                   [Page 220]

RFC 2328                     OSPF Version 2                   April 1998


           Status  Set to either Advertise or DoNotAdvertise.  Routing
                   information is condensed at area boundaries.
                   External to the area, at most a single route is
                   advertised (via a summary-LSA) for each address
                   range. The route is advertised if and only if the
                   address range's Status is set to Advertise.
                   Unadvertised ranges allow the existence of certain
                   networks to be intentionally hidden from other
                   areas. Status is set to Advertise by default.

           As an example, suppose an IP subnetted network is to be its
           own OSPF area.  The area would be configured as a single
           address range, whose IP address is the address of the
           subnetted network, and whose mask is the natural class A, B,
           or C address mask.  A single route would be advertised
           external to the area, describing the entire subnetted
           network.

       ExternalRoutingCapability
           Whether AS-external-LSAs will be flooded into/throughout the
           area.  If AS-external-LSAs are excluded from the area, the
           area is called a "stub".  Internal to stub areas, routing to
           external destinations will be based solely on a default
           summary route.  The backbone cannot be configured as a stub
           area.  Also, virtual links cannot be configured through stub
           areas.  For more information, see Section 3.6.

       StubDefaultCost
           If the area has been configured as a stub area, and the
           router itself is an area border router, then the
           StubDefaultCost indicates the cost of the default summary-
           LSA that the router should advertise into the area.

   C.3 Router interface parameters

       Some of the configurable router interface parameters (such as IP
       interface address and subnet mask) actually imply properties of
       the attached networks, and therefore must be consistent across
       all the routers attached to that network.  The parameters that
       must be configured for a router interface are:





Moy                         Standards Track                   [Page 221]

RFC 2328                     OSPF Version 2                   April 1998


       IP interface address
           The IP protocol address for this interface.  This uniquely
           identifies the router over the entire internet.  An IP
           address is not required on point-to-point networks.  Such a
           point-to-point network is called "unnumbered".

       IP interface mask
           Also referred to as the subnet/network mask, this indicates
           the portion of the IP interface address that identifies the
           attached network.  Masking the IP interface address with the
           IP interface mask yields the IP network number of the
           attached network.  On point-to-point networks and virtual
           links, the IP interface mask is not defined. On these
           networks, the link itself is not assigned an IP network
           number, and so the addresses of each side of the link are
           assigned independently, if they are assigned at all.

       Area ID
           The OSPF area to which the attached network belongs.

       Interface output cost
           The cost of sending a packet on the interface, expressed in
           the link state metric.  This is advertised as the link cost
           for this interface in the router's router-LSA. The interface
           output cost must always be greater than 0.

       RxmtInterval
           The number of seconds between LSA retransmissions, for
           adjacencies belonging to this interface.  Also used when
           retransmitting Database Description and Link State Request
           Packets.  This should be well over the expected round-trip
           delay between any two routers on the attached network.  The
           setting of this value should be conservative or needless
           retransmissions will result.  Sample value for a local area
           network: 5 seconds.

       InfTransDelay
           The estimated number of seconds it takes to transmit a Link
           State Update Packet over this interface.  LSAs contained in
           the update packet must have their age incremented by this
           amount before transmission.  This value should take into
           account the transmission and propagation delays of the



Moy                         Standards Track                   [Page 222]

RFC 2328                     OSPF Version 2                   April 1998


           interface.  It must be greater than 0.  Sample value for a
           local area network: 1 second.

       Router Priority
           An 8-bit unsigned integer.  When two routers attached to a
           network both attempt to become Designated Router, the one
           with the highest Router Priority takes precedence.  If there
           is still a tie, the router with the highest Router ID takes
           precedence.  A router whose Router Priority is set to 0 is
           ineligible to become Designated Router on the attached
           network.  Router Priority is only configured for interfaces
           to broadcast and NBMA networks.

       HelloInterval
           The length of time, in seconds, between the Hello Packets
           that the router sends on the interface.  This value is
           advertised in the router's Hello Packets.  It must be the
           same for all routers attached to a common network.  The
           smaller the HelloInterval, the faster topological changes
           will be detected; however, more OSPF routing protocol
           traffic will ensue.  Sample value for a X.25 PDN network: 30
           seconds.  Sample value for a local area network: 10 seconds.

       RouterDeadInterval
           After ceasing to hear a router's Hello Packets, the number
           of seconds before its neighbors declare the router down.
           This is also advertised in the router's Hello Packets in
           their RouterDeadInterval field.  This should be some
           multiple of the HelloInterval (say 4).  This value again
           must be the same for all routers attached to a common
           network.

       AuType
           Identifies the authentication procedure to be used on the
           attached network.  This value must be the same for all
           routers attached to the network.  See Appendix D for a
           discussion of the defined authentication types.

       Authentication key
           This configured data allows the authentication procedure to
           verify OSPF protocol packets received over the interface.
           For example, if the AuType indicates simple password, the



Moy                         Standards Track                   [Page 223]

RFC 2328                     OSPF Version 2                   April 1998


           Authentication key would be a clear 64-bit password.
           Authentication keys associated with the other OSPF
           authentication types are discussed in Appendix D.

   C.4 Virtual link parameters

       Virtual links are used to restore/increase connectivity of the
       backbone.  Virtual links may be configured between any pair of
       area border routers having interfaces to a common (non-backbone)
       area.  The virtual link appears as an unnumbered point-to-point
       link in the graph for the backbone.  The virtual link must be
       configured in both of the area border routers.

       A virtual link appears in router-LSAs (for the backbone) as if
       it were a separate router interface to the backbone.  As such,
       it has all of the parameters associated with a router interface
       (see Section C.3).  Although a virtual link acts like an
       unnumbered point-to-point link, it does have an associated IP
       interface address.  This address is used as the IP source in
       OSPF protocol packets it sends along the virtual link, and is
       set dynamically during the routing table build process.
       Interface output cost is also set dynamically on virtual links
       to be the cost of the intra-area path between the two routers.
       The parameter RxmtInterval must be configured, and should be
       well over the expected round-trip delay between the two routers.
       This may be hard to estimate for a virtual link; it is better to
       err on the side of making it too large.  Router Priority is not
       used on virtual links.

       A virtual link is defined by the following two configurable
       parameters: the Router ID of the virtual link's other endpoint,
       and the (non-backbone) area through which the virtual link runs
       (referred to as the virtual link's Transit area).  Virtual links
       cannot be configured through stub areas.

   C.5 NBMA network parameters

       OSPF treats an NBMA network much like it treats a broadcast
       network.  Since there may be many routers attached to the
       network, a Designated Router is selected for the network.  This
       Designated Router then originates a network-LSA, which lists all
       routers attached to the NBMA network.



Moy                         Standards Track                   [Page 224]

RFC 2328                     OSPF Version 2                   April 1998


       However, due to the lack of broadcast capabilities, it may be
       necessary to use configuration parameters in the Designated
       Router selection.  These parameters will only need to be
       configured in those routers that are themselves eligible to
       become Designated Router (i.e., those router's whose Router
       Priority for the network is non-zero), and then only if no
       automatic procedure for discovering neighbors exists:


       List of all other attached routers
           The list of all other routers attached to the NBMA network.
           Each router is listed by its IP interface address on the
           network.  Also, for each router listed, that router's
           eligibility to become Designated Router must be defined.
           When an interface to a NBMA network comes up, the router
           sends Hello Packets only to those neighbors eligible to
           become Designated Router, until the identity of the
           Designated Router is discovered.

       PollInterval
           If a neighboring router has become inactive (Hello Packets
           have not been seen for RouterDeadInterval seconds), it may
           still be necessary to send Hello Packets to the dead
           neighbor.  These Hello Packets will be sent at the reduced
           rate PollInterval, which should be much larger than
           HelloInterval.  Sample value for a PDN X.25 network: 2
           minutes.

   C.6 Point-to-MultiPoint network parameters

       On Point-to-MultiPoint networks, it may be necessary to
       configure the set of neighbors that are directly reachable over
       the Point-to-MultiPoint network. Each neighbor is identified by
       its IP address on the Point-to-MultiPoint network. Designated
       Routers are not elected on Point-to-MultiPoint networks, so the
       Designated Router eligibility of configured neighbors is
       undefined.

       Alternatively, neighbors on Point-to-MultiPoint networks may be
       dynamically discovered by lower-level protocols such as Inverse
       ARP ([Ref14]).




Moy                         Standards Track                   [Page 225]

RFC 2328                     OSPF Version 2                   April 1998


   C.7 Host route parameters

       Host routes are advertised in router-LSAs as stub networks with
       mask 0xffffffff.  They indicate either router interfaces to
       point-to-point networks, looped router interfaces, or IP hosts
       that are directly connected to the router (e.g., via a SLIP
       line).  For each host directly connected to the router, the
       following items must be configured:


       Host IP address
           The IP address of the host.

       Cost of link to host
           The cost of sending a packet to the host, in terms of the
           link state metric.  However, since the host probably has
           only a single connection to the internet, the actual
           configured cost in many cases is unimportant (i.e., will
           have no effect on routing).

       Area ID
           The OSPF area to which the host belongs.























Moy                         Standards Track                   [Page 226]

RFC 2328                     OSPF Version 2                   April 1998


D. Authentication

   All OSPF protocol exchanges are authenticated.  The OSPF packet
   header (see Section A.3.1) includes an authentication type field,
   and 64-bits of data for use by the appropriate authentication scheme
   (determined by the type field).

   The authentication type is configurable on a per-interface (or
   equivalently, on a per-network/subnet) basis.  Additional
   authentication data is also configurable on a per-interface basis.

   Authentication types 0, 1 and 2 are defined by this specification.
   All other authentication types are reserved for definition by the
   IANA ([email protected]).  The current list of authentication types is
   described below in Table 20.



                 AuType       Description
                 ___________________________________________
                 0            Null authentication
                 1            Simple password
                 2            Cryptographic authentication
                 All others   Reserved for assignment by the
                              IANA ([email protected])


                     Table 20: OSPF authentication types.



   D.1 Null authentication

       Use of this authentication type means that routing exchanges
       over the network/subnet are not authenticated.  The 64-bit
       authentication field in the OSPF header can contain anything; it
       is not examined on packet reception. When employing Null
       authentication, the entire contents of each OSPF packet (other
       than the 64-bit authentication field) are checksummed in order
       to detect data corruption.





Moy                         Standards Track                   [Page 227]

RFC 2328                     OSPF Version 2                   April 1998


   D.2 Simple password authentication

       Using this authentication type, a 64-bit field is configured on
       a per-network basis.  All packets sent on a particular network
       must have this configured value in their OSPF header 64-bit
       authentication field.  This essentially serves as a "clear" 64-
       bit password. In addition, the entire contents of each OSPF
       packet (other than the 64-bit authentication field) are
       checksummed in order to detect data corruption.

       Simple password authentication guards against routers
       inadvertently joining the routing domain; each router must first
       be configured with its attached networks' passwords before it
       can participate in routing.  However, simple password
       authentication is vulnerable to passive attacks currently
       widespread in the Internet (see [Ref16]). Anyone with physical
       access to the network can learn the password and compromise the
       security of the OSPF routing domain.

   D.3 Cryptographic authentication

       Using this authentication type, a shared secret key is
       configured in all routers attached to a common network/subnet.
       For each OSPF protocol packet, the key is used to
       generate/verify a "message digest" that is appended to the end
       of the OSPF packet. The message digest is a one-way function of
       the OSPF protocol packet and the secret key. Since the secret
       key is never sent over the network in the clear, protection is
       provided against passive attacks.

       The algorithms used to generate and verify the message digest
       are specified implicitly by the secret key. This specification
       completely defines the use of OSPF Cryptographic authentication
       when the MD5 algorithm is used.

       In addition, a non-decreasing sequence number is included in
       each OSPF protocol packet to protect against replay attacks.
       This provides long term protection; however, it is still
       possible to replay an OSPF packet until the sequence number
       changes. To implement this feature, each neighbor data structure
       contains a new field called the "cryptographic sequence number".
       This field is initialized to zero, and is also set to zero



Moy                         Standards Track                   [Page 228]

RFC 2328                     OSPF Version 2                   April 1998




       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              0                |    Key ID     | Auth Data Len |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Cryptographic sequence number                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 18: Usage of the Authentication field
                  in the OSPF packet header when Cryptographic
                         Authentication is employed

       whenever the neighbor's state transitions to "Down". Whenever an
       OSPF packet is accepted as authentic, the cryptographic sequence
       number is set to the received packet's sequence number.

       This specification does not provide a rollover procedure for the
       cryptographic sequence number. When the cryptographic sequence
       number that the router is sending hits the maximum value, the
       router should reset the cryptographic sequence number that it is
       sending back to 0. After this is done, the router's neighbors
       will reject the router's OSPF packets for a period of
       RouterDeadInterval, and then the router will be forced to
       reestablish all adjacencies over the interface. However, it is
       expected that many implementations will use "seconds since
       reboot" (or "seconds since 1960", etc.) as the cryptographic
       sequence number. Such a choice will essentially prevent
       rollover, since the cryptographic sequence number field is 32
       bits in length.

       The OSPF Cryptographic authentication option does not provide
       confidentiality.

       When cryptographic authentication is used, the 64-bit
       Authentication field in the standard OSPF packet header is
       redefined as shown in Figure 18. The new field definitions are
       as follows:






Moy                         Standards Track                   [Page 229]

RFC 2328                     OSPF Version 2                   April 1998


       Key ID
           This field identifies the algorithm and secret key used to
           create the message digest appended to the OSPF packet. Key
           Identifiers are unique per-interface (or equivalently, per-
           subnet).

       Auth Data Len
           The length in bytes of the message digest appended to the
           OSPF packet.

       Cryptographic sequence number
           An unsigned 32-bit non-decreasing sequence number. Used to
           guard against replay attacks.

       The message digest appended to the OSPF packet is not actually
       considered part of the OSPF protocol packet: the message digest
       is not included in the OSPF header's packet length, although it
       is included in the packet's IP header length field.

       Each key is identified by the combination of interface and Key
       ID. An interface may have multiple keys active at any one time.
       This enables smooth transition from one key to another. Each key
       has four time constants associated with it. These time constants
       can be expressed in terms of a time-of-day clock, or in terms of
       a router's local clock (e.g., number of seconds since last
       reboot):

       KeyStartAccept
           The time that the router will start accepting packets that
           have been created with the given key.

       KeyStartGenerate
           The time that the router will start using the key for packet
           generation.

       KeyStopGenerate
           The time that the router will stop using the key for packet
           generation.

       KeyStopAccept
           The time that the router will stop accepting packets that
           have been created with the given key.



Moy                         Standards Track                   [Page 230]

RFC 2328                     OSPF Version 2                   April 1998


       In order to achieve smooth key transition, KeyStartAccept should
       be less than KeyStartGenerate and KeyStopGenerate should be less
       than KeyStopAccept. If KeyStopGenerate and KeyStopAccept are
       left unspecified, the key's lifetime is infinite. When a new key
       replaces an old, the KeyStartGenerate time for the new key must
       be less than or equal to the KeyStopGenerate time of the old
       key.

       Key storage should persist across a system restart, warm or
       cold, to avoid operational issues. In the event that the last
       key associated with an interface expires, it is unacceptable to
       revert to an unauthenticated condition, and not advisable to
       disrupt routing.  Therefore, the router should send a "last
       authentication key expiration" notification to the network
       manager and treat the key as having an infinite lifetime until
       the lifetime is extended, the key is deleted by network
       management, or a new key is configured.

   D.4 Message generation

       After building the contents of an OSPF packet, the
       authentication procedure indicated by the sending interface's
       Autype value is called before the packet is sent. The
       authentication procedure modifies the OSPF packet as follows.

       D.4.1 Generating Null authentication

           When using Null authentication, the packet is modified as
           follows:

           (1) The Autype field in the standard OSPF header is set to
               0.

           (2) The checksum field in the standard OSPF header is set to
               the standard IP checksum of the entire contents of the
               packet, starting with the OSPF packet header but
               excluding the 64-bit authentication field.  This
               checksum is calculated as the 16-bit one's complement of
               the one's complement sum of all the 16-bit words in the
               packet, excepting the authentication field.  If the





Moy                         Standards Track                   [Page 231]

RFC 2328                     OSPF Version 2                   April 1998


               packet's length is not an integral number of 16-bit
               words, the packet is padded with a byte of zero before
               checksumming.

       D.4.2 Generating Simple password authentication

           When using Simple password authentication, the packet is
           modified as follows:

           (1) The Autype field in the standard OSPF header is set to
               1.

           (2) The checksum field in the standard OSPF header is set to
               the standard IP checksum of the entire contents of the
               packet, starting with the OSPF packet header but
               excluding the 64-bit authentication field.  This
               checksum is calculated as the 16-bit one's complement of
               the one's complement sum of all the 16-bit words in the
               packet, excepting the authentication field.  If the
               packet's length is not an integral number of 16-bit
               words, the packet is padded with a byte of zero before
               checksumming.

           (3) The 64-bit authentication field in the OSPF packet
               header is set to the 64-bit password (i.e.,
               authentication key) that has been configured for the
               interface.

       D.4.3 Generating Cryptographic authentication

           When using Cryptographic authentication, there may be
           multiple keys configured for the interface. In this case,
           among the keys that are valid for message generation (i.e,
           that have KeyStartGenerate <= current time <
           KeyStopGenerate) choose the one with the most recent
           KeyStartGenerate time. Using this key, modify the packet as
           follows:

           (1) The Autype field in the standard OSPF header is set to
               2.





Moy                         Standards Track                   [Page 232]

RFC 2328                     OSPF Version 2                   April 1998


           (2) The checksum field in the standard OSPF header is not
               calculated, but is instead set to 0.

           (3) The Key ID (see Figure 18) is set to the chosen key's
               Key ID.

           (4) The Auth Data Len field is set to the length in bytes of
               the message digest that will be appended to the OSPF
               packet. When using MD5 as the authentication algorithm,
               Auth Data Len will be 16.

           (5) The 32-bit Cryptographic sequence number (see Figure 18)
               is set to a non-decreasing value (i.e., a value at least
               as large as the last value sent out the interface). The
               precise values to use in the cryptographic sequence
               number field are implementation-specific. For example,
               it may be based on a simple counter, or be based on the
               system's clock.

           (6) The message digest is then calculated and appended to
               the OSPF packet.  The authentication algorithm to be
               used in calculating the digest is indicated by the key
               itself.  Input to the authentication algorithm consists
               of the OSPF packet and the secret key. When using MD5 as
               the authentication algorithm, the message digest
               calculation proceeds as follows:

               (a) The 16 byte MD5 key is appended to the OSPF packet.

               (b) Trailing pad and length fields are added, as
                   specified in [Ref17].

               (c) The MD5 authentication algorithm is run over the
                   concatenation of the OSPF packet, secret key, pad
                   and length fields, producing a 16 byte message
                   digest (see [Ref17]).

               (d) The MD5 digest is written over the OSPF key (i.e.,
                   appended to the original OSPF packet). The digest is
                   not counted in the OSPF packet's length field, but





Moy                         Standards Track                   [Page 233]

RFC 2328                     OSPF Version 2                   April 1998


                   is included in the packet's IP length field. Any
                   trailing pad or length fields beyond the digest are
                   not counted or transmitted.

   D.5 Message verification

       When an OSPF packet has been received on an interface, it must
       be authenticated. The authentication procedure is indicated by
       the setting of Autype in the standard OSPF packet header, which
       matches the setting of Autype for the receiving OSPF interface.

       If an OSPF protocol packet is accepted as authentic, processing
       of the packet continues as specified in Section 8.2. Packets
       which fail authentication are discarded.

       D.5.1 Verifying Null authentication

           When using Null authentication, the checksum field in the
           OSPF header must be verified. It must be set to the 16-bit
           one's complement of the one's complement sum of all the 16-
           bit words in the packet, excepting the authentication field.
           (If the packet's length is not an integral number of 16-bit
           words, the packet is padded with a byte of zero before
           checksumming.)

       D.5.2 Verifying Simple password authentication

           When using Simple password authentication, the received OSPF
           packet is authenticated as follows:

           (1) The checksum field in the OSPF header must be verified.
               It must be set to the 16-bit one's complement of the
               one's complement sum of all the 16-bit words in the
               packet, excepting the authentication field.  (If the
               packet's length is not an integral number of 16-bit
               words, the packet is padded with a byte of zero before
               checksumming.)

           (2) The 64-bit authentication field in the OSPF packet
               header must be equal to the 64-bit password (i.e.,
               authentication key) that has been configured for the
               interface.



Moy                         Standards Track                   [Page 234]

RFC 2328                     OSPF Version 2                   April 1998


       D.5.3 Verifying Cryptographic authentication

           When using Cryptographic authentication, the received OSPF
           packet is authenticated as follows:

           (1) Locate the receiving interface's configured key having
               Key ID equal to that specified in the received OSPF
               packet (see Figure 18). If the key is not found, or if
               the key is not valid for reception (i.e., current time <
               KeyStartAccept or current time >= KeyStopAccept), the
               OSPF packet is discarded.

           (2) If the cryptographic sequence number found in the OSPF
               header (see Figure 18) is less than the cryptographic
               sequence number recorded in the sending neighbor's data
               structure, the OSPF packet is discarded.

           (3) Verify the appended message digest in the following
               steps:

               (a) The received digest is set aside.

               (b) A new digest is calculated, as specified in Step 6
                   of Section D.4.3.

               (c) The calculated and received digests are compared. If
                   they do not match, the OSPF packet is discarded. If
                   they do match, the OSPF protocol packet is accepted
                   as authentic, and the "cryptographic sequence
                   number" in the neighbor's data structure is set to
                   the sequence number found in the packet's OSPF
                   header.













Moy                         Standards Track                   [Page 235]

RFC 2328                     OSPF Version 2                   April 1998


E. An algorithm for assigning Link State IDs

   The Link State ID in AS-external-LSAs and summary-LSAs is usually
   set to the described network's IP address. However, if necessary one
   or more of the network's host bits may be set in the Link State ID.
   This allows the router to originate separate LSAs for networks
   having the same address, yet different masks. Such networks can
   occur in the presence of supernetting and subnet 0s (see [Ref10]).

   This appendix gives one possible algorithm for setting the host bits
   in Link State IDs.  The choice of such an algorithm is a local
   decision. Separate routers are free to use different algorithms,
   since the only LSAs affected are the ones that the router itself
   originates. The only requirement on the algorithms used is that the
   network's IP address should be used as the Link State ID whenever
   possible; this maximizes interoperability with OSPF implementations
   predating RFC 1583.

   The algorithm below is stated for AS-external-LSAs.  This is only
   for clarity; the exact same algorithm can be used for summary-LSAs.
   Suppose that the router wishes to originate an AS-external-LSA for a
   network having address NA and mask NM1. The following steps are then
   used to determine the LSA's Link State ID:

   (1) Determine whether the router is already originating an AS-
       external-LSA with Link State ID equal to NA (in such an LSA the
       router itself will be listed as the LSA's Advertising Router).
       If not, the Link State ID is set equal to NA and the algorithm
       terminates. Otherwise,

   (2) Obtain the network mask from the body of the already existing
       AS-external-LSA. Call this mask NM2. There are then two cases:

       o   NM1 is longer (i.e., more specific) than NM2. In this case,
           set the Link State ID in the new LSA to be the network
           [NA,NM1] with all the host bits set (i.e., equal to NA or'ed
           together with all the bits that are not set in NM1, which is
           network [NA,NM1]'s broadcast address).

       o   NM2 is longer than NM1. In this case, change the existing
           LSA (having Link State ID of NA) to reference the new
           network [NA,NM1] by incrementing the sequence number,



Moy                         Standards Track                   [Page 236]

RFC 2328                     OSPF Version 2                   April 1998


           changing the mask in the body to NM1 and inserting the cost
           of the new network. Then originate a new LSA for the old
           network [NA,NM2], with Link State ID equal to NA or'ed
           together with the bits that are not set in NM2 (i.e.,
           network [NA,NM2]'s broadcast address).

   The above algorithm assumes that all masks are contiguous; this
   ensures that when two networks have the same address, one mask is
   more specific than the other. The algorithm also assumes that no
   network exists having an address equal to another network's
   broadcast address. Given these two assumptions, the above algorithm
   always produces unique Link State IDs. The above algorithm can also
   be reworded as follows:  When originating an AS-external-LSA, try to
   use the network number as the Link State ID.  If that produces a
   conflict, examine the two networks in conflict. One will be a subset
   of the other. For the less specific network, use the network number
   as the Link State ID and for the more specific use the network's
   broadcast address instead (i.e., flip all the "host" bits to 1).  If
   the most specific network was originated first, this will cause you
   to originate two LSAs at once.

   As an example of the algorithm, consider its operation when the
   following sequence of events occurs in a single router (Router A).


   (1) Router A wants to originate an AS-external-LSA for
       [10.0.0.0,255.255.255.0]:

       (a) A Link State ID of 10.0.0.0 is used.

   (2) Router A then wants to originate an AS-external-LSA for
       [10.0.0.0,255.255.0.0]:

       (a) The LSA for [10.0.0,0,255.255.255.0] is reoriginated using a
           new Link State ID of 10.0.0.255.

       (b) A Link State ID of 10.0.0.0 is used for
           [10.0.0.0,255.255.0.0].

   (3) Router A then wants to originate an AS-external-LSA for
       [10.0.0.0,255.0.0.0]:




Moy                         Standards Track                   [Page 237]

RFC 2328                     OSPF Version 2                   April 1998


       (a) The LSA for [10.0.0.0,255.255.0.0] is reoriginated using a
           new Link State ID of 10.0.255.255.

       (b) A Link State ID of 10.0.0.0 is used for
           [10.0.0.0,255.0.0.0].

       (c) The network [10.0.0.0,255.255.255.0] keeps its Link State ID
           of 10.0.0.255.





































Moy                         Standards Track                   [Page 238]

RFC 2328                     OSPF Version 2                   April 1998


F. Multiple interfaces to the same network/subnet

   There are at least two ways to support multiple physical interfaces
   to the same IP subnet. Both methods will interoperate with
   implementations of RFC 1583 (and of course this memo). The two
   methods are sketched briefly below. An assumption has been made that
   each interface has been assigned a separate IP address (otherwise,
   support for multiple interfaces is more of a link-level or ARP issue
   than an OSPF issue).

   Method 1:
       Run the entire OSPF functionality over both interfaces, sending
       and receiving hellos, flooding, supporting separate interface
       and neighbor FSMs for each interface, etc. When doing this all
       other routers on the subnet will treat the two interfaces as
       separate neighbors, since neighbors are identified (on broadcast
       and NBMA networks) by their IP address.

       Method 1 has the following disadvantages:

       (1) You increase the total number of neighbors and adjacencies.

       (2) You lose the bidirectionality test on both interfaces, since
           bidirectionality is based on Router ID.

       (3) You have to consider both interfaces together during the
           Designated Router election, since if you declare both to be
           DR simultaneously you can confuse the tie-breaker (which is
           Router ID).

   Method 2:
       Run OSPF over only one interface (call it the primary
       interface), but include both the primary and secondary
       interfaces in your Router-LSA.

       Method 2 has the following disadvantages:

       (1) You lose the bidirectionality test on the secondary
           interface.

       (2) When the primary interface fails, you need to promote the
           secondary interface to primary status.



Moy                         Standards Track                   [Page 239]

RFC 2328                     OSPF Version 2                   April 1998


G. Differences from RFC 2178

   This section documents the differences between this memo and RFC
   2178.  All differences are backward-compatible. Implementations of
   this memo and of RFCs 2178, 1583, and 1247 will interoperate.

   G.1 Flooding modifications

       Three changes have been made to the flooding procedure in
       Section 13.

       The first change is to step 4 in Section 13. Now MaxAge LSAs are
       acknowledged and then discarded only when both a) there is no
       database copy of the LSA and b) none of router's neighbors are
       in states Exchange or Loading. In all other cases, the MaxAge
       LSA is processed like any other LSA, installing the LSA in the
       database and flooding it out the appropriate interfaces when the
       LSA is more recent than the database copy (Step 5 of Section
       13). This change also affects the contents of Table 19.

       The second change is to step 5a in Section 13. The MinLSArrival
       check is meant only for LSAs received during flooding, and
       should not be performed on those LSAs that the router itself
       originates.

       The third change is to step 8 in Section 13. Confusion between
       routers as to which LSA instance is more recent can cause a
       disastrous amount of flooding in a link-state protocol (see
       [Ref26]). OSPF guards against this problem in two ways: a) the
       LS age field is used like a TTL field in flooding, to eventually
       remove looping LSAs from the network (see Section 13.3), and b)
       routers refuse to accept LSA updates more frequently than once
       every MinLSArrival seconds (see Section 13).  However, there is
       still one case in RFC 2178 where disagreements regarding which
       LSA is more recent can cause a lot of flooding traffic:
       responding to old LSAs by reflooding the database copy.  For
       this reason, Step 8 of Section 13 has been amended to only
       respond with the database copy when that copy has not been sent
       in any Link State Update within the last MinLSArrival seconds.






Moy                         Standards Track                   [Page 240]

RFC 2328                     OSPF Version 2                   April 1998


   G.2 Changes to external path preferences

       There is still the possibility of a routing loop in RFC 2178
       when both a) virtual links are in use and b) the same external
       route is being imported by multiple ASBRs, each of which is in a
       separate area. To fix this problem, Section 16.4.1 has been
       revised. To choose the correct ASBR/forwarding address, intra-
       area paths through non-backbone areas are always preferred.
       However, intra-area paths through the backbone area (Area 0) and
       inter-area paths are now of equal preference, and must be
       compared solely based on cost.

       The reasoning behind this change is as follows. When virtual
       links are in use, an intra-area backbone path for one router can
       turn into an inter-area path in a router several hops closer to
       the destination. Hence, intra-area backbone paths and inter-area
       paths must be of equal preference. We can safely compare their
       costs, preferring the path with the smallest cost, due to the
       calculations in Section 16.3.

       Thanks to Michael Briggs and Jeremy McCooey of the UNH
       InterOperability Lab for pointing out this problem.

   G.3 Incomplete resolution of virtual next hops

       One of the functions of the calculation in Section 16.3 is to
       determine the actual next hop(s) for those destinations whose
       next hop was calculated as a virtual link in Sections 16.1 and
       16.2.  After completion of the calculation in Section 16.3, any
       paths calculated in Sections 16.1 and 16.2 that still have
       unresolved virtual next hops should be discarded.

   G.4 Routing table lookup

       The routing table lookup algorithm in Section 11.1 has been
       modified to reflect current practice. The "best match" routing
       table entry is now always selected to be the one providing the
       most specific (longest) match. Suppose for example a router is
       forwarding packets to the destination 192.9.1.1. A routing table
       entry for 192.9.1/24 will always be a better match than the
       routing table entry for 192.9/16, regardless of the routing
       table entries' path-types. Note however that when multiple paths



Moy                         Standards Track                   [Page 241]

RFC 2328                     OSPF Version 2                   April 1998


       are available for a given routing table entry, the calculations
       in Sections 16.1, 16.2, and 16.4 always yield the paths having
       the most preferential path-type. (Intra-area paths are the most
       preferred, followed in order by inter-area, type 1 external and
       type 2 external paths; see Section 11).








































Moy                         Standards Track                   [Page 242]

RFC 2328                     OSPF Version 2                   April 1998


Security Considerations

   All OSPF protocol exchanges are authenticated. OSPF supports
   multiple types of authentication; the type of authentication in use
   can be configured on a per network segment basis. One of OSPF's
   authentication types, namely the Cryptographic authentication
   option, is believed to be secure against passive attacks and provide
   significant protection against active attacks. When using the
   Cryptographic authentication option, each router appends a "message
   digest" to its transmitted OSPF packets. Receivers then use the
   shared secret key and received digest to verify that each received
   OSPF packet is authentic.

   The quality of the security provided by the Cryptographic
   authentication option depends completely on the strength of the
   message digest algorithm (MD5 is currently the only message digest
   algorithm specified), the strength of the key being used, and the
   correct implementation of the security mechanism in all
   communicating OSPF implementations.  It also requires that all
   parties maintain the secrecy of the shared secret key.

   None of the OSPF authentication types provide confidentiality. Nor
   do they protect against traffic analysis. Key management is also not
   addressed by this memo.

   For more information, see Sections 8.1, 8.2, and Appendix D.

Author's Address

   John Moy
   Ascend Communications, Inc.
   1 Robbins Road
   Westford, MA 01886

   Phone: 978-952-1367
   Fax:   978-392-2075
   EMail: [email protected]








Moy                         Standards Track                   [Page 243]

RFC 2328                     OSPF Version 2                   April 1998


Full Copyright Statement

   Copyright (C) The Internet Society (1998).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph
   are included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.


















Moy                         Standards Track                   [Page 244]