[Note that this file is a concatenation of more than one RFC.]



Network Working Group                                 W. Simpson, Editor
Request for Comments: 1661                                    Daydreamer
STD: 51                                                        July 1994
Obsoletes: 1548
Category: Standards Track


                  The Point-to-Point Protocol (PPP)



Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.


Abstract

  The Point-to-Point Protocol (PPP) provides a standard method for
  transporting multi-protocol datagrams over point-to-point links.  PPP
  is comprised of three main components:

     1. A method for encapsulating multi-protocol datagrams.

     2. A Link Control Protocol (LCP) for establishing, configuring,
        and testing the data-link connection.

     3. A family of Network Control Protocols (NCPs) for establishing
        and configuring different network-layer protocols.

  This document defines the PPP organization and methodology, and the
  PPP encapsulation, together with an extensible option negotiation
  mechanism which is able to negotiate a rich assortment of
  configuration parameters and provides additional management
  functions.  The PPP Link Control Protocol (LCP) is described in terms
  of this mechanism.


Table of Contents


    1.     Introduction ..........................................    1
       1.1       Specification of Requirements ...................    2
       1.2       Terminology .....................................    3

    2.     PPP Encapsulation .....................................    4


Simpson                                                         [Page i]
RFC 1661                Point-to-Point Protocol                July 1994


    3.     PPP Link Operation ....................................    6
       3.1       Overview ........................................    6
       3.2       Phase Diagram ...................................    6
       3.3       Link Dead (physical-layer not ready) ............    7
       3.4       Link Establishment Phase ........................    7
       3.5       Authentication Phase ............................    8
       3.6       Network-Layer Protocol Phase ....................    8
       3.7       Link Termination Phase ..........................    9

    4.     The Option Negotiation Automaton ......................   11
       4.1       State Transition Table ..........................   12
       4.2       States ..........................................   14
       4.3       Events ..........................................   16
       4.4       Actions .........................................   21
       4.5       Loop Avoidance ..................................   23
       4.6       Counters and Timers .............................   24

    5.     LCP Packet Formats ....................................   26
       5.1       Configure-Request ...............................   28
       5.2       Configure-Ack ...................................   29
       5.3       Configure-Nak ...................................   30
       5.4       Configure-Reject ................................   31
       5.5       Terminate-Request and Terminate-Ack .............   33
       5.6       Code-Reject .....................................   34
       5.7       Protocol-Reject .................................   35
       5.8       Echo-Request and Echo-Reply .....................   36
       5.9       Discard-Request .................................   37

    6.     LCP Configuration Options .............................   39
       6.1       Maximum-Receive-Unit (MRU) ......................   41
       6.2       Authentication-Protocol .........................   42
       6.3       Quality-Protocol ................................   43
       6.4       Magic-Number ....................................   45
       6.5       Protocol-Field-Compression (PFC) ................   48
       6.6       Address-and-Control-Field-Compression (ACFC)

    SECURITY CONSIDERATIONS ......................................   51
    REFERENCES ...................................................   51
    ACKNOWLEDGEMENTS .............................................   51
    CHAIR'S ADDRESS ..............................................   52
    EDITOR'S ADDRESS .............................................   52










Simpson                                                        [Page ii]
RFC 1661                Point-to-Point Protocol                July 1994


1.  Introduction

  The Point-to-Point Protocol is designed for simple links which
  transport packets between two peers.  These links provide full-duplex
  simultaneous bi-directional operation, and are assumed to deliver
  packets in order.  It is intended that PPP provide a common solution
  for easy connection of a wide variety of hosts, bridges and routers
  [1].

  Encapsulation

     The PPP encapsulation provides for multiplexing of different
     network-layer protocols simultaneously over the same link.  The
     PPP encapsulation has been carefully designed to retain
     compatibility with most commonly used supporting hardware.

     Only 8 additional octets are necessary to form the encapsulation
     when used within the default HDLC-like framing.  In environments
     where bandwidth is at a premium, the encapsulation and framing may
     be shortened to 2 or 4 octets.

     To support high speed implementations, the default encapsulation
     uses only simple fields, only one of which needs to be examined
     for demultiplexing.  The default header and information fields
     fall on 32-bit boundaries, and the trailer may be padded to an
     arbitrary boundary.

  Link Control Protocol

     In order to be sufficiently versatile to be portable to a wide
     variety of environments, PPP provides a Link Control Protocol
     (LCP).  The LCP is used to automatically agree upon the
     encapsulation format options, handle varying limits on sizes of
     packets, detect a looped-back link and other common
     misconfiguration errors, and terminate the link.  Other optional
     facilities provided are authentication of the identity of its peer
     on the link, and determination when a link is functioning properly
     and when it is failing.

  Network Control Protocols

     Point-to-Point links tend to exacerbate many problems with the
     current family of network protocols.  For instance, assignment and
     management of IP addresses, which is a problem even in LAN
     environments, is especially difficult over circuit-switched
     point-to-point links (such as dial-up modem servers).  These
     problems are handled by a family of Network Control Protocols
     (NCPs), which each manage the specific needs required by their



Simpson                                                         [Page 1]
RFC 1661                Point-to-Point Protocol                July 1994


     respective network-layer protocols.  These NCPs are defined in
     companion documents.

  Configuration

     It is intended that PPP links be easy to configure.  By design,
     the standard defaults handle all common configurations.  The
     implementor can specify improvements to the default configuration,
     which are automatically communicated to the peer without operator
     intervention.  Finally, the operator may explicitly configure
     options for the link which enable the link to operate in
     environments where it would otherwise be impossible.

     This self-configuration is implemented through an extensible
     option negotiation mechanism, wherein each end of the link
     describes to the other its capabilities and requirements.
     Although the option negotiation mechanism described in this
     document is specified in terms of the Link Control Protocol (LCP),
     the same facilities are designed to be used by other control
     protocols, especially the family of NCPs.



1.1.  Specification of Requirements

  In this document, several words are used to signify the requirements
  of the specification.  These words are often capitalized.

  MUST      This word, or the adjective "required", means that the
            definition is an absolute requirement of the specification.

  MUST NOT  This phrase means that the definition is an absolute
            prohibition of the specification.

  SHOULD    This word, or the adjective "recommended", means that there
            may exist valid reasons in particular circumstances to
            ignore this item, but the full implications must be
            understood and carefully weighed before choosing a
            different course.

  MAY       This word, or the adjective "optional", means that this
            item is one of an allowed set of alternatives.  An
            implementation which does not include this option MUST be
            prepared to interoperate with another implementation which
            does include the option.






Simpson                                                         [Page 2]
RFC 1661                Point-to-Point Protocol                July 1994


1.2.  Terminology

  This document frequently uses the following terms:

  datagram  The unit of transmission in the network layer (such as IP).
            A datagram may be encapsulated in one or more packets
            passed to the data link layer.

  frame     The unit of transmission at the data link layer.  A frame
            may include a header and/or a trailer, along with some
            number of units of data.

  packet    The basic unit of encapsulation, which is passed across the
            interface between the network layer and the data link
            layer.  A packet is usually mapped to a frame; the
            exceptions are when data link layer fragmentation is being
            performed, or when multiple packets are incorporated into a
            single frame.

  peer      The other end of the point-to-point link.

  silently discard
            The implementation discards the packet without further
            processing.  The implementation SHOULD provide the
            capability of logging the error, including the contents of
            the silently discarded packet, and SHOULD record the event
            in a statistics counter.
























Simpson                                                         [Page 3]
RFC 1661                Point-to-Point Protocol                July 1994


2.  PPP Encapsulation

  The PPP encapsulation is used to disambiguate multiprotocol
  datagrams.  This encapsulation requires framing to indicate the
  beginning and end of the encapsulation.  Methods of providing framing
  are specified in companion documents.

  A summary of the PPP encapsulation is shown below.  The fields are
  transmitted from left to right.

          +----------+-------------+---------+
          | Protocol | Information | Padding |
          | 8/16 bits|      *      |    *    |
          +----------+-------------+---------+


  Protocol Field

     The Protocol field is one or two octets, and its value identifies
     the datagram encapsulated in the Information field of the packet.
     The field is transmitted and received most significant octet
     first.

     The structure of this field is consistent with the ISO 3309
     extension mechanism for address fields.  All Protocols MUST be
     odd; the least significant bit of the least significant octet MUST
     equal "1".  Also, all Protocols MUST be assigned such that the
     least significant bit of the most significant octet equals "0".
     Frames received which don't comply with these rules MUST be
     treated as having an unrecognized Protocol.

     Protocol field values in the "0***" to "3***" range identify the
     network-layer protocol of specific packets, and values in the
     "8***" to "b***" range identify packets belonging to the
     associated Network Control Protocols (NCPs), if any.

     Protocol field values in the "4***" to "7***" range are used for
     protocols with low volume traffic which have no associated NCP.
     Protocol field values in the "c***" to "f***" range identify
     packets as link-layer Control Protocols (such as LCP).











Simpson                                                         [Page 4]
RFC 1661                Point-to-Point Protocol                July 1994


     Up-to-date values of the Protocol field are specified in the most
     recent "Assigned Numbers" RFC [2].  This specification reserves
     the following values:

     Value (in hex)  Protocol Name

     0001            Padding Protocol
     0003 to 001f    reserved (transparency inefficient)
     007d            reserved (Control Escape)
     00cf            reserved (PPP NLPID)
     00ff            reserved (compression inefficient)

     8001 to 801f    unused
     807d            unused
     80cf            unused
     80ff            unused

     c021            Link Control Protocol
     c023            Password Authentication Protocol
     c025            Link Quality Report
     c223            Challenge Handshake Authentication Protocol

     Developers of new protocols MUST obtain a number from the Internet
     Assigned Numbers Authority (IANA), at [email protected].


  Information Field

     The Information field is zero or more octets.  The Information
     field contains the datagram for the protocol specified in the
     Protocol field.

     The maximum length for the Information field, including Padding,
     but not including the Protocol field, is termed the Maximum
     Receive Unit (MRU), which defaults to 1500 octets.  By
     negotiation, consenting PPP implementations may use other values
     for the MRU.


  Padding

     On transmission, the Information field MAY be padded with an
     arbitrary number of octets up to the MRU.  It is the
     responsibility of each protocol to distinguish padding octets from
     real information.






Simpson                                                         [Page 5]
RFC 1661                Point-to-Point Protocol                July 1994


3.  PPP Link Operation

3.1.  Overview

  In order to establish communications over a point-to-point link, each
  end of the PPP link MUST first send LCP packets to configure and test
  the data link.  After the link has been established, the peer MAY be
  authenticated.

  Then, PPP MUST send NCP packets to choose and configure one or more
  network-layer protocols.  Once each of the chosen network-layer
  protocols has been configured, datagrams from each network-layer
  protocol can be sent over the link.

  The link will remain configured for communications until explicit LCP
  or NCP packets close the link down, or until some external event
  occurs (an inactivity timer expires or network administrator
  intervention).



3.2.  Phase Diagram

  In the process of configuring, maintaining and terminating the
  point-to-point link, the PPP link goes through several distinct
  phases which are specified in the following simplified state diagram:

  +------+        +-----------+           +--------------+
  |      | UP     |           | OPENED    |              | SUCCESS/NONE
  | Dead |------->| Establish |---------->| Authenticate |--+
  |      |        |           |           |              |  |
  +------+        +-----------+           +--------------+  |
     ^               |                        |             |
     |          FAIL |                   FAIL |             |
     +<--------------+             +----------+             |
     |                             |                        |
     |            +-----------+    |           +---------+  |
     |       DOWN |           |    |   CLOSING |         |  |
     +------------| Terminate |<---+<----------| Network |<-+
                  |           |                |         |
                  +-----------+                +---------+

  Not all transitions are specified in this diagram.  The following
  semantics MUST be followed.







Simpson                                                         [Page 6]
RFC 1661                Point-to-Point Protocol                July 1994


3.3.  Link Dead (physical-layer not ready)

  The link necessarily begins and ends with this phase.  When an
  external event (such as carrier detection or network administrator
  configuration) indicates that the physical-layer is ready to be used,
  PPP will proceed to the Link Establishment phase.

  During this phase, the LCP automaton (described later) will be in the
  Initial or Starting states.  The transition to the Link Establishment
  phase will signal an Up event to the LCP automaton.

  Implementation Note:

     Typically, a link will return to this phase automatically after
     the disconnection of a modem.  In the case of a hard-wired link,
     this phase may be extremely short -- merely long enough to detect
     the presence of the device.



3.4.  Link Establishment Phase

  The Link Control Protocol (LCP) is used to establish the connection
  through an exchange of Configure packets.  This exchange is complete,
  and the LCP Opened state entered, once a Configure-Ack packet
  (described later) has been both sent and received.

  All Configuration Options are assumed to be at default values unless
  altered by the configuration exchange.  See the chapter on LCP
  Configuration Options for further discussion.

  It is important to note that only Configuration Options which are
  independent of particular network-layer protocols are configured by
  LCP.  Configuration of individual network-layer protocols is handled
  by separate Network Control Protocols (NCPs) during the Network-Layer
  Protocol phase.

  Any non-LCP packets received during this phase MUST be silently
  discarded.

  The receipt of the LCP Configure-Request causes a return to the Link
  Establishment phase from the Network-Layer Protocol phase or
  Authentication phase.








Simpson                                                         [Page 7]
RFC 1661                Point-to-Point Protocol                July 1994


3.5.  Authentication Phase

  On some links it may be desirable to require a peer to authenticate
  itself before allowing network-layer protocol packets to be
  exchanged.

  By default, authentication is not mandatory.  If an implementation
  desires that the peer authenticate with some specific authentication
  protocol, then it MUST request the use of that authentication
  protocol during Link Establishment phase.

  Authentication SHOULD take place as soon as possible after link
  establishment.  However, link quality determination MAY occur
  concurrently.  An implementation MUST NOT allow the exchange of link
  quality determination packets to delay authentication indefinitely.

  Advancement from the Authentication phase to the Network-Layer
  Protocol phase MUST NOT occur until authentication has completed.  If
  authentication fails, the authenticator SHOULD proceed instead to the
  Link Termination phase.

  Only Link Control Protocol, authentication protocol, and link quality
  monitoring packets are allowed during this phase.  All other packets
  received during this phase MUST be silently discarded.

  Implementation Notes:

     An implementation SHOULD NOT fail authentication simply due to
     timeout or lack of response.  The authentication SHOULD allow some
     method of retransmission, and proceed to the Link Termination
     phase only after a number of authentication attempts has been
     exceeded.

     The implementation responsible for commencing Link Termination
     phase is the implementation which has refused authentication to
     its peer.



3.6.  Network-Layer Protocol Phase

  Once PPP has finished the previous phases, each network-layer
  protocol (such as IP, IPX, or AppleTalk) MUST be separately
  configured by the appropriate Network Control Protocol (NCP).

  Each NCP MAY be Opened and Closed at any time.





Simpson                                                         [Page 8]
RFC 1661                Point-to-Point Protocol                July 1994


  Implementation Note:

     Because an implementation may initially use a significant amount
     of time for link quality determination, implementations SHOULD
     avoid fixed timeouts when waiting for their peers to configure a
     NCP.

  After a NCP has reached the Opened state, PPP will carry the
  corresponding network-layer protocol packets.  Any supported
  network-layer protocol packets received when the corresponding NCP is
  not in the Opened state MUST be silently discarded.

  Implementation Note:

     While LCP is in the Opened state, any protocol packet which is
     unsupported by the implementation MUST be returned in a Protocol-
     Reject (described later).  Only protocols which are supported are
     silently discarded.

  During this phase, link traffic consists of any possible combination
  of LCP, NCP, and network-layer protocol packets.



3.7.  Link Termination Phase

  PPP can terminate the link at any time.  This might happen because of
  the loss of carrier, authentication failure, link quality failure,
  the expiration of an idle-period timer, or the administrative closing
  of the link.

  LCP is used to close the link through an exchange of Terminate
  packets.  When the link is closing, PPP informs the network-layer
  protocols so that they may take appropriate action.

  After the exchange of Terminate packets, the implementation SHOULD
  signal the physical-layer to disconnect in order to enforce the
  termination of the link, particularly in the case of an
  authentication failure.  The sender of the Terminate-Request SHOULD
  disconnect after receiving a Terminate-Ack, or after the Restart
  counter expires.  The receiver of a Terminate-Request SHOULD wait for
  the peer to disconnect, and MUST NOT disconnect until at least one
  Restart time has passed after sending a Terminate-Ack.  PPP SHOULD
  proceed to the Link Dead phase.

  Any non-LCP packets received during this phase MUST be silently
  discarded.




Simpson                                                         [Page 9]
RFC 1661                Point-to-Point Protocol                July 1994


  Implementation Note:

     The closing of the link by LCP is sufficient.  There is no need
     for each NCP to send a flurry of Terminate packets.  Conversely,
     the fact that one NCP has Closed is not sufficient reason to cause
     the termination of the PPP link, even if that NCP was the only NCP
     currently in the Opened state.












































Simpson                                                        [Page 10]
RFC 1661                Point-to-Point Protocol                July 1994


4.  The Option Negotiation Automaton

  The finite-state automaton is defined by events, actions and state
  transitions.  Events include reception of external commands such as
  Open and Close, expiration of the Restart timer, and reception of
  packets from a peer.  Actions include the starting of the Restart
  timer and transmission of packets to the peer.

  Some types of packets -- Configure-Naks and Configure-Rejects, or
  Code-Rejects and Protocol-Rejects, or Echo-Requests, Echo-Replies and
  Discard-Requests -- are not differentiated in the automaton
  descriptions.  As will be described later, these packets do indeed
  serve different functions.  However, they always cause the same
  transitions.

  Events                                   Actions

  Up   = lower layer is Up                 tlu = This-Layer-Up
  Down = lower layer is Down               tld = This-Layer-Down
  Open = administrative Open               tls = This-Layer-Started
  Close= administrative Close              tlf = This-Layer-Finished

  TO+  = Timeout with counter > 0          irc = Initialize-Restart-Count
  TO-  = Timeout with counter expired      zrc = Zero-Restart-Count

  RCR+ = Receive-Configure-Request (Good)  scr = Send-Configure-Request
  RCR- = Receive-Configure-Request (Bad)
  RCA  = Receive-Configure-Ack             sca = Send-Configure-Ack
  RCN  = Receive-Configure-Nak/Rej         scn = Send-Configure-Nak/Rej

  RTR  = Receive-Terminate-Request         str = Send-Terminate-Request
  RTA  = Receive-Terminate-Ack             sta = Send-Terminate-Ack

  RUC  = Receive-Unknown-Code              scj = Send-Code-Reject
  RXJ+ = Receive-Code-Reject (permitted)
      or Receive-Protocol-Reject
  RXJ- = Receive-Code-Reject (catastrophic)
      or Receive-Protocol-Reject
  RXR  = Receive-Echo-Request              ser = Send-Echo-Reply
      or Receive-Echo-Reply
      or Receive-Discard-Request










Simpson                                                        [Page 11]
RFC 1661                Point-to-Point Protocol                July 1994


4.1.  State Transition Table

  The complete state transition table follows.  States are indicated
  horizontally, and events are read vertically.  State transitions and
  actions are represented in the form action/new-state.  Multiple
  actions are separated by commas, and may continue on succeeding lines
  as space requires; multiple actions may be implemented in any
  convenient order.  The state may be followed by a letter, which
  indicates an explanatory footnote.  The dash ('-') indicates an
  illegal transition.

     | State
     |    0         1         2         3         4         5
Events| Initial   Starting  Closed    Stopped   Closing   Stopping
------+-----------------------------------------------------------
Up   |    2     irc,scr/6     -         -         -         -
Down |    -         -         0       tls/1       0         1
Open |  tls/1       1     irc,scr/6     3r        5r        5r
Close|    0       tlf/0       2         2         4         4
     |
 TO+ |    -         -         -         -       str/4     str/5
 TO- |    -         -         -         -       tlf/2     tlf/3
     |
RCR+ |    -         -       sta/2 irc,scr,sca/8   4         5
RCR- |    -         -       sta/2 irc,scr,scn/6   4         5
RCA  |    -         -       sta/2     sta/3       4         5
RCN  |    -         -       sta/2     sta/3       4         5
     |
RTR  |    -         -       sta/2     sta/3     sta/4     sta/5
RTA  |    -         -         2         3       tlf/2     tlf/3
     |
RUC  |    -         -       scj/2     scj/3     scj/4     scj/5
RXJ+ |    -         -         2         3         4         5
RXJ- |    -         -       tlf/2     tlf/3     tlf/2     tlf/3
     |
RXR  |    -         -         2         3         4         5















Simpson                                                        [Page 12]
RFC 1661                Point-to-Point Protocol                July 1994



     | State
     |    6         7         8           9
Events| Req-Sent  Ack-Rcvd  Ack-Sent    Opened
------+-----------------------------------------
Up   |    -         -         -           -
Down |    1         1         1         tld/1
Open |    6         7         8           9r
Close|irc,str/4 irc,str/4 irc,str/4 tld,irc,str/4
     |
 TO+ |  scr/6     scr/6     scr/8         -
 TO- |  tlf/3p    tlf/3p    tlf/3p        -
     |
RCR+ |  sca/8   sca,tlu/9   sca/8   tld,scr,sca/8
RCR- |  scn/6     scn/7     scn/6   tld,scr,scn/6
RCA  |  irc/7     scr/6x  irc,tlu/9   tld,scr/6x
RCN  |irc,scr/6   scr/6x  irc,scr/8   tld,scr/6x
     |
RTR  |  sta/6     sta/6     sta/6   tld,zrc,sta/5
RTA  |    6         6         8       tld,scr/6
     |
RUC  |  scj/6     scj/7     scj/8       scj/9
RXJ+ |    6         6         8           9
RXJ- |  tlf/3     tlf/3     tlf/3   tld,irc,str/5
     |
RXR  |    6         7         8         ser/9


  The states in which the Restart timer is running are identifiable by
  the presence of TO events.  Only the Send-Configure-Request, Send-
  Terminate-Request and Zero-Restart-Count actions start or re-start
  the Restart timer.  The Restart timer is stopped when transitioning
  from any state where the timer is running to a state where the timer
  is not running.

  The events and actions are defined according to a message passing
  architecture, rather than a signalling architecture.  If an action is
  desired to control specific signals (such as DTR), additional actions
  are likely to be required.

  [p]   Passive option; see Stopped state discussion.

  [r]   Restart option; see Open event discussion.

  [x]   Crossed connection; see RCA event discussion.






Simpson                                                        [Page 13]
RFC 1661                Point-to-Point Protocol                July 1994


4.2.  States

  Following is a more detailed description of each automaton state.

  Initial

     In the Initial state, the lower layer is unavailable (Down), and
     no Open has occurred.  The Restart timer is not running in the
     Initial state.

  Starting

     The Starting state is the Open counterpart to the Initial state.
     An administrative Open has been initiated, but the lower layer is
     still unavailable (Down).  The Restart timer is not running in the
     Starting state.

     When the lower layer becomes available (Up), a Configure-Request
     is sent.

  Closed

     In the Closed state, the link is available (Up), but no Open has
     occurred.  The Restart timer is not running in the Closed state.

     Upon reception of Configure-Request packets, a Terminate-Ack is
     sent.  Terminate-Acks are silently discarded to avoid creating a
     loop.

  Stopped

     The Stopped state is the Open counterpart to the Closed state.  It
     is entered when the automaton is waiting for a Down event after
     the This-Layer-Finished action, or after sending a Terminate-Ack.
     The Restart timer is not running in the Stopped state.

     Upon reception of Configure-Request packets, an appropriate
     response is sent.  Upon reception of other packets, a Terminate-
     Ack is sent.  Terminate-Acks are silently discarded to avoid
     creating a loop.

     Rationale:

        The Stopped state is a junction state for link termination,
        link configuration failure, and other automaton failure modes.
        These potentially separate states have been combined.

        There is a race condition between the Down event response (from



Simpson                                                        [Page 14]
RFC 1661                Point-to-Point Protocol                July 1994


        the This-Layer-Finished action) and the Receive-Configure-
        Request event.  When a Configure-Request arrives before the
        Down event, the Down event will supercede by returning the
        automaton to the Starting state.  This prevents attack by
        repetition.

     Implementation Option:

        After the peer fails to respond to Configure-Requests, an
        implementation MAY wait passively for the peer to send
        Configure-Requests.  In this case, the This-Layer-Finished
        action is not used for the TO- event in states Req-Sent, Ack-
        Rcvd and Ack-Sent.

        This option is useful for dedicated circuits, or circuits which
        have no status signals available, but SHOULD NOT be used for
        switched circuits.

  Closing

     In the Closing state, an attempt is made to terminate the
     connection.  A Terminate-Request has been sent and the Restart
     timer is running, but a Terminate-Ack has not yet been received.

     Upon reception of a Terminate-Ack, the Closed state is entered.
     Upon the expiration of the Restart timer, a new Terminate-Request
     is transmitted, and the Restart timer is restarted.  After the
     Restart timer has expired Max-Terminate times, the Closed state is
     entered.

  Stopping

     The Stopping state is the Open counterpart to the Closing state.
     A Terminate-Request has been sent and the Restart timer is
     running, but a Terminate-Ack has not yet been received.

     Rationale:

        The Stopping state provides a well defined opportunity to
        terminate a link before allowing new traffic.  After the link
        has terminated, a new configuration may occur via the Stopped
        or Starting states.

  Request-Sent

     In the Request-Sent state an attempt is made to configure the
     connection.  A Configure-Request has been sent and the Restart
     timer is running, but a Configure-Ack has not yet been received



Simpson                                                        [Page 15]
RFC 1661                Point-to-Point Protocol                July 1994


     nor has one been sent.

  Ack-Received

     In the Ack-Received state, a Configure-Request has been sent and a
     Configure-Ack has been received.  The Restart timer is still
     running, since a Configure-Ack has not yet been sent.

  Ack-Sent

     In the Ack-Sent state, a Configure-Request and a Configure-Ack
     have both been sent, but a Configure-Ack has not yet been
     received.  The Restart timer is running, since a Configure-Ack has
     not yet been received.

  Opened

     In the Opened state, a Configure-Ack has been both sent and
     received.  The Restart timer is not running.

     When entering the Opened state, the implementation SHOULD signal
     the upper layers that it is now Up.  Conversely, when leaving the
     Opened state, the implementation SHOULD signal the upper layers
     that it is now Down.



4.3.  Events

  Transitions and actions in the automaton are caused by events.

  Up

     This event occurs when a lower layer indicates that it is ready to
     carry packets.

     Typically, this event is used by a modem handling or calling
     process, or by some other coupling of the PPP link to the physical
     media, to signal LCP that the link is entering Link Establishment
     phase.

     It also can be used by LCP to signal each NCP that the link is
     entering Network-Layer Protocol phase.  That is, the This-Layer-Up
     action from LCP triggers the Up event in the NCP.

  Down

     This event occurs when a lower layer indicates that it is no



Simpson                                                        [Page 16]
RFC 1661                Point-to-Point Protocol                July 1994


     longer ready to carry packets.

     Typically, this event is used by a modem handling or calling
     process, or by some other coupling of the PPP link to the physical
     media, to signal LCP that the link is entering Link Dead phase.

     It also can be used by LCP to signal each NCP that the link is
     leaving Network-Layer Protocol phase.  That is, the This-Layer-
     Down action from LCP triggers the Down event in the NCP.

  Open

     This event indicates that the link is administratively available
     for traffic; that is, the network administrator (human or program)
     has indicated that the link is allowed to be Opened.  When this
     event occurs, and the link is not in the Opened state, the
     automaton attempts to send configuration packets to the peer.

     If the automaton is not able to begin configuration (the lower
     layer is Down, or a previous Close event has not completed), the
     establishment of the link is automatically delayed.

     When a Terminate-Request is received, or other events occur which
     cause the link to become unavailable, the automaton will progress
     to a state where the link is ready to re-open.  No additional
     administrative intervention is necessary.

     Implementation Option:

        Experience has shown that users will execute an additional Open
        command when they want to renegotiate the link.  This might
        indicate that new values are to be negotiated.

        Since this is not the meaning of the Open event, it is
        suggested that when an Open user command is executed in the
        Opened, Closing, Stopping, or Stopped states, the
        implementation issue a Down event, immediately followed by an
        Up event.  Care must be taken that an intervening Down event
        cannot occur from another source.

        The Down followed by an Up will cause an orderly renegotiation
        of the link, by progressing through the Starting to the
        Request-Sent state.  This will cause the renegotiation of the
        link, without any harmful side effects.

  Close

     This event indicates that the link is not available for traffic;



Simpson                                                        [Page 17]
RFC 1661                Point-to-Point Protocol                July 1994


     that is, the network administrator (human or program) has
     indicated that the link is not allowed to be Opened.  When this
     event occurs, and the link is not in the Closed state, the
     automaton attempts to terminate the connection.  Futher attempts
     to re-configure the link are denied until a new Open event occurs.

     Implementation Note:

        When authentication fails, the link SHOULD be terminated, to
        prevent attack by repetition and denial of service to other
        users.  Since the link is administratively available (by
        definition), this can be accomplished by simulating a Close
        event to the LCP, immediately followed by an Open event.  Care
        must be taken that an intervening Close event cannot occur from
        another source.

        The Close followed by an Open will cause an orderly termination
        of the link, by progressing through the Closing to the Stopping
        state, and the This-Layer-Finished action can disconnect the
        link.  The automaton waits in the Stopped or Starting states
        for the next connection attempt.

  Timeout (TO+,TO-)

     This event indicates the expiration of the Restart timer.  The
     Restart timer is used to time responses to Configure-Request and
     Terminate-Request packets.

     The TO+ event indicates that the Restart counter continues to be
     greater than zero, which triggers the corresponding Configure-
     Request or Terminate-Request packet to be retransmitted.

     The TO- event indicates that the Restart counter is not greater
     than zero, and no more packets need to be retransmitted.

  Receive-Configure-Request (RCR+,RCR-)

     This event occurs when a Configure-Request packet is received from
     the peer.  The Configure-Request packet indicates the desire to
     open a connection and may specify Configuration Options.  The
     Configure-Request packet is more fully described in a later
     section.

     The RCR+ event indicates that the Configure-Request was
     acceptable, and triggers the transmission of a corresponding
     Configure-Ack.

     The RCR- event indicates that the Configure-Request was



Simpson                                                        [Page 18]
RFC 1661                Point-to-Point Protocol                July 1994


     unacceptable, and triggers the transmission of a corresponding
     Configure-Nak or Configure-Reject.

     Implementation Note:

        These events may occur on a connection which is already in the
        Opened state.  The implementation MUST be prepared to
        immediately renegotiate the Configuration Options.

  Receive-Configure-Ack (RCA)

     This event occurs when a valid Configure-Ack packet is received
     from the peer.  The Configure-Ack packet is a positive response to
     a Configure-Request packet.  An out of sequence or otherwise
     invalid packet is silently discarded.

     Implementation Note:

        Since the correct packet has already been received before
        reaching the Ack-Rcvd or Opened states, it is extremely
        unlikely that another such packet will arrive.  As specified,
        all invalid Ack/Nak/Rej packets are silently discarded, and do
        not affect the transitions of the automaton.

        However, it is not impossible that a correctly formed packet
        will arrive through a coincidentally-timed cross-connection.
        It is more likely to be the result of an implementation error.
        At the very least, this occurance SHOULD be logged.

  Receive-Configure-Nak/Rej (RCN)

     This event occurs when a valid Configure-Nak or Configure-Reject
     packet is received from the peer.  The Configure-Nak and
     Configure-Reject packets are negative responses to a Configure-
     Request packet.  An out of sequence or otherwise invalid packet is
     silently discarded.

     Implementation Note:

        Although the Configure-Nak and Configure-Reject cause the same
        state transition in the automaton, these packets have
        significantly different effects on the Configuration Options
        sent in the resulting Configure-Request packet.

  Receive-Terminate-Request (RTR)

     This event occurs when a Terminate-Request packet is received.
     The Terminate-Request packet indicates the desire of the peer to



Simpson                                                        [Page 19]
RFC 1661                Point-to-Point Protocol                July 1994


     close the connection.

     Implementation Note:

        This event is not identical to the Close event (see above), and
        does not override the Open commands of the local network
        administrator.  The implementation MUST be prepared to receive
        a new Configure-Request without network administrator
        intervention.

  Receive-Terminate-Ack (RTA)

     This event occurs when a Terminate-Ack packet is received from the
     peer.  The Terminate-Ack packet is usually a response to a
     Terminate-Request packet.  The Terminate-Ack packet may also
     indicate that the peer is in Closed or Stopped states, and serves
     to re-synchronize the link configuration.

  Receive-Unknown-Code (RUC)

     This event occurs when an un-interpretable packet is received from
     the peer.  A Code-Reject packet is sent in response.

  Receive-Code-Reject, Receive-Protocol-Reject (RXJ+,RXJ-)

     This event occurs when a Code-Reject or a Protocol-Reject packet
     is received from the peer.

     The RXJ+ event arises when the rejected value is acceptable, such
     as a Code-Reject of an extended code, or a Protocol-Reject of a
     NCP.  These are within the scope of normal operation.  The
     implementation MUST stop sending the offending packet type.

     The RXJ- event arises when the rejected value is catastrophic,
     such as a Code-Reject of Configure-Request, or a Protocol-Reject
     of LCP!  This event communicates an unrecoverable error that
     terminates the connection.

  Receive-Echo-Request, Receive-Echo-Reply, Receive-Discard-Request
  (RXR)

     This event occurs when an Echo-Request, Echo-Reply or Discard-
     Request packet is received from the peer.  The Echo-Reply packet
     is a response to an Echo-Request packet.  There is no reply to an
     Echo-Reply or Discard-Request packet.






Simpson                                                        [Page 20]
RFC 1661                Point-to-Point Protocol                July 1994


4.4.  Actions

  Actions in the automaton are caused by events and typically indicate
  the transmission of packets and/or the starting or stopping of the
  Restart timer.

  Illegal-Event (-)

     This indicates an event that cannot occur in a properly
     implemented automaton.  The implementation has an internal error,
     which should be reported and logged.  No transition is taken, and
     the implementation SHOULD NOT reset or freeze.

  This-Layer-Up (tlu)

     This action indicates to the upper layers that the automaton is
     entering the Opened state.

     Typically, this action is used by the LCP to signal the Up event
     to a NCP, Authentication Protocol, or Link Quality Protocol, or
     MAY be used by a NCP to indicate that the link is available for
     its network layer traffic.

  This-Layer-Down (tld)

     This action indicates to the upper layers that the automaton is
     leaving the Opened state.

     Typically, this action is used by the LCP to signal the Down event
     to a NCP, Authentication Protocol, or Link Quality Protocol, or
     MAY be used by a NCP to indicate that the link is no longer
     available for its network layer traffic.

  This-Layer-Started (tls)

     This action indicates to the lower layers that the automaton is
     entering the Starting state, and the lower layer is needed for the
     link.  The lower layer SHOULD respond with an Up event when the
     lower layer is available.

     This results of this action are highly implementation dependent.

  This-Layer-Finished (tlf)

     This action indicates to the lower layers that the automaton is
     entering the Initial, Closed or Stopped states, and the lower
     layer is no longer needed for the link.  The lower layer SHOULD
     respond with a Down event when the lower layer has terminated.



Simpson                                                        [Page 21]
RFC 1661                Point-to-Point Protocol                July 1994


     Typically, this action MAY be used by the LCP to advance to the
     Link Dead phase, or MAY be used by a NCP to indicate to the LCP
     that the link may terminate when there are no other NCPs open.

     This results of this action are highly implementation dependent.

  Initialize-Restart-Count (irc)

     This action sets the Restart counter to the appropriate value
     (Max-Terminate or Max-Configure).  The counter is decremented for
     each transmission, including the first.

     Implementation Note:

        In addition to setting the Restart counter, the implementation
        MUST set the timeout period to the initial value when Restart
        timer backoff is used.

  Zero-Restart-Count (zrc)

     This action sets the Restart counter to zero.

     Implementation Note:

        This action enables the FSA to pause before proceeding to the
        desired final state, allowing traffic to be processed by the
        peer.  In addition to zeroing the Restart counter, the
        implementation MUST set the timeout period to an appropriate
        value.

  Send-Configure-Request (scr)

     A Configure-Request packet is transmitted.  This indicates the
     desire to open a connection with a specified set of Configuration
     Options.  The Restart timer is started when the Configure-Request
     packet is transmitted, to guard against packet loss.  The Restart
     counter is decremented each time a Configure-Request is sent.

  Send-Configure-Ack (sca)

     A Configure-Ack packet is transmitted.  This acknowledges the
     reception of a Configure-Request packet with an acceptable set of
     Configuration Options.

  Send-Configure-Nak (scn)

     A Configure-Nak or Configure-Reject packet is transmitted, as
     appropriate.  This negative response reports the reception of a



Simpson                                                        [Page 22]
RFC 1661                Point-to-Point Protocol                July 1994


     Configure-Request packet with an unacceptable set of Configuration
     Options.

     Configure-Nak packets are used to refuse a Configuration Option
     value, and to suggest a new, acceptable value.  Configure-Reject
     packets are used to refuse all negotiation about a Configuration
     Option, typically because it is not recognized or implemented.
     The use of Configure-Nak versus Configure-Reject is more fully
     described in the chapter on LCP Packet Formats.

  Send-Terminate-Request (str)

     A Terminate-Request packet is transmitted.  This indicates the
     desire to close a connection.  The Restart timer is started when
     the Terminate-Request packet is transmitted, to guard against
     packet loss.  The Restart counter is decremented each time a
     Terminate-Request is sent.

  Send-Terminate-Ack (sta)

     A Terminate-Ack packet is transmitted.  This acknowledges the
     reception of a Terminate-Request packet or otherwise serves to
     synchronize the automatons.

  Send-Code-Reject (scj)

     A Code-Reject packet is transmitted.  This indicates the reception
     of an unknown type of packet.

  Send-Echo-Reply (ser)

     An Echo-Reply packet is transmitted.  This acknowledges the
     reception of an Echo-Request packet.



4.5.  Loop Avoidance

  The protocol makes a reasonable attempt at avoiding Configuration
  Option negotiation loops.  However, the protocol does NOT guarantee
  that loops will not happen.  As with any negotiation, it is possible
  to configure two PPP implementations with conflicting policies that
  will never converge.  It is also possible to configure policies which
  do converge, but which take significant time to do so.  Implementors
  should keep this in mind and SHOULD implement loop detection
  mechanisms or higher level timeouts.





Simpson                                                        [Page 23]
RFC 1661                Point-to-Point Protocol                July 1994


4.6.  Counters and Timers

  Restart Timer

     There is one special timer used by the automaton.  The Restart
     timer is used to time transmissions of Configure-Request and
     Terminate-Request packets.  Expiration of the Restart timer causes
     a Timeout event, and retransmission of the corresponding
     Configure-Request or Terminate-Request packet.  The Restart timer
     MUST be configurable, but SHOULD default to three (3) seconds.

     Implementation Note:

        The Restart timer SHOULD be based on the speed of the link.
        The default value is designed for low speed (2,400 to 9,600
        bps), high switching latency links (typical telephone lines).
        Higher speed links, or links with low switching latency, SHOULD
        have correspondingly faster retransmission times.

        Instead of a constant value, the Restart timer MAY begin at an
        initial small value and increase to the configured final value.
        Each successive value less than the final value SHOULD be at
        least twice the previous value.  The initial value SHOULD be
        large enough to account for the size of the packets, twice the
        round trip time for transmission at the link speed, and at
        least an additional 100 milliseconds to allow the peer to
        process the packets before responding.  Some circuits add
        another 200 milliseconds of satellite delay.  Round trip times
        for modems operating at 14,400 bps have been measured in the
        range of 160 to more than 600 milliseconds.

  Max-Terminate

     There is one required restart counter for Terminate-Requests.
     Max-Terminate indicates the number of Terminate-Request packets
     sent without receiving a Terminate-Ack before assuming that the
     peer is unable to respond.  Max-Terminate MUST be configurable,
     but SHOULD default to two (2) transmissions.

  Max-Configure

     A similar counter is recommended for Configure-Requests.  Max-
     Configure indicates the number of Configure-Request packets sent
     without receiving a valid Configure-Ack, Configure-Nak or
     Configure-Reject before assuming that the peer is unable to
     respond.  Max-Configure MUST be configurable, but SHOULD default
     to ten (10) transmissions.




Simpson                                                        [Page 24]
RFC 1661                Point-to-Point Protocol                July 1994


  Max-Failure

     A related counter is recommended for Configure-Nak.  Max-Failure
     indicates the number of Configure-Nak packets sent without sending
     a Configure-Ack before assuming that configuration is not
     converging.  Any further Configure-Nak packets for peer requested
     options are converted to Configure-Reject packets, and locally
     desired options are no longer appended.  Max-Failure MUST be
     configurable, but SHOULD default to five (5) transmissions.










































Simpson                                                        [Page 25]
RFC 1661                Point-to-Point Protocol                July 1994


5.  LCP Packet Formats

  There are three classes of LCP packets:

     1. Link Configuration packets used to establish and configure a
        link (Configure-Request, Configure-Ack, Configure-Nak and
        Configure-Reject).

     2. Link Termination packets used to terminate a link (Terminate-
        Request and Terminate-Ack).

     3. Link Maintenance packets used to manage and debug a link
        (Code-Reject, Protocol-Reject, Echo-Request, Echo-Reply, and
        Discard-Request).

  In the interest of simplicity, there is no version field in the LCP
  packet.  A correctly functioning LCP implementation will always
  respond to unknown Protocols and Codes with an easily recognizable
  LCP packet, thus providing a deterministic fallback mechanism for
  implementations of other versions.

  Regardless of which Configuration Options are enabled, all LCP Link
  Configuration, Link Termination, and Code-Reject packets (codes 1
  through 7) are always sent as if no Configuration Options were
  negotiated.  In particular, each Configuration Option specifies a
  default value.  This ensures that such LCP packets are always
  recognizable, even when one end of the link mistakenly believes the
  link to be open.

  Exactly one LCP packet is encapsulated in the PPP Information field,
  where the PPP Protocol field indicates type hex c021 (Link Control
  Protocol).

  A summary of the Link Control Protocol packet format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+


  Code

     The Code field is one octet, and identifies the kind of LCP



Simpson                                                        [Page 26]
RFC 1661                Point-to-Point Protocol                July 1994


     packet.  When a packet is received with an unknown Code field, a
     Code-Reject packet is transmitted.

     Up-to-date values of the LCP Code field are specified in the most
     recent "Assigned Numbers" RFC [2].  This document concerns the
     following values:

        1       Configure-Request
        2       Configure-Ack
        3       Configure-Nak
        4       Configure-Reject
        5       Terminate-Request
        6       Terminate-Ack
        7       Code-Reject
        8       Protocol-Reject
        9       Echo-Request
        10      Echo-Reply
        11      Discard-Request


  Identifier

     The Identifier field is one octet, and aids in matching requests
     and replies.  When a packet is received with an invalid Identifier
     field, the packet is silently discarded without affecting the
     automaton.

  Length

     The Length field is two octets, and indicates the length of the
     LCP packet, including the Code, Identifier, Length and Data
     fields.  The Length MUST NOT exceed the MRU of the link.

     Octets outside the range of the Length field are treated as
     padding and are ignored on reception.  When a packet is received
     with an invalid Length field, the packet is silently discarded
     without affecting the automaton.

  Data

     The Data field is zero or more octets, as indicated by the Length
     field.  The format of the Data field is determined by the Code
     field.








Simpson                                                        [Page 27]
RFC 1661                Point-to-Point Protocol                July 1994


5.1.  Configure-Request

  Description

     An implementation wishing to open a connection MUST transmit a
     Configure-Request.  The Options field is filled with any desired
     changes to the link defaults.  Configuration Options SHOULD NOT be
     included with default values.

     Upon reception of a Configure-Request, an appropriate reply MUST
     be transmitted.

  A summary of the Configure-Request packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Options ...
  +-+-+-+-+


  Code

     1 for Configure-Request.

  Identifier

     The Identifier field MUST be changed whenever the contents of the
     Options field changes, and whenever a valid reply has been
     received for a previous request.  For retransmissions, the
     Identifier MAY remain unchanged.

  Options

     The options field is variable in length, and contains the list of
     zero or more Configuration Options that the sender desires to
     negotiate.  All Configuration Options are always negotiated
     simultaneously.  The format of Configuration Options is further
     described in a later chapter.









Simpson                                                        [Page 28]
RFC 1661                Point-to-Point Protocol                July 1994


5.2.  Configure-Ack

  Description

     If every Configuration Option received in a Configure-Request is
     recognizable and all values are acceptable, then the
     implementation MUST transmit a Configure-Ack.  The acknowledged
     Configuration Options MUST NOT be reordered or modified in any
     way.

     On reception of a Configure-Ack, the Identifier field MUST match
     that of the last transmitted Configure-Request.  Additionally, the
     Configuration Options in a Configure-Ack MUST exactly match those
     of the last transmitted Configure-Request.  Invalid packets are
     silently discarded.

  A summary of the Configure-Ack packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Options ...
  +-+-+-+-+


  Code

     2 for Configure-Ack.

  Identifier

     The Identifier field is a copy of the Identifier field of the
     Configure-Request which caused this Configure-Ack.

  Options

     The Options field is variable in length, and contains the list of
     zero or more Configuration Options that the sender is
     acknowledging.  All Configuration Options are always acknowledged
     simultaneously.








Simpson                                                        [Page 29]
RFC 1661                Point-to-Point Protocol                July 1994


5.3.  Configure-Nak

  Description

     If every instance of the received Configuration Options is
     recognizable, but some values are not acceptable, then the
     implementation MUST transmit a Configure-Nak.  The Options field
     is filled with only the unacceptable Configuration Options from
     the Configure-Request.  All acceptable Configuration Options are
     filtered out of the Configure-Nak, but otherwise the Configuration
     Options from the Configure-Request MUST NOT be reordered.

     Options which have no value fields (boolean options) MUST use the
     Configure-Reject reply instead.

     Each Configuration Option which is allowed only a single instance
     MUST be modified to a value acceptable to the Configure-Nak
     sender.  The default value MAY be used, when this differs from the
     requested value.

     When a particular type of Configuration Option can be listed more
     than once with different values, the Configure-Nak MUST include a
     list of all values for that option which are acceptable to the
     Configure-Nak sender.  This includes acceptable values that were
     present in the Configure-Request.

     Finally, an implementation may be configured to request the
     negotiation of a specific Configuration Option.  If that option is
     not listed, then that option MAY be appended to the list of Nak'd
     Configuration Options, in order to prompt the peer to include that
     option in its next Configure-Request packet.  Any value fields for
     the option MUST indicate values acceptable to the Configure-Nak
     sender.

     On reception of a Configure-Nak, the Identifier field MUST match
     that of the last transmitted Configure-Request.  Invalid packets
     are silently discarded.

     Reception of a valid Configure-Nak indicates that when a new
     Configure-Request is sent, the Configuration Options MAY be
     modified as specified in the Configure-Nak.  When multiple
     instances of a Configuration Option are present, the peer SHOULD
     select a single value to include in its next Configure-Request
     packet.

     Some Configuration Options have a variable length.  Since the
     Nak'd Option has been modified by the peer, the implementation
     MUST be able to handle an Option length which is different from



Simpson                                                        [Page 30]
RFC 1661                Point-to-Point Protocol                July 1994


     the original Configure-Request.

  A summary of the Configure-Nak packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Options ...
  +-+-+-+-+


  Code

     3 for Configure-Nak.

  Identifier

     The Identifier field is a copy of the Identifier field of the
     Configure-Request which caused this Configure-Nak.

  Options

     The Options field is variable in length, and contains the list of
     zero or more Configuration Options that the sender is Nak'ing.
     All Configuration Options are always Nak'd simultaneously.



5.4.  Configure-Reject

  Description

     If some Configuration Options received in a Configure-Request are
     not recognizable or are not acceptable for negotiation (as
     configured by a network administrator), then the implementation
     MUST transmit a Configure-Reject.  The Options field is filled
     with only the unacceptable Configuration Options from the
     Configure-Request.  All recognizable and negotiable Configuration
     Options are filtered out of the Configure-Reject, but otherwise
     the Configuration Options MUST NOT be reordered or modified in any
     way.

     On reception of a Configure-Reject, the Identifier field MUST
     match that of the last transmitted Configure-Request.
     Additionally, the Configuration Options in a Configure-Reject MUST



Simpson                                                        [Page 31]
RFC 1661                Point-to-Point Protocol                July 1994


     be a proper subset of those in the last transmitted Configure-
     Request.  Invalid packets are silently discarded.

     Reception of a valid Configure-Reject indicates that when a new
     Configure-Request is sent, it MUST NOT include any of the
     Configuration Options listed in the Configure-Reject.

  A summary of the Configure-Reject packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Options ...
  +-+-+-+-+


  Code

     4 for Configure-Reject.

  Identifier

     The Identifier field is a copy of the Identifier field of the
     Configure-Request which caused this Configure-Reject.

  Options

     The Options field is variable in length, and contains the list of
     zero or more Configuration Options that the sender is rejecting.
     All Configuration Options are always rejected simultaneously.


















Simpson                                                        [Page 32]
RFC 1661                Point-to-Point Protocol                July 1994


5.5.  Terminate-Request and Terminate-Ack

  Description

     LCP includes Terminate-Request and Terminate-Ack Codes in order to
     provide a mechanism for closing a connection.

     An implementation wishing to close a connection SHOULD transmit a
     Terminate-Request.  Terminate-Request packets SHOULD continue to
     be sent until Terminate-Ack is received, the lower layer indicates
     that it has gone down, or a sufficiently large number have been
     transmitted such that the peer is down with reasonable certainty.

     Upon reception of a Terminate-Request, a Terminate-Ack MUST be
     transmitted.

     Reception of an unelicited Terminate-Ack indicates that the peer
     is in the Closed or Stopped states, or is otherwise in need of
     re-negotiation.

  A summary of the Terminate-Request and Terminate-Ack packet formats
  is shown below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+


  Code

     5 for Terminate-Request;

     6 for Terminate-Ack.

  Identifier

     On transmission, the Identifier field MUST be changed whenever the
     content of the Data field changes, and whenever a valid reply has
     been received for a previous request.  For retransmissions, the
     Identifier MAY remain unchanged.

     On reception, the Identifier field of the Terminate-Request is
     copied into the Identifier field of the Terminate-Ack packet.




Simpson                                                        [Page 33]
RFC 1661                Point-to-Point Protocol                July 1994


  Data

     The Data field is zero or more octets, and contains uninterpreted
     data for use by the sender.  The data may consist of any binary
     value.  The end of the field is indicated by the Length.



5.6.  Code-Reject

  Description

     Reception of a LCP packet with an unknown Code indicates that the
     peer is operating with a different version.  This MUST be reported
     back to the sender of the unknown Code by transmitting a Code-
     Reject.

     Upon reception of the Code-Reject of a code which is fundamental
     to this version of the protocol, the implementation SHOULD report
     the problem and drop the connection, since it is unlikely that the
     situation can be rectified automatically.

  A summary of the Code-Reject packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Rejected-Packet ...
  +-+-+-+-+-+-+-+-+


  Code

     7 for Code-Reject.

  Identifier

     The Identifier field MUST be changed for each Code-Reject sent.

  Rejected-Packet

     The Rejected-Packet field contains a copy of the LCP packet which
     is being rejected.  It begins with the Information field, and does
     not include any Data Link Layer headers nor an FCS.  The
     Rejected-Packet MUST be truncated to comply with the peer's



Simpson                                                        [Page 34]
RFC 1661                Point-to-Point Protocol                July 1994


     established MRU.



5.7.  Protocol-Reject

  Description

     Reception of a PPP packet with an unknown Protocol field indicates
     that the peer is attempting to use a protocol which is
     unsupported.  This usually occurs when the peer attempts to
     configure a new protocol.  If the LCP automaton is in the Opened
     state, then this MUST be reported back to the peer by transmitting
     a Protocol-Reject.

     Upon reception of a Protocol-Reject, the implementation MUST stop
     sending packets of the indicated protocol at the earliest
     opportunity.

     Protocol-Reject packets can only be sent in the LCP Opened state.
     Protocol-Reject packets received in any state other than the LCP
     Opened state SHOULD be silently discarded.

  A summary of the Protocol-Reject packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Rejected-Protocol       |      Rejected-Information ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Code

     8 for Protocol-Reject.

  Identifier

     The Identifier field MUST be changed for each Protocol-Reject
     sent.

  Rejected-Protocol

     The Rejected-Protocol field is two octets, and contains the PPP
     Protocol field of the packet which is being rejected.



Simpson                                                        [Page 35]
RFC 1661                Point-to-Point Protocol                July 1994


  Rejected-Information

     The Rejected-Information field contains a copy of the packet which
     is being rejected.  It begins with the Information field, and does
     not include any Data Link Layer headers nor an FCS.  The
     Rejected-Information MUST be truncated to comply with the peer's
     established MRU.



5.8.  Echo-Request and Echo-Reply

  Description

     LCP includes Echo-Request and Echo-Reply Codes in order to provide
     a Data Link Layer loopback mechanism for use in exercising both
     directions of the link.  This is useful as an aid in debugging,
     link quality determination, performance testing, and for numerous
     other functions.

     Upon reception of an Echo-Request in the LCP Opened state, an
     Echo-Reply MUST be transmitted.

     Echo-Request and Echo-Reply packets MUST only be sent in the LCP
     Opened state.  Echo-Request and Echo-Reply packets received in any
     state other than the LCP Opened state SHOULD be silently
     discarded.


  A summary of the Echo-Request and Echo-Reply packet formats is shown
  below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Magic-Number                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+


  Code

     9 for Echo-Request;

     10 for Echo-Reply.



Simpson                                                        [Page 36]
RFC 1661                Point-to-Point Protocol                July 1994


  Identifier

     On transmission, the Identifier field MUST be changed whenever the
     content of the Data field changes, and whenever a valid reply has
     been received for a previous request.  For retransmissions, the
     Identifier MAY remain unchanged.

     On reception, the Identifier field of the Echo-Request is copied
     into the Identifier field of the Echo-Reply packet.

  Magic-Number

     The Magic-Number field is four octets, and aids in detecting links
     which are in the looped-back condition.  Until the Magic-Number
     Configuration Option has been successfully negotiated, the Magic-
     Number MUST be transmitted as zero.  See the Magic-Number
     Configuration Option for further explanation.

  Data

     The Data field is zero or more octets, and contains uninterpreted
     data for use by the sender.  The data may consist of any binary
     value.  The end of the field is indicated by the Length.



5.9.  Discard-Request

  Description

     LCP includes a Discard-Request Code in order to provide a Data
     Link Layer sink mechanism for use in exercising the local to
     remote direction of the link.  This is useful as an aid in
     debugging, performance testing, and for numerous other functions.

     Discard-Request packets MUST only be sent in the LCP Opened state.
     On reception, the receiver MUST silently discard any Discard-
     Request that it receives.













Simpson                                                        [Page 37]
RFC 1661                Point-to-Point Protocol                July 1994


  A summary of the Discard-Request packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Magic-Number                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+

  Code

     11 for Discard-Request.

  Identifier

     The Identifier field MUST be changed for each Discard-Request
     sent.

  Magic-Number

     The Magic-Number field is four octets, and aids in detecting links
     which are in the looped-back condition.  Until the Magic-Number
     Configuration Option has been successfully negotiated, the Magic-
     Number MUST be transmitted as zero.  See the Magic-Number
     Configuration Option for further explanation.

  Data

     The Data field is zero or more octets, and contains uninterpreted
     data for use by the sender.  The data may consist of any binary
     value.  The end of the field is indicated by the Length.
















Simpson                                                        [Page 38]
RFC 1661                Point-to-Point Protocol                July 1994


6.  LCP Configuration Options

  LCP Configuration Options allow negotiation of modifications to the
  default characteristics of a point-to-point link.  If a Configuration
  Option is not included in a Configure-Request packet, the default
  value for that Configuration Option is assumed.

  Some Configuration Options MAY be listed more than once.  The effect
  of this is Configuration Option specific, and is specified by each
  such Configuration Option description.  (None of the Configuration
  Options in this specification can be listed more than once.)

  The end of the list of Configuration Options is indicated by the
  Length field of the LCP packet.

  Unless otherwise specified, all Configuration Options apply in a
  half-duplex fashion; typically, in the receive direction of the link
  from the point of view of the Configure-Request sender.

  Design Philosophy

     The options indicate additional capabilities or requirements of
     the implementation that is requesting the option.  An
     implementation which does not understand any option SHOULD
     interoperate with one which implements every option.

     A default is specified for each option which allows the link to
     correctly function without negotiation of the option, although
     perhaps with less than optimal performance.

     Except where explicitly specified, acknowledgement of an option
     does not require the peer to take any additional action other than
     the default.

     It is not necessary to send the default values for the options in
     a Configure-Request.


  A summary of the Configuration Option format is shown below.  The
  fields are transmitted from left to right.

   0                   1
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |    Data ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+





Simpson                                                        [Page 39]
RFC 1661                Point-to-Point Protocol                July 1994


  Type

     The Type field is one octet, and indicates the type of
     Configuration Option.  Up-to-date values of the LCP Option Type
     field are specified in the most recent "Assigned Numbers" RFC [2].
     This document concerns the following values:

        0       RESERVED
        1       Maximum-Receive-Unit
        3       Authentication-Protocol
        4       Quality-Protocol
        5       Magic-Number
        7       Protocol-Field-Compression
        8       Address-and-Control-Field-Compression


  Length

     The Length field is one octet, and indicates the length of this
     Configuration Option including the Type, Length and Data fields.

     If a negotiable Configuration Option is received in a Configure-
     Request, but with an invalid or unrecognized Length, a Configure-
     Nak SHOULD be transmitted which includes the desired Configuration
     Option with an appropriate Length and Data.

  Data

     The Data field is zero or more octets, and contains information
     specific to the Configuration Option.  The format and length of
     the Data field is determined by the Type and Length fields.

     When the Data field is indicated by the Length to extend beyond
     the end of the Information field, the entire packet is silently
     discarded without affecting the automaton.
















Simpson                                                        [Page 40]
RFC 1661                Point-to-Point Protocol                July 1994


6.1.  Maximum-Receive-Unit (MRU)

  Description

     This Configuration Option may be sent to inform the peer that the
     implementation can receive larger packets, or to request that the
     peer send smaller packets.

     The default value is 1500 octets.  If smaller packets are
     requested, an implementation MUST still be able to receive the
     full 1500 octet information field in case link synchronization is
     lost.

     Implementation Note:

        This option is used to indicate an implementation capability.
        The peer is not required to maximize the use of the capacity.
        For example, when a MRU is indicated which is 2048 octets, the
        peer is not required to send any packet with 2048 octets.  The
        peer need not Configure-Nak to indicate that it will only send
        smaller packets, since the implementation will always require
        support for at least 1500 octets.

  A summary of the Maximum-Receive-Unit Configuration Option format is
  shown below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |      Maximum-Receive-Unit     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     1

  Length

     4

  Maximum-Receive-Unit

     The Maximum-Receive-Unit field is two octets, and specifies the
     maximum number of octets in the Information and Padding fields.
     It does not include the framing, Protocol field, FCS, nor any
     transparency bits or bytes.




Simpson                                                        [Page 41]
RFC 1661                Point-to-Point Protocol                July 1994


6.2.  Authentication-Protocol

  Description

     On some links it may be desirable to require a peer to
     authenticate itself before allowing network-layer protocol packets
     to be exchanged.

     This Configuration Option provides a method to negotiate the use
     of a specific protocol for authentication.  By default,
     authentication is not required.

     An implementation MUST NOT include multiple Authentication-
     Protocol Configuration Options in its Configure-Request packets.
     Instead, it SHOULD attempt to configure the most desirable
     protocol first.  If that protocol is Configure-Nak'd, then the
     implementation SHOULD attempt the next most desirable protocol in
     the next Configure-Request.

     The implementation sending the Configure-Request is indicating
     that it expects authentication from its peer.  If an
     implementation sends a Configure-Ack, then it is agreeing to
     authenticate with the specified protocol.  An implementation
     receiving a Configure-Ack SHOULD expect the peer to authenticate
     with the acknowledged protocol.

     There is no requirement that authentication be full-duplex or that
     the same protocol be used in both directions.  It is perfectly
     acceptable for different protocols to be used in each direction.
     This will, of course, depend on the specific protocols negotiated.

  A summary of the Authentication-Protocol Configuration Option format
  is shown below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |     Authentication-Protocol   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+


  Type

     3





Simpson                                                        [Page 42]
RFC 1661                Point-to-Point Protocol                July 1994


  Length

     >= 4

  Authentication-Protocol

     The Authentication-Protocol field is two octets, and indicates the
     authentication protocol desired.  Values for this field are always
     the same as the PPP Protocol field values for that same
     authentication protocol.

     Up-to-date values of the Authentication-Protocol field are
     specified in the most recent "Assigned Numbers" RFC [2].  Current
     values are assigned as follows:

     Value (in hex)  Protocol

     c023            Password Authentication Protocol
     c223            Challenge Handshake Authentication Protocol


  Data

     The Data field is zero or more octets, and contains additional
     data as determined by the particular protocol.



6.3.  Quality-Protocol

  Description

     On some links it may be desirable to determine when, and how
     often, the link is dropping data.  This process is called link
     quality monitoring.

     This Configuration Option provides a method to negotiate the use
     of a specific protocol for link quality monitoring.  By default,
     link quality monitoring is disabled.

     The implementation sending the Configure-Request is indicating
     that it expects to receive monitoring information from its peer.
     If an implementation sends a Configure-Ack, then it is agreeing to
     send the specified protocol.  An implementation receiving a
     Configure-Ack SHOULD expect the peer to send the acknowledged
     protocol.

     There is no requirement that quality monitoring be full-duplex or



Simpson                                                        [Page 43]
RFC 1661                Point-to-Point Protocol                July 1994


     that the same protocol be used in both directions.  It is
     perfectly acceptable for different protocols to be used in each
     direction.  This will, of course, depend on the specific protocols
     negotiated.

  A summary of the Quality-Protocol Configuration Option format is
  shown below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |        Quality-Protocol       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+


  Type

     4

  Length

     >= 4

  Quality-Protocol

     The Quality-Protocol field is two octets, and indicates the link
     quality monitoring protocol desired.  Values for this field are
     always the same as the PPP Protocol field values for that same
     monitoring protocol.

     Up-to-date values of the Quality-Protocol field are specified in
     the most recent "Assigned Numbers" RFC [2].  Current values are
     assigned as follows:

     Value (in hex)  Protocol

     c025            Link Quality Report


  Data

     The Data field is zero or more octets, and contains additional
     data as determined by the particular protocol.






Simpson                                                        [Page 44]
RFC 1661                Point-to-Point Protocol                July 1994


6.4.  Magic-Number

  Description

     This Configuration Option provides a method to detect looped-back
     links and other Data Link Layer anomalies.  This Configuration
     Option MAY be required by some other Configuration Options such as
     the Quality-Protocol Configuration Option.  By default, the
     Magic-Number is not negotiated, and zero is inserted where a
     Magic-Number might otherwise be used.

     Before this Configuration Option is requested, an implementation
     MUST choose its Magic-Number.  It is recommended that the Magic-
     Number be chosen in the most random manner possible in order to
     guarantee with very high probability that an implementation will
     arrive at a unique number.  A good way to choose a unique random
     number is to start with a unique seed.  Suggested sources of
     uniqueness include machine serial numbers, other network hardware
     addresses, time-of-day clocks, etc.  Particularly good random
     number seeds are precise measurements of the inter-arrival time of
     physical events such as packet reception on other connected
     networks, server response time, or the typing rate of a human
     user.  It is also suggested that as many sources as possible be
     used simultaneously.

     When a Configure-Request is received with a Magic-Number
     Configuration Option, the received Magic-Number is compared with
     the Magic-Number of the last Configure-Request sent to the peer.
     If the two Magic-Numbers are different, then the link is not
     looped-back, and the Magic-Number SHOULD be acknowledged.  If the
     two Magic-Numbers are equal, then it is possible, but not certain,
     that the link is looped-back and that this Configure-Request is
     actually the one last sent.  To determine this, a Configure-Nak
     MUST be sent specifying a different Magic-Number value.  A new
     Configure-Request SHOULD NOT be sent to the peer until normal
     processing would cause it to be sent (that is, until a Configure-
     Nak is received or the Restart timer runs out).

     Reception of a Configure-Nak with a Magic-Number different from
     that of the last Configure-Nak sent to the peer proves that a link
     is not looped-back, and indicates a unique Magic-Number.  If the
     Magic-Number is equal to the one sent in the last Configure-Nak,
     the possibility of a looped-back link is increased, and a new
     Magic-Number MUST be chosen.  In either case, a new Configure-
     Request SHOULD be sent with the new Magic-Number.

     If the link is indeed looped-back, this sequence (transmit
     Configure-Request, receive Configure-Request, transmit Configure-



Simpson                                                        [Page 45]
RFC 1661                Point-to-Point Protocol                July 1994


     Nak, receive Configure-Nak) will repeat over and over again.  If
     the link is not looped-back, this sequence might occur a few
     times, but it is extremely unlikely to occur repeatedly.  More
     likely, the Magic-Numbers chosen at either end will quickly
     diverge, terminating the sequence.  The following table shows the
     probability of collisions assuming that both ends of the link
     select Magic-Numbers with a perfectly uniform distribution:

        Number of Collisions        Probability
        --------------------   ---------------------
                1              1/2**32    = 2.3 E-10
                2              1/2**32**2 = 5.4 E-20
                3              1/2**32**3 = 1.3 E-29


     Good sources of uniqueness or randomness are required for this
     divergence to occur.  If a good source of uniqueness cannot be
     found, it is recommended that this Configuration Option not be
     enabled; Configure-Requests with the option SHOULD NOT be
     transmitted and any Magic-Number Configuration Options which the
     peer sends SHOULD be either acknowledged or rejected.  In this
     case, looped-back links cannot be reliably detected by the
     implementation, although they may still be detectable by the peer.

     If an implementation does transmit a Configure-Request with a
     Magic-Number Configuration Option, then it MUST NOT respond with a
     Configure-Reject when it receives a Configure-Request with a
     Magic-Number Configuration Option.  That is, if an implementation
     desires to use Magic Numbers, then it MUST also allow its peer to
     do so.  If an implementation does receive a Configure-Reject in
     response to a Configure-Request, it can only mean that the link is
     not looped-back, and that its peer will not be using Magic-
     Numbers.  In this case, an implementation SHOULD act as if the
     negotiation had been successful (as if it had instead received a
     Configure-Ack).

     The Magic-Number also may be used to detect looped-back links
     during normal operation, as well as during Configuration Option
     negotiation.  All LCP Echo-Request, Echo-Reply, and Discard-
     Request packets have a Magic-Number field.  If Magic-Number has
     been successfully negotiated, an implementation MUST transmit
     these packets with the Magic-Number field set to its negotiated
     Magic-Number.

     The Magic-Number field of these packets SHOULD be inspected on
     reception.  All received Magic-Number fields MUST be equal to
     either zero or the peer's unique Magic-Number, depending on
     whether or not the peer negotiated a Magic-Number.



Simpson                                                        [Page 46]
RFC 1661                Point-to-Point Protocol                July 1994


     Reception of a Magic-Number field equal to the negotiated local
     Magic-Number indicates a looped-back link.  Reception of a Magic-
     Number other than the negotiated local Magic-Number, the peer's
     negotiated Magic-Number, or zero if the peer didn't negotiate one,
     indicates a link which has been (mis)configured for communications
     with a different peer.

     Procedures for recovery from either case are unspecified, and may
     vary from implementation to implementation.  A somewhat
     pessimistic procedure is to assume a LCP Down event.  A further
     Open event will begin the process of re-establishing the link,
     which can't complete until the looped-back condition is
     terminated, and Magic-Numbers are successfully negotiated.  A more
     optimistic procedure (in the case of a looped-back link) is to
     begin transmitting LCP Echo-Request packets until an appropriate
     Echo-Reply is received, indicating a termination of the looped-
     back condition.

  A summary of the Magic-Number Configuration Option format is shown
  below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |          Magic-Number
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        Magic-Number (cont)       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     5

  Length

     6

  Magic-Number

     The Magic-Number field is four octets, and indicates a number
     which is very likely to be unique to one end of the link.  A
     Magic-Number of zero is illegal and MUST always be Nak'd, if it is
     not Rejected outright.







Simpson                                                        [Page 47]
RFC 1661                Point-to-Point Protocol                July 1994


6.5.  Protocol-Field-Compression (PFC)

  Description

     This Configuration Option provides a method to negotiate the
     compression of the PPP Protocol field.  By default, all
     implementations MUST transmit packets with two octet PPP Protocol
     fields.

     PPP Protocol field numbers are chosen such that some values may be
     compressed into a single octet form which is clearly
     distinguishable from the two octet form.  This Configuration
     Option is sent to inform the peer that the implementation can
     receive such single octet Protocol fields.

     As previously mentioned, the Protocol field uses an extension
     mechanism consistent with the ISO 3309 extension mechanism for the
     Address field; the Least Significant Bit (LSB) of each octet is
     used to indicate extension of the Protocol field.  A binary "0" as
     the LSB indicates that the Protocol field continues with the
     following octet.  The presence of a binary "1" as the LSB marks
     the last octet of the Protocol field.  Notice that any number of
     "0" octets may be prepended to the field, and will still indicate
     the same value (consider the two binary representations for 3,
     00000011 and 00000000 00000011).

     When using low speed links, it is desirable to conserve bandwidth
     by sending as little redundant data as possible.  The Protocol-
     Field-Compression Configuration Option allows a trade-off between
     implementation simplicity and bandwidth efficiency.  If
     successfully negotiated, the ISO 3309 extension mechanism may be
     used to compress the Protocol field to one octet instead of two.
     The large majority of packets are compressible since data
     protocols are typically assigned with Protocol field values less
     than 256.

     Compressed Protocol fields MUST NOT be transmitted unless this
     Configuration Option has been negotiated.  When negotiated, PPP
     implementations MUST accept PPP packets with either double-octet
     or single-octet Protocol fields, and MUST NOT distinguish between
     them.

     The Protocol field is never compressed when sending any LCP
     packet.  This rule guarantees unambiguous recognition of LCP
     packets.

     When a Protocol field is compressed, the Data Link Layer FCS field
     is calculated on the compressed frame, not the original



Simpson                                                        [Page 48]
RFC 1661                Point-to-Point Protocol                July 1994


     uncompressed frame.

  A summary of the Protocol-Field-Compression Configuration Option
  format is shown below.  The fields are transmitted from left to
  right.

   0                   1
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     7

  Length

     2































Simpson                                                        [Page 49]
RFC 1661                Point-to-Point Protocol                July 1994


6.6.  Address-and-Control-Field-Compression (ACFC)

  Description

     This Configuration Option provides a method to negotiate the
     compression of the Data Link Layer Address and Control fields.  By
     default, all implementations MUST transmit frames with Address and
     Control fields appropriate to the link framing.

     Since these fields usually have constant values for point-to-point
     links, they are easily compressed.  This Configuration Option is
     sent to inform the peer that the implementation can receive
     compressed Address and Control fields.

     If a compressed frame is received when Address-and-Control-Field-
     Compression has not been negotiated, the implementation MAY
     silently discard the frame.

     The Address and Control fields MUST NOT be compressed when sending
     any LCP packet.  This rule guarantees unambiguous recognition of
     LCP packets.

     When the Address and Control fields are compressed, the Data Link
     Layer FCS field is calculated on the compressed frame, not the
     original uncompressed frame.

  A summary of the Address-and-Control-Field-Compression configuration
  option format is shown below.  The fields are transmitted from left
  to right.

   0                   1
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     8

  Length

     2







Simpson                                                        [Page 50]
RFC 1661                Point-to-Point Protocol                July 1994


Security Considerations

  Security issues are briefly discussed in sections concerning the
  Authentication Phase, the Close event, and the Authentication-
  Protocol Configuration Option.



References

  [1]   Perkins, D., "Requirements for an Internet Standard Point-to-
        Point Protocol", RFC 1547, Carnegie Mellon University,
        December 1993.

  [2]   Reynolds, J., and Postel, J., "Assigned Numbers", STD 2, RFC
        1340, USC/Information Sciences Institute, July 1992.


Acknowledgements

  This document is the product of the Point-to-Point Protocol Working
  Group of the Internet Engineering Task Force (IETF).  Comments should
  be submitted to the [email protected] mailing list.

  Much of the text in this document is taken from the working group
  requirements [1]; and RFCs 1171 & 1172, by Drew Perkins while at
  Carnegie Mellon University, and by Russ Hobby of the University of
  California at Davis.

  William Simpson was principally responsible for introducing
  consistent terminology and philosophy, and the re-design of the phase
  and negotiation state machines.

  Many people spent significant time helping to develop the Point-to-
  Point Protocol.  The complete list of people is too numerous to list,
  but the following people deserve special thanks: Rick Adams, Ken
  Adelman, Fred Baker, Mike Ballard, Craig Fox, Karl Fox, Phill Gross,
  Kory Hamzeh, former WG chair Russ Hobby, David Kaufman, former WG
  chair Steve Knowles, Mark Lewis, former WG chair Brian Lloyd, John
  LoVerso, Bill Melohn, Mike Patton, former WG chair Drew Perkins, Greg
  Satz, John Shriver, Vernon Schryver, and Asher Waldfogel.

  Special thanks to Morning Star Technologies for providing computing
  resources and network access support for writing this specification.







Simpson                                                        [Page 51]
RFC 1661                Point-to-Point Protocol                July 1994


Chair's Address

  The working group can be contacted via the current chair:

     Fred Baker
     Advanced Computer Communications
     315 Bollay Drive
     Santa Barbara, California  93117

     [email protected]



Editor's Address

  Questions about this memo can also be directed to:

     William Allen Simpson
     Daydreamer
     Computer Systems Consulting Services
     1384 Fontaine
     Madison Heights, Michigan  48071

     [email protected]
         [email protected]


























Simpson                                                        [Page 52]


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~






Network Working Group                                 W. Simpson, Editor
Request for Comments: 1662                                    Daydreamer
STD: 51                                                        July 1994
Obsoletes: 1549
Category: Standards Track


                       PPP in HDLC-like Framing


Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.


Abstract

  The Point-to-Point Protocol (PPP) [1] provides a standard method for
  transporting multi-protocol datagrams over point-to-point links.

  This document describes the use of HDLC-like framing for PPP
  encapsulated packets.


Table of Contents


    1.     Introduction ..........................................    1
       1.1       Specification of Requirements ...................    2
       1.2       Terminology .....................................    2

    2.     Physical Layer Requirements ...........................    3

    3.     The Data Link Layer ...................................    4
       3.1       Frame Format ....................................    5
       3.2       Modification of the Basic Frame .................    7

    4.     Octet-stuffed framing .................................    8
       4.1       Flag Sequence ...................................    8
       4.2       Transparency ....................................    8
       4.3       Invalid Frames ..................................    9
       4.4       Time Fill .......................................    9
          4.4.1  Octet-synchronous ...............................    9
          4.4.2  Asynchronous ....................................    9
       4.5       Transmission Considerations .....................   10
          4.5.1  Octet-synchronous ...............................   10
          4.5.2  Asynchronous ....................................   10


Simpson                                                         [Page i]
RFC 1662                   HDLC-like Framing                   July 1994


    5.     Bit-stuffed framing ...................................   11
       5.1       Flag Sequence ...................................   11
       5.2       Transparency ....................................   11
       5.3       Invalid Frames ..................................   11
       5.4       Time Fill .......................................   11
       5.5       Transmission Considerations .....................   12

    6.     Asynchronous to Synchronous Conversion ................   13

    7.     Additional LCP Configuration Options ..................   14
       7.1       Async-Control-Character-Map (ACCM) ..............   14

    APPENDICES ...................................................   17
    A.     Recommended LCP Options ...............................   17
    B.     Automatic Recognition of PPP Frames ...................   17
    C.     Fast Frame Check Sequence (FCS) Implementation ........   18
       C.1       FCS table generator .............................   18
       C.2       16-bit FCS Computation Method ...................   19
       C.3       32-bit FCS Computation Method ...................   21

    SECURITY CONSIDERATIONS ......................................   24
    REFERENCES ...................................................   24
    ACKNOWLEDGEMENTS .............................................   25
    CHAIR'S ADDRESS ..............................................   25
    EDITOR'S ADDRESS .............................................   25




1.  Introduction

  This specification provides for framing over both bit-oriented and
  octet-oriented synchronous links, and asynchronous links with 8 bits
  of data and no parity.  These links MUST be full-duplex, but MAY be
  either dedicated or circuit-switched.

  An escape mechanism is specified to allow control data such as
  XON/XOFF to be transmitted transparently over the link, and to remove
  spurious control data which may be injected into the link by
  intervening hardware and software.

  Some protocols expect error free transmission, and either provide
  error detection only on a conditional basis, or do not provide it at
  all.  PPP uses the HDLC Frame Check Sequence for error detection.
  This is commonly available in hardware implementations, and a
  software implementation is provided.






Simpson                                                         [Page 1]
RFC 1662                   HDLC-like Framing                   July 1994


1.1.  Specification of Requirements

  In this document, several words are used to signify the requirements
  of the specification.  These words are often capitalized.

  MUST      This word, or the adjective "required", means that the
            definition is an absolute requirement of the specification.

  MUST NOT  This phrase means that the definition is an absolute
            prohibition of the specification.

  SHOULD    This word, or the adjective "recommended", means that there
            may exist valid reasons in particular circumstances to
            ignore this item, but the full implications must be
            understood and carefully weighed before choosing a
            different course.

  MAY       This word, or the adjective "optional", means that this
            item is one of an allowed set of alternatives.  An
            implementation which does not include this option MUST be
            prepared to interoperate with another implementation which
            does include the option.


1.2.  Terminology

  This document frequently uses the following terms:

  datagram  The unit of transmission in the network layer (such as IP).
            A datagram may be encapsulated in one or more packets
            passed to the data link layer.

  frame     The unit of transmission at the data link layer.  A frame
            may include a header and/or a trailer, along with some
            number of units of data.

  packet    The basic unit of encapsulation, which is passed across the
            interface between the network layer and the data link
            layer.  A packet is usually mapped to a frame; the
            exceptions are when data link layer fragmentation is being
            performed, or when multiple packets are incorporated into a
            single frame.

  peer      The other end of the point-to-point link.

  silently discard
            The implementation discards the packet without further
            processing.  The implementation SHOULD provide the
            capability of logging the error, including the contents of
            the silently discarded packet, and SHOULD record the event
            in a statistics counter.


Simpson                                                         [Page 2]
RFC 1662                   HDLC-like Framing                   July 1994


2.  Physical Layer Requirements

  PPP is capable of operating across most DTE/DCE interfaces (such as,
  EIA RS-232-E, EIA RS-422, and CCITT V.35).  The only absolute
  requirement imposed by PPP is the provision of a full-duplex circuit,
  either dedicated or circuit-switched, which can operate in either an
  asynchronous (start/stop), bit-synchronous, or octet-synchronous
  mode, transparent to PPP Data Link Layer frames.

  Interface Format

     PPP presents an octet interface to the physical layer.  There is
     no provision for sub-octets to be supplied or accepted.

  Transmission Rate

     PPP does not impose any restrictions regarding transmission rate,
     other than that of the particular DTE/DCE interface.

  Control Signals

     PPP does not require the use of control signals, such as Request
     To Send (RTS), Clear To Send (CTS), Data Carrier Detect (DCD), and
     Data Terminal Ready (DTR).

     When available, using such signals can allow greater functionality
     and performance.  In particular, such signals SHOULD be used to
     signal the Up and Down events in the LCP Option Negotiation
     Automaton [1].  When such signals are not available, the
     implementation MUST signal the Up event to LCP upon
     initialization, and SHOULD NOT signal the Down event.

     Because signalling is not required, the physical layer MAY be
     decoupled from the data link layer, hiding the transient details
     of the physical transport.  This has implications for mobility in
     cellular radio networks, and other rapidly switching links.

     When moving from cell to cell within the same zone, an
     implementation MAY choose to treat the entire zone as a single
     link, even though transmission is switched among several
     frequencies.  The link is considered to be with the central
     control unit for the zone, rather than the individual cell
     transceivers.  However, the link SHOULD re-establish its
     configuration whenever the link is switched to a different
     administration.

     Due to the bursty nature of data traffic, some implementations
     have choosen to disconnect the physical layer during periods of



Simpson                                                         [Page 3]
RFC 1662                   HDLC-like Framing                   July 1994


     inactivity, and reconnect when traffic resumes, without informing
     the data link layer.  Robust implementations should avoid using
     this trick over-zealously, since the price for decreased setup
     latency is decreased security.  Implementations SHOULD signal the
     Down event whenever "significant time" has elapsed since the link
     was disconnected.  The value for "significant time" is a matter of
     considerable debate, and is based on the tariffs, call setup
     times, and security concerns of the installation.



3.  The Data Link Layer

  PPP uses the principles described in ISO 3309-1979 HDLC frame
  structure, most recently the fourth edition 3309:1991 [2], which
  specifies modifications to allow HDLC use in asynchronous
  environments.

  The PPP control procedures use the Control field encodings described
  in ISO 4335-1979 HDLC elements of procedures, most recently the
  fourth edition 4335:1991 [4].

     This should not be construed to indicate that every feature of the
     above recommendations are included in PPP.  Each feature included
     is explicitly described in the following sections.

  To remain consistent with standard Internet practice, and avoid
  confusion for people used to reading RFCs, all binary numbers in the
  following descriptions are in Most Significant Bit to Least
  Significant Bit order, reading from left to right, unless otherwise
  indicated.  Note that this is contrary to standard ISO and CCITT
  practice which orders bits as transmitted (network bit order).  Keep
  this in mind when comparing this document with the international
  standards documents.

















Simpson                                                         [Page 4]
RFC 1662                   HDLC-like Framing                   July 1994


3.1.  Frame Format

  A summary of the PPP HDLC-like frame structure is shown below.  This
  figure does not include bits inserted for synchronization (such as
  start and stop bits for asynchronous links), nor any bits or octets
  inserted for transparency.  The fields are transmitted from left to
  right.

          +----------+----------+----------+
          |   Flag   | Address  | Control  |
          | 01111110 | 11111111 | 00000011 |
          +----------+----------+----------+
          +----------+-------------+---------+
          | Protocol | Information | Padding |
          | 8/16 bits|      *      |    *    |
          +----------+-------------+---------+
          +----------+----------+-----------------
          |   FCS    |   Flag   | Inter-frame Fill
          |16/32 bits| 01111110 | or next Address
          +----------+----------+-----------------

  The Protocol, Information and Padding fields are described in the
  Point-to-Point Protocol Encapsulation [1].

  Flag Sequence

     Each frame begins and ends with a Flag Sequence, which is the
     binary sequence 01111110 (hexadecimal 0x7e).  All implementations
     continuously check for this flag, which is used for frame
     synchronization.

     Only one Flag Sequence is required between two frames.  Two
     consecutive Flag Sequences constitute an empty frame, which is
     silently discarded, and not counted as a FCS error.

  Address Field

     The Address field is a single octet, which contains the binary
     sequence 11111111 (hexadecimal 0xff), the All-Stations address.
     Individual station addresses are not assigned.  The All-Stations
     address MUST always be recognized and received.

     The use of other address lengths and values may be defined at a
     later time, or by prior agreement.  Frames with unrecognized
     Addresses SHOULD be silently discarded.






Simpson                                                         [Page 5]
RFC 1662                   HDLC-like Framing                   July 1994


  Control Field

     The Control field is a single octet, which contains the binary
     sequence 00000011 (hexadecimal 0x03), the Unnumbered Information
     (UI) command with the Poll/Final (P/F) bit set to zero.

     The use of other Control field values may be defined at a later
     time, or by prior agreement.  Frames with unrecognized Control
     field values SHOULD be silently discarded.

  Frame Check Sequence (FCS) Field

     The Frame Check Sequence field defaults to 16 bits (two octets).
     The FCS is transmitted least significant octet first, which
     contains the coefficient of the highest term.

     A 32-bit (four octet) FCS is also defined.  Its use may be
     negotiated as described in "PPP LCP Extensions" [5].

     The use of other FCS lengths may be defined at a later time, or by
     prior agreement.

     The FCS field is calculated over all bits of the Address, Control,
     Protocol, Information and Padding fields, not including any start
     and stop bits (asynchronous) nor any bits (synchronous) or octets
     (asynchronous or synchronous) inserted for transparency.  This
     also does not include the Flag Sequences nor the FCS field itself.

        When octets are received which are flagged in the Async-
        Control-Character-Map, they are discarded before calculating
        the FCS.

     For more information on the specification of the FCS, see the
     Appendices.

  The end of the Information and Padding fields is found by locating
  the closing Flag Sequence and removing the Frame Check Sequence
  field.













Simpson                                                         [Page 6]
RFC 1662                   HDLC-like Framing                   July 1994


3.2.  Modification of the Basic Frame

  The Link Control Protocol can negotiate modifications to the standard
  HDLC-like frame structure.  However, modified frames will always be
  clearly distinguishable from standard frames.

  Address-and-Control-Field-Compression

     When using the standard HDLC-like framing, the Address and Control
     fields contain the hexadecimal values 0xff and 0x03 respectively.
     When other Address or Control field values are in use, Address-
     and-Control-Field-Compression MUST NOT be negotiated.

     On transmission, compressed Address and Control fields are simply
     omitted.

     On reception, the Address and Control fields are decompressed by
     examining the first two octets.  If they contain the values 0xff
     and 0x03, they are assumed to be the Address and Control fields.
     If not, it is assumed that the fields were compressed and were not
     transmitted.

        By definition, the first octet of a two octet Protocol field
        will never be 0xff (since it is not even).  The Protocol field
        value 0x00ff is not allowed (reserved) to avoid ambiguity when
        Protocol-Field-Compression is enabled and the first Information
        field octet is 0x03.
























Simpson                                                         [Page 7]
RFC 1662                   HDLC-like Framing                   July 1994


4.  Octet-stuffed framing

  This chapter summarizes the use of HDLC-like framing with 8-bit
  asynchronous and octet-synchronous links.



4.1.  Flag Sequence

  The Flag Sequence indicates the beginning or end of a frame.  The
  octet stream is examined on an octet-by-octet basis for the value
  01111110 (hexadecimal 0x7e).



4.2.  Transparency

  An octet stuffing procedure is used.  The Control Escape octet is
  defined as binary 01111101 (hexadecimal 0x7d), most significant bit
  first.

  As a minimum, sending implementations MUST escape the Flag Sequence
  and Control Escape octets.

  After FCS computation, the transmitter examines the entire frame
  between the two Flag Sequences.  Each Flag Sequence, Control Escape
  octet, and any octet which is flagged in the sending Async-Control-
  Character-Map (ACCM), is replaced by a two octet sequence consisting
  of the Control Escape octet followed by the original octet
  exclusive-or'd with hexadecimal 0x20.

     This is bit 5 complemented, where the bit positions are numbered
     76543210 (the 6th bit as used in ISO numbered 87654321 -- BEWARE
     when comparing documents).

  Receiving implementations MUST correctly process all Control Escape
  sequences.

  On reception, prior to FCS computation, each octet with value less
  than hexadecimal 0x20 is checked.  If it is flagged in the receiving
  ACCM, it is simply removed (it may have been inserted by intervening
  data communications equipment).  Each Control Escape octet is also
  removed, and the following octet is exclusive-or'd with hexadecimal
  0x20, unless it is the Flag Sequence (which aborts a frame).

  A few examples may make this more clear.  Escaped data is transmitted
  on the link as follows:




Simpson                                                         [Page 8]
RFC 1662                   HDLC-like Framing                   July 1994



     0x7e is encoded as 0x7d, 0x5e.    (Flag Sequence)
     0x7d is encoded as 0x7d, 0x5d.    (Control Escape)
     0x03 is encoded as 0x7d, 0x23.    (ETX)

  Some modems with software flow control may intercept outgoing DC1 and
  DC3 ignoring the 8th (parity) bit.  This data would be transmitted on
  the link as follows:

     0x11 is encoded as 0x7d, 0x31.    (XON)
     0x13 is encoded as 0x7d, 0x33.    (XOFF)
     0x91 is encoded as 0x7d, 0xb1.    (XON with parity set)
     0x93 is encoded as 0x7d, 0xb3.    (XOFF with parity set)




4.3.  Invalid Frames

  Frames which are too short (less than 4 octets when using the 16-bit
  FCS), or which end with a Control Escape octet followed immediately
  by a closing Flag Sequence, or in which octet-framing is violated (by
  transmitting a "0" stop bit where a "1" bit is expected), are
  silently discarded, and not counted as a FCS error.



4.4.  Time Fill

4.4.1.  Octet-synchronous

  There is no provision for inter-octet time fill.

  The Flag Sequence MUST be transmitted during inter-frame time fill.


4.4.2.  Asynchronous

  Inter-octet time fill MUST be accomplished by transmitting continuous
  "1" bits (mark-hold state).

  Inter-frame time fill can be viewed as extended inter-octet time
  fill.  Doing so can save one octet for every frame, decreasing delay
  and increasing bandwidth.  This is possible since a Flag Sequence may
  serve as both a frame end and a frame begin.  After having received
  any frame, an idle receiver will always be in a frame begin state.




Simpson                                                         [Page 9]
RFC 1662                   HDLC-like Framing                   July 1994


  Robust transmitters should avoid using this trick over-zealously,
  since the price for decreased delay is decreased reliability.  Noisy
  links may cause the receiver to receive garbage characters and
  interpret them as part of an incoming frame.  If the transmitter does
  not send a new opening Flag Sequence before sending the next frame,
  then that frame will be appended to the noise characters causing an
  invalid frame (with high reliability).

  It is suggested that implementations will achieve the best results by
  always sending an opening Flag Sequence if the new frame is not
  back-to-back with the last.  Transmitters SHOULD send an open Flag
  Sequence whenever "appreciable time" has elapsed after the prior
  closing Flag Sequence.  The maximum value for "appreciable time" is
  likely to be no greater than the typing rate of a slow typist, about
  1 second.



4.5.  Transmission Considerations

4.5.1.  Octet-synchronous

  The definition of various encodings and scrambling is the
  responsibility of the DTE/DCE equipment in use, and is outside the
  scope of this specification.


4.5.2.  Asynchronous

  All octets are transmitted least significant bit first, with one
  start bit, eight bits of data, and one stop bit.  There is no
  provision for seven bit asynchronous links.


















Simpson                                                        [Page 10]
RFC 1662                   HDLC-like Framing                   July 1994


5.  Bit-stuffed framing

  This chapter summarizes the use of HDLC-like framing with bit-
  synchronous links.



5.1.  Flag Sequence

  The Flag Sequence indicates the beginning or end of a frame, and is
  used for frame synchronization.  The bit stream is examined on a
  bit-by-bit basis for the binary sequence 01111110 (hexadecimal 0x7e).

  The "shared zero mode" Flag Sequence "011111101111110" SHOULD NOT be
  used.  When not avoidable, such an implementation MUST ensure that
  the first Flag Sequence detected (the end of the frame) is promptly
  communicated to the link layer.  Use of the shared zero mode hinders
  interoperability with bit-synchronous to asynchronous and bit-
  synchronous to octet-synchronous converters.



5.2.  Transparency

  After FCS computation, the transmitter examines the entire frame
  between the two Flag Sequences.  A "0" bit is inserted after all
  sequences of five contiguous "1" bits (including the last 5 bits of
  the FCS) to ensure that a Flag Sequence is not simulated.

  On reception, prior to FCS computation, any "0" bit that directly
  follows five contiguous "1" bits is discarded.



5.3.  Invalid Frames

  Frames which are too short (less than 4 octets when using the 16-bit
  FCS), or which end with a sequence of more than six "1" bits, are
  silently discarded, and not counted as a FCS error.



5.4.  Time Fill

  There is no provision for inter-octet time fill.

  The Flag Sequence SHOULD be transmitted during inter-frame time fill.
  However, certain types of circuit-switched links require the use of



Simpson                                                        [Page 11]
RFC 1662                   HDLC-like Framing                   July 1994


  mark idle (continuous ones), particularly those that calculate
  accounting based on periods of bit activity.  When mark idle is used
  on a bit-synchronous link, the implementation MUST ensure at least 15
  consecutive "1" bits between Flags during the idle period, and that
  the Flag Sequence is always generated at the beginning of a frame
  after an idle period.

     This differs from practice in ISO 3309, which allows 7 to 14 bit
     mark idle.



5.5.  Transmission Considerations

  All octets are transmitted least significant bit first.

  The definition of various encodings and scrambling is the
  responsibility of the DTE/DCE equipment in use, and is outside the
  scope of this specification.

  While PPP will operate without regard to the underlying
  representation of the bit stream, lack of standards for transmission
  will hinder interoperability as surely as lack of data link
  standards.  At speeds of 56 Kbps through 2.0 Mbps, NRZ is currently
  most widely available, and on that basis is recommended as a default.

  When configuration of the encoding is allowed, NRZI is recommended as
  an alternative, because of its relative immunity to signal inversion
  configuration errors, and instances when it MAY allow connection
  without an expensive DSU/CSU.  Unfortunately, NRZI encoding
  exacerbates the missing x1 factor of the 16-bit FCS, so that one
  error in 2**15 goes undetected (instead of one in 2**16), and triple
  errors are not detected.  Therefore, when NRZI is in use, it is
  recommended that the 32-bit FCS be negotiated, which includes the x1
  factor.

  At higher speeds of up to 45 Mbps, some implementors have chosen the
  ANSI High Speed Synchronous Interface [HSSI].  While this experience
  is currently limited, implementors are encouraged to cooperate in
  choosing transmission encoding.











Simpson                                                        [Page 12]
RFC 1662                   HDLC-like Framing                   July 1994


6.  Asynchronous to Synchronous Conversion

  There may be some use of asynchronous-to-synchronous converters (some
  built into modems and cellular interfaces), resulting in an
  asynchronous PPP implementation on one end of a link and a
  synchronous implementation on the other.  It is the responsibility of
  the converter to do all stuffing conversions during operation.

  To enable this functionality, synchronous PPP implementations MUST
  always respond to the Async-Control-Character-Map Configuration
  Option with the LCP Configure-Ack.  However, acceptance of the
  Configuration Option does not imply that the synchronous
  implementation will do any ACCM mapping.  Instead, all such octet
  mapping will be performed by the asynchronous-to-synchronous
  converter.




































Simpson                                                        [Page 13]
RFC 1662                   HDLC-like Framing                   July 1994


7.  Additional LCP Configuration Options

  The Configuration Option format and basic options are already defined
  for LCP [1].

  Up-to-date values of the LCP Option Type field are specified in the
  most recent "Assigned Numbers" RFC [10].  This document concerns the
  following values:

     2       Async-Control-Character-Map




7.1.  Async-Control-Character-Map (ACCM)

  Description

     This Configuration Option provides a method to negotiate the use
     of control character transparency on asynchronous links.

     Each end of the asynchronous link maintains two Async-Control-
     Character-Maps.  The receiving ACCM is 32 bits, but the sending
     ACCM may be up to 256 bits.  This results in four distinct ACCMs,
     two in each direction of the link.

     For asynchronous links, the default receiving ACCM is 0xffffffff.
     The default sending ACCM is 0xffffffff, plus the Control Escape
     and Flag Sequence characters themselves, plus whatever other
     outgoing characters are flagged (by prior configuration) as likely
     to be intercepted.

     For other types of links, the default value is 0, since there is
     no need for mapping.

        The default inclusion of all octets less than hexadecimal 0x20
        allows all ASCII control characters [6] excluding DEL (Delete)
        to be transparently communicated through all known data
        communications equipment.

     The transmitter MAY also send octets with values in the range 0x40
     through 0xff (except 0x5e) in Control Escape format.  Since these
     octet values are not negotiable, this does not solve the problem
     of receivers which cannot handle all non-control characters.
     Also, since the technique does not affect the 8th bit, this does
     not solve problems for communications links that can send only 7-
     bit characters.




Simpson                                                        [Page 14]
RFC 1662                   HDLC-like Framing                   July 1994


        Note that this specification differs in detail from later
        amendments, such as 3309:1991/Amendment 2 [3].  However, such
        "extended transparency" is applied only by "prior agreement".
        Use of the transparency methods in this specification
        constitute a prior agreement with respect to PPP.

        For compatibility with 3309:1991/Amendment 2, the transmitter
        MAY escape DEL and ACCM equivalents with the 8th (most
        significant) bit set.  No change is required in the receiving
        algorithm.

        Following ACCM negotiation, the transmitter SHOULD cease
        escaping DEL.

     However, it is rarely necessary to map all control characters, and
     often it is unnecessary to map any control characters.  The
     Configuration Option is used to inform the peer which control
     characters MUST remain mapped when the peer sends them.

     The peer MAY still send any other octets in mapped format, if it
     is necessary because of constraints known to the peer.  The peer
     SHOULD Configure-Nak with the logical union of the sets of mapped
     octets, so that when such octets are spuriously introduced they
     can be ignored on receipt.

  A summary of the Async-Control-Character-Map Configuration Option
  format is shown below.  The fields are transmitted from left to
  right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |               ACCM
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            ACCM (cont)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     2

  Length

     6






Simpson                                                        [Page 15]
RFC 1662                   HDLC-like Framing                   July 1994


  ACCM

     The ACCM field is four octets, and indicates the set of control
     characters to be mapped.  The map is sent most significant octet
     first.

     Each numbered bit corresponds to the octet of the same value.  If
     the bit is cleared to zero, then that octet need not be mapped.
     If the bit is set to one, then that octet MUST remain mapped.  For
     example, if bit 19 is set to zero, then the ASCII control
     character 19 (DC3, Control-S) MAY be sent in the clear.

        Note: The least significant bit of the least significant octet
        (the final octet transmitted) is numbered bit 0, and would map
        to the ASCII control character NUL.




































Simpson                                                        [Page 16]
RFC 1662                   HDLC-like Framing                   July 1994


A.  Recommended LCP Options

  The following Configurations Options are recommended:

  High Speed links

     Magic Number
     Link Quality Monitoring
     No Address and Control Field Compression
     No Protocol Field Compression


  Low Speed or Asynchronous links

     Async Control Character Map
     Magic Number
     Address and Control Field Compression
     Protocol Field Compression



B.  Automatic Recognition of PPP Frames

  It is sometimes desirable to detect PPP frames, for example during a
  login sequence.  The following octet sequences all begin valid PPP
  LCP frames:

     7e ff 03 c0 21
     7e ff 7d 23 c0 21
     7e 7d df 7d 23 c0 21

  Note that the first two forms are not a valid username for Unix.
  However, only the third form generates a correctly checksummed PPP
  frame, whenever 03 and ff are taken as the control characters ETX and
  DEL without regard to parity (they are correct for an even parity
  link) and discarded.

  Many implementations deal with this by putting the interface into
  packet mode when one of the above username patterns are detected
  during login, without examining the initial PPP checksum.  The
  initial incoming PPP frame is discarded, but a Configure-Request is
  sent immediately.









Simpson                                                        [Page 17]
RFC 1662                   HDLC-like Framing                   July 1994


C.  Fast Frame Check Sequence (FCS) Implementation

  The FCS was originally designed with hardware implementations in
  mind.  A serial bit stream is transmitted on the wire, the FCS is
  calculated over the serial data as it goes out, and the complement of
  the resulting FCS is appended to the serial stream, followed by the
  Flag Sequence.

  The receiver has no way of determining that it has finished
  calculating the received FCS until it detects the Flag Sequence.
  Therefore, the FCS was designed so that a particular pattern results
  when the FCS operation passes over the complemented FCS.  A good
  frame is indicated by this "good FCS" value.



C.1.  FCS table generator

  The following code creates the lookup table used to calculate the
  FCS-16.

  /*
   * Generate a FCS-16 table.
   *
   * Drew D. Perkins at Carnegie Mellon University.
   *
   * Code liberally borrowed from Mohsen Banan and D. Hugh Redelmeier.
   */

  /*
   * The FCS-16 generator polynomial: x**0 + x**5 + x**12 + x**16.
   */
  #define P       0x8408


  main()
  {
      register unsigned int b, v;
      register int i;

      printf("typedef unsigned short u16;\n");
      printf("static u16 fcstab[256] = {");
      for (b = 0; ; ) {
          if (b % 8 == 0)
              printf("\n");

          v = b;
          for (i = 8; i--; )



Simpson                                                        [Page 18]
RFC 1662                   HDLC-like Framing                   July 1994


              v = v & 1 ? (v >> 1) ^ P : v >> 1;

          printf("\t0x%04x", v & 0xFFFF);
          if (++b == 256)
              break;
          printf(",");
      }
      printf("\n};\n");
  }



C.2.  16-bit FCS Computation Method

  The following code provides a table lookup computation for
  calculating the Frame Check Sequence as data arrives at the
  interface.  This implementation is based on [7], [8], and [9].

  /*
   * u16 represents an unsigned 16-bit number.  Adjust the typedef for
   * your hardware.
   */
  typedef unsigned short u16;

  /*
   * FCS lookup table as calculated by the table generator.
   */
  static u16 fcstab[256] = {
     0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
     0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
     0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
     0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
     0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
     0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
     0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
     0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
     0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
     0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
     0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
     0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
     0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
     0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
     0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
     0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
     0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
     0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
     0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
     0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,



Simpson                                                        [Page 19]
RFC 1662                   HDLC-like Framing                   July 1994


     0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
     0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
     0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
     0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
     0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
     0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
     0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
     0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
     0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
     0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
     0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
     0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
  };

  #define PPPINITFCS16    0xffff  /* Initial FCS value */
  #define PPPGOODFCS16    0xf0b8  /* Good final FCS value */

  /*
   * Calculate a new fcs given the current fcs and the new data.
   */
  u16 pppfcs16(fcs, cp, len)
      register u16 fcs;
      register unsigned char *cp;
      register int len;
  {
      ASSERT(sizeof (u16) == 2);
      ASSERT(((u16) -1) > 0);
      while (len--)
          fcs = (fcs >> 8) ^ fcstab[(fcs ^ *cp++) & 0xff];

      return (fcs);
  }

  /*
   * How to use the fcs
   */
  tryfcs16(cp, len)
      register unsigned char *cp;
      register int len;
  {
      u16 trialfcs;

      /* add on output */
      trialfcs = pppfcs16( PPPINITFCS16, cp, len );
      trialfcs ^= 0xffff;                 /* complement */
      cp[len] = (trialfcs & 0x00ff);      /* least significant byte first */
      cp[len+1] = ((trialfcs >> 8) & 0x00ff);




Simpson                                                        [Page 20]
RFC 1662                   HDLC-like Framing                   July 1994


      /* check on input */
      trialfcs = pppfcs16( PPPINITFCS16, cp, len + 2 );
      if ( trialfcs == PPPGOODFCS16 )
          printf("Good FCS\n");
  }



C.3.  32-bit FCS Computation Method

  The following code provides a table lookup computation for
  calculating the 32-bit Frame Check Sequence as data arrives at the
  interface.

  /*
   * The FCS-32 generator polynomial: x**0 + x**1 + x**2 + x**4 + x**5
   *                      + x**7 + x**8 + x**10 + x**11 + x**12 + x**16
   *                      + x**22 + x**23 + x**26 + x**32.
   */

  /*
   * u32 represents an unsigned 32-bit number.  Adjust the typedef for
   * your hardware.
   */
  typedef unsigned long u32;

  static u32 fcstab_32[256] =
     {
     0x00000000, 0x77073096, 0xee0e612c, 0x990951ba,
     0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
     0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
     0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
     0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
     0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
     0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec,
     0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
     0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
     0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
     0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940,
     0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
     0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116,
     0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
     0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
     0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
     0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a,
     0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
     0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818,
     0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,



Simpson                                                        [Page 21]
RFC 1662                   HDLC-like Framing                   July 1994


     0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
     0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
     0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c,
     0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
     0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
     0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
     0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
     0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
     0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086,
     0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
     0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4,
     0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
     0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
     0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
     0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
     0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
     0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe,
     0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
     0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
     0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
     0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252,
     0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
     0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60,
     0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
     0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
     0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
     0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04,
     0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
     0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a,
     0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
     0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
     0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
     0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e,
     0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
     0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
     0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
     0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
     0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
     0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0,
     0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
     0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6,
     0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
     0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
     0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
     };

  #define PPPINITFCS32  0xffffffff   /* Initial FCS value */
  #define PPPGOODFCS32  0xdebb20e3   /* Good final FCS value */



Simpson                                                        [Page 22]
RFC 1662                   HDLC-like Framing                   July 1994


  /*
   * Calculate a new FCS given the current FCS and the new data.
   */
  u32 pppfcs32(fcs, cp, len)
      register u32 fcs;
      register unsigned char *cp;
      register int len;
      {
      ASSERT(sizeof (u32) == 4);
      ASSERT(((u32) -1) > 0);
      while (len--)
          fcs = (((fcs) >> 8) ^ fcstab_32[((fcs) ^ (*cp++)) & 0xff]);

      return (fcs);
      }

  /*
   * How to use the fcs
   */
  tryfcs32(cp, len)
      register unsigned char *cp;
      register int len;
  {
      u32 trialfcs;

      /* add on output */
      trialfcs = pppfcs32( PPPINITFCS32, cp, len );
      trialfcs ^= 0xffffffff;             /* complement */
      cp[len] = (trialfcs & 0x00ff);      /* least significant byte first */
      cp[len+1] = ((trialfcs >>= 8) & 0x00ff);
      cp[len+2] = ((trialfcs >>= 8) & 0x00ff);
      cp[len+3] = ((trialfcs >> 8) & 0x00ff);

      /* check on input */
      trialfcs = pppfcs32( PPPINITFCS32, cp, len + 4 );
      if ( trialfcs == PPPGOODFCS32 )
          printf("Good FCS\n");
  }













Simpson                                                        [Page 23]
RFC 1662                   HDLC-like Framing                   July 1994


Security Considerations

  As noted in the Physical Layer Requirements section, the link layer
  might not be informed when the connected state of the physical layer
  has changed.  This results in possible security lapses due to over-
  reliance on the integrity and security of switching systems and
  administrations.  An insertion attack might be undetected.  An
  attacker which is able to spoof the same calling identity might be
  able to avoid link authentication.



References

  [1]   Simpson, W., Editor, "The Point-to-Point Protocol (PPP)",
        STD 50, RFC 1661, Daydreamer, July 1994.

  [2]   ISO/IEC 3309:1991(E), "Information Technology -
        Telecommunications and information exchange between systems -
        High-level data link control (HDLC) procedures - Frame
        structure", International Organization For Standardization,
        Fourth edition 1991-06-01.

  [3]   ISO/IEC 3309:1991/Amd.2:1992(E), "Information Technology -
        Telecommunications and information exchange between systems -
        High-level data link control (HDLC) procedures - Frame
        structure - Amendment 2: Extended transparency options for
        start/stop transmission", International Organization For
        Standardization, 1992-01-15.

  [4]   ISO/IEC 4335:1991(E), "Information Technology -
        Telecommunications and information exchange between systems -
        High-level data link control (HDLC) procedures - Elements of
        procedures", International Organization For Standardization,
        Fourth edition 1991-09-15.

  [5]   Simpson, W., Editor, "PPP LCP Extensions", RFC 1570,
        Daydreamer, January 1994.

  [6]   ANSI X3.4-1977, "American National Standard Code for
        Information Interchange", American National Standards
        Institute, 1977.

  [7]   Perez, "Byte-wise CRC Calculations", IEEE Micro, June 1983.

  [8]   Morse, G., "Calculating CRC's by Bits and Bytes", Byte,
        September 1986.




Simpson                                                        [Page 24]
RFC 1662                   HDLC-like Framing                   July 1994


  [9]   LeVan, J., "A Fast CRC", Byte, November 1987.

  [10]  Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC
        1340, USC/Information Sciences Institute, July 1992.



Acknowledgements

  This document is the product of the Point-to-Point Protocol Working
  Group of the Internet Engineering Task Force (IETF).  Comments should
  be submitted to the [email protected] mailing list.

  This specification is based on previous RFCs, where many
  contributions have been acknowleged.

  The 32-bit FCS example code was provided by Karl Fox (Morning Star
  Technologies).

  Special thanks to Morning Star Technologies for providing computing
  resources and network access support for writing this specification.



Chair's Address

  The working group can be contacted via the current chair:

     Fred Baker
     Advanced Computer Communications
     315 Bollay Drive
     Santa Barbara, California  93117

     [email protected]


Editor's Address

  Questions about this memo can also be directed to:

     William Allen Simpson
     Daydreamer
     Computer Systems Consulting Services
     1384 Fontaine
     Madison Heights, Michigan  48071

     [email protected]
         [email protected]


Simpson                                                        [Page 25]