[Note that this file is a concatenation of more than one RFC.]

RFC:  791







                          INTERNET PROTOCOL


                        DARPA INTERNET PROGRAM

                        PROTOCOL SPECIFICATION



                            September 1981













                             prepared for

              Defense Advanced Research Projects Agency
               Information Processing Techniques Office
                        1400 Wilson Boulevard
                      Arlington, Virginia  22209







                                  by

                    Information Sciences Institute
                  University of Southern California
                          4676 Admiralty Way
                  Marina del Rey, California  90291



September 1981
                                                      Internet Protocol



                          TABLE OF CONTENTS

   PREFACE ........................................................ iii

1.  INTRODUCTION ..................................................... 1

 1.1  Motivation .................................................... 1
 1.2  Scope ......................................................... 1
 1.3  Interfaces .................................................... 1
 1.4  Operation ..................................................... 2

2.  OVERVIEW ......................................................... 5

 2.1  Relation to Other Protocols ................................... 9
 2.2  Model of Operation ............................................ 5
 2.3  Function Description .......................................... 7
 2.4  Gateways ...................................................... 9

3.  SPECIFICATION ................................................... 11

 3.1  Internet Header Format ....................................... 11
 3.2  Discussion ................................................... 23
 3.3  Interfaces ................................................... 31

APPENDIX A:  Examples & Scenarios ................................... 34
APPENDIX B:  Data Transmission Order ................................ 39

GLOSSARY ............................................................ 41

REFERENCES .......................................................... 45





















                                                               [Page i]


                                                         September 1981
Internet Protocol






















































[Page ii]


September 1981
                                                      Internet Protocol



                               PREFACE



This document specifies the DoD Standard Internet Protocol.  This
document is based on six earlier editions of the ARPA Internet Protocol
Specification, and the present text draws heavily from them.  There have
been many contributors to this work both in terms of concepts and in
terms of text.  This edition revises aspects of addressing, error
handling, option codes, and the security, precedence, compartments, and
handling restriction features of the internet protocol.

                                                          Jon Postel

                                                          Editor




































                                                             [Page iii]



                                                         September 1981


RFC:  791
Replaces:  RFC 760
IENs 128, 123, 111,
80, 54, 44, 41, 28, 26

                          INTERNET PROTOCOL

                        DARPA INTERNET PROGRAM
                        PROTOCOL SPECIFICATION



                           1.  INTRODUCTION

1.1.  Motivation

 The Internet Protocol is designed for use in interconnected systems of
 packet-switched computer communication networks.  Such a system has
 been called a "catenet" [1].  The internet protocol provides for
 transmitting blocks of data called datagrams from sources to
 destinations, where sources and destinations are hosts identified by
 fixed length addresses.  The internet protocol also provides for
 fragmentation and reassembly of long datagrams, if necessary, for
 transmission through "small packet" networks.

1.2.  Scope

 The internet protocol is specifically limited in scope to provide the
 functions necessary to deliver a package of bits (an internet
 datagram) from a source to a destination over an interconnected system
 of networks.  There are no mechanisms to augment end-to-end data
 reliability, flow control, sequencing, or other services commonly
 found in host-to-host protocols.  The internet protocol can capitalize
 on the services of its supporting networks to provide various types
 and qualities of service.

1.3.  Interfaces

 This protocol is called on by host-to-host protocols in an internet
 environment.  This protocol calls on local network protocols to carry
 the internet datagram to the next gateway or destination host.

 For example, a TCP module would call on the internet module to take a
 TCP segment (including the TCP header and user data) as the data
 portion of an internet datagram.  The TCP module would provide the
 addresses and other parameters in the internet header to the internet
 module as arguments of the call.  The internet module would then
 create an internet datagram and call on the local network interface to
 transmit the internet datagram.

 In the ARPANET case, for example, the internet module would call on a


                                                               [Page 1]


                                                         September 1981
Internet Protocol
Introduction



 local net module which would add the 1822 leader [2] to the internet
 datagram creating an ARPANET message to transmit to the IMP.  The
 ARPANET address would be derived from the internet address by the
 local network interface and would be the address of some host in the
 ARPANET, that host might be a gateway to other networks.

1.4.  Operation

 The internet protocol implements two basic functions:  addressing and
 fragmentation.

 The internet modules use the addresses carried in the internet header
 to transmit internet datagrams toward their destinations.  The
 selection of a path for transmission is called routing.

 The internet modules use fields in the internet header to fragment and
 reassemble internet datagrams when necessary for transmission through
 "small packet" networks.

 The model of operation is that an internet module resides in each host
 engaged in internet communication and in each gateway that
 interconnects networks.  These modules share common rules for
 interpreting address fields and for fragmenting and assembling
 internet datagrams.  In addition, these modules (especially in
 gateways) have procedures for making routing decisions and other
 functions.

 The internet protocol treats each internet datagram as an independent
 entity unrelated to any other internet datagram.  There are no
 connections or logical circuits (virtual or otherwise).

 The internet protocol uses four key mechanisms in providing its
 service:  Type of Service, Time to Live, Options, and Header Checksum.

 The Type of Service is used to indicate the quality of the service
 desired.  The type of service is an abstract or generalized set of
 parameters which characterize the service choices provided in the
 networks that make up the internet.  This type of service indication
 is to be used by gateways to select the actual transmission parameters
 for a particular network, the network to be used for the next hop, or
 the next gateway when routing an internet datagram.

 The Time to Live is an indication of an upper bound on the lifetime of
 an internet datagram.  It is set by the sender of the datagram and
 reduced at the points along the route where it is processed.  If the
 time to live reaches zero before the internet datagram reaches its
 destination, the internet datagram is destroyed.  The time to live can
 be thought of as a self destruct time limit.


[Page 2]


September 1981
                                                      Internet Protocol
                                                           Introduction



 The Options provide for control functions needed or useful in some
 situations but unnecessary for the most common communications.  The
 options include provisions for timestamps, security, and special
 routing.

 The Header Checksum provides a verification that the information used
 in processing internet datagram has been transmitted correctly.  The
 data may contain errors.  If the header checksum fails, the internet
 datagram is discarded at once by the entity which detects the error.

 The internet protocol does not provide a reliable communication
 facility.  There are no acknowledgments either end-to-end or
 hop-by-hop.  There is no error control for data, only a header
 checksum.  There are no retransmissions.  There is no flow control.

 Errors detected may be reported via the Internet Control Message
 Protocol (ICMP) [3] which is implemented in the internet protocol
 module.
































                                                               [Page 3]


                                                         September 1981
Internet Protocol






















































[Page 4]


September 1981
                                                      Internet Protocol



                             2.  OVERVIEW

2.1.  Relation to Other Protocols

 The following diagram illustrates the place of the internet protocol
 in the protocol hierarchy:


                +------+ +-----+ +-----+     +-----+
                |Telnet| | FTP | | TFTP| ... | ... |
                +------+ +-----+ +-----+     +-----+
                      |   |         |           |
                     +-----+     +-----+     +-----+
                     | TCP |     | UDP | ... | ... |
                     +-----+     +-----+     +-----+
                        |           |           |
                     +--------------------------+----+
                     |    Internet Protocol & ICMP   |
                     +--------------------------+----+
                                    |
                       +---------------------------+
                       |   Local Network Protocol  |
                       +---------------------------+

                        Protocol Relationships

                              Figure 1.

 Internet protocol interfaces on one side to the higher level
 host-to-host protocols and on the other side to the local network
 protocol.  In this context a "local network" may be a small network in
 a building or a large network such as the ARPANET.

2.2.  Model of Operation

 The  model of operation for transmitting a datagram from one
 application program to another is illustrated by the following
 scenario:

   We suppose that this transmission will involve one intermediate
   gateway.

   The sending application program prepares its data and calls on its
   local internet module to send that data as a datagram and passes the
   destination address and other parameters as arguments of the call.

   The internet module prepares a datagram header and attaches the data
   to it.  The internet module determines a local network address for
   this internet address, in this case it is the address of a gateway.


                                                               [Page 5]


                                                         September 1981
Internet Protocol
Overview



   It sends this datagram and the local network address to the local
   network interface.

   The local network interface creates a local network header, and
   attaches the datagram to it, then sends the result via the local
   network.

   The datagram arrives at a gateway host wrapped in the local network
   header, the local network interface strips off this header, and
   turns the datagram over to the internet module.  The internet module
   determines from the internet address that the datagram is to be
   forwarded to another host in a second network.  The internet module
   determines a local net address for the destination host.  It calls
   on the local network interface for that network to send the
   datagram.

   This local network interface creates a local network header and
   attaches the datagram sending the result to the destination host.

   At this destination host the datagram is stripped of the local net
   header by the local network interface and handed to the internet
   module.

   The internet module determines that the datagram is for an
   application program in this host.  It passes the data to the
   application program in response to a system call, passing the source
   address and other parameters as results of the call.


  Application                                           Application
  Program                                                   Program
        \                                                   /
      Internet Module      Internet Module      Internet Module
            \                 /       \                /
            LNI-1          LNI-1      LNI-2         LNI-2
               \           /             \          /
              Local Network 1           Local Network 2



                           Transmission Path

                               Figure 2







[Page 6]


September 1981
                                                      Internet Protocol
                                                               Overview



2.3.  Function Description

 The function or purpose of Internet Protocol is to move datagrams
 through an interconnected set of networks.  This is done by passing
 the datagrams from one internet module to another until the
 destination is reached.  The internet modules reside in hosts and
 gateways in the internet system.  The datagrams are routed from one
 internet module to another through individual networks based on the
 interpretation of an internet address.  Thus, one important mechanism
 of the internet protocol is the internet address.

 In the routing of messages from one internet module to another,
 datagrams may need to traverse a network whose maximum packet size is
 smaller than the size of the datagram.  To overcome this difficulty, a
 fragmentation mechanism is provided in the internet protocol.

 Addressing

   A distinction is made between names, addresses, and routes [4].   A
   name indicates what we seek.  An address indicates where it is.  A
   route indicates how to get there.  The internet protocol deals
   primarily with addresses.  It is the task of higher level (i.e.,
   host-to-host or application) protocols to make the mapping from
   names to addresses.   The internet module maps internet addresses to
   local net addresses.  It is the task of lower level (i.e., local net
   or gateways) procedures to make the mapping from local net addresses
   to routes.

   Addresses are fixed length of four octets (32 bits).  An address
   begins with a network number, followed by local address (called the
   "rest" field).  There are three formats or classes of internet
   addresses:  in class a, the high order bit is zero, the next 7 bits
   are the network, and the last 24 bits are the local address; in
   class b, the high order two bits are one-zero, the next 14 bits are
   the network and the last 16 bits are the local address; in class c,
   the high order three bits are one-one-zero, the next 21 bits are the
   network and the last 8 bits are the local address.

   Care must be taken in mapping internet addresses to local net
   addresses; a single physical host must be able to act as if it were
   several distinct hosts to the extent of using several distinct
   internet addresses.  Some hosts will also have several physical
   interfaces (multi-homing).

   That is, provision must be made for a host to have several physical
   interfaces to the network with each having several logical internet
   addresses.



                                                               [Page 7]


                                                         September 1981
Internet Protocol
Overview



   Examples of address mappings may be found in "Address Mappings" [5].

 Fragmentation

   Fragmentation of an internet datagram is necessary when it
   originates in a local net that allows a large packet size and must
   traverse a local net that limits packets to a smaller size to reach
   its destination.

   An internet datagram can be marked "don't fragment."  Any internet
   datagram so marked is not to be internet fragmented under any
   circumstances.  If internet datagram marked don't fragment cannot be
   delivered to its destination without fragmenting it, it is to be
   discarded instead.

   Fragmentation, transmission and reassembly across a local network
   which is invisible to the internet protocol module is called
   intranet fragmentation and may be used [6].

   The internet fragmentation and reassembly procedure needs to be able
   to break a datagram into an almost arbitrary number of pieces that
   can be later reassembled.  The receiver of the fragments uses the
   identification field to ensure that fragments of different datagrams
   are not mixed.  The fragment offset field tells the receiver the
   position of a fragment in the original datagram.  The fragment
   offset and length determine the portion of the original datagram
   covered by this fragment.  The more-fragments flag indicates (by
   being reset) the last fragment.  These fields provide sufficient
   information to reassemble datagrams.

   The identification field is used to distinguish the fragments of one
   datagram from those of another.  The originating protocol module of
   an internet datagram sets the identification field to a value that
   must be unique for that source-destination pair and protocol for the
   time the datagram will be active in the internet system.  The
   originating protocol module of a complete datagram sets the
   more-fragments flag to zero and the fragment offset to zero.

   To fragment a long internet datagram, an internet protocol module
   (for example, in a gateway), creates two new internet datagrams and
   copies the contents of the internet header fields from the long
   datagram into both new internet headers.  The data of the long
   datagram is divided into two portions on a 8 octet (64 bit) boundary
   (the second portion might not be an integral multiple of 8 octets,
   but the first must be).  Call the number of 8 octet blocks in the
   first portion NFB (for Number of Fragment Blocks).  The first
   portion of the data is placed in the first new internet datagram,
   and the total length field is set to the length of the first


[Page 8]


September 1981
                                                      Internet Protocol
                                                               Overview



   datagram.  The more-fragments flag is set to one.  The second
   portion of the data is placed in the second new internet datagram,
   and the total length field is set to the length of the second
   datagram.  The more-fragments flag carries the same value as the
   long datagram.  The fragment offset field of the second new internet
   datagram is set to the value of that field in the long datagram plus
   NFB.

   This procedure can be generalized for an n-way split, rather than
   the two-way split described.

   To assemble the fragments of an internet datagram, an internet
   protocol module (for example at a destination host) combines
   internet datagrams that all have the same value for the four fields:
   identification, source, destination, and protocol.  The combination
   is done by placing the data portion of each fragment in the relative
   position indicated by the fragment offset in that fragment's
   internet header.  The first fragment will have the fragment offset
   zero, and the last fragment will have the more-fragments flag reset
   to zero.

2.4.  Gateways

 Gateways implement internet protocol to forward datagrams between
 networks.  Gateways also implement the Gateway to Gateway Protocol
 (GGP) [7] to coordinate routing and other internet control
 information.

 In a gateway the higher level protocols need not be implemented and
 the GGP functions are added to the IP module.


                  +-------------------------------+
                  | Internet Protocol & ICMP & GGP|
                  +-------------------------------+
                          |                 |
                +---------------+   +---------------+
                |   Local Net   |   |   Local Net   |
                +---------------+   +---------------+

                          Gateway Protocols

                              Figure 3.







                                                               [Page 9]


                                                         September 1981
Internet Protocol






















































[Page 10]


September 1981
                                                      Internet Protocol



                          3.  SPECIFICATION

3.1.  Internet Header Format

 A summary of the contents of the internet header follows:


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Version|  IHL  |Type of Service|          Total Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Identification        |Flags|      Fragment Offset    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Time to Live |    Protocol   |         Header Checksum       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Source Address                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Destination Address                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Options                    |    Padding    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Example Internet Datagram Header

                              Figure 4.

 Note that each tick mark represents one bit position.

 Version:  4 bits

   The Version field indicates the format of the internet header.  This
   document describes version 4.

 IHL:  4 bits

   Internet Header Length is the length of the internet header in 32
   bit words, and thus points to the beginning of the data.  Note that
   the minimum value for a correct header is 5.












                                                              [Page 11]


                                                         September 1981
Internet Protocol
Specification



 Type of Service:  8 bits

   The Type of Service provides an indication of the abstract
   parameters of the quality of service desired.  These parameters are
   to be used to guide the selection of the actual service parameters
   when transmitting a datagram through a particular network.  Several
   networks offer service precedence, which somehow treats high
   precedence traffic as more important than other traffic (generally
   by accepting only traffic above a certain precedence at time of high
   load).  The major choice is a three way tradeoff between low-delay,
   high-reliability, and high-throughput.

     Bits 0-2:  Precedence.
     Bit    3:  0 = Normal Delay,      1 = Low Delay.
     Bits   4:  0 = Normal Throughput, 1 = High Throughput.
     Bits   5:  0 = Normal Relibility, 1 = High Relibility.
     Bit  6-7:  Reserved for Future Use.

        0     1     2     3     4     5     6     7
     +-----+-----+-----+-----+-----+-----+-----+-----+
     |                 |     |     |     |     |     |
     |   PRECEDENCE    |  D  |  T  |  R  |  0  |  0  |
     |                 |     |     |     |     |     |
     +-----+-----+-----+-----+-----+-----+-----+-----+

       Precedence

         111 - Network Control
         110 - Internetwork Control
         101 - CRITIC/ECP
         100 - Flash Override
         011 - Flash
         010 - Immediate
         001 - Priority
         000 - Routine

   The use of the Delay, Throughput, and Reliability indications may
   increase the cost (in some sense) of the service.  In many networks
   better performance for one of these parameters is coupled with worse
   performance on another.  Except for very unusual cases at most two
   of these three indications should be set.

   The type of service is used to specify the treatment of the datagram
   during its transmission through the internet system.  Example
   mappings of the internet type of service to the actual service
   provided on networks such as AUTODIN II, ARPANET, SATNET, and PRNET
   is given in "Service Mappings" [8].



[Page 12]


September 1981
                                                      Internet Protocol
                                                          Specification



   The Network Control precedence designation is intended to be used
   within a network only.  The actual use and control of that
   designation is up to each network. The Internetwork Control
   designation is intended for use by gateway control originators only.
   If the actual use of these precedence designations is of concern to
   a particular network, it is the responsibility of that network to
   control the access to, and use of, those precedence designations.

 Total Length:  16 bits

   Total Length is the length of the datagram, measured in octets,
   including internet header and data.  This field allows the length of
   a datagram to be up to 65,535 octets.  Such long datagrams are
   impractical for most hosts and networks.  All hosts must be prepared
   to accept datagrams of up to 576 octets (whether they arrive whole
   or in fragments).  It is recommended that hosts only send datagrams
   larger than 576 octets if they have assurance that the destination
   is prepared to accept the larger datagrams.

   The number 576 is selected to allow a reasonable sized data block to
   be transmitted in addition to the required header information.  For
   example, this size allows a data block of 512 octets plus 64 header
   octets to fit in a datagram.  The maximal internet header is 60
   octets, and a typical internet header is 20 octets, allowing a
   margin for headers of higher level protocols.

 Identification:  16 bits

   An identifying value assigned by the sender to aid in assembling the
   fragments of a datagram.

 Flags:  3 bits

   Various Control Flags.

     Bit 0: reserved, must be zero
     Bit 1: (DF) 0 = May Fragment,  1 = Don't Fragment.
     Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments.

         0   1   2
       +---+---+---+
       |   | D | M |
       | 0 | F | F |
       +---+---+---+

 Fragment Offset:  13 bits

   This field indicates where in the datagram this fragment belongs.


                                                              [Page 13]


                                                         September 1981
Internet Protocol
Specification



   The fragment offset is measured in units of 8 octets (64 bits).  The
   first fragment has offset zero.

 Time to Live:  8 bits

   This field indicates the maximum time the datagram is allowed to
   remain in the internet system.  If this field contains the value
   zero, then the datagram must be destroyed.  This field is modified
   in internet header processing.  The time is measured in units of
   seconds, but since every module that processes a datagram must
   decrease the TTL by at least one even if it process the datagram in
   less than a second, the TTL must be thought of only as an upper
   bound on the time a datagram may exist.  The intention is to cause
   undeliverable datagrams to be discarded, and to bound the maximum
   datagram lifetime.

 Protocol:  8 bits

   This field indicates the next level protocol used in the data
   portion of the internet datagram.  The values for various protocols
   are specified in "Assigned Numbers" [9].

 Header Checksum:  16 bits

   A checksum on the header only.  Since some header fields change
   (e.g., time to live), this is recomputed and verified at each point
   that the internet header is processed.

   The checksum algorithm is:

     The checksum field is the 16 bit one's complement of the one's
     complement sum of all 16 bit words in the header.  For purposes of
     computing the checksum, the value of the checksum field is zero.

   This is a simple to compute checksum and experimental evidence
   indicates it is adequate, but it is provisional and may be replaced
   by a CRC procedure, depending on further experience.

 Source Address:  32 bits

   The source address.  See section 3.2.

 Destination Address:  32 bits

   The destination address.  See section 3.2.





[Page 14]


September 1981
                                                      Internet Protocol
                                                          Specification



 Options:  variable

   The options may appear or not in datagrams.  They must be
   implemented by all IP modules (host and gateways).  What is optional
   is their transmission in any particular datagram, not their
   implementation.

   In some environments the security option may be required in all
   datagrams.

   The option field is variable in length.  There may be zero or more
   options.  There are two cases for the format of an option:

     Case 1:  A single octet of option-type.

     Case 2:  An option-type octet, an option-length octet, and the
              actual option-data octets.

   The option-length octet counts the option-type octet and the
   option-length octet as well as the option-data octets.

   The option-type octet is viewed as having 3 fields:

     1 bit   copied flag,
     2 bits  option class,
     5 bits  option number.

   The copied flag indicates that this option is copied into all
   fragments on fragmentation.

     0 = not copied
     1 = copied

   The option classes are:

     0 = control
     1 = reserved for future use
     2 = debugging and measurement
     3 = reserved for future use











                                                              [Page 15]


                                                         September 1981
Internet Protocol
Specification



   The following internet options are defined:

     CLASS NUMBER LENGTH DESCRIPTION
     ----- ------ ------ -----------
       0     0      -    End of Option list.  This option occupies only
                         1 octet; it has no length octet.
       0     1      -    No Operation.  This option occupies only 1
                         octet; it has no length octet.
       0     2     11    Security.  Used to carry Security,
                         Compartmentation, User Group (TCC), and
                         Handling Restriction Codes compatible with DOD
                         requirements.
       0     3     var.  Loose Source Routing.  Used to route the
                         internet datagram based on information
                         supplied by the source.
       0     9     var.  Strict Source Routing.  Used to route the
                         internet datagram based on information
                         supplied by the source.
       0     7     var.  Record Route.  Used to trace the route an
                         internet datagram takes.
       0     8      4    Stream ID.  Used to carry the stream
                         identifier.
       2     4     var.  Internet Timestamp.



   Specific Option Definitions

     End of Option List

       +--------+
       |00000000|
       +--------+
         Type=0

       This option indicates the end of the option list.  This might
       not coincide with the end of the internet header according to
       the internet header length.  This is used at the end of all
       options, not the end of each option, and need only be used if
       the end of the options would not otherwise coincide with the end
       of the internet header.

       May be copied, introduced, or deleted on fragmentation, or for
       any other reason.






[Page 16]


September 1981
                                                      Internet Protocol
                                                          Specification



     No Operation

       +--------+
       |00000001|
       +--------+
         Type=1

       This option may be used between options, for example, to align
       the beginning of a subsequent option on a 32 bit boundary.

       May be copied, introduced, or deleted on fragmentation, or for
       any other reason.

     Security

       This option provides a way for hosts to send security,
       compartmentation, handling restrictions, and TCC (closed user
       group) parameters.  The format for this option is as follows:

         +--------+--------+---//---+---//---+---//---+---//---+
         |10000010|00001011|SSS  SSS|CCC  CCC|HHH  HHH|  TCC   |
         +--------+--------+---//---+---//---+---//---+---//---+
          Type=130 Length=11

       Security (S field):  16 bits

         Specifies one of 16 levels of security (eight of which are
         reserved for future use).

           00000000 00000000 - Unclassified
           11110001 00110101 - Confidential
           01111000 10011010 - EFTO
           10111100 01001101 - MMMM
           01011110 00100110 - PROG
           10101111 00010011 - Restricted
           11010111 10001000 - Secret
           01101011 11000101 - Top Secret
           00110101 11100010 - (Reserved for future use)
           10011010 11110001 - (Reserved for future use)
           01001101 01111000 - (Reserved for future use)
           00100100 10111101 - (Reserved for future use)
           00010011 01011110 - (Reserved for future use)
           10001001 10101111 - (Reserved for future use)
           11000100 11010110 - (Reserved for future use)
           11100010 01101011 - (Reserved for future use)





                                                              [Page 17]


                                                         September 1981
Internet Protocol
Specification



       Compartments (C field):  16 bits

         An all zero value is used when the information transmitted is
         not compartmented.  Other values for the compartments field
         may be obtained from the Defense Intelligence Agency.

       Handling Restrictions (H field):  16 bits

         The values for the control and release markings are
         alphanumeric digraphs and are defined in the Defense
         Intelligence Agency Manual DIAM 65-19, "Standard Security
         Markings".

       Transmission Control Code (TCC field):  24 bits

         Provides a means to segregate traffic and define controlled
         communities of interest among subscribers. The TCC values are
         trigraphs, and are available from HQ DCA Code 530.

       Must be copied on fragmentation.  This option appears at most
       once in a datagram.

     Loose Source and Record Route

       +--------+--------+--------+---------//--------+
       |10000011| length | pointer|     route data    |
       +--------+--------+--------+---------//--------+
        Type=131

       The loose source and record route (LSRR) option provides a means
       for the source of an internet datagram to supply routing
       information to be used by the gateways in forwarding the
       datagram to the destination, and to record the route
       information.

       The option begins with the option type code.  The second octet
       is the option length which includes the option type code and the
       length octet, the pointer octet, and length-3 octets of route
       data.  The third octet is the pointer into the route data
       indicating the octet which begins the next source address to be
       processed.  The pointer is relative to this option, and the
       smallest legal value for the pointer is 4.

       A route data is composed of a series of internet addresses.
       Each internet address is 32 bits or 4 octets.  If the pointer is
       greater than the length, the source route is empty (and the
       recorded route full) and the routing is to be based on the
       destination address field.


[Page 18]


September 1981
                                                      Internet Protocol
                                                          Specification



       If the address in destination address field has been reached and
       the pointer is not greater than the length, the next address in
       the source route replaces the address in the destination address
       field, and the recorded route address replaces the source
       address just used, and pointer is increased by four.

       The recorded route address is the internet module's own internet
       address as known in the environment into which this datagram is
       being forwarded.

       This procedure of replacing the source route with the recorded
       route (though it is in the reverse of the order it must be in to
       be used as a source route) means the option (and the IP header
       as a whole) remains a constant length as the datagram progresses
       through the internet.

       This option is a loose source route because the gateway or host
       IP is allowed to use any route of any number of other
       intermediate gateways to reach the next address in the route.

       Must be copied on fragmentation.  Appears at most once in a
       datagram.

     Strict Source and Record Route

       +--------+--------+--------+---------//--------+
       |10001001| length | pointer|     route data    |
       +--------+--------+--------+---------//--------+
        Type=137

       The strict source and record route (SSRR) option provides a
       means for the source of an internet datagram to supply routing
       information to be used by the gateways in forwarding the
       datagram to the destination, and to record the route
       information.

       The option begins with the option type code.  The second octet
       is the option length which includes the option type code and the
       length octet, the pointer octet, and length-3 octets of route
       data.  The third octet is the pointer into the route data
       indicating the octet which begins the next source address to be
       processed.  The pointer is relative to this option, and the
       smallest legal value for the pointer is 4.

       A route data is composed of a series of internet addresses.
       Each internet address is 32 bits or 4 octets.  If the pointer is
       greater than the length, the source route is empty (and the



                                                              [Page 19]


                                                         September 1981
Internet Protocol
Specification



       recorded route full) and the routing is to be based on the
       destination address field.

       If the address in destination address field has been reached and
       the pointer is not greater than the length, the next address in
       the source route replaces the address in the destination address
       field, and the recorded route address replaces the source
       address just used, and pointer is increased by four.

       The recorded route address is the internet module's own internet
       address as known in the environment into which this datagram is
       being forwarded.

       This procedure of replacing the source route with the recorded
       route (though it is in the reverse of the order it must be in to
       be used as a source route) means the option (and the IP header
       as a whole) remains a constant length as the datagram progresses
       through the internet.

       This option is a strict source route because the gateway or host
       IP must send the datagram directly to the next address in the
       source route through only the directly connected network
       indicated in the next address to reach the next gateway or host
       specified in the route.

       Must be copied on fragmentation.  Appears at most once in a
       datagram.

     Record Route

       +--------+--------+--------+---------//--------+
       |00000111| length | pointer|     route data    |
       +--------+--------+--------+---------//--------+
         Type=7

       The record route option provides a means to record the route of
       an internet datagram.

       The option begins with the option type code.  The second octet
       is the option length which includes the option type code and the
       length octet, the pointer octet, and length-3 octets of route
       data.  The third octet is the pointer into the route data
       indicating the octet which begins the next area to store a route
       address.  The pointer is relative to this option, and the
       smallest legal value for the pointer is 4.

       A recorded route is composed of a series of internet addresses.
       Each internet address is 32 bits or 4 octets.  If the pointer is


[Page 20]


September 1981
                                                      Internet Protocol
                                                          Specification



       greater than the length, the recorded route data area is full.
       The originating host must compose this option with a large
       enough route data area to hold all the address expected.  The
       size of the option does not change due to adding addresses.  The
       intitial contents of the route data area must be zero.

       When an internet module routes a datagram it checks to see if
       the record route option is present.  If it is, it inserts its
       own internet address as known in the environment into which this
       datagram is being forwarded into the recorded route begining at
       the octet indicated by the pointer, and increments the pointer
       by four.

       If the route data area is already full (the pointer exceeds the
       length) the datagram is forwarded without inserting the address
       into the recorded route.  If there is some room but not enough
       room for a full address to be inserted, the original datagram is
       considered to be in error and is discarded.  In either case an
       ICMP parameter problem message may be sent to the source
       host [3].

       Not copied on fragmentation, goes in first fragment only.
       Appears at most once in a datagram.

     Stream Identifier

       +--------+--------+--------+--------+
       |10001000|00000010|    Stream ID    |
       +--------+--------+--------+--------+
        Type=136 Length=4

       This option provides a way for the 16-bit SATNET stream
       identifier to be carried through networks that do not support
       the stream concept.

       Must be copied on fragmentation.  Appears at most once in a
       datagram.













                                                              [Page 21]


                                                         September 1981
Internet Protocol
Specification



     Internet Timestamp

       +--------+--------+--------+--------+
       |01000100| length | pointer|oflw|flg|
       +--------+--------+--------+--------+
       |         internet address          |
       +--------+--------+--------+--------+
       |             timestamp             |
       +--------+--------+--------+--------+
       |                 .                 |
                         .
                         .
       Type = 68

       The Option Length is the number of octets in the option counting
       the type, length, pointer, and overflow/flag octets (maximum
       length 40).

       The Pointer is the number of octets from the beginning of this
       option to the end of timestamps plus one (i.e., it points to the
       octet beginning the space for next timestamp).  The smallest
       legal value is 5.  The timestamp area is full when the pointer
       is greater than the length.

       The Overflow (oflw) [4 bits] is the number of IP modules that
       cannot register timestamps due to lack of space.

       The Flag (flg) [4 bits] values are

         0 -- time stamps only, stored in consecutive 32-bit words,

         1 -- each timestamp is preceded with internet address of the
              registering entity,

         3 -- the internet address fields are prespecified.  An IP
              module only registers its timestamp if it matches its own
              address with the next specified internet address.

       The Timestamp is a right-justified, 32-bit timestamp in
       milliseconds since midnight UT.  If the time is not available in
       milliseconds or cannot be provided with respect to midnight UT
       then any time may be inserted as a timestamp provided the high
       order bit of the timestamp field is set to one to indicate the
       use of a non-standard value.

       The originating host must compose this option with a large
       enough timestamp data area to hold all the timestamp information
       expected.  The size of the option does not change due to adding


[Page 22]


September 1981
                                                      Internet Protocol
                                                          Specification



       timestamps.  The intitial contents of the timestamp data area
       must be zero or internet address/zero pairs.

       If the timestamp data area is already full (the pointer exceeds
       the length) the datagram is forwarded without inserting the
       timestamp, but the overflow count is incremented by one.

       If there is some room but not enough room for a full timestamp
       to be inserted, or the overflow count itself overflows, the
       original datagram is considered to be in error and is discarded.
       In either case an ICMP parameter problem message may be sent to
       the source host [3].

       The timestamp option is not copied upon fragmentation.  It is
       carried in the first fragment.  Appears at most once in a
       datagram.

 Padding:  variable

   The internet header padding is used to ensure that the internet
   header ends on a 32 bit boundary.  The padding is zero.

3.2.  Discussion

 The implementation of a protocol must be robust.  Each implementation
 must expect to interoperate with others created by different
 individuals.  While the goal of this specification is to be explicit
 about the protocol there is the possibility of differing
 interpretations.  In general, an implementation must be conservative
 in its sending behavior, and liberal in its receiving behavior.  That
 is, it must be careful to send well-formed datagrams, but must accept
 any datagram that it can interpret (e.g., not object to technical
 errors where the meaning is still clear).

 The basic internet service is datagram oriented and provides for the
 fragmentation of datagrams at gateways, with reassembly taking place
 at the destination internet protocol module in the destination host.
 Of course, fragmentation and reassembly of datagrams within a network
 or by private agreement between the gateways of a network is also
 allowed since this is transparent to the internet protocols and the
 higher-level protocols.  This transparent type of fragmentation and
 reassembly is termed "network-dependent" (or intranet) fragmentation
 and is not discussed further here.

 Internet addresses distinguish sources and destinations to the host
 level and provide a protocol field as well.  It is assumed that each
 protocol will provide for whatever multiplexing is necessary within a
 host.


                                                              [Page 23]


                                                         September 1981
Internet Protocol
Specification



 Addressing

   To provide for flexibility in assigning address to networks and
   allow for the  large number of small to intermediate sized networks
   the interpretation of the address field is coded to specify a small
   number of networks with a large number of host, a moderate number of
   networks with a moderate number of hosts, and a large number of
   networks with a small number of hosts.  In addition there is an
   escape code for extended addressing mode.

   Address Formats:

     High Order Bits   Format                           Class
     ---------------   -------------------------------  -----
           0            7 bits of net, 24 bits of host    a
           10          14 bits of net, 16 bits of host    b
           110         21 bits of net,  8 bits of host    c
           111         escape to extended addressing mode

     A value of zero in the network field means this network.  This is
     only used in certain ICMP messages.  The extended addressing mode
     is undefined.  Both of these features are reserved for future use.

   The actual values assigned for network addresses is given in
   "Assigned Numbers" [9].

   The local address, assigned by the local network, must allow for a
   single physical host to act as several distinct internet hosts.
   That is, there must be a mapping between internet host addresses and
   network/host interfaces that allows several internet addresses to
   correspond to one interface.  It must also be allowed for a host to
   have several physical interfaces and to treat the datagrams from
   several of them as if they were all addressed to a single host.

   Address mappings between internet addresses and addresses for
   ARPANET, SATNET, PRNET, and other networks are described in "Address
   Mappings" [5].

 Fragmentation and Reassembly.

   The internet identification field (ID) is used together with the
   source and destination address, and the protocol fields, to identify
   datagram fragments for reassembly.

   The More Fragments flag bit (MF) is set if the datagram is not the
   last fragment.  The Fragment Offset field identifies the fragment
   location, relative to the beginning of the original unfragmented
   datagram.  Fragments are counted in units of 8 octets.  The


[Page 24]


September 1981
                                                      Internet Protocol
                                                          Specification



   fragmentation strategy is designed so than an unfragmented datagram
   has all zero fragmentation information (MF = 0, fragment offset =
   0).  If an internet datagram is fragmented, its data portion must be
   broken on 8 octet boundaries.

   This format allows 2**13 = 8192 fragments of 8 octets each for a
   total of 65,536 octets.  Note that this is consistent with the the
   datagram total length field (of course, the header is counted in the
   total length and not in the fragments).

   When fragmentation occurs, some options are copied, but others
   remain with the first fragment only.

   Every internet module must be able to forward a datagram of 68
   octets without further fragmentation.  This is because an internet
   header may be up to 60 octets, and the minimum fragment is 8 octets.

   Every internet destination must be able to receive a datagram of 576
   octets either in one piece or in fragments to be reassembled.

   The fields which may be affected by fragmentation include:

     (1) options field
     (2) more fragments flag
     (3) fragment offset
     (4) internet header length field
     (5) total length field
     (6) header checksum

   If the Don't Fragment flag (DF) bit is set, then internet
   fragmentation of this datagram is NOT permitted, although it may be
   discarded.  This can be used to prohibit fragmentation in cases
   where the receiving host does not have sufficient resources to
   reassemble internet fragments.

   One example of use of the Don't Fragment feature is to down line
   load a small host.  A small host could have a boot strap program
   that accepts a datagram stores it in memory and then executes it.

   The fragmentation and reassembly procedures are most easily
   described by examples.  The following procedures are example
   implementations.

   General notation in the following pseudo programs: "=<" means "less
   than or equal", "#" means "not equal", "=" means "equal", "<-" means
   "is set to".  Also, "x to y" includes x and excludes y; for example,
   "4 to 7" would include 4, 5, and 6 (but not 7).



                                                              [Page 25]


                                                         September 1981
Internet Protocol
Specification



   An Example Fragmentation Procedure

     The maximum sized datagram that can be transmitted through the
     next network is called the maximum transmission unit (MTU).

     If the total length is less than or equal the maximum transmission
     unit then submit this datagram to the next step in datagram
     processing; otherwise cut the datagram into two fragments, the
     first fragment being the maximum size, and the second fragment
     being the rest of the datagram.  The first fragment is submitted
     to the next step in datagram processing, while the second fragment
     is submitted to this procedure in case it is still too large.

     Notation:

       FO    -  Fragment Offset
       IHL   -  Internet Header Length
       DF    -  Don't Fragment flag
       MF    -  More Fragments flag
       TL    -  Total Length
       OFO   -  Old Fragment Offset
       OIHL  -  Old Internet Header Length
       OMF   -  Old More Fragments flag
       OTL   -  Old Total Length
       NFB   -  Number of Fragment Blocks
       MTU   -  Maximum Transmission Unit

     Procedure:

       IF TL =< MTU THEN Submit this datagram to the next step
            in datagram processing ELSE IF DF = 1 THEN discard the
       datagram ELSE
       To produce the first fragment:
       (1)  Copy the original internet header;
       (2)  OIHL <- IHL; OTL <- TL; OFO <- FO; OMF <- MF;
       (3)  NFB <- (MTU-IHL*4)/8;
       (4)  Attach the first NFB*8 data octets;
       (5)  Correct the header:
            MF <- 1;  TL <- (IHL*4)+(NFB*8);
            Recompute Checksum;
       (6)  Submit this fragment to the next step in
            datagram processing;
       To produce the second fragment:
       (7)  Selectively copy the internet header (some options
            are not copied, see option definitions);
       (8)  Append the remaining data;
       (9)  Correct the header:
            IHL <- (((OIHL*4)-(length of options not copied))+3)/4;


[Page 26]


September 1981
                                                      Internet Protocol
                                                          Specification



            TL <- OTL - NFB*8 - (OIHL-IHL)*4);
            FO <- OFO + NFB;  MF <- OMF;  Recompute Checksum;
       (10) Submit this fragment to the fragmentation test; DONE.

     In the above procedure each fragment (except the last) was made
     the maximum allowable size.  An alternative might produce less
     than the maximum size datagrams.  For example, one could implement
     a fragmentation procedure that repeatly divided large datagrams in
     half until the resulting fragments were less than the maximum
     transmission unit size.

   An Example Reassembly Procedure

     For each datagram the buffer identifier is computed as the
     concatenation of the source, destination, protocol, and
     identification fields.  If this is a whole datagram (that is both
     the fragment offset and the more fragments  fields are zero), then
     any reassembly resources associated with this buffer identifier
     are released and the datagram is forwarded to the next step in
     datagram processing.

     If no other fragment with this buffer identifier is on hand then
     reassembly resources are allocated.  The reassembly resources
     consist of a data buffer, a header buffer, a fragment block bit
     table, a total data length field, and a timer.  The data from the
     fragment is placed in the data buffer according to its fragment
     offset and length, and bits are set in the fragment block bit
     table corresponding to the fragment blocks received.

     If this is the first fragment (that is the fragment offset is
     zero)  this header is placed in the header buffer.  If this is the
     last fragment ( that is the more fragments field is zero) the
     total data length is computed.  If this fragment completes the
     datagram (tested by checking the bits set in the fragment block
     table), then the datagram is sent to the next step in datagram
     processing; otherwise the timer is set to the maximum of the
     current timer value and the value of the time to live field from
     this fragment; and the reassembly routine gives up control.

     If the timer runs out, the all reassembly resources for this
     buffer identifier are released.  The initial setting of the timer
     is a lower bound on the reassembly waiting time.  This is because
     the waiting time will be increased if the Time to Live in the
     arriving fragment is greater than the current timer value but will
     not be decreased if it is less.  The maximum this timer value
     could reach is the maximum time to live (approximately 4.25
     minutes).  The current recommendation for the initial timer
     setting is 15 seconds.  This may be changed as experience with


                                                              [Page 27]


                                                         September 1981
Internet Protocol
Specification



     this protocol accumulates.  Note that the choice of this parameter
     value is related to the buffer capacity available and the data
     rate of the transmission medium; that is, data rate times timer
     value equals buffer size (e.g., 10Kb/s X 15s = 150Kb).

     Notation:

       FO    -  Fragment Offset
       IHL   -  Internet Header Length
       MF    -  More Fragments flag
       TTL   -  Time To Live
       NFB   -  Number of Fragment Blocks
       TL    -  Total Length
       TDL   -  Total Data Length
       BUFID -  Buffer Identifier
       RCVBT -  Fragment Received Bit Table
       TLB   -  Timer Lower Bound

     Procedure:

       (1)  BUFID <- source|destination|protocol|identification;
       (2)  IF FO = 0 AND MF = 0
       (3)     THEN IF buffer with BUFID is allocated
       (4)             THEN flush all reassembly for this BUFID;
       (5)          Submit datagram to next step; DONE.
       (6)     ELSE IF no buffer with BUFID is allocated
       (7)             THEN allocate reassembly resources
                            with BUFID;
                            TIMER <- TLB; TDL <- 0;
       (8)          put data from fragment into data buffer with
                    BUFID from octet FO*8 to
                                        octet (TL-(IHL*4))+FO*8;
       (9)          set RCVBT bits from FO
                                       to FO+((TL-(IHL*4)+7)/8);
       (10)         IF MF = 0 THEN TDL <- TL-(IHL*4)+(FO*8)
       (11)         IF FO = 0 THEN put header in header buffer
       (12)         IF TDL # 0
       (13)          AND all RCVBT bits from 0
                                            to (TDL+7)/8 are set
       (14)            THEN TL <- TDL+(IHL*4)
       (15)                 Submit datagram to next step;
       (16)                 free all reassembly resources
                            for this BUFID; DONE.
       (17)         TIMER <- MAX(TIMER,TTL);
       (18)         give up until next fragment or timer expires;
       (19) timer expires: flush all reassembly with this BUFID; DONE.

     In the case that two or more fragments contain the same data


[Page 28]


September 1981
                                                      Internet Protocol
                                                          Specification



     either identically or through a partial overlap, this procedure
     will use the more recently arrived copy in the data buffer and
     datagram delivered.

 Identification

   The choice of the Identifier for a datagram is based on the need to
   provide a way to uniquely identify the fragments of a particular
   datagram.  The protocol module assembling fragments judges fragments
   to belong to the same datagram if they have the same source,
   destination, protocol, and Identifier.  Thus, the sender must choose
   the Identifier to be unique for this source, destination pair and
   protocol for the time the datagram (or any fragment of it) could be
   alive in the internet.

   It seems then that a sending protocol module needs to keep a table
   of Identifiers, one entry for each destination it has communicated
   with in the last maximum packet lifetime for the internet.

   However, since the Identifier field allows 65,536 different values,
   some host may be able to simply use unique identifiers independent
   of destination.

   It is appropriate for some higher level protocols to choose the
   identifier. For example, TCP protocol modules may retransmit an
   identical TCP segment, and the probability for correct reception
   would be enhanced if the retransmission carried the same identifier
   as the original transmission since fragments of either datagram
   could be used to construct a correct TCP segment.

 Type of Service

   The type of service (TOS) is for internet service quality selection.
   The type of service is specified along the abstract parameters
   precedence, delay, throughput, and reliability.  These abstract
   parameters are to be mapped into the actual service parameters of
   the particular networks the datagram traverses.

   Precedence.  An independent measure of the importance of this
   datagram.

   Delay.  Prompt delivery is important for datagrams with this
   indication.

   Throughput.  High data rate is important for datagrams with this
   indication.




                                                              [Page 29]


                                                         September 1981
Internet Protocol
Specification



   Reliability.  A higher level of effort to ensure delivery is
   important for datagrams with this indication.

   For example, the ARPANET has a priority bit, and a choice between
   "standard" messages (type 0) and "uncontrolled" messages (type 3),
   (the choice between single packet and multipacket messages can also
   be considered a service parameter). The uncontrolled messages tend
   to be less reliably delivered and suffer less delay.  Suppose an
   internet datagram is to be sent through the ARPANET.  Let the
   internet type of service be given as:

     Precedence:    5
     Delay:         0
     Throughput:    1
     Reliability:   1

   In this example, the mapping of these parameters to those available
   for the ARPANET would be  to set the ARPANET priority bit on since
   the Internet precedence is in the upper half of its range, to select
   standard messages since the throughput and reliability requirements
   are indicated and delay is not.  More details are given on service
   mappings in "Service Mappings" [8].

 Time to Live

   The time to live is set by the sender to the maximum time the
   datagram is allowed to be in the internet system.  If the datagram
   is in the internet system longer than the time to live, then the
   datagram must be destroyed.

   This field must be decreased at each point that the internet header
   is processed to reflect the time spent processing the datagram.
   Even if no local information is available on the time actually
   spent, the field must be decremented by 1.  The time is measured in
   units of seconds (i.e. the value 1 means one second).  Thus, the
   maximum time to live is 255 seconds or 4.25 minutes.  Since every
   module that processes a datagram must decrease the TTL by at least
   one even if it process the datagram in less than a second, the TTL
   must be thought of only as an upper bound on the time a datagram may
   exist.  The intention is to cause undeliverable datagrams to be
   discarded, and to bound the maximum datagram lifetime.

   Some higher level reliable connection protocols are based on
   assumptions that old duplicate datagrams will not arrive after a
   certain time elapses.  The TTL is a way for such protocols to have
   an assurance that their assumption is met.




[Page 30]


September 1981
                                                      Internet Protocol
                                                          Specification



 Options

   The options are optional in each datagram, but required in
   implementations.  That is, the presence or absence of an option is
   the choice of the sender, but each internet module must be able to
   parse every option.  There can be several options present in the
   option field.

   The options might not end on a 32-bit boundary.  The internet header
   must be filled out with octets of zeros.  The first of these would
   be interpreted as the end-of-options option, and the remainder as
   internet header padding.

   Every internet module must be able to act on every option.  The
   Security Option is required if classified, restricted, or
   compartmented traffic is to be passed.

 Checksum

   The internet header checksum is recomputed if the internet header is
   changed.  For example, a reduction of the time to live, additions or
   changes to internet options, or due to fragmentation.  This checksum
   at the internet level is intended to protect the internet header
   fields from transmission errors.

   There are some applications where a few data bit errors are
   acceptable while retransmission delays are not.  If the internet
   protocol enforced data correctness such applications could not be
   supported.

 Errors

   Internet protocol errors may be reported via the ICMP messages [3].

3.3.  Interfaces

 The functional description of user interfaces to the IP is, at best,
 fictional, since every operating system will have different
 facilities.  Consequently, we must warn readers that different IP
 implementations may have different user interfaces.  However, all IPs
 must provide a certain minimum  set of services to guarantee that all
 IP implementations can support the same protocol hierarchy.  This
 section specifies the functional interfaces required of all IP
 implementations.

 Internet protocol interfaces on one side to the local network and on
 the other side to either a higher level protocol or an application
 program.  In the following, the higher level protocol or application


                                                              [Page 31]


                                                         September 1981
Internet Protocol
Specification



 program (or even a gateway program) will be called the "user" since it
 is using the internet module.  Since internet protocol is a datagram
 protocol, there is minimal memory or state maintained between datagram
 transmissions, and each call on the internet protocol module by the
 user supplies all information necessary for the IP to perform the
 service requested.

 An Example Upper Level Interface

 The following two example calls satisfy the requirements for the user
 to internet protocol module communication ("=>" means returns):

 SEND (src, dst, prot, TOS, TTL, BufPTR, len, Id, DF, opt => result)

   where:

     src = source address
     dst = destination address
     prot = protocol
     TOS = type of service
     TTL = time to live
     BufPTR = buffer pointer
     len = length of buffer
     Id  = Identifier
     DF = Don't Fragment
     opt = option data
     result = response
       OK = datagram sent ok
       Error = error in arguments or local network error

   Note that the precedence is included in the TOS and the
   security/compartment is passed as an option.

 RECV (BufPTR, prot, => result, src, dst, TOS, len, opt)

   where:

     BufPTR = buffer pointer
     prot = protocol
     result = response
       OK = datagram received ok
       Error = error in arguments
     len = length of buffer
     src = source address
     dst = destination address
     TOS = type of service
     opt = option data



[Page 32]


September 1981
                                                      Internet Protocol
                                                          Specification



 When the user sends a datagram, it executes the SEND call supplying
 all the arguments.  The internet protocol module, on receiving this
 call, checks the arguments and prepares and sends the message.  If the
 arguments are good and the datagram is accepted by the local network,
 the call returns successfully.  If either the arguments are bad, or
 the datagram is not accepted by the local network, the call returns
 unsuccessfully.  On unsuccessful returns, a reasonable report must be
 made as to the cause of the problem, but the details of such reports
 are up to individual implementations.

 When a datagram arrives at the internet protocol module from the local
 network, either there is a pending RECV call from the user addressed
 or there is not.  In the first case, the pending call is satisfied by
 passing the information from the datagram to the user.  In the second
 case, the user addressed is notified of a pending datagram.  If the
 user addressed does not exist, an ICMP error message is returned to
 the sender, and the data is discarded.

 The notification of a user may be via a pseudo interrupt or similar
 mechanism, as appropriate in the particular operating system
 environment of the implementation.

 A user's RECV call may then either be immediately satisfied by a
 pending datagram, or the call may be pending until a datagram arrives.

 The source address is included in the send call in case the sending
 host has several addresses (multiple physical connections or logical
 addresses).  The internet module must check to see that the source
 address is one of the legal address for this host.

 An implementation may also allow or require a call to the internet
 module to indicate interest in or reserve exclusive use of a class of
 datagrams (e.g., all those with a certain value in the protocol
 field).

 This section functionally characterizes a USER/IP interface.  The
 notation used is similar to most procedure of function calls in high
 level languages, but this usage is not meant to rule out trap type
 service calls (e.g., SVCs, UUOs, EMTs), or any other form of
 interprocess communication.










                                                              [Page 33]


                                                         September 1981
Internet Protocol



APPENDIX A:  Examples & Scenarios

Example 1:

 This is an example of the minimal data carrying internet datagram:


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Ver= 4 |IHL= 5 |Type of Service|        Total Length = 21      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Identification = 111     |Flg=0|   Fragment Offset = 0   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Time = 123  |  Protocol = 1 |        header checksum        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         source address                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      destination address                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     data      |
  +-+-+-+-+-+-+-+-+

                      Example Internet Datagram

                              Figure 5.

 Note that each tick mark represents one bit position.

 This is a internet datagram in version 4 of internet protocol; the
 internet header consists of five 32 bit words, and the total length of
 the datagram is 21 octets.  This datagram is a complete datagram (not
 a fragment).


















[Page 34]


September 1981
                                                      Internet Protocol



Example 2:

 In this example, we show first a moderate size internet datagram (452
 data octets), then two internet fragments that might result from the
 fragmentation of this datagram if the maximum sized transmission
 allowed were 280 octets.


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Ver= 4 |IHL= 5 |Type of Service|       Total Length = 472      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Identification = 111      |Flg=0|     Fragment Offset = 0 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Time = 123  | Protocol = 6  |        header checksum        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         source address                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      destination address                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             data                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             data                              |
  \                                                               \
  \                                                               \
  |                             data                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             data              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Example Internet Datagram

                              Figure 6.

















                                                              [Page 35]


                                                         September 1981
Internet Protocol



 Now the first fragment that results from splitting the datagram after
 256 data octets.


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Ver= 4 |IHL= 5 |Type of Service|       Total Length = 276      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Identification = 111      |Flg=1|     Fragment Offset = 0 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Time = 119  | Protocol = 6  |        Header Checksum        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         source address                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      destination address                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             data                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             data                              |
  \                                                               \
  \                                                               \
  |                             data                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             data                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Example Internet Fragment

                              Figure 7.





















[Page 36]


September 1981
                                                      Internet Protocol



 And the second fragment.


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Ver= 4 |IHL= 5 |Type of Service|       Total Length = 216      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Identification = 111      |Flg=0|  Fragment Offset  =  32 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Time = 119  | Protocol = 6  |        Header Checksum        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         source address                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      destination address                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             data                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             data                              |
  \                                                               \
  \                                                               \
  |                             data                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            data               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Example Internet Fragment

                              Figure 8.






















                                                              [Page 37]


                                                         September 1981
Internet Protocol



Example 3:

 Here, we show an example of a datagram containing options:


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Ver= 4 |IHL= 8 |Type of Service|       Total Length = 576      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Identification = 111    |Flg=0|     Fragment Offset = 0 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Time = 123  |  Protocol = 6 |       Header Checksum         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        source address                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      destination address                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Opt. Code = x | Opt.  Len.= 3 | option value  | Opt. Code = x |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Opt. Len. = 4 |           option value        | Opt. Code = 1 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Opt. Code = y | Opt. Len. = 3 |  option value | Opt. Code = 0 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             data                              |
  \                                                               \
  \                                                               \
  |                             data                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             data                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Example Internet Datagram

                              Figure 9.
















[Page 38]


September 1981
                                                      Internet Protocol



APPENDIX B:  Data Transmission Order

The order of transmission of the header and data described in this
document is resolved to the octet level.  Whenever a diagram shows a
group of octets, the order of transmission of those octets is the normal
order in which they are read in English.  For example, in the following
diagram the octets are transmitted in the order they are numbered.


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       1       |       2       |       3       |       4       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       5       |       6       |       7       |       8       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       9       |      10       |      11       |      12       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Transmission Order of Bytes

                              Figure 10.

Whenever an octet represents a numeric quantity the left most bit in the
diagram is the high order or most significant bit.  That is, the bit
labeled 0 is the most significant bit.  For example, the following
diagram represents the value 170 (decimal).


                           0 1 2 3 4 5 6 7
                          +-+-+-+-+-+-+-+-+
                          |1 0 1 0 1 0 1 0|
                          +-+-+-+-+-+-+-+-+

                         Significance of Bits

                              Figure 11.

Similarly, whenever a multi-octet field represents a numeric quantity
the left most bit of the whole field is the most significant bit.  When
a multi-octet quantity is transmitted the most significant octet is
transmitted first.









                                                              [Page 39]


                                                         September 1981
Internet Protocol






















































[Page 40]


September 1981
                                                      Internet Protocol



                               GLOSSARY



1822
         BBN Report 1822, "The Specification of the Interconnection of
         a Host and an IMP".  The specification of interface between a
         host and the ARPANET.

ARPANET leader
         The control information on an ARPANET message at the host-IMP
         interface.

ARPANET message
         The unit of transmission between a host and an IMP in the
         ARPANET.  The maximum size is about 1012 octets (8096 bits).

ARPANET packet
         A unit of transmission used internally in the ARPANET between
         IMPs. The maximum size is about 126 octets (1008 bits).

Destination
         The destination address, an internet header field.

DF
         The Don't Fragment bit carried in the flags field.

Flags
         An internet header field carrying various control flags.

Fragment Offset
         This internet header field indicates where in the internet
         datagram a fragment belongs.

GGP
         Gateway to Gateway Protocol, the protocol used primarily
         between gateways to control routing and other gateway
         functions.

header
         Control information at the beginning of a message, segment,
         datagram, packet or block of data.

ICMP
         Internet Control Message Protocol, implemented in the internet
         module, the ICMP is used from gateways to hosts and between
         hosts to report errors and make routing suggestions.




                                                              [Page 41]


                                                         September 1981
Internet Protocol
Glossary



Identification
         An internet header field carrying the identifying value
         assigned by the sender to aid in assembling the fragments of a
         datagram.

IHL
         The internet header field Internet Header Length is the length
         of the internet header measured in 32 bit words.

IMP
         The Interface Message Processor, the packet switch of the
         ARPANET.

Internet Address
         A four octet (32 bit) source or destination address consisting
         of a Network field and a Local Address field.

internet datagram
         The unit of data exchanged between a pair of internet modules
         (includes the internet header).

internet fragment
         A portion of the data of an internet datagram with an internet
         header.

Local Address
         The address of a host within a network.  The actual mapping of
         an internet local address on to the host addresses in a
         network is quite general, allowing for many to one mappings.

MF
         The More-Fragments Flag carried in the internet header flags
         field.

module
         An implementation, usually in software, of a protocol or other
         procedure.

more-fragments flag
         A flag indicating whether or not this internet datagram
         contains the end of an internet datagram, carried in the
         internet header Flags field.

NFB
         The Number of Fragment Blocks in a the data portion of an
         internet fragment.  That is, the length of a portion of data
         measured in 8 octet units.



[Page 42]


September 1981
                                                      Internet Protocol
                                                               Glossary



octet
         An eight bit byte.

Options
         The internet header Options field may contain several options,
         and each option may be several octets in length.

Padding
         The internet header Padding field is used to ensure that the
         data begins on 32 bit word boundary.  The padding is zero.

Protocol
         In this document, the next higher level protocol identifier,
         an internet header field.

Rest
         The local address portion of an Internet Address.

Source
         The source address, an internet header field.

TCP
         Transmission Control Protocol:  A host-to-host protocol for
         reliable communication in internet environments.

TCP Segment
         The unit of data exchanged between TCP modules (including the
         TCP header).

TFTP
         Trivial File Transfer Protocol:  A simple file transfer
         protocol built on UDP.

Time to Live
         An internet header field which indicates the upper bound on
         how long this internet datagram may exist.

TOS
         Type of Service

Total Length
         The internet header field Total Length is the length of the
         datagram in octets including internet header and data.

TTL
         Time to Live




                                                              [Page 43]


                                                         September 1981
Internet Protocol
Glossary



Type of Service
         An internet header field which indicates the type (or quality)
         of service for this internet datagram.

UDP
         User Datagram Protocol:  A user level protocol for transaction
         oriented applications.

User
         The user of the internet protocol.  This may be a higher level
         protocol module, an application program, or a gateway program.

Version
         The Version field indicates the format of the internet header.




































[Page 44]


September 1981
                                                      Internet Protocol



                              REFERENCES



[1]  Cerf, V., "The Catenet Model for Internetworking," Information
    Processing Techniques Office, Defense Advanced Research Projects
    Agency, IEN 48, July 1978.

[2]  Bolt Beranek and Newman, "Specification for the Interconnection of
    a Host and an IMP," BBN Technical Report 1822, Revised May 1978.

[3]  Postel, J., "Internet Control Message Protocol - DARPA Internet
    Program Protocol Specification," RFC 792, USC/Information Sciences
    Institute, September 1981.

[4]  Shoch, J., "Inter-Network Naming, Addressing, and Routing,"
    COMPCON, IEEE Computer Society, Fall 1978.

[5]  Postel, J., "Address Mappings," RFC 796, USC/Information Sciences
    Institute, September 1981.

[6]  Shoch, J., "Packet Fragmentation in Inter-Network Protocols,"
    Computer Networks, v. 3, n. 1, February 1979.

[7]  Strazisar, V., "How to Build a Gateway", IEN 109, Bolt Beranek and
    Newman, August 1979.

[8]  Postel, J., "Service Mappings," RFC 795, USC/Information Sciences
    Institute, September 1981.

[9]  Postel, J., "Assigned Numbers," RFC 790, USC/Information Sciences
    Institute, September 1981.



















                                                              [Page 45]


========================================================================

Network Working Group                                J. Mogul (Stanford)
Request for Comments: 950                                J. Postel (ISI)
                                                            August 1985

                Internet Standard Subnetting Procedure


Status Of This Memo

  This RFC specifies a protocol for the ARPA-Internet community.  If
  subnetting is implemented it is strongly recommended that these
  procedures be followed.  Distribution of this memo is unlimited.

Overview

  This memo discusses the utility of "subnets" of Internet networks,
  which are logically visible sub-sections of a single Internet
  network.  For administrative or technical reasons, many organizations
  have chosen to divide one Internet network into several subnets,
  instead of acquiring a set of Internet network numbers.  This memo
  specifies procedures for the use of subnets.  These procedures are
  for hosts (e.g., workstations).  The procedures used in and between
  subnet gateways are not fully described.  Important motivation and
  background information for a subnetting standard is provided in
  RFC-940 [7].

Acknowledgment

  This memo is based on RFC-917 [1].  Many people contributed to the
  development of the concepts described here.  J. Noel Chiappa, Chris
  Kent, and Tim Mann, in particular, provided important suggestions.
  Additional contributions in shaping this memo were made by Zaw-Sing
  Su, Mike Karels, and the Gateway Algorithms and Data Structures Task
  Force (GADS).



















Mogul & Postel                                                  [Page 1]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


1.  Motivation

  The original view of the Internet universe was a two-level hierarchy:
  the top level the Internet as a whole, and the level below it
  individual networks, each with its own network number.  The Internet
  does not have a hierarchical topology, rather the interpretation of
  addresses is hierarchical.  In this two-level model, each host sees
  its network as a single entity; that is, the network may be treated
  as a "black box" to which a set of hosts is connected.

  While this view has proved simple and powerful, a number of
  organizations have found it inadequate, and have added a third level
  to the interpretation of Internet addresses.  In this view, a given
  Internet network is divided into a collection of subnets.

  The three-level model is useful in networks belonging to moderately
  large organizations (e.g., Universities or companies with more than
  one building), where it is often necessary to use more than one LAN
  cable to cover a "local area".  Each LAN may then be treated as a
  subnet.

  There are several reasons why an organization might use more than one
  cable to cover a campus:

     - Different technologies:  Especially in a research environment,
       there may be more than one kind of LAN in use; e.g., an
       organization may have some equipment that supports Ethernet, and
       some that supports a ring network.

     - Limits of technologies:  Most LAN technologies impose limits,
       based on electrical parameters, on the number of hosts
       connected, and on the total length of the cable.  It is easy to
       exceed these limits, especially those on cable length.

     - Network congestion:  It is possible for a small subset of the
       hosts on a LAN to monopolize most of the bandwidth.  A common
       solution to this problem is to divide the hosts into cliques of
       high mutual communication, and put these cliques on separate
       cables.

     - Point-to-Point links:  Sometimes a "local area", such as a
       university campus, is split into two locations too far apart to
       connect using the preferred LAN technology.  In this case,
       high-speed point-to-point links might connect several LANs.

  An organization that has been forced to use more than one LAN has
  three choices for assigning Internet addresses:


Mogul & Postel                                                  [Page 2]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


     1. Acquire a distinct Internet network number for each cable;
        subnets are not used at all.

     2. Use a single network number for the entire organization, but
        assign host numbers without regard to which LAN a host is on
        ("transparent subnets").

     3. Use a single network number, and partition the host address
        space by assigning subnet numbers to the LANs ("explicit
        subnets").

  Each of these approaches has disadvantages.  The first, although not
  requiring any new or modified protocols, results in an explosion in
  the size of Internet routing tables.  Information about the internal
  details of local connectivity is propagated everywhere, although it
  is of little or no use outside the local organization.  Especially as
  some current gateway implementations do not have much space for
  routing tables, it would be good to avoid this problem.

  The second approach requires some convention or protocol that makes
  the collection of LANs appear to be a single Internet network.  For
  example, this can be done on LANs where each Internet address is
  translated to a hardware address using an Address Resolution Protocol
  (ARP), by having the bridges between the LANs intercept ARP requests
  for non-local targets, see RFC-925 [2].  However, it is not possible
  to do this for all LAN technologies, especially those where ARP
  protocols are not currently used, or if the LAN does not support
  broadcasts.  A more fundamental problem is that bridges must discover
  which LAN a host is on, perhaps by using a broadcast algorithm.  As
  the number of LANs grows, the cost of broadcasting grows as well;
  also, the size of translation caches required in the bridges grows
  with the total number of hosts in the network.

  The third approach is to explicitly support subnets.  This does have
  a disadvantage, in that it is a modification of the Internet
  Protocol, and thus requires changes to IP implementations already in
  use (if these implementations are to be used on a subnetted network).
  However, these changes are relatively minor, and once made, yield a
  simple and efficient solution to the problem.  Also, the approach
  avoids any changes that would be incompatible with existing hosts on
  non-subnetted networks.

  Further, when appropriate design choices are made, it is possible for
  hosts which believe they are on a non-subnetted network to be used on
  a subnetted one, as explained in RFC-917 [1].  This is useful when it
  is not possible to modify some of the hosts to support subnets
  explicitly, or when a gradual transition is preferred.


Mogul & Postel                                                  [Page 3]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


2.  Standards for Subnet Addressing

  This section first describes a proposal for interpretation of
  Internet addresses to support subnets.  Next it discusses changes to
  host software to support subnets.  Finally, it presents a procedures
  for discovering what address interpretation is in use on a given
  network (i.e., what address mask is in use).

  2.1. Interpretation of Internet Addresses

     Suppose that an organization has been assigned an Internet network
     number, has further divided that network into a set of subnets,
     and wants to assign host addresses: how should this be done?
     Since there are minimal restrictions on the assignment of the
     "local address" part of the Internet address, several approaches
     have been proposed for representing the subnet number:

        1. Variable-width field:  Any number of the bits of the local
           address part are used for the subnet number; the size of
           this field, although constant for a given network, varies
           from network to network.  If the field width is zero, then
           subnets are not in use.

        2. Fixed-width field:  A specific number of bits (e.g., eight)
           is used for the subnet number, if subnets are in use.

        3. Self-encoding variable-width field:  Just as the width
           (i.e., class) of the network number field is encoded by its
           high-order bits, the width of the subnet field is similarly
           encoded.

        4. Self-encoding fixed-width field:  A specific number of bits
           is used for the subnet number.

        5. Masked bits:  Use a bit mask ("address mask") to identify
           which bits of the local address field indicate the subnet
           number.

     What criteria can be used to choose one of these five schemes?
     First, should we use a self-encoding scheme?  And, should it be
     possible to tell from examining an Internet address if it refers
     to a subnetted network, without reference to any other
     information?

        An interesting feature of self-encoding is that it allows the




Mogul & Postel                                                  [Page 4]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


        address space of a network to be divided into subnets of
        different sizes, typically one subnet of half the address space
        and a set of small subnets.

           For example, consider a class C network that uses a
           self-encoding scheme with one bit to indicate if it is the
           large subnet or not and an additional three bits to identify
           the small subnet.  If the first bit is zero then this is the
           large subnet, if the first bit is one then the following
           bits (3 in this example) give the subnet number.  There is
           one subnet with 128 host addresses, and eight subnets with
           16 hosts each.

        To establish a subnetting standard the parameters and
        interpretation of the self-encoding scheme must be fixed and
        consistent throughout the Internet.

        It could be assumed that all networks are subnetted.  This
        would allow addresses to be interpreted without reference to
        any other information.

           This is a significant advantage, that given the Internet
           address no additional information is needed for an
           implementation to determine if two addresses are on the same
           subnet.  However, this can also be viewed as a disadvantage:
           it may cause problems for networks which have existing host
           numbers that use arbitrary bits in the local address part.
           In other words, it is useful to be able to control whether a
           network is subnetted independently from the assignment of
           host addresses.

        The alternative is to have the fact that a network is subnetted
        kept separate from the address.  If one finds, somehow, that
        the network is subnetted then the standard self-encoded
        subnetted network address rules are followed, otherwise the
        non-subnetted network addressing rules are followed.

     If a self-encoding scheme is not used, there is no reason to use a
     fixed-width field scheme: since there must in any case be some
     per-network "flag" to indicate if subnets are in use, the
     additional cost of using an integer (a subnet field width or
     address mask) instead of a boolean is negligible.  The advantage
     of using the address mask scheme is that it allows each
     organization to choose the best way to allocate relatively scarce
     bits of local address to subnet and host numbers.  Therefore, we
     choose the address-mask scheme: it is the most flexible scheme,
     yet costs no more to implement than any other.


Mogul & Postel                                                  [Page 5]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


     For example, the Internet address might be interpreted as:

        <network-number><subnet-number><host-number>

     where the <network-number> field is as defined by IP [3], the
     <host-number> field is at least 1-bit wide, and the width of the
     <subnet-number> field is constant for a given network.  No further
     structure is required for the <subnet-number> or <host-number>
     fields.  If the width of the <subnet-number> field is zero, then
     the network is not subnetted (i.e., the interpretation of [3] is
     used).

     For example, on a Class B network with a 6-bit wide subnet field,
     an address would be broken down like this:

                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1 0|        NETWORK            |  SUBNET   |    Host Number    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Since the bits that identify the subnet are specified by a
     bitmask, they need not be adjacent in the address.  However, we
     recommend that the subnet bits be contiguous and located as the
     most significant bits of the local address.

     Special Addresses:

        From the Assigned Numbers memo [9]:

           "In certain contexts, it is useful to have fixed addresses
           with functional significance rather than as identifiers of
           specific hosts.  When such usage is called for, the address
           zero is to be interpreted as meaning "this", as in "this
           network".  The address of all ones are to be interpreted as
           meaning "all", as in "all hosts".  For example, the address
           128.9.255.255 could be interpreted as meaning all hosts on
           the network 128.9.  Or, the address 0.0.0.37 could be
           interpreted as meaning host 37 on this network."

        It is useful to preserve and extend the interpretation of these
        special addresses in subnetted networks.  This means the values
        of all zeros and all ones in the subnet field should not be
        assigned to actual (physical) subnets.

           In the example above, the 6-bit wide subnet field may have
           any value except 0 and 63.


Mogul & Postel                                                  [Page 6]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


        Please note that there is no effect or new restriction on the
        addresses of hosts on non-subnetted networks.

  2.2. Changes to Host Software to Support Subnets

     In most implementations of IP, there is code in the module that
     handles outgoing datagrams to decide if a datagram can be sent
     directly to the destination on the local network or if it must be
     sent to a gateway.

     Generally the code is something like this:

        IF ip_net_number(dg.ip_dest) = ip_net_number(my_ip_addr)
            THEN
                send_dg_locally(dg, dg.ip_dest)
            ELSE
                send_dg_locally(dg,
                                 gateway_to(ip_net_number(dg.ip_dest)))

     (If the code supports multiply-connected networks, it will be more
     complicated, but this is irrelevant to the current discussion.)

     To support subnets, it is necessary to store one more 32-bit
     quantity, called my_ip_mask.  This is a bit-mask with bits set in
     the fields corresponding to the IP network number, and additional
     bits set corresponding to the subnet number field.

     The code then becomes:

        IF bitwise_and(dg.ip_dest, my_ip_mask)
                                  = bitwise_and(my_ip_addr, my_ip_mask)
            THEN
                send_dg_locally(dg, dg.ip_dest)
            ELSE
                send_dg_locally(dg,
                       gateway_to(bitwise_and(dg.ip_dest, my_ip_mask)))

     Of course, part of the expression in the conditional can be
     pre-computed.

     It may or may not be necessary to modify the "gateway_to"
     function, so that it too takes the subnet field bits into account
     when performing comparisons.

     To support multiply-connected hosts, the code can be changed to




Mogul & Postel                                                  [Page 7]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


     keep  the "my_ip_addr" and "my_ip_mask" quantities on a
     per-interface basis; the expression in the conditional must then
     be evaluated for each interface.

  2.3. Finding the Address Mask

     How can a host determine what address mask is in use on a subnet
     to which it is connected?  The problem is analogous to several
     other "bootstrapping" problems for Internet hosts: how a host
     determines its own address, and how it locates a gateway on its
     local network.  In all three cases, there are two basic solutions:
     "hardwired" information, and broadcast-based protocols.

     Hardwired information is that available to a host in isolation
     from a network.  It may be compiled-in, or (preferably) stored in
     a disk file.  However, for the increasingly common case of a
     diskless workstation that is bootloaded over a LAN, neither
     hardwired solution is satisfactory.

     Instead, since most LAN technology supports broadcasting, a better
     method is for the newly-booted host to broadcast a request for the
     necessary information.  For example, for the purpose of
     determining its Internet address, a host may use the "Reverse
     Address Resolution Protocol" (RARP) [4].

     However, since a newly-booted host usually needs to gather several
     facts (e.g., its IP address, the hardware address of a gateway,
     the IP address of a domain name server, the subnet address mask),
     it would be better to acquire all this information in one request
     if possible, rather than doing numerous broadcasts on the network.
     The mechanisms designed to boot diskless workstations can also
     load per-host specific configuration files that contain the
     required information (e.g., see RFC-951 [8]).  It is possible, and
     desirable, to obtain all the facts necessary to operate a host
     from a boot server using only one broadcast message.

     In the case where it is necessary for a host to find the address
     mask as a separate operation the following mechanism is provided:

        To provide the address mask information the ICMP protocol [5]
        is extended by adding a new pair of ICMP message types,
        "Address Mask Request" and "Address Mask Reply", analogous to
        the "Information Request" and "Information Reply" ICMP
        messages.  These are described in detail in Appendix I.

        The intended use of these new ICMP messages is that a host,
        when booting, broadcast an "Address Mask Request" message.  A


Mogul & Postel                                                  [Page 8]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


        gateway (or a host acting in lieu of a gateway) that receives
        this message responds with an "Address Mask Reply".  If there
        is no indication in the request which host sent it (i.e., the
        IP Source Address is zero), the reply is broadcast as well.
        The requesting host will hear the response, and from it
        determine the address mask.

        Since there is only one possible value that can be sent in an
        "Address Mask Reply" on any given LAN, there is no need for the
        requesting host to match the responses it hears against the
        request it sent; similarly, there is no problem if more than
        one gateway responds.  We assume that hosts reboot
        infrequently, so the broadcast load on a network from use of
        this protocol should be small.

     If a host is connected to more than one LAN, it might have to find
     the address mask for each.

     One potential problem is what a host should do if it can not find
     out the address mask, even after a reasonable number of tries.
     Three interpretations can be placed on the situation:

        1. The local net exists in (permanent) isolation from all other
           nets.

        2. Subnets are not in use, and no host can supply the address
           mask.

        3. All gateways on the local net are (temporarily) down.

     The first and second situations imply that the address mask is
     identical with the Internet network number mask.  In the third
     situation, there is no way to determine what the proper value is;
     the safest choice is thus a mask identical with the Internet
     network number mask.  Although this might later turn out to be
     wrong, it will not prevent transmissions that would otherwise
     succeed.  It is possible for a host to recover from a wrong
     choice: when a gateway comes up, it should broadcast an "Address
     Mask Reply"; when a host receives such a message that disagrees
     with its guess, it should change its mask to conform to the
     received value.  No host or gateway should send an "Address Mask
     Reply" based on a "guessed" value.

     Finally, note that no host is required to use this ICMP protocol
     to discover the address mask; it is perfectly reasonable for a
     host with non-volatile storage to use stored information
     (including a configuration file from a boot server).


Mogul & Postel                                                  [Page 9]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


Appendix I.  Address Mask ICMP

  Address Mask Request or Address Mask Reply

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |      Code     |          Checksum             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           Identifier          |       Sequence Number         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Address Mask                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     IP Fields:

        Addresses

           The address of the source in an address mask request message
           will be the destination of the address mask reply message.
           To form an address mask reply message, the source address of
           the request becomes the destination address of the reply,
           the source address of the reply is set to the replier's
           address, the type code changed to AM2, the address mask
           value inserted into the Address Mask field, and the checksum
           recomputed.  However, if the source address in the request
           message is zero, then the destination address for the reply
           message should denote a broadcast.

     ICMP Fields:

        Type

           AM1 for address mask request message

           AM2 for address mask reply message

        Code

           0 for address mask request message

           0 for address mask reply message

        Checksum

           The checksum is the 16-bit one's complement of the one's



Mogul & Postel                                                 [Page 10]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


           complement sum of the ICMP message starting with the ICMP
           Type.  For computing the checksum, the checksum field should
           be zero.  This checksum may be replaced in the future.

        Identifier

           An identifier to aid in matching requests and replies, may
           be zero.

        Sequence Number

           A sequence number to aid in matching requests and replies,
           may be zero.

        Address Mask

           A 32-bit mask.

     Description

        A gateway receiving an address mask request should return it
        with the address mask field set to the 32-bit mask of the bits
        identifying the subnet and network, for the subnet on which the
        request was received.

        If the requesting host does not know its own IP address, it may
        leave the source field zero; the reply should then be
        broadcast.  However, this approach should be avoided if at all
        possible, since it increases the superfluous broadcast load on
        the network.  Even when the replies are broadcast, since there
        is only one possible address mask for a subnet, there is no
        need to match requests with replies.  The "Identifier" and
        "Sequence Number" fields can be ignored.

           Type AM1 may be received from a gateway or a host.

           Type AM2 may be received from a gateway, or a host acting in
           lieu of a gateway.











Mogul & Postel                                                 [Page 11]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


Appendix II.  Examples

  These examples show how a host can find out the address mask using
  the ICMP Address Mask Request and Address Mask Reply messages.  For
  the following examples, assume that address 255.255.255.255 denotes
  "broadcast to this physical medium" [6].

  1.  A Class A Network Case

     For this case, assume that the requesting host is on class A
     network 36.0.0.0, has address 36.40.0.123, that there is a gateway
     at 36.40.0.62, and that a 8-bit wide subnet field is in use, that
     is, the address mask is 255.255.0.0.

     The most efficient method, and the one we recommend, is for a host
     to first discover its own address (perhaps using "RARP" [4]), and
     then to send the ICMP request to 255.255.255.255:

        Source address:          36.40.0.123
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0

     The gateway can then respond directly to the requesting host.

        Source address:          36.40.0.62
        Destination address:     36.40.0.123
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.0.0

     Suppose that 36.40.0.123 is a diskless workstation, and does not
     know even its own host number.  It could send the following
     datagram:

        Source address:          0.0.0.0
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0

     36.40.0.62 will hear the datagram, and should respond with this
     datagram:


Mogul & Postel                                                 [Page 12]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


        Source address:          36.40.0.62
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.0.0

     Note that the gateway uses the narrowest possible broadcast to
     reply.  Even so, the over use of broadcasts presents an
     unnecessary load to all hosts on the subnet, and so the use of the
     "anonymous" (0.0.0.0) source address must be kept to a minimum.

     If broadcasting is not allowed, we assume that hosts have wired-in
     information about neighbor gateways; thus, 36.40.0.123 might send
     this datagram:

        Source address:          36.40.0.123
        Destination address:     36.40.0.62
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0

     36.40.0.62 should respond exactly as in the previous case.

        Source address:          36.40.0.62
        Destination address:     36.40.0.123
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.0.0

  2.  A Class B Network Case

     For this case, assume that the requesting host is on class B
     network 128.99.0.0, has address 128.99.4.123, that there is a
     gateway at 128.99.4.62, and that a 6-bit wide subnet field is in
     use, that is, the address mask is 255.255.252.0.

     The host sends the ICMP request to 255.255.255.255:

        Source address:          128.99.4.123
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0


Mogul & Postel                                                 [Page 13]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


     The gateway can then respond directly to the requesting host.

        Source address:          128.99.4.62
        Destination address:     128.99.4.123
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.252.0

     In the diskless workstation case the host sends:

        Source address:          0.0.0.0
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0

     128.99.4.62 will hear the datagram, and should respond with this
     datagram:

        Source address:          128.99.4.62
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.252.0

     If broadcasting is not allowed 128.99.4.123 sends:

        Source address:          128.99.4.123
        Destination address:     128.99.4.62
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0

     128.99.4.62 should respond exactly as in the previous case.

        Source address:          128.99.4.62
        Destination address:     128.99.4.123
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.252.0




Mogul & Postel                                                 [Page 14]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


  3.  A Class C Network Case (illustrating non-contiguous subnet bits)

     For this case, assume that the requesting host is on class C
     network 192.1.127.0, has address 192.1.127.19, that there is a
     gateway at 192.1.127.50, and that on network an 3-bit subnet field
     is in use (01011000), that is, the address mask is 255.255.255.88.

     The host sends the ICMP request to 255.255.255.255:

        Source address:          192.1.127.19
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0

     The gateway can then respond directly to the requesting host.

        Source address:          192.1.127.50
        Destination address:     192.1.127.19
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.255.88.

     In the diskless workstation case the host sends:

        Source address:          0.0.0.0
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0

     192.1.127.50 will hear the datagram, and should respond with this
     datagram:

        Source address:          192.1.127.50
        Destination address:     255.255.255.255
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.255.88.

     If broadcasting is not allowed 192.1.127.19 sends:




Mogul & Postel                                                 [Page 15]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


        Source address:          192.1.127.19
        Destination address:     192.1.127.50
        Protocol:                ICMP = 1
        Type:                    Address Mask Request = AM1
        Code:                    0
        Mask:                    0

     192.1.127.50 should respond exactly as in the previous case.

        Source address:          192.1.127.50
        Destination address:     192.1.127.19
        Protocol:                ICMP = 1
        Type:                    Address Mask Reply = AM2
        Code:                    0
        Mask:                    255.255.255.88

Appendix III.  Glossary

  Bridge

     A node connected to two or more administratively indistinguishable
     but physically distinct subnets, that automatically forwards
     datagrams when necessary, but whose existence is not known to
     other hosts.  Also called a "software repeater".

  Gateway

     A node connected to two or more administratively distinct networks
     and/or subnets, to which hosts send datagrams to be forwarded.

  Host Field

     The bit field in an Internet address used for denoting a specific
     host.

  Internet

     The collection of connected networks using the IP protocol.

  Local Address

     The rest field of the Internet address (as defined in [3]).

  Network

     A single Internet network (which may or may not be divided into
     subnets).


Mogul & Postel                                                 [Page 16]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


  Network Number

     The network field of the Internet address.

  Subnet

     One or more physical networks forming a subset of an Internet
     network.  A subnet is explicitly identified in the Internet
     address.

  Subnet Field

     The bit field in an Internet address denoting the subnet number.
     The bits making up this field are not necessarily contiguous in
     the address.

  Subnet Number

     A number identifying a subnet within a network.

Appendix IV.  Assigned Numbers

  The following assignments are made for protocol parameters used in
  the support of subnets.  The only assignments needed are for the
  Internet Control Message Protocol (ICMP) [5].

  ICMP Message Types

     AM1 = 17

     AM2 = 18


















Mogul & Postel                                                 [Page 17]



RFC 950                                                      August 1985
Internet Standard Subnetting Procedure


References

  [1]  Mogul, J., "Internet Subnets", RFC-917, Stanford University,
       October 1984.

  [2]  Postel, J., "Multi-LAN Address Resolution", RFC-925,
       USC/Information Sciences Institute, October 1984.

  [3]  Postel, J., "Internet Protocol", RFC-791, USC/Information
       Sciences Institute, September 1981.

  [4]  Finlayson, R., T. Mann, J. Mogul, M. Theimer, "A Reverse Address
       Resolution Protocol", RFC-903, Stanford University, June 1984.

  [5]  Postel, J., "Internet Control Message Protocol", RFC-792,
       USC/Information Sciences Institute, September 1981.

  [6]  Mogul, J., "Broadcasting Internet Datagrams", RFC-919, Stanford
       University, October 1984.

  [7]  GADS, "Towards an Internet Standard Scheme for Subnetting",
       RFC-940, Network Information Center, SRI International,
       April 1985.

  [8]  Croft, B., and J. Gilmore, "BOOTP -- UDP Bootstrap Protocol",
       RFC-951, Stanford University, August 1985.

  [9]  Reynolds, J., and J. Postel, "Assigned Numbers", RFC-943,
       USC/Information Sciences Institute, April 1985.




















Mogul & Postel                                                 [Page 18]

========================================================================

Network Working Group                                      Jeffrey Mogul
Request for Comments: 919                    Computer Science Department
                                                    Stanford University
                                                           October 1984

                    BROADCASTING INTERNET DATAGRAMS


Status of this Memo

  We propose simple rules for broadcasting Internet datagrams on local
  networks that support broadcast, for addressing broadcasts, and for
  how gateways should handle them.

  This RFC suggests a proposed protocol for the ARPA-Internet
  community, and requests discussion and suggestions for improvements.
  Distribution of this memo is unlimited.

Acknowledgement

  This proposal is the result of discussion with several other people,
  especially J. Noel Chiappa and Christopher A. Kent, both of whom both
  pointed me at important references.

1. Introduction

  The use of broadcasts, especially on high-speed local area networks,
  is a good base for many applications.  Since broadcasting is not
  covered in the basic IP specification [13], there is no agreed-upon
  way to do it, and so protocol designers have not made use of it. (The
  issue has been touched upon before, e.g. [6], but has not been the
  subject of a standard.)

  We consider here only the case of unreliable, unsequenced, possibly
  duplicated datagram broadcasts (for a discussion of TCP broadcasting,
  see [11].) Even though unreliable and limited in length, datagram
  broadcasts are quite useful [1].

  We assume that the data link layer of the local network supports
  efficient broadcasting.  Most common local area networks do support
  broadcast; for example, Ethernet [7, 5], ChaosNet [10], token ring
  networks [2], etc.

  We do not assume, however, that broadcasts are reliably delivered.
  (One might consider providing a reliable broadcast protocol as a
  layer above IP.) It is quite expensive to guarantee delivery of
  broadcasts; instead, what we assume is that a host will receive most
  of the broadcasts that are sent.  This is important to avoid
  excessive use of broadcasts; since every host on the network devotes
  at least some effort to every broadcast, they are costly.



Mogul                                                           [Page 1]



RFC 919                                                     October 1984
Broadcasting Internet Datagrams


  When a datagram is broadcast, it imposes a cost on every host that
  hears it.  Therefore, broadcasting should not be used
  indiscriminately, but rather only when it is the best solution to a
  problem.

  Note: some organizations have divided their IP networks into subnets,
  for which a standard [8] has been proposed.  This RFC does not cover
  the numerous complications arising from the interactions between
  subnets and broadcasting; see [9] for a complete discussion.

2. Terminology

  Because broadcasting depends on the specific data link layer in use
  on a local network, we must discuss it with reference to both
  physical networks and logical networks.

  The terms we will use in referring to physical networks are, from the
  point of view of the host sending or forwarding a broadcast:

  Local Hardware Network

     The physical link to which the host is attached.

  Remote Hardware Network

     A physical network which is separated from the host by at least
     one gateway.

  Collection of Hardware Networks

     A set of hardware networks (transitively) connected by gateways.

  The IP world includes several kinds of logical network.  To avoid
  ambiguity, we will use the following terms:

  Internet

     The DARPA Internet collection of IP networks.

  IP Network

     One or a collection of several hardware networks that have one
     specific IP network number.






Mogul                                                           [Page 2]



RFC 919                                                     October 1984
Broadcasting Internet Datagrams


3. Why Broadcast?

  Broadcasts are useful when a host needs to find information without
  knowing exactly what other host can supply it, or when a host wants
  to provide information to a large set of hosts in a timely manner.

  When a host needs information that one or more of its neighbors might
  have, it could have a list of neighbors to ask, or it could poll all
  of its possible neighbors until one responds.  Use of a wired-in list
  creates obvious network management problems (early binding is
  inflexible).  On the other hand, asking all of one's neighbors is
  slow if one must generate plausible host addresses, and try them
  until one works.  On the ARPANET, for example, there are roughly 65
  thousand plausible host numbers.  Most IP implementations have used
  wired-in lists (for example, addresses of "Prime" gateways.)
  Fortunately, broadcasting provides a fast and simple way for a host
  to reach all of its neighbors.

  A host might also use a broadcast to provide all of its neighbors
  with some information; for example, a gateway might announce its
  presence to other gateways.

  One way to view broadcasting is as an imperfect substitute for
  multicasting, the sending of messages to a subset of the hosts on a
  network.  In practice, broadcasts are usually used where multicasts
  are what is wanted; packets are broadcast at the hardware level, but
  filtering software in the receiving hosts gives the effect of
  multicasting.

  For more examples of broadcast applications, see [1, 3].

4. Broadcast Classes

  There are several classes of IP broadcasting:

     - Single-destination datagram broadcast on the local IP net: A
       datagrams is destined for a specific IP host, but the sending
       host broadcasts it at the data link layer, perhaps to avoid
       having to do routing.  Since this is not an IP broadcast, the IP
       layer is not involved, except that a host should discard
       datagrams not meant for it without becoming flustered (i.e.,
       printing an error message).

     - Broadcast to all hosts on the local IP net: A distinguished
       value for the host-number part of the IP address denotes
       broadcast instead of a specific host.  The receiving IP layer
       must be able to recognize this address as well as its own.


Mogul                                                           [Page 3]



RFC 919                                                     October 1984
Broadcasting Internet Datagrams


       However, it might still be useful to distinguish at higher
       levels between broadcasts and non-broadcasts, especially in
       gateways. This is the most useful case of broadcast; it allows a
       host to discover gateways without wired-in tables, it is the
       basis for address resolution protocols, and it is also useful
       for accessing such utilities as name servers, time servers,
       etc., without requiring wired-in addresses.

     - Broadcast to all hosts on a remote IP network: It is
       occasionally useful to send a broadcast to all hosts on a
       non-local network; for example, to find the latest version of a
       hostname database, to bootload a host on an IP network without a
       bootserver, or to monitor the timeservers on the IP network.
       This case is the same as local-network broadcasts; the datagram
       is routed by normal mechanisms until it reaches a gateway
       attached to the destination IP network, at which point it is
       broadcast. This class of broadcasting is also known as "directed
       broadcasting", or quaintly as sending a "letter bomb" [1].

     - Broadcast to the entire Internet: This is probably not useful,
       and almost certainly not desirable.

  For reasons of performance or security, a gateway may choose not to
  forward broadcasts; especially, it may be a good idea to ban
  broadcasts into or out of an autonomous group of networks.

5. Broadcast Methods

  A host's IP receiving layer must be modified to support broadcasting.
  In the absence of broadcasting, a host determines if it is the
  recipient of a datagram by matching the destination address against
  all of its IP addresses.  With broadcasting, a host must compare the
  destination address not only against the host's addresses, but also
  against the possible broadcast addresses for that host.

  The problem of how best to send a broadcast has been extensively
  discussed [1, 3, 4, 14, 15].  Since we assume that the problem has
  already been solved at the data link layer, an IP host wishing to
  send either a local broadcast or a directed broadcast need only
  specify the appropriate destination address and send the datagram as
  usual.  Any sophisticated algorithms need only reside in gateways.








Mogul                                                           [Page 4]



RFC 919                                                     October 1984
Broadcasting Internet Datagrams


6. Gateways and Broadcasts

  Most of the complexity in supporting broadcasts lies in gateways.  If
  a gateway receives a directed broadcast for a network to which it is
  not connected, it simply forwards it using the usual mechanism.
  Otherwise, it must do some additional work.

  When a gateway receives a local broadcast datagram, there are several
  things it might have to do with it.  The situation is unambiguous,
  but without due care it is possible to create infinite loops.

  The appropriate action to take on receipt of a broadcast datagram
  depends on several things: the subnet it was received on, the
  destination network, and the addresses of the gateway.

     - The primary rule for avoiding loops is "never broadcast a
       datagram on the hardware network it was received on". It is not
       sufficient simply to avoid repeating datagrams that a gateway
       has heard from itself; this still allows loops if there are
       several gateways on a hardware network.

     - If the datagram is received on the hardware network to which it
       is addressed, then it should not be forwarded.  However, the
       gateway should consider itself to be a destination of the
       datagram (for example, it might be a routing table update.)

     - Otherwise, if the datagram is addressed to a hardware network to
       which the gateway is connected, it should be sent as a (data
       link layer) broadcast on that network.  Again, the gateway
       should consider itself a destination of the datagram.

     - Otherwise, the gateway should use its normal routing procedure
       to choose a subsequent gateway, and send the datagram along to
       it.

7. Broadcast IP Addressing - Proposed Standards

  If different IP implementations are to be compatible, there must be a
  distinguished number to denote "all hosts".

  Since the local network layer can always map an IP address into data
  link layer address, the choice of an IP "broadcast host number" is
  somewhat arbitrary.  For simplicity, it should be one not likely to
  be assigned to a real host.  The number whose bits are all ones has
  this property; this assignment was first proposed in [6].  In the few
  cases where a host has been assigned an address with a host-number
  part of all ones, it does not seem onerous to require renumbering.


Mogul                                                           [Page 5]



RFC 919                                                     October 1984
Broadcasting Internet Datagrams


  The address 255.255.255.255 denotes a broadcast on a local hardware
  network, which must not be forwarded.  This address may be used, for
  example, by hosts that do not know their network number and are
  asking some server for it.

  Thus, a host on net 36, for example, may:

     - broadcast to all of its immediate neighbors by using
       255.255.255.255

     - broadcast to all of net 36 by using 36.255.255.255

  (Note that unless the network has been broken up into subnets, these
  two methods have identical effects.)

  If the use of "all ones" in a field of an IP address means
  "broadcast", using "all zeros" could be viewed as meaning
  "unspecified".  There is probably no reason for such addresses to
  appear anywhere but as the source address of an ICMP Information
  Request datagram.  However, as a notational convention, we refer to
  networks (as opposed to hosts) by using addresses with zero fields.
  For example, 36.0.0.0 means "network number 36" while 36.255.255.255
  means "all hosts on network number 36".

  7.1. ARP Servers and Broadcasts

     The Address Resolution Protocol (ARP) described in [12] can, if
     incorrectly implemented, cause problems when broadcasts are used
     on a network where not all hosts share an understanding of what a
     broadcast address is.  The temptation exists to modify the ARP
     server so that it provides the mapping between an IP broadcast
     address and the hardware broadcast address.

     This temptation must be resisted.  An ARP server should never
     respond to a request whose target is a broadcast address.  Such a
     request can only come from a host that does not recognize the
     broadcast address as such, and so honoring it would almost
     certainly lead to a forwarding loop.  If there are N such hosts on
     the physical network that do not recognize this address as a
     broadcast, then a datagram sent with a Time-To-Live of T could
     potentially give rise to T**N spurious re-broadcasts.








Mogul                                                           [Page 6]



RFC 919                                                     October 1984
Broadcasting Internet Datagrams


8. References

  1.   David Reeves Boggs.  Internet Broadcasting.  Ph.D. Th., Stanford
       University, January 1982.

  2.   D.D. Clark, K.T. Pogran, and D.P. Reed.  "An Introduction to
       Local Area Networks".  Proc. IEEE 66, 11, pp1497-1516, 1978.

  3.   Yogan Kantilal Dalal.  Broadcast Protocols in Packet Switched
       Computer Networks.  Ph.D. Th., Stanford University, April 1977.

  4.   Yogan K. Dalal and Robert M. Metcalfe.  "Reverse Path Forwarding
       of Broadcast Packets".  Comm. ACM 21, 12, pp1040-1048, December
       1978.

  5.   The Ethernet, A Local Area Network: Data Link Layer and Physical
       Layer Specifications.  Version 1.0, Digital Equipment
       Corporation, Intel, Xerox, September 1980.

  6.   Robert Gurwitz and Robert Hinden.  IP - Local Area Network
       Addressing Issues.  IEN-212, Bolt Beranek and Newman, September
       1982.

  7.    R.M. Metcalfe and D.R. Boggs. "Ethernet: Distributed Packet
       Switching for Local Computer Networks".  Comm. ACM 19, 7,
       pp395-404, July 1976.  Also CSL-75-7, Xerox Palo Alto Research
       Center, reprinted in CSL-80-2.

  8.   Jeffrey Mogul.  Internet Subnets.  RFC-917, Stanford University,
       October 1984.

  9.   Jeffrey Mogul.  Broadcasting Internet Packets in the Presence of
       Subnets.  RFC-922, Stanford University, October 1984.

  10.  David A. Moon.  Chaosnet.  A.I. Memo 628, Massachusetts
       Institute of Technology Artificial Intelligence Laboratory, June
       1981.

  11.  William W. Plummer.  Internet Broadcast Protocols.  IEN-10, Bolt
       Beranek and Newman, March 1977.

  12.  David Plummer.  An Ethernet Address Resolution Protocol.
       RFC-826, Symbolics, September 1982.

  13.  Jon Postel.  Internet Protocol.  RFC 791, ISI, September 1981.




Mogul                                                           [Page 7]



RFC 919                                                     October 1984
Broadcasting Internet Datagrams


  14.  David W. Wall.  Mechanisms for Broadcast and Selective
       Broadcast.  Ph.D. Th., Stanford University, June 1980.

  15.  David W. Wall and Susan S. Owicki.  Center-based Broadcasting.
       Computer Systems Lab Technical Report TR189, Stanford
       University, June 1980.











































Mogul                                                           [Page 8]

========================================================================

Network Working Group                                      Jeffrey Mogul
Request for Comments: 922                    Computer Science Department
                                                    Stanford University
                                                           October 1984

      BROADCASTING INTERNET DATAGRAMS IN THE PRESENCE OF SUBNETS


Status of this Memo

  We propose simple rules for broadcasting Internet datagrams on local
  networks that support broadcast, for addressing broadcasts, and for
  how gateways should handle them.

  This RFC suggests a proposed protocol for the ARPA-Internet
  community, and requests discussion and suggestions for improvements.
  Distribution of this memo is unlimited.

Acknowledgement

  This proposal here is the result of discussion with several other
  people, especially J. Noel Chiappa and Christopher A. Kent, both of
  whom both pointed me at important references.

1. Introduction

  The use of broadcasts, especially on high-speed local area networks,
  is a good base for many applications.  Since broadcasting is not
  covered in the basic IP specification [12], there is no agreed-upon
  way to do it, and so protocol designers have not made use of it. (The
  issue has been touched upon before, e.g. [6], but has not been the
  subject of a standard.)

  We consider here only the case of unreliable, unsequenced, possibly
  duplicated datagram broadcasts (for a discussion of TCP broadcasting,
  see [10].) Even though unreliable and limited in length, datagram
  broadcasts are quite useful [1].

  We assume that the data link layer of the local network supports
  efficient broadcasting.  Most common local area networks do support
  broadcast; for example, Ethernet [7, 5], ChaosNet [9], token ring
  networks [2], etc.

  We do not assume, however, that broadcasts are reliably delivered.
  (One might consider providing a reliable datagram broadcast protocol
  as a layer above IP.) It is quite expensive to guarantee delivery of
  broadcasts; instead, what we assume is that a host will receive most
  of the broadcasts that are sent.  This is important to avoid
  excessive use of broadcasts; since every host on the network devotes
  at least some effort to every broadcast, they are costly.



Mogul                                                           [Page 1]



RFC 922                                                     October 1984
Broadcasting Internet Datagrams in the Presence of Subnets


  When a datagram is broadcast, it imposes a cost on every host that
  hears it.  Therefore, broadcasting should not be used
  indiscriminately, but rather only when it is the best solution to a
  problem.

2. Terminology

  Because broadcasting depends on the specific data link layer in use
  on a local network, we must discuss it with reference to both
  physical networks and logical networks.

  The terms we will use in referring to physical networks are, from the
  point of view of the host sending or forwarding a broadcast:

  Local Hardware Network

     The physical link to which the host is attached.

  Remote Hardware Network

     A physical network which is separated from the host by at least
     one gateway.

  Collection of Hardware Networks

     A set of hardware networks (transitively) connected by gateways.

  The IP world includes several kinds of logical network.  To avoid
  ambiguity, we will use the following terms:

  Internet

     The DARPA Internet collection of IP networks.

  IP Network

     One or a collection of several hardware networks that have one
     specific IP network number.

  Subnet

     A single member of the collection of hardware networks that
     compose an IP network.  Host addresses on a given subnet share an
     IP network number with hosts on all other subnets of that IP
     network, but the local-address part is divided into subnet-number




Mogul                                                           [Page 2]



RFC 922                                                     October 1984
Broadcasting Internet Datagrams in the Presence of Subnets


     and host-number fields to indicate which subnet a host is on.  We
     do not assume a particular division of the local-address part;
     this could vary from network to network.

  The introduction of a subnet level in the addressing hierarchy is at
  variance with the IP specification [12], but as the use of
  addressable subnets proliferates it is obvious that a broadcasting
  scheme should support subnetting.  For more on subnets, see [8].

  In this paper, the term "host address" refers to the host-on-subnet
  address field of a subnetted IP network, or the host-part field
  otherwise.

  An IP network may consist of a single hardware network or a
  collection of subnets; from the point of view of a host on another IP
  network, it should not matter.

3. Why Broadcast?

  Broadcasts are useful when a host needs to find information without
  knowing exactly what other host can supply it, or when a host wants
  to provide information to a large set of hosts in a timely manner.

  When a host needs information that one or more of its neighbors might
  have, it could have a list of neighbors to ask, or it could poll all
  of its possible neighbors until one responds.  Use of a wired-in list
  creates obvious network management problems (early binding is
  inflexible).  On the other hand, asking all of one's neighbors is
  slow if one must generate plausible host addresses, and try them
  until one works.  On the ARPANET, for example, there are roughly 65
  thousand plausible host numbers.  Most IP implementations have used
  wired-in lists (for example, addresses of "Prime" gateways.)
  Fortunately, broadcasting provides a fast and simple way for a host
  to reach all of its neighbors.

  A host might also use a broadcast to provide all of its neighbors
  with some information; for example, a gateway might announce its
  presence to other gateways.

  One way to view broadcasting is as an imperfect substitute for
  multicasting, the sending of messages to a subset of the hosts on a
  network.  In practice, broadcasts are usually used where multicasts
  are what is wanted; datagrams are broadcast at the hardware level,
  but filtering software in the receiving hosts gives the effect of
  multicasting.

  For more examples of broadcast applications, see [1, 3].


Mogul                                                           [Page 3]



RFC 922                                                     October 1984
Broadcasting Internet Datagrams in the Presence of Subnets


4. Broadcast Classes

  There are several classes of IP broadcasting:

     - Single-destination datagrams broadcast on the local hardware
       net: A datagram is destined for a specific IP host, but the
       sending host broadcasts it at the data link layer, perhaps to
       avoid having to do routing.  Since this is not an IP broadcast,
       the IP layer is not involved, except that a host should discard
       datagram not meant for it without becoming flustered (i.e.,
       printing an error message).

     - Broadcast to all hosts on the local hardware net: A
       distinguished value for the host-number part of the IP address
       denotes broadcast instead of a specific host.  The receiving IP
       layer must be able to recognize this address as well as its own.
       However, it might still be useful to distinguish at higher
       levels between broadcasts and non-broadcasts, especially in
       gateways.  This is the most useful case of broadcast; it allows
       a host to discover gateways without wired-in tables, it is the
       basis for address resolution protocols, and it is also useful
       for accessing such utilities as name servers, time servers,
       etc., without requiring wired-in addresses.

     - Broadcast to all hosts on a remote hardware network: It is
       occasionally useful to send a broadcast to all hosts on a
       non-local network; for example, to find the latest version of a
       hostname database, to bootload a host on a subnet without a
       bootserver, or to monitor the timeservers on the subnet.  This
       case is the same as local-network broadcasts; the datagram is
       routed by normal mechanisms until it reaches a gateway attached
       to the destination hardware network, at which point it is
       broadcast.  This class of broadcasting is also known as
       "directed broadcasting", or quaintly as sending a "letter bomb"
       [1].

     - Broadcast to all hosts on a subnetted IP network (Multi-subnet
       broadcasts): A distinguished value for the subnet-number part of
       the IP address is used to denote "all subnets".  Broadcasts to
       all hosts of a remote subnetted IP network are done just as
       directed broadcasts to a single subnet.

     - Broadcast to the entire Internet: This is probably not useful,
       and almost certainly not desirable.





Mogul                                                           [Page 4]



RFC 922                                                     October 1984
Broadcasting Internet Datagrams in the Presence of Subnets


  For reasons of performance or security, a gateway may choose not to
  forward broadcasts; especially, it may be a good idea to ban
  broadcasts into or out of an autonomous group of networks.

5. Broadcast Methods

  A host's IP receiving layer must be modified to support broadcasting.
  In the absence of broadcasting, a host determines if it is the
  recipient of a datagram by matching the destination address against
  all of its IP addresses.  With broadcasting, a host must compare the
  destination address not only against the host's addresses, but also
  against the possible broadcast addresses for that host.

  The problem of how best to send a broadcast has been extensively
  discussed [1, 3, 4, 13, 14].  Since we assume that the problem has
  already been solved at the data link layer, an IP host wishing to
  send either a local broadcast or a directed broadcast need only
  specify the appropriate destination address and send the datagram as
  usual.  Any sophisticated algorithms need only reside in gateways.

  The problem of broadcasting to all hosts on a subnetted IP network is
  apparently somewhat harder.  However, even in this case it turns out
  that the best known algorithms require no additional complexity in
  non-gateway hosts.  A good broadcast method will meet these
  additional criteria:

     - No modification of the IP datagram format.

     - Reasonable efficiency in terms of the number of excess copies
       generated and the cost of paths chosen.

     - Minimization of gateway modification, in both code and data
       space.

     - High likelihood of delivery.

  The algorithm that appears best is the Reverse Path Forwarding (RPF)
  method [4].  While RPF is suboptimal in cost and reliability, it is
  quite good, and is extremely simple to implement, requiring no
  additional data space in a gateway.









Mogul                                                           [Page 5]



RFC 922                                                     October 1984
Broadcasting Internet Datagrams in the Presence of Subnets


6. Gateways and Broadcasts

  Most of the complexity in supporting broadcasts lies in gateways.  If
  a gateway receives a directed broadcast for a network to which it is
  not connected, it simply forwards it using the usual mechanism.
  Otherwise, it must do some additional work.

  6.1. Local Broadcasts

     When a gateway receives a local broadcast datagram, there are
     several things it might have to do with it.  The situation is
     unambiguous, but without due care it is possible to create
     infinite loops.

     The appropriate action to take on receipt of a broadcast datagram
     depends on several things: the subnet it was received on, the
     destination network, and the addresses of the gateway.

        - The primary rule for avoiding loops is "never broadcast a
          datagram on the hardware network it was received on". It is
          not sufficient simply to avoid repeating datagram that a
          gateway has heard from itself; this still allows loops if
          there are several gateways on a hardware network.

        - If the datagram is received on the hardware network to which
          it is addressed, then it should not be forwarded.  However,
          the gateway should consider itself to be a destination of the
          datagram (for example, it might be a routing table update.)

        - Otherwise, if the datagram is addressed to a hardware network
          to which the gateway is connected, it should be sent as a
          (data link layer) broadcast on that network.  Again, the
          gateway should consider itself a destination of the datagram.

        - Otherwise, the gateway should use its normal routing
          procedure to choose a subsequent gateway, and send the
          datagram along to it.












Mogul                                                           [Page 6]



RFC 922                                                     October 1984
Broadcasting Internet Datagrams in the Presence of Subnets


  6.2. Multi-subnet broadcasts

     When a gateway receives a broadcast meant for all subnets of an IP
     network, it must use the Reverse Path Forwarding algorithm to
     decide what to do.  The method is simple: the gateway should
     forward copies of the datagram along all connected links, if and
     only if the datagram arrived on the link which is part of the best
     route between the gateway and the source of the datagram.
     Otherwise, the datagram should be discarded.

     This algorithm may be improved if some or all of the gateways
     exchange among themselves additional information; this can be done
     transparently from the point of view of other hosts and even other
     gateways.  See [4, 3] for details.

  6.3. Pseudo-Algol Routing Algorithm

     This is a pseudo-Algol description of the routing algorithm a
     gateway should use.  The algorithm is shown in figure 1.  Some
     definitions are:

     RouteLink(host)

        A function taking a host address as a parameter and returning
        the first-hop link from the gateway to the host.

     RouteHost(host)

        As above but returns the first-hop host address.

     ResolveAddress(host)

        Returns the hardware address for an IP host.

     IncomingLink

        The link on which the packet arrived.

     OutgoingLinkSet

        The set of links on which the packet should be sent.

     OutgoingHardwareHost

        The hardware host address to send the packet to.




Mogul                                                           [Page 7]



RFC 922                                                     October 1984
Broadcasting Internet Datagrams in the Presence of Subnets


     Destination.host

        The host-part of the destination address.

     Destination.subnet

        The subnet-part of the destination address.

     Destination.ipnet

        The IP-network-part of the destination address.






































Mogul                                                           [Page 8]



RFC 922                                                     October 1984
Broadcasting Internet Datagrams in the Presence of Subnets

BEGIN
  IF Destination.ipnet IN AllLinks THEN
     BEGIN
        IF IsSubnetted(Destination.ipnet) THEN
           BEGIN
              IF Destination.subnet = BroadcastSubnet THEN
                 BEGIN      /* use Reverse Path Forwarding algorithm */
                    IF IncomingLink = RouteLink(Source) THEN
                       BEGIN IF Destination.host = BroadcastHost THEN
                             OutgoingLinkSet <- AllLinks -
                          IncomingLink;
                          OutgoingHost <- BroadcastHost;
                          Examine packet for possible internal use;
                       END
                    ELSE  /* duplicate from another gateway, discard */
                       Discard;
                 END
              ELSE
                 IF Destination.subnet = IncomingLink.subnet THEN
                    BEGIN           /* forwarding would cause a loop */
                       IF Destination.host = BroadcastHost THEN
                          Examine packet for possible internal use;
                       Discard;
                    END
                 ELSE BEGIN    /* forward to (possibly local) subnet */
                       OutgoingLinkSet <- RouteLink(Destination);
                       OutgoingHost <- RouteHost(Destination);
                    END
           END
        ELSE BEGIN         /* destined for one of our local networks */
              IF Destination.ipnet = IncomingLink.ipnet THEN
                 BEGIN              /* forwarding would cause a loop */
                    IF Destination.host = BroadcastHost THEN
                       Examine packet for possible internal use;
                    Discard;
                 END
              ELSE BEGIN                     /* might be a broadcast */
                    OutgoingLinkSet <- RouteLink(Destination);
                    OutgoingHost <- RouteHost(Destination);
                 END
           END
     END
  ELSE BEGIN                    /* forward to a non-local IP network */
        OutgoingLinkSet <- RouteLink(Destination);
        OutgoingHost <- RouteHost(Destination);
     END
  OutgoingHardwareHost <- ResolveAddress(OutgoingHost);
END

Figure 1: Pseudo-Algol algorithm for routing broadcasts by gateways

Mogul                                                           [Page 9]



RFC 922                                                     October 1984
Broadcasting Internet Datagrams in the Presence of Subnets


7. Broadcast IP Addressing - Conventions

  If different IP implementations are to be compatible, there must be
  convention distinguished number to denote "all hosts" and "all
  subnets".

  Since the local network layer can always map an IP address into data
  link layer address, the choice of an IP "broadcast host number" is
  somewhat arbitrary.  For simplicity, it should be one not likely to
  be assigned to a real host.  The number whose bits are all ones has
  this property; this assignment was first proposed in [6].  In the few
  cases where a host has been assigned an address with a host-number
  part of all ones, it does not seem onerous to require renumbering.

  The "all subnets" number is also all ones; this means that a host
  wishing to broadcast to all hosts on a remote IP network need not
  know how the destination address is divided up into subnet and host
  fields, or if it is even divided at all.  For example, 36.255.255.255
  may denote all the hosts on a single hardware network, or all the
  hosts on a subnetted IP network with 1 byte of subnet field and 2
  bytes of host field, or any other possible division.

  The address 255.255.255.255 denotes a broadcast on a local hardware
  network that must not be forwarded.  This address may be used, for
  example, by hosts that do not know their network number and are
  asking some server for it.

  Thus, a host on net 36, for example, may:

     - broadcast to all of its immediate neighbors by using
       255.255.255.255

     - broadcast to all of net 36 by using 36.255.255.255

  without knowing if the net is subnetted; if it is not, then both
  addresses have the same effect. A robust application might try the
  former address, and if no response is received, then try the latter.
  See [1] for a discussion of such "expanding ring search" techniques.

  If the use of "all ones" in a field of an IP address means
  "broadcast", using "all zeros" could be viewed as meaning
  "unspecified".  There is probably no reason for such addresses to
  appear anywhere but as the source address of an ICMP Information
  Request datagram.  However, as a notational convention, we refer to
  networks (as opposed to hosts) by using addresses with zero fields.
  For example, 36.0.0.0 means "network number 36" while 36.255.255.255
  means "all hosts on network number 36".


Mogul                                                          [Page 10]



RFC 922                                                     October 1984
Broadcasting Internet Datagrams in the Presence of Subnets


  7.1. ARP Servers and Broadcasts

     The Address Resolution Protocol (ARP) described in [11] can, if
     incorrectly implemented, cause problems when broadcasts are used
     on a network where not all hosts share an understanding of what a
     broadcast address is.  The temptation exists to modify the ARP
     server so that it provides the mapping between an IP broadcast
     address and the hardware broadcast address.

     This temptation must be resisted.  An ARP server should never
     respond to a request whose target is a broadcast address.  Such a
     request can only come from a host that does not recognize the
     broadcast address as such, and so honoring it would almost
     certainly lead to a forwarding loop.  If there are N such hosts on
     the physical network that do not recognize this address as a
     broadcast, then a datagram sent with a Time-To-Live of T could
     potentially give rise to T**N spurious re-broadcasts.

8. References

  1.   David Reeves Boggs.  Internet Broadcasting.  Ph.D. Th., Stanford
       University, January 1982.

  2.   D.D. Clark, K.T. Pogran, and D.P. Reed.  "An Introduction to
       Local Area Networks".  Proc. IEEE 66, 11, pp1497-1516,
       November 1978.

  3.   Yogan Kantilal Dalal.  Broadcast Protocols in Packet Switched
       Computer Networks.  Ph.D. Th., Stanford University, April 1977.

  4.   Yogan K. Dalal and Robert M. Metcalfe.  "Reverse Path Forwarding
       of Broadcast Packets".  Comm. ACM 21, 12, pp1040-1048,
       December 1978.

  5.   The Ethernet, A Local Area Network: Data Link Layer and Physical
       Layer Specifications.  Version 1.0, Digital Equipment
       Corporation, Intel, Xerox, September 1980.

  6.   Robert Gurwitz and Robert Hinden.  IP - Local Area Network
       Addressing Issues.  IEN-212, BBN, September 1982.

  7.   R.M. Metcalfe and D.R. Boggs.  "Ethernet: Distributed Packet
       Switching for Local Computer Networks".  Comm. ACM 19, 7,
       pp395-404, July 1976.  Also CSL-75-7, Xerox Palo Alto Research
       Center, reprinted in CSL-80-2.




Mogul                                                          [Page 11]



RFC 922                                                     October 1984
Broadcasting Internet Datagrams in the Presence of Subnets


  8.   Jeffrey Mogul.  Internet Subnets.  RFC-917, Stanford University,
       October 1984.

  9.   David A. Moon.  Chaosnet.  A.I. Memo 628, Massachusetts
       Institute of Technology Artificial Intelligence Laboratory,
       June 1981.

  10.  William W. Plummer.  Internet Broadcast Protocols.  IEN-10, BBN,
       March 1977.

  11.  David Plummer.  An Ethernet Address Resolution Protocol.
       RFC-826, Symbolics, September 1982.

  12.  Jon Postel.  Internet Protocol.  RFC-791, ISI, September 1981.

  13.  David W. Wall.  Mechanisms for Broadcast and Selective
       Broadcast.  Ph.D. Th., Stanford University, June 1980.

  14.  David W. Wall and Susan S. Owicki.  Center-based Broadcasting.
       Computer Systems Lab Technical Report TR189, Stanford
       University, June 1980.




























Mogul                                                          [Page 12]

========================================================================

Network Working Group                                          J. Postel
Request for Comments:  792                                           ISI
                                                         September 1981
Updates:  RFCs 777, 760
Updates:  IENs 109, 128

                  INTERNET CONTROL MESSAGE PROTOCOL

                        DARPA INTERNET PROGRAM
                        PROTOCOL SPECIFICATION



Introduction

  The Internet Protocol (IP) [1] is used for host-to-host datagram
  service in a system of interconnected networks called the
  Catenet [2].  The network connecting devices are called Gateways.
  These gateways communicate between themselves for control purposes
  via a Gateway to Gateway Protocol (GGP) [3,4].  Occasionally a
  gateway or destination host will communicate with a source host, for
  example, to report an error in datagram processing.  For such
  purposes this protocol, the Internet Control Message Protocol (ICMP),
  is used.  ICMP, uses the basic support of IP as if it were a higher
  level protocol, however, ICMP is actually an integral part of IP, and
  must be implemented by every IP module.

  ICMP messages are sent in several situations:  for example, when a
  datagram cannot reach its destination, when the gateway does not have
  the buffering capacity to forward a datagram, and when the gateway
  can direct the host to send traffic on a shorter route.

  The Internet Protocol is not designed to be absolutely reliable.  The
  purpose of these control messages is to provide feedback about
  problems in the communication environment, not to make IP reliable.
  There are still no guarantees that a datagram will be delivered or a
  control message will be returned.  Some datagrams may still be
  undelivered without any report of their loss.  The higher level
  protocols that use IP must implement their own reliability procedures
  if reliable communication is required.

  The ICMP messages typically report errors in the processing of
  datagrams.  To avoid the infinite regress of messages about messages
  etc., no ICMP messages are sent about ICMP messages.  Also ICMP
  messages are only sent about errors in handling fragment zero of
  fragemented datagrams.  (Fragment zero has the fragment offeset equal
  zero).







                                                               [Page 1]


                                                         September 1981
RFC 792



Message Formats

  ICMP messages are sent using the basic IP header.  The first octet of
  the data portion of the datagram is a ICMP type field; the value of
  this field determines the format of the remaining data.  Any field
  labeled "unused" is reserved for later extensions and must be zero
  when sent, but receivers should not use these fields (except to
  include them in the checksum).  Unless otherwise noted under the
  individual format descriptions, the values of the internet header
  fields are as follows:

  Version

     4

  IHL

     Internet header length in 32-bit words.

  Type of Service

     0

  Total Length

     Length of internet header and data in octets.

  Identification, Flags, Fragment Offset

     Used in fragmentation, see [1].

  Time to Live

     Time to live in seconds; as this field is decremented at each
     machine in which the datagram is processed, the value in this
     field should be at least as great as the number of gateways which
     this datagram will traverse.

  Protocol

     ICMP = 1

  Header Checksum

     The 16 bit one's complement of the one's complement sum of all 16
     bit words in the header.  For computing the checksum, the checksum
     field should be zero.  This checksum may be replaced in the
     future.


[Page 2]


September 1981
RFC 792



  Source Address

     The address of the gateway or host that composes the ICMP message.
     Unless otherwise noted, this can be any of a gateway's addresses.

  Destination Address

     The address of the gateway or host to which the message should be
     sent.









































                                                               [Page 3]


                                                         September 1981
RFC 792



Destination Unreachable Message

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |     Code      |          Checksum             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             unused                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Internet Header + 64 bits of Original Data Datagram      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  IP Fields:

  Destination Address

     The source network and address from the original datagram's data.

  ICMP Fields:

  Type

     3

  Code

     0 = net unreachable;

     1 = host unreachable;

     2 = protocol unreachable;

     3 = port unreachable;

     4 = fragmentation needed and DF set;

     5 = source route failed.

  Checksum

     The checksum is the 16-bit ones's complement of the one's
     complement sum of the ICMP message starting with the ICMP Type.
     For computing the checksum , the checksum field should be zero.
     This checksum may be replaced in the future.

  Internet Header + 64 bits of Data Datagram

     The internet header plus the first 64 bits of the original


[Page 4]


September 1981
RFC 792



     datagram's data.  This data is used by the host to match the
     message to the appropriate process.  If a higher level protocol
     uses port numbers, they are assumed to be in the first 64 data
     bits of the original datagram's data.

  Description

     If, according to the information in the gateway's routing tables,
     the network specified in the internet destination field of a
     datagram is unreachable, e.g., the distance to the network is
     infinity, the gateway may send a destination unreachable message
     to the internet source host of the datagram.  In addition, in some
     networks, the gateway may be able to determine if the internet
     destination host is unreachable.  Gateways in these networks may
     send destination unreachable messages to the source host when the
     destination host is unreachable.

     If, in the destination host, the IP module cannot deliver the
     datagram  because the indicated protocol module or process port is
     not active, the destination host may send a destination
     unreachable message to the source host.

     Another case is when a datagram must be fragmented to be forwarded
     by a gateway yet the Don't Fragment flag is on.  In this case the
     gateway must discard the datagram and may return a destination
     unreachable message.

     Codes 0, 1, 4, and 5 may be received from a gateway.  Codes 2 and
     3 may be received from a host.





















                                                               [Page 5]


                                                         September 1981
RFC 792



Time Exceeded Message

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |     Code      |          Checksum             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             unused                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Internet Header + 64 bits of Original Data Datagram      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  IP Fields:

  Destination Address

     The source network and address from the original datagram's data.

  ICMP Fields:

  Type

     11

  Code

     0 = time to live exceeded in transit;

     1 = fragment reassembly time exceeded.

  Checksum

     The checksum is the 16-bit ones's complement of the one's
     complement sum of the ICMP message starting with the ICMP Type.
     For computing the checksum , the checksum field should be zero.
     This checksum may be replaced in the future.

  Internet Header + 64 bits of Data Datagram

     The internet header plus the first 64 bits of the original
     datagram's data.  This data is used by the host to match the
     message to the appropriate process.  If a higher level protocol
     uses port numbers, they are assumed to be in the first 64 data
     bits of the original datagram's data.

  Description

     If the gateway processing a datagram finds the time to live field


[Page 6]


September 1981
RFC 792



     is zero it must discard the datagram.  The gateway may also notify
     the source host via the time exceeded message.

     If a host reassembling a fragmented datagram cannot complete the
     reassembly due to missing fragments within its time limit it
     discards the datagram, and it may send a time exceeded message.

     If fragment zero is not available then no time exceeded need be
     sent at all.

     Code 0 may be received from a gateway.  Code 1 may be received
     from a host.






































                                                               [Page 7]


                                                         September 1981
RFC 792



Parameter Problem Message

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |     Code      |          Checksum             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Pointer    |                   unused                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Internet Header + 64 bits of Original Data Datagram      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  IP Fields:

  Destination Address

     The source network and address from the original datagram's data.

  ICMP Fields:

  Type

     12

  Code

     0 = pointer indicates the error.

  Checksum

     The checksum is the 16-bit ones's complement of the one's
     complement sum of the ICMP message starting with the ICMP Type.
     For computing the checksum , the checksum field should be zero.
     This checksum may be replaced in the future.

  Pointer

     If code = 0, identifies the octet where an error was detected.

  Internet Header + 64 bits of Data Datagram

     The internet header plus the first 64 bits of the original
     datagram's data.  This data is used by the host to match the
     message to the appropriate process.  If a higher level protocol
     uses port numbers, they are assumed to be in the first 64 data
     bits of the original datagram's data.




[Page 8]


September 1981
RFC 792



  Description

     If the gateway or host processing a datagram finds a problem with
     the header parameters such that it cannot complete processing the
     datagram it must discard the datagram.  One potential source of
     such a problem is with incorrect arguments in an option.  The
     gateway or host may also notify the source host via the parameter
     problem message.  This message is only sent if the error caused
     the datagram to be discarded.

     The pointer identifies the octet of the original datagram's header
     where the error was detected (it may be in the middle of an
     option).  For example, 1 indicates something is wrong with the
     Type of Service, and (if there are options present) 20 indicates
     something is wrong with the type code of the first option.

     Code 0 may be received from a gateway or a host.

































                                                               [Page 9]


                                                         September 1981
RFC 792



Source Quench Message

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |     Code      |          Checksum             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             unused                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Internet Header + 64 bits of Original Data Datagram      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  IP Fields:

  Destination Address

     The source network and address of the original datagram's data.

  ICMP Fields:

  Type

     4

  Code

     0

  Checksum

     The checksum is the 16-bit ones's complement of the one's
     complement sum of the ICMP message starting with the ICMP Type.
     For computing the checksum , the checksum field should be zero.
     This checksum may be replaced in the future.

  Internet Header + 64 bits of Data Datagram

     The internet header plus the first 64 bits of the original
     datagram's data.  This data is used by the host to match the
     message to the appropriate process.  If a higher level protocol
     uses port numbers, they are assumed to be in the first 64 data
     bits of the original datagram's data.

  Description

     A gateway may discard internet datagrams if it does not have the
     buffer space needed to queue the datagrams for output to the next
     network on the route to the destination network.  If a gateway


[Page 10]


September 1981
RFC 792



     discards a datagram, it may send a source quench message to the
     internet source host of the datagram.  A destination host may also
     send a source quench message if datagrams arrive too fast to be
     processed.  The source quench message is a request to the host to
     cut back the rate at which it is sending traffic to the internet
     destination.  The gateway may send a source quench message for
     every message that it discards.  On receipt of a source quench
     message, the source host should cut back the rate at which it is
     sending traffic to the specified destination until it no longer
     receives source quench messages from the gateway.  The source host
     can then gradually increase the rate at which it sends traffic to
     the destination until it again receives source quench messages.

     The gateway or host may send the source quench message when it
     approaches its capacity limit rather than waiting until the
     capacity is exceeded.  This means that the data datagram which
     triggered the source quench message may be delivered.

     Code 0 may be received from a gateway or a host.































                                                              [Page 11]


                                                         September 1981
RFC 792



Redirect Message

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |     Code      |          Checksum             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 Gateway Internet Address                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Internet Header + 64 bits of Original Data Datagram      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  IP Fields:

  Destination Address

     The source network and address of the original datagram's data.

  ICMP Fields:

  Type

     5

  Code

     0 = Redirect datagrams for the Network.

     1 = Redirect datagrams for the Host.

     2 = Redirect datagrams for the Type of Service and Network.

     3 = Redirect datagrams for the Type of Service and Host.

  Checksum

     The checksum is the 16-bit ones's complement of the one's
     complement sum of the ICMP message starting with the ICMP Type.
     For computing the checksum , the checksum field should be zero.
     This checksum may be replaced in the future.

  Gateway Internet Address

     Address of the gateway to which traffic for the network specified
     in the internet destination network field of the original
     datagram's data should be sent.




[Page 12]


September 1981
RFC 792



  Internet Header + 64 bits of Data Datagram

     The internet header plus the first 64 bits of the original
     datagram's data.  This data is used by the host to match the
     message to the appropriate process.  If a higher level protocol
     uses port numbers, they are assumed to be in the first 64 data
     bits of the original datagram's data.

  Description

     The gateway sends a redirect message to a host in the following
     situation.  A gateway, G1, receives an internet datagram from a
     host on a network to which the gateway is attached.  The gateway,
     G1, checks its routing table and obtains the address of the next
     gateway, G2, on the route to the datagram's internet destination
     network, X.  If G2 and the host identified by the internet source
     address of the datagram are on the same network, a redirect
     message is sent to the host.  The redirect message advises the
     host to send its traffic for network X directly to gateway G2 as
     this is a shorter path to the destination.  The gateway forwards
     the original datagram's data to its internet destination.

     For datagrams with the IP source route options and the gateway
     address in the destination address field, a redirect message is
     not sent even if there is a better route to the ultimate
     destination than the next address in the source route.

     Codes 0, 1, 2, and 3 may be received from a gateway.






















                                                              [Page 13]


                                                         September 1981
RFC 792



Echo or Echo Reply Message

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |     Code      |          Checksum             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           Identifier          |        Sequence Number        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Data ...
  +-+-+-+-+-

  IP Fields:

  Addresses

     The address of the source in an echo message will be the
     destination of the echo reply message.  To form an echo reply
     message, the source and destination addresses are simply reversed,
     the type code changed to 0, and the checksum recomputed.

  IP Fields:

  Type

     8 for echo message;

     0 for echo reply message.

  Code

     0

  Checksum

     The checksum is the 16-bit ones's complement of the one's
     complement sum of the ICMP message starting with the ICMP Type.
     For computing the checksum , the checksum field should be zero.
     If the total length is odd, the received data is padded with one
     octet of zeros for computing the checksum.  This checksum may be
     replaced in the future.

  Identifier

     If code = 0, an identifier to aid in matching echos and replies,
     may be zero.

  Sequence Number


[Page 14]


September 1981
RFC 792



     If code = 0, a sequence number to aid in matching echos and
     replies, may be zero.

  Description

     The data received in the echo message must be returned in the echo
     reply message.

     The identifier and sequence number may be used by the echo sender
     to aid in matching the replies with the echo requests.  For
     example, the identifier might be used like a port in TCP or UDP to
     identify a session, and the sequence number might be incremented
     on each echo request sent.  The echoer returns these same values
     in the echo reply.

     Code 0 may be received from a gateway or a host.


































                                                              [Page 15]


                                                         September 1981
RFC 792



Timestamp or Timestamp Reply Message

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |      Code     |          Checksum             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           Identifier          |        Sequence Number        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Originate Timestamp                                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Receive Timestamp                                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Transmit Timestamp                                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  IP Fields:

  Addresses

     The address of the source in a timestamp message will be the
     destination of the timestamp reply message.  To form a timestamp
     reply message, the source and destination addresses are simply
     reversed, the type code changed to 14, and the checksum
     recomputed.

  IP Fields:

  Type

     13 for timestamp message;

     14 for timestamp reply message.

  Code

     0

  Checksum

     The checksum is the 16-bit ones's complement of the one's
     complement sum of the ICMP message starting with the ICMP Type.
     For computing the checksum , the checksum field should be zero.
     This checksum may be replaced in the future.

  Identifier




[Page 16]


September 1981
RFC 792



     If code = 0, an identifier to aid in matching timestamp and
     replies, may be zero.

  Sequence Number

     If code = 0, a sequence number to aid in matching timestamp and
     replies, may be zero.

  Description

     The data received (a timestamp) in the message is returned in the
     reply together with an additional timestamp.  The timestamp is 32
     bits of milliseconds since midnight UT.  One use of these
     timestamps is described by Mills [5].

     The Originate Timestamp is the time the sender last touched the
     message before sending it, the Receive Timestamp is the time the
     echoer first touched it on receipt, and the Transmit Timestamp is
     the time the echoer last touched the message on sending it.

     If the time is not available in miliseconds or cannot be provided
     with respect to midnight UT then any time can be inserted in a
     timestamp provided the high order bit of the timestamp is also set
     to indicate this non-standard value.

     The identifier and sequence number may be used by the echo sender
     to aid in matching the replies with the requests.  For example,
     the identifier might be used like a port in TCP or UDP to identify
     a session, and the sequence number might be incremented on each
     request sent.  The destination returns these same values in the
     reply.

     Code 0 may be received from a gateway or a host.

















                                                              [Page 17]


                                                         September 1981
RFC 792



Information Request or Information Reply Message

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |      Code     |          Checksum             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           Identifier          |        Sequence Number        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  IP Fields:

  Addresses

     The address of the source in a information request message will be
     the destination of the information reply message.  To form a
     information reply message, the source and destination addresses
     are simply reversed, the type code changed to 16, and the checksum
     recomputed.

  IP Fields:

  Type

     15 for information request message;

     16 for information reply message.

  Code

     0

  Checksum

     The checksum is the 16-bit ones's complement of the one's
     complement sum of the ICMP message starting with the ICMP Type.
     For computing the checksum , the checksum field should be zero.
     This checksum may be replaced in the future.

  Identifier

     If code = 0, an identifier to aid in matching request and replies,
     may be zero.

  Sequence Number

     If code = 0, a sequence number to aid in matching request and
     replies, may be zero.


[Page 18]


September 1981
RFC 792



  Description

     This message may be sent with the source network in the IP header
     source and destination address fields zero (which means "this"
     network).  The replying IP module should send the reply with the
     addresses fully specified.  This message is a way for a host to
     find out the number of the network it is on.

     The identifier and sequence number may be used by the echo sender
     to aid in matching the replies with the requests.  For example,
     the identifier might be used like a port in TCP or UDP to identify
     a session, and the sequence number might be incremented on each
     request sent.  The destination returns these same values in the
     reply.

     Code 0 may be received from a gateway or a host.


































                                                              [Page 19]


                                                         September 1981
RFC 792



Summary of Message Types

   0  Echo Reply

   3  Destination Unreachable

   4  Source Quench

   5  Redirect

   8  Echo

  11  Time Exceeded

  12  Parameter Problem

  13  Timestamp

  14  Timestamp Reply

  15  Information Request

  16  Information Reply



























[Page 20]


September 1981
RFC 792



References

  [1]  Postel, J. (ed.), "Internet Protocol - DARPA Internet Program
        Protocol Specification," RFC 791, USC/Information Sciences
        Institute, September 1981.

  [2]   Cerf, V., "The Catenet Model for Internetworking," IEN 48,
        Information Processing Techniques Office, Defense Advanced
        Research Projects Agency, July 1978.

  [3]   Strazisar, V., "Gateway Routing:  An Implementation
        Specification", IEN 30, Bolt Beranek and Newman, April 1979.

  [4]   Strazisar, V., "How to Build a Gateway", IEN 109, Bolt Beranek
        and Newman, August 1979.

  [5]   Mills, D., "DCNET Internet Clock Service," RFC 778, COMSAT
        Laboratories, April 1981.
































                                                              [Page 21]

========================================================================




Network Working Group                                        S. Deering
Request for Comments: 1112                          Stanford University
Obsoletes: RFCs 988, 1054                                   August 1989


                 Host Extensions for IP Multicasting

1. STATUS OF THIS MEMO

  This memo specifies the extensions required of a host implementation
  of the Internet Protocol (IP) to support multicasting.  It is the
  recommended standard for IP multicasting in the Internet.
  Distribution of this memo is unlimited.

2. INTRODUCTION

  IP multicasting is the transmission of an IP datagram to a "host
  group", a set of zero or more hosts identified by a single IP
  destination address.  A multicast datagram is delivered to all
  members of its destination host group with the same "best-efforts"
  reliability as regular unicast IP datagrams, i.e., the datagram is
  not guaranteed to arrive intact at all members of the destination
  group or in the same order relative to other datagrams.

  The membership of a host group is dynamic; that is, hosts may join
  and leave groups at any time.  There is no restriction on the
  location or number of members in a host group.  A host may be a
  member of more than one group at a time.  A host need not be a member
  of a group to send datagrams to it.

  A host group may be permanent or transient.  A permanent group has a
  well-known, administratively assigned IP address.  It is the address,
  not the membership of the group, that is permanent; at any time a
  permanent group may have any number of members, even zero.  Those IP
  multicast addresses that are not reserved for permanent groups are
  available for dynamic assignment to transient groups which exist only
  as long as they have members.

  Internetwork forwarding of IP multicast datagrams is handled by
  "multicast routers" which may be co-resident with, or separate from,
  internet gateways.  A host transmits an IP multicast datagram as a
  local network multicast which reaches all immediately-neighboring
  members of the destination host group.  If the datagram has an IP
  time-to-live greater than 1, the multicast router(s) attached to the
  local network take responsibility for forwarding it towards all other
  networks that have members of the destination group.  On those other
  member networks that are reachable within the IP time-to-live, an
  attached multicast router completes delivery by transmitting the



Deering                                                         [Page 1]

RFC 1112          Host Extensions for IP Multicasting        August 1989


  datagram as a local multicast.

  This memo specifies the extensions required of a host IP
  implementation to support IP multicasting, where a "host" is any
  internet host or gateway other than those acting as multicast
  routers.  The algorithms and protocols used within and between
  multicast routers are transparent to hosts and will be specified in
  separate documents.  This memo also does not specify how local
  network multicasting is accomplished for all types of network,
  although it does specify the required service interface to an
  arbitrary local network and gives an Ethernet specification as an
  example.  Specifications for other types of network will be the
  subject of future memos.

3. LEVELS OF CONFORMANCE

  There are three levels of conformance to this specification:

     Level 0: no support for IP multicasting.

  There is, at this time, no requirement that all IP implementations
  support IP multicasting.  Level 0 hosts will, in general, be
  unaffected by multicast activity.  The only exception arises on some
  types of local network, where the presence of level 1 or 2 hosts may
  cause misdelivery of multicast IP datagrams to level 0 hosts.  Such
  datagrams can easily be identified by the presence of a class D IP
  address in their destination address field; they should be quietly
  discarded by hosts that do not support IP multicasting.  Class D
  addresses are described in section 4 of this memo.

     Level 1: support for sending but not receiving multicast IP
     datagrams.

  Level 1 allows a host to partake of some multicast-based services,
  such as resource location or status reporting, but it does not allow
  a host to join any host groups.  An IP implementation may be upgraded
  from level 0 to level 1 very easily and with little new code.  Only
  sections 4, 5, and 6 of this memo are applicable to level 1
  implementations.

     Level 2: full support for IP multicasting.

  Level 2 allows a host to join and leave host groups, as well as send
  IP datagrams to host groups.  It requires implementation of the
  Internet Group Management Protocol (IGMP) and extension of the IP and
  local network service interfaces within the host.  All of the
  following sections of this memo are applicable to level 2
  implementations.



Deering                                                         [Page 2]

RFC 1112          Host Extensions for IP Multicasting        August 1989


4. HOST GROUP ADDRESSES

  Host groups are identified by class D IP addresses, i.e., those with
  "1110" as their high-order four bits.  Class E IP addresses, i.e.,
  those with "1111" as their high-order four bits, are reserved for
  future addressing modes.

  In Internet standard "dotted decimal" notation, host group addresses
  range from 224.0.0.0 to 239.255.255.255.  The address 224.0.0.0 is
  guaranteed not to be assigned to any group, and 224.0.0.1 is assigned
  to the permanent group of all IP hosts (including gateways).  This is
  used to address all multicast hosts on the directly connected
  network.  There is no multicast address (or any other IP address) for
  all hosts on the total Internet.  The addresses of other well-known,
  permanent groups are to be published in "Assigned Numbers".

  Appendix II contains some background discussion of several issues
  related to host group addresses.

































Deering                                                         [Page 3]

RFC 1112          Host Extensions for IP Multicasting        August 1989


5. MODEL OF A HOST IP IMPLEMENTATION

  The multicast extensions to a host IP implementation are specified in
  terms of the layered model illustrated below.  In this model, ICMP
  and (for level 2 hosts) IGMP are considered to be implemented within
  the IP module, and the mapping of IP addresses to local network
  addresses is considered to be the responsibility of local network
  modules.  This model is for expository purposes only, and should not
  be construed as constraining an actual implementation.

        |                                                          |
        |              Upper-Layer Protocol Modules                |
        |__________________________________________________________|

     --------------------- IP Service Interface -----------------------
         __________________________________________________________
        |                            |              |              |
        |                            |     ICMP     |     IGMP     |
        |             IP             |______________|______________|
        |           Module                                         |
        |                                                          |
        |__________________________________________________________|

     ---------------- Local Network Service Interface -----------------
         __________________________________________________________
        |                            |                             |
        |           Local            | IP-to-local address mapping |
        |          Network           |         (e.g., ARP)         |
        |          Modules           |_____________________________|
        |      (e.g., Ethernet)                                    |
        |                                                          |

  To provide level 1 multicasting, a host IP implementation must
  support the transmission of multicast IP datagrams.  To provide level
  2 multicasting, a host must also support the reception of multicast
  IP datagrams.  Each of these two new services is described in a
  separate section, below.  For each service, extensions are specified
  for the IP service interface, the IP module, the local network
  service interface, and an Ethernet local network module.  Extensions
  to local network modules other than Ethernet are mentioned briefly,
  but are not specified in detail.










Deering                                                         [Page 4]

RFC 1112          Host Extensions for IP Multicasting        August 1989


6. SENDING MULTICAST IP DATAGRAMS

6.1. Extensions to the IP Service Interface

  Multicast IP datagrams are sent using the same "Send IP" operation
  used to send unicast IP datagrams; an upper-layer protocol module
  merely specifies an IP host group address, rather than an individual
  IP address, as the destination.  However, a number of extensions may
  be necessary or desirable.

  First, the service interface should provide a way for the upper-layer
  protocol to specify the IP time-to-live of an outgoing multicast
  datagram, if such a capability does not already exist.  If the
  upper-layer protocol chooses not to specify a time-to-live, it should
  default to 1 for all multicast IP datagrams, so that an explicit
  choice is required to multicast beyond a single network.

  Second, for hosts that may be attached to more than one network, the
  service interface should provide a way for the upper-layer protocol
  to identify which network interface is be used for the multicast
  transmission.  Only one interface is used for the initial
  transmission; multicast routers are responsible for forwarding to any
  other networks, if necessary.  If the upper-layer protocol chooses
  not to identify an outgoing interface, a default interface should be
  used, preferably under the control of system management.

  Third (level 2 implementations only), for the case in which the host
  is itself a member of a group to which a datagram is being sent, the
  service interface should provide a way for the upper-layer protocol
  to inhibit local delivery of the datagram; by default, a copy of the
  datagram is looped back.  This is a performance optimization for
  upper-layer protocols that restrict the membership of a group to one
  process per host (such as a routing protocol), or that handle
  loopback of group communication at a higher layer (such as a
  multicast transport protocol).

6.2. Extensions to the IP Module

  To support the sending of multicast IP datagrams, the IP module must
  be extended to recognize IP host group addresses when routing
  outgoing datagrams.  Most IP implementations include the following
  logic:

       if IP-destination is on the same local network,
          send datagram locally to IP-destination
       else
          send datagram locally to GatewayTo( IP-destination )




Deering                                                         [Page 5]

RFC 1112          Host Extensions for IP Multicasting        August 1989


  To allow multicast transmissions, the routing logic must be changed
  to:

       if IP-destination is on the same local network
       or IP-destination is a host group,
          send datagram locally to IP-destination
       else
          send datagram locally to GatewayTo( IP-destination )


  If the sending host is itself a member of the destination group on
  the outgoing interface, a copy of the outgoing datagram must be
  looped-back for local delivery, unless inhibited by the sender.
  (Level 2 implementations only.)

  The IP source address of the outgoing datagram must be one of the
  individual addresses corresponding to the outgoing interface.

  A host group address must never be placed in the source address field
  or anywhere in a source route or record route option of an outgoing
  IP datagram.

6.3. Extensions to the Local Network Service Interface

  No change to the local network service interface is required to
  support the sending of multicast IP datagrams.  The IP module merely
  specifies an IP host group destination, rather than an individual IP
  destination, when it invokes the existing "Send Local" operation.

6.4. Extensions to an Ethernet Local Network Module

  The Ethernet directly supports the sending of local multicast packets
  by allowing multicast addresses in the destination field of Ethernet
  packets.  All that is needed to support the sending of multicast IP
  datagrams is a procedure for mapping IP host group addresses to
  Ethernet multicast addresses.

  An IP host group address is mapped to an Ethernet multicast address
  by placing the low-order 23-bits of the IP address into the low-order
  23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex).
  Because there are 28 significant bits in an IP host group address,
  more than one host group address may map to the same Ethernet
  multicast address.

6.5. Extensions to Local Network Modules other than Ethernet

  Other networks that directly support multicasting, such as rings or
  buses conforming to the IEEE 802.2 standard, may be handled the same



Deering                                                         [Page 6]

RFC 1112          Host Extensions for IP Multicasting        August 1989


  way as Ethernet for the purpose of sending multicast IP datagrams.
  For a network that supports broadcast but not multicast, such as the
  Experimental Ethernet, all IP host group addresses may be mapped to a
  single local broadcast address (at the cost of increased overhead on
  all local hosts).  For a point-to-point link joining two hosts (or a
  host and a multicast router), multicasts should be transmitted
  exactly like unicasts.  For a store-and-forward network like the
  ARPANET or a public X.25 network, all IP host group addresses might
  be mapped to the well-known local address of an IP multicast router;
  a router on such a network would take responsibility for completing
  multicast delivery within the network as well as among networks.

7. RECEIVING MULTICAST IP DATAGRAMS

7.1. Extensions to the IP Service Interface

  Incoming multicast IP datagrams are received by upper-layer protocol
  modules using the same "Receive IP" operation as normal, unicast
  datagrams.  Selection of a destination upper-layer protocol is based
  on the protocol field in the IP header, regardless of the destination
  IP address.  However, before any datagrams destined to a particular
  group can be received, an upper-layer protocol must ask the IP module
  to join that group.  Thus, the IP service interface must be extended
  to provide two new operations:

                JoinHostGroup  ( group-address, interface )

                LeaveHostGroup ( group-address, interface )

  The JoinHostGroup operation requests that this host become a member
  of the host group identified by "group-address" on the given network
  interface.  The LeaveGroup operation requests that this host give up
  its membership in the host group identified by "group-address" on the
  given network interface.  The interface argument may be omitted on
  hosts that support only one interface.  For hosts that may be
  attached to more than one network, the upper-layer protocol may
  choose to leave the interface unspecified, in which case the request
  will apply to the default interface for sending multicast datagrams
  (see section 6.1).

  It is permissible to join the same group on more than one interface,
  in which case duplicate multicast datagrams may be received.  It is
  also permissible for more than one upper-layer protocol to request
  membership in the same group.

  Both operations should return immediately (i.e., they are non-
  blocking operations), indicating success or failure.  Either
  operation may fail due to an invalid group address or interface



Deering                                                         [Page 7]

RFC 1112          Host Extensions for IP Multicasting        August 1989


  identifier.  JoinHostGroup may fail due to lack of local resources.
  LeaveHostGroup may fail because the host does not belong to the given
  group on the given interface.  LeaveHostGroup may succeed, but the
  membership persist, if more than one upper-layer protocol has
  requested membership in the same group.

7.2. Extensions to the IP Module

  To support the reception of multicast IP datagrams, the IP module
  must be extended to maintain a list of host group memberships
  associated with each network interface.  An incoming datagram
  destined to one of those groups is processed exactly the same way as
  datagrams destined to one of the host's individual addresses.

  Incoming datagrams destined to groups to which the host does not
  belong are discarded without generating any error report or log
  entry.  On hosts with more than one network interface, if a datagram
  arrives via one interface, destined for a group to which the host
  belongs only on a different interface, the datagram is quietly
  discarded.  (These cases should occur only as a result of inadequate
  multicast address filtering in a local network module.)

  An incoming datagram is not rejected for having an IP time-to-live of
  1 (i.e., the time-to-live should not automatically be decremented on
  arriving datagrams that are not being forwarded).  An incoming
  datagram with an IP host group address in its source address field is
  quietly discarded.  An ICMP error message (Destination Unreachable,
  Time Exceeded, Parameter Problem, Source Quench, or Redirect) is
  never generated in response to a datagram destined to an IP host
  group.

  The list of host group memberships is updated in response to
  JoinHostGroup and LeaveHostGroup requests from upper-layer protocols.
  Each membership should have an associated reference count or similar
  mechanism to handle multiple requests to join and leave the same
  group.  On the first request to join and the last request to leave a
  group on a given interface, the local network module for that
  interface is notified, so that it may update its multicast reception
  filter (see section 7.3).

  The IP module must also be extended to implement the IGMP protocol,
  specified in Appendix I. IGMP is used to keep neighboring multicast
  routers informed of the host group memberships present on a
  particular local network.  To support IGMP, every level 2 host must
  join the "all-hosts" group (address 224.0.0.1) on each network
  interface at initialization time and must remain a member for as long
  as the host is active.




Deering                                                         [Page 8]

RFC 1112          Host Extensions for IP Multicasting        August 1989


  (Datagrams addressed to the all-hosts group are recognized as a
  special case by the multicast routers and are never forwarded beyond
  a single network, regardless of their time-to-live.  Thus, the all-
  hosts address may not be used as an internet-wide broadcast address.
  For the purpose of IGMP, membership in the all-hosts group is really
  necessary only while the host belongs to at least one other group.
  However, it is specified that the host shall remain a member of the
  all-hosts group at all times because (1) it is simpler, (2) the
  frequency of reception of unnecessary IGMP queries should be low
  enough that overhead is negligible, and (3) the all-hosts address may
  serve other routing-oriented purposes, such as advertising the
  presence of gateways or resolving local addresses.)

7.3. Extensions to the Local Network Service Interface

  Incoming local network multicast packets are delivered to the IP
  module using the same "Receive Local" operation as local network
  unicast packets.  To allow the IP module to tell the local network
  module which multicast packets to accept, the local network service
  interface is extended to provide two new operations:

                     JoinLocalGroup  ( group-address )

                     LeaveLocalGroup ( group-address )

  where "group-address" is an IP host group address.  The
  JoinLocalGroup operation requests the local network module to accept
  and deliver up subsequently arriving packets destined to the given IP
  host group address.  The LeaveLocalGroup operation requests the local
  network module to stop delivering up packets destined to the given IP
  host group address.  The local network module is expected to map the
  IP host group addresses to local network addresses as required to
  update its multicast reception filter.  Any local network module is
  free to ignore LeaveLocalGroup requests, and may deliver up packets
  destined to more addresses than just those specified in
  JoinLocalGroup requests, if it is unable to filter incoming packets
  adequately.

  The local network module must not deliver up any multicast packets
  that were transmitted from that module; loopback of multicasts is
  handled at the IP layer or higher.

7.4. Extensions to an Ethernet Local Network Module

  To support the reception of multicast IP datagrams, an Ethernet
  module must be able to receive packets addressed to the Ethernet
  multicast addresses that correspond to the host's IP host group
  addresses.  It is highly desirable to take advantage of any address



Deering                                                         [Page 9]

RFC 1112          Host Extensions for IP Multicasting        August 1989


  filtering capabilities that the Ethernet hardware interface may have,
  so that the host receives only those packets that are destined to it.

  Unfortunately, many current Ethernet interfaces have a small limit on
  the number of addresses that the hardware can be configured to
  recognize.  Nevertheless, an implementation must be capable of
  listening on an arbitrary number of Ethernet multicast addresses,
  which may mean "opening up" the address filter to accept all
  multicast packets during those periods when the number of addresses
  exceeds the limit of the filter.

  For interfaces with inadequate hardware address filtering, it may be
  desirable (for performance reasons) to perform Ethernet address
  filtering within the software of the Ethernet module.  This is not
  mandatory, however, because the IP module performs its own filtering
  based on IP destination addresses.

7.5. Extensions to Local Network Modules other than Ethernet

  Other multicast networks, such as IEEE 802.2 networks, can be handled
  the same way as Ethernet for the purpose of receiving multicast IP
  datagrams.  For pure broadcast networks, such as the Experimental
  Ethernet, all incoming broadcast packets can be accepted and passed
  to the IP module for IP-level filtering.  On point-to-point or
  store-and-forward networks, multicast IP datagrams will arrive as
  local network unicasts, so no change to the local network module
  should be necessary.
























Deering                                                        [Page 10]

RFC 1112          Host Extensions for IP Multicasting        August 1989


APPENDIX I. INTERNET GROUP MANAGEMENT PROTOCOL (IGMP)

  The Internet Group Management Protocol (IGMP) is used by IP hosts to
  report their host group memberships to any immediately-neighboring
  multicast routers.  IGMP is an asymmetric protocol and is specified
  here from the point of view of a host, rather than a multicast
  router.  (IGMP may also be used, symmetrically or asymmetrically,
  between multicast routers.  Such use is not specified here.)

  Like ICMP, IGMP is a integral part of IP.  It is required to be
  implemented by all hosts conforming to level 2 of the IP multicasting
  specification.  IGMP messages are encapsulated in IP datagrams, with
  an IP protocol number of 2.  All IGMP messages of concern to hosts
  have the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Version| Type  |    Unused     |           Checksum            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         Group Address                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Version

        This memo specifies version 1 of IGMP.  Version 0 is specified
        in RFC-988 and is now obsolete.

     Type

        There are two types of IGMP message of concern to hosts:

           1 = Host Membership Query
           2 = Host Membership Report

     Unused

        Unused field, zeroed when sent, ignored when received.

     Checksum

        The checksum is the 16-bit one's complement of the one's
        complement sum of the 8-octet IGMP message.  For computing
        the checksum, the checksum field is zeroed.

     Group Address

        In a Host Membership Query message, the group address field



Deering                                                        [Page 11]

RFC 1112          Host Extensions for IP Multicasting        August 1989


        is zeroed when sent, ignored when received.

        In a Host Membership Report message, the group address field
        holds the IP host group address of the group being reported.

Informal Protocol Description

  Multicast routers send Host Membership Query messages (hereinafter
  called Queries) to discover which host groups have members on their
  attached local networks.  Queries are addressed to the all-hosts
  group (address 224.0.0.1), and carry an IP time-to-live of 1.

  Hosts respond to a Query by generating Host Membership Reports
  (hereinafter called Reports), reporting each host group to which they
  belong on the network interface from which the Query was received.
  In order to avoid an "implosion" of concurrent Reports and to reduce
  the total number of Reports transmitted, two techniques are used:

     1. When a host receives a Query, rather than sending Reports
        immediately, it starts a report delay timer for each of its
        group memberships on the network interface of the incoming
        Query.  Each timer is set to a different, randomly-chosen
        value between zero and D seconds.  When a timer expires, a
        Report is generated for the corresponding host group.  Thus,
        Reports are spread out over a D second interval instead of
        all occurring at once.

     2. A Report is sent with an IP destination address equal to the
        host group address being reported, and with an IP
        time-to-live of 1, so that other members of the same group on
        the same network can overhear the Report.  If a host hears a
        Report for a group to which it belongs on that network, the
        host stops its own timer for that group and does not generate
        a Report for that group.  Thus, in the normal case, only one
        Report will be generated for each group present on the
        network, by the member host whose delay timer expires first.
        Note that the multicast routers receive all IP multicast
        datagrams, and therefore need not be addressed explicitly.
        Further note that the routers need not know which hosts
        belong to a group, only that at least one host belongs to a
        group on a particular network.

  There are two exceptions to the behavior described above.  First, if
  a report delay timer is already running for a group membership when a
  Query is received, that timer is not reset to a new random value, but
  rather allowed to continue running with its current value.  Second, a
  report delay timer is never set for a host's membership in the all-
  hosts group (224.0.0.1), and that membership is never reported.



Deering                                                        [Page 12]

RFC 1112          Host Extensions for IP Multicasting        August 1989


  If a host uses a pseudo-random number generator to compute the
  reporting delays, one of the host's own individual IP address should
  be used as part of the seed for the generator, to reduce the chance
  of multiple hosts generating the same sequence of delays.

  A host should confirm that a received Report has the same IP host
  group address in its IP destination field and its IGMP group address
  field, to ensure that the host's own Report is not cancelled by an
  erroneous received Report.  A host should quietly discard any IGMP
  message of type other than Host Membership Query or Host Membership
  Report.

  Multicast routers send Queries periodically to refresh their
  knowledge of memberships present on a particular network.  If no
  Reports are received for a particular group after some number of
  Queries, the routers assume that that group has no local members and
  that they need not forward remotely-originated multicasts for that
  group onto the local network.  Queries are normally sent infrequently
  (no more than once a minute) so as to keep the IGMP overhead on hosts
  and networks very low.  However, when a multicast router starts up,
  it may issue several closely-spaced Queries in order to build up its
  knowledge of local memberships quickly.

  When a host joins a new group, it should immediately transmit a
  Report for that group, rather than waiting for a Query, in case it is
  the first member of that group on the network.  To cover the
  possibility of the initial Report being lost or damaged, it is
  recommended that it be repeated once or twice after short delays.  (A
  simple way to accomplish this is to act as if a Query had been
  received for that group only, setting the group's random report delay
  timer.  The state transition diagram below illustrates this
  approach.)

  Note that, on a network with no multicast routers present, the only
  IGMP traffic is the one or more Reports sent whenever a host joins a
  new group.

State Transition Diagram

  IGMP behavior is more formally specified by the state transition
  diagram below.  A host may be in one of three possible states, with
  respect to any single IP host group on any single network interface:

     - Non-Member state, when the host does not belong to the group
       on the interface.  This is the initial state for all
       memberships on all network interfaces; it requires no storage
       in the host.




Deering                                                        [Page 13]

RFC 1112          Host Extensions for IP Multicasting        August 1989


     - Delaying Member state, when the host belongs to the group on
       the interface and has a report delay timer running for that
       membership.

     - Idle Member state, when the host belongs to the group on the
       interface and does not have a report delay timer running for
       that membership.

  There are five significant events that can cause IGMP state
  transitions:

     - "join group" occurs when the host decides to join the group on
       the interface.  It may occur only in the Non-Member state.

     - "leave group" occurs when the host decides to leave the group
       on the interface.  It may occur only in the Delaying Member
       and Idle Member states.

     - "query received" occurs when the host receives a valid IGMP
       Host Membership Query message.  To be valid, the Query message
       must be at least 8 octets long, have a correct IGMP
       checksum and have an IP destination address of 224.0.0.1.
       A single Query applies to all memberships on the
       interface from which the Query is received.  It is ignored for
       memberships in the Non-Member or Delaying Member state.

     - "report received" occurs when the host receives a valid IGMP
       Host Membership Report message.  To be valid, the Report
       message must be at least 8 octets long, have a correct IGMP
       checksum, and contain the same IP host group address in its IP
       destination field and its IGMP group address field.  A Report
       applies only to the membership in the group identified by the
       Report, on the interface from which the Report is received.
       It is ignored for memberships in the Non-Member or Idle Member
       state.

     - "timer expired" occurs when the report delay timer for the
       group on the interface expires.  It may occur only in the
       Delaying Member state.

  All other events, such as receiving invalid IGMP messages, or IGMP
  messages other than Query or Report, are ignored in all states.

  There are three possible actions that may be taken in response to the
  above events:

     - "send report" for the group on the interface.




Deering                                                        [Page 14]

RFC 1112          Host Extensions for IP Multicasting        August 1989


     - "start timer" for the group on the interface, using a random
       delay value between 0 and D seconds.

     - "stop timer" for the group on the interface.

  In the following diagram, each state transition arc is labelled with
  the event that causes the transition, and, in parentheses, any
  actions taken during the transition.

                             ________________
                            |                |
                            |                |
                            |                |
                            |                |
                  --------->|   Non-Member   |<---------
                 |          |                |          |
                 |          |                |          |
                 |          |                |          |
                 |          |________________|          |
                 |                   |                  |
                 | leave group       | join group       | leave group
                 | (stop timer)      |(send report,     |
                 |                   | start timer)     |
         ________|________           |          ________|________
        |                 |<---------          |                 |
        |                 |                    |                 |
        |                 |<-------------------|                 |
        |                 |   query received   |                 |
        | Delaying Member |    (start timer)   |   Idle Member   |
        |                 |------------------->|                 |
        |                 |   report received  |                 |
        |                 |    (stop timer)    |                 |
        |_________________|------------------->|_________________|
                               timer expired
                               (send report)

  The all-hosts group (address 224.0.0.1) is handled as a special case.
  The host starts in Idle Member state for that group on every
  interface, never transitions to another state, and never sends a
  report for that group.

Protocol Parameters

  The maximum report delay, D, is 10 seconds.







Deering                                                        [Page 15]

RFC 1112          Host Extensions for IP Multicasting        August 1989


APPENDIX II. HOST GROUP ADDRESS ISSUES

  This appendix is not part of the IP multicasting specification, but
  provides background discussion of several issues related to IP host
  group addresses.

Group Address Binding

  The binding of IP host group addresses to physical hosts may be
  considered a generalization of the binding of IP unicast addresses.
  An IP unicast address is statically bound to a single local network
  interface on a single IP network.  An IP host group address is
  dynamically bound to a set of local network interfaces on a set of IP
  networks.

  It is important to understand that an IP host group address is NOT
  bound to a set of IP unicast addresses.  The multicast routers do not
  need to maintain a list of individual members of each host group.
  For example, a multicast router attached to an Ethernet need
  associate only a single Ethernet multicast address with each host
  group having local members, rather than a list of the members'
  individual IP or Ethernet addresses.

Allocation of Transient Host Group Addresses

  This memo does not specify how transient group address are allocated.
  It is anticipated that different portions of the IP transient host
  group address space will be allocated using different techniques.
  For example, there may be a number of servers that can be contacted
  to acquire a new transient group address.  Some higher-level
  protocols (such as VMTP, specified in RFC-1045) may generate higher-
  level transient "process group" or "entity group" addresses which are
  then algorithmically mapped to a subset of the IP transient host
  group addresses, similarly to the way that IP host group addresses
  are mapped to Ethernet multicast addresses.  A portion of the IP
  group address space may be set aside for random allocation by
  applications that can tolerate occasional collisions with other
  multicast users, perhaps generating new addresses until a suitably
  "quiet" one is found.

  In general, a host cannot assume that datagrams sent to any host
  group address will reach only the intended hosts, or that datagrams
  received as a member of a transient host group are intended for the
  recipient.  Misdelivery must be detected at a level above IP, using
  higher-level identifiers or authentication tokens.  Information
  transmitted to a host group address should be encrypted or governed
  by administrative routing controls if the sender is concerned about
  unwanted listeners.



Deering                                                        [Page 16]

RFC 1112          Host Extensions for IP Multicasting        August 1989


Author's Address

  Steve Deering
  Stanford University
  Computer Science Department
  Stanford, CA 94305-2140

  Phone: (415) 723-9427

  EMail: [email protected]









































Deering                                                        [Page 17]