Network Working Group                                  D. E. Cass (NRTC)
Request for Comments: 983                              M. T. Rose (NRTC)
                                                             April 1986

               ISO Transport Services on Top of the TCP


Status of This Memo

  This memo describes a proposed protocol standard for the ARPA
  Internet community.  The intention is that hosts in the ARPA-Internet
  that choose to implement ISO TSAP services on top of the TCP be
  expected to adopt and implement this standard.  Suggestions for
  improvement are encouraged.  Distribution of this memo is unlimited.

1.  Introduction and Philosophy

  The ARPA Internet community has a well-developed, mature set of
  transport and internetwork protocols (TCP/IP), which are quite
  successful in offering network and transport services to end-users.
  The CCITT and the ISO have defined various session, presentation, and
  application recommendations which have been adopted by the
  international community and numerous vendors.  To the largest extent
  possible, it is desirable to offer these higher level services
  directly in the ARPA Internet, without disrupting existing
  facilities.  This permits users to develop expertise with ISO and
  CCITT applications which previously were not available in the ARPA
  Internet.  It also permits a more graceful transition strategy from
  TCP/IP-based networks to ISO-based networks in the medium- and
  long-term.

  There are two basic approaches which can be taken when "porting" an
  ISO or CCITT application to a TCP/IP environment.  One approach is to
  port each individual application separately, developing local
  protocols on top of the TCP.  Although this is useful in the
  short-term (since special-purpose interfaces to the TCP can be
  developed quickly), it lacks generality.

  A second approach is based on the observation that both the ARPA
  Internet protocol suite and the ISO protocol suite are both layered
  systems (though the former uses layering from a more pragmatic
  perspective).  A key aspect of the layering principle is that of
  layer-independence.  Although this section is redundant for most
  readers, a slight bit of background material is necessary to
  introduce this concept.

  Externally, a layer is defined by two definitions:

     a service-offered definition, which describes the services
     provided by the layer and the interfaces it provides to access
     those services; and,


Cass & Rose                                                     [Page 1]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


     a service-required definitions, which describes the services used
     by the layer and the interfaces it uses to access those services.

  Collectively, all of the entities in the network which co-operate to
  provide the service are known as the service-provider. Individually,
  each of these entities is known as a service-peer.

  Internally, a layer is defined by one definition:

     a protocol definition, which describes the rules which each
     service-peer uses when communicating with other service-peers.

  Putting all this together, the service-provider uses the protocol and
  services from the layer below to offer the its service to the layer
  above.  Protocol verification, for instance, deals with proving that
  this in fact happens (and is also a fertile field for many Ph.D.
  dissertations in computer science).

  The concept of layer-independence quite simply is:

     IF one preserves the services offered by the service-provider

     THEN the service-user is completely naive with respect to the
     protocol which the service-peers use

  For the purposes of this memo, we will use the layer-independence to
  define a Transport Service Access Point (TSAP) which appears to be
  identical to the services and interfaces offered by the ISO/CCITT
  TSAP (as defined in [ISO-8072]), but we will base the internals of
  this TSAP on TCP/IP (as defined in [RFC-793,RFC791]), not on the
  ISO/CCITT transport and network protocols.  Hence, ISO/CCITT higher
  level layers (all session, presentation, and application entities)
  can operate fully without knowledge of the fact that they are running
  on a TCP/IP internetwork.

  The authors hope that the preceding paragraph will not come as a
  shock to most readers.  However, an ALARMING number of people seem to
  think that layering is just a way of cutting up a large problem into
  smaller ones, *simply* for the sake of cutting it up.  Although
  layering tends to introduce modularity into an architecture, and
  modularity tends to introduce sanity into implementations (both
  conceptual and physical implementations), modularity, per se, is not
  the end goal.  Flexibility IS.






Cass & Rose                                                     [Page 2]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


2.  Motivation

  In migrating from the use of TCP/IP to the ISO protocols, there are
  several strategies that one might undertake.  This memo was written
  with one particular strategy in mind.

  The particular migration strategy which this memo uses is based on
  the notion of gatewaying between the TCP/IP and ISO protocol suites
  at the transport layer.  There are two strong arguments for this
  approach:

     a.  Experience teaches us that it takes just as long to get good
     implementations of the lower level protocols as it takes to get
     good implementations of the higher level ones.  In particular, it
     has been observed that there is still a lot of work being done at
     the ISO network and transport layers.  As a result,
     implementations of protocols above these layers are not being
     aggressively pursued. Thus, something must be done "now" to
     provide a medium in which the higher level protocols can be
     developed.  Since TCP/IP is mature, and essentially provides
     identical functionality, it is an ideal medium to support this
     development.

     b.  Implementation of gateways at the IP and ISO IP layers are
     probably not of general use in the long term.  In effect, this
     would require each Internet host to support both TP4 and TCP.  As
     such, a better strategy is to implement a graceful migration path
     from TCP/IP to ISO protocols for the ARPA Internet when the ISO
     protocols have matured sufficiently.

  Both of these arguments indicate that gatewaying should occur at or
  above the transport layer service access point.  Further, the first
  argument suggests that the best approach is to perform the gatewaying
  exactly AT the transport service access point to maximize the number
  of ISO layers which can be developed.

     NOTE:  This memo does not intend to act as a migration or
     intercept document.  It is intended ONLY to meet the needs
     discussed above.  However, it would not be unexpected that the
     protocol described in this memo might form part of an overall
     transition plan.  The description of such a plan however is
     COMPLETELY beyond the scope of this memo.

  Finally, in general, building gateways between other layers in the
  TCP/IP and ISO protocol suites is problematic, at best.

  To summarize: the primary motivation for the standard described in


Cass & Rose                                                     [Page 3]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


  this memo is to facilitate the process of gaining experience with
  higher-level ISO protocols (session, presentation, and application).
  The stability and maturity of TCP/IP are ideal for providing solid
  transport services independent of actual implementation.

3.  The Model

  The [ISO-8072] standard describes the ISO transport service
  definition, henceforth called TP.

     ASIDE:  This memo references the ISO specifications rather than
     the CCITT recommendations.  The differences between these parallel
     standards are quite small, and can be ignored, with respect to
     this memo, without loss of generality.  To provide the reader with
     the relationships:

        Transport service      [ISO-8072]      [X.214]
        Transport protocol     [ISO-8073]      [X.224]
        Session protocol       [ISO-8327]      [X.225]

  The ISO transport service definition describes the services offered
  by the TS-provider (transport service) and the interfaces used to
  access those services.  This memo focuses on how the ARPA
  Transmission Control Protocol (TCP) [RFC-793] can be used to offer
  the services and provide the interfaces.

  +-------------+                                      +-------------+
  |   TS-user   |                                      |   TS-user   |
  +-------------+                                      +-------------+
          |                                                   |
          | TSAP interface                     TSAP interface |
          |  [ISO-8072]                                       |
          |                                                   |
  +------------+   ISO Transport Services on the TCP    +------------+
  |   client   |----------------------------------------|   server   |
  +------------+              (this memo)               +------------+
          |                                                   |
          | TCP interface                       TCP interface |
          |  [RFC-793]                                        |
          |                                                   |

  For expository purposes, the following abbreviations are used:

     TS-peer           a process which implements the protocol
                       described by this memo




Cass & Rose                                                     [Page 4]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


     TS-user           a process talking using the services of a
                       TS-peer

     TS-provider       the black-box entity implementing the protocol
                       described by this memo

  For the purposes of this memo, which describes version 1 of the TSAP
  protocol, all aspects of [ISO-8072] are supported with one exception:

     Quality of Service parameters

  In the spirit of CCITT, this is left "for further study".  Version 2
  of the TSAP protocol will most likely support the QOS parameters for
  TP by mapping these onto various TCP parameters.

  Since TP supports the notion of a session port (termed a TSAP ID),
  but the list of reserved ISO TSAP IDs is not clearly defined at this
  time, this memo takes the philosophy of isolating the TCP port space
  from the TSAP ID space and uses a single TCP port.  This memo
  reserves TCP port 102 for this purpose.  This protocol manages its
  own TSAP ID space independent of the TCP.  Appendix A of this memo
  lists reserved TSAP IDs for version 1 of this TSAP protocol.  It is
  expected that future editions of the "Assigned Numbers" document
  [RFC-960] will contain updates to this list.  (Interested readers are
  encouraged to read [ISO-8073] and try to figure out exactly what a
  TSAP ID is.)

  Finally, the ISO TSAP is fundamentally symmetric in behavior.  There
  is no underlying client/server model.  Instead of a server listening
  on a well-known port, when a connection is established, the
  TS-provider generates an INDICATION event which, presumably the
  TS-user catches and acts upon.  Although this might be implemented by
  having a server "listen" by hanging on the INDICATION event, from the
  perspective of the ISO TSAP, all TS-users just sit around in the IDLE
  state until they either generate a REQUEST or accept an INDICATION.














Cass & Rose                                                     [Page 5]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


4.  The Primitives

  The protocol assumes that the TCP [RFC-793] offers the following
  service primitives:

  Events

     connected       - open succeeded (either ACTIVE or PASSIVE)

     connect fails   - ACTIVE open failed

     data ready      - data can be read from the connection

     errored         - the connection has errored and is now closed

     closed          - an orderly disconnection has started

  Actions

     listen on port  - PASSIVE open on the given port

     open port       - ACTIVE open to the given port

     read data       - data is read from the connection

     send data       - data is sent on the connection

     close           - the connection is closed (pending data is sent)

  The protocol offers the following service primitives, as defined in
  [ISO-8072], to the TS-user:

  Events

     T-CONNECT.INDICATION

        - a TS-user (server) is notified that connection establishment
          is in progress

     T-DISCONNECT.INDICATION

        - a TS-user is notified that the connection is closed

     T-CONNECT.CONFIRMATION

        - a TS-user (client) is notified that the connection has been
          established


Cass & Rose                                                     [Page 6]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


     T-DATA.INDICATION

        - a TS-user is notified that data can be read from the
          connection

     T-EXPEDITED DATA.INDICATION

        - a TS-user is notified that "expedited" data can be read from
          the connection

  Actions

     T-CONNECT.RESPONSE

        - a TS-user (server) indicates that it will honor the request

     T-DISCONNECT.REQUEST

        - a TS-user indicates that the connection is to be closed

     T-CONNECT.REQUEST

        - a TS-user (client) indicates that it wants to establish a
          connection

     T-DATA.REQUEST

        - a TS-user sends data

     T-EXPEDITED DATA.REQUEST

        - a TS-user sends "expedited" data

















Cass & Rose                                                     [Page 7]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


5.  The Protocol

  It is the goal of this memo to offer a TP interface on top of the
  TCP.  Fortunately, the TCP does just about everything that
  TS-provider offers to the TS-user, so the hard parts of the transport
  layer (e.g., three-way handshakes, choice of ISS, windowing,
  multiplexing, ad infinitum) are all taken care of by the TCP.

  Despite the symmetry of TP, it is useful to consider the protocol
  with the perspective of a client/server model.

  The information exchanged between TSAP-peers is in the form of
  packets termed "TPKT"s.  The format of these packets is described in
  the next section.  For the purposes of the description below, a TPKT
  has a code which is one of:

     CR - request connection
     CC - confirm connection
     DR - request disconnection
     DT - data
     ED - expedited data

  A TSAP server begins by LISTENing on TCP port 102.  When a TSAP
  client successfully connects to this port, the protocol begins.

  A client decides to connect to the port when a TS-user issues a
  T-CONNECT.REQUEST action.  This action specifies the TSAP ID of the
  remote TS-user, whether expedited data is to be supported, and
  (optionally) some initial TS-user data.  The client consults the TSAP
  ID given to ascertain the IP address of the server.  If the expedited
  data option was requested, the client opens a passive TCP port, in
  non-blocking mode, noting the port number.  This TCP port is termed
  the "expedited port".  The client then tries to open a TCP connection
  to the server on port 102.  If not successful, the client fires
  T-DISCONNECT.INDICATION for the TS-user specifying the reason for
  failure (and, closes the expedited port, if any).  If successful, the
  client sends a TPKT with code CR containing:

     - the TSAP ID of the TS-user on the client's host (the "caller")
     - the TSAP ID of the TS-user that the client wants to talk to
       (the "called")
     - if the expedited data option was requested, the TSAP ID of the
       expedited port for the client's host
     - any TS-user data from the T-CONNECT.REQUEST

  The client now awaits a response.



Cass & Rose                                                     [Page 8]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


  The server, upon receipt of the TPKT, validates the contents of the
  TPKT (checking the version number, verifying that the code is CR, and
  so forth).  If the packet is invalid, the server sends a TPKT with
  code DR specifying "PROTOCOL ERROR", closes the TCP connection, and
  goes back to the LISTEN state.

  If the packet is valid, the server examines the TSAP ID that the
  remote TS-user wants to communicate with.  If the TS-user specified
  can be located and started (e.g., the appropriate program which
  implements the indicated protocol is present), then the server starts
  this TS-user by firing T-CONNECT.INDICATION.  Otherwise, the server
  sends a TPKT with code DR specifying "SESSION ENTITY NOT ATTACHED TO
  TSAP" or "REMOTE TRANSPORT ENTITY CONGESTED AT CONNECT REQUEST TIME"
  as appropriate, closes the TCP connection, and goes back to the
  LISTEN state.

  The server now waits for a T-CONNECT.RESPONSE or T-DISCONNECT.REQUEST
  from the TS-user it started.  if the latter is given, the server
  sends a TPKT with code DR containing the reason for the disconnect as
  supplied by the TS-user.

  The server then closes the TCP connection and goes back to the LISTEN
  state.

  Instead, if T-CONNECT.RESPONSE is given, the server sees if an
  expedited port was specified in the connection request.  If so, the
  server opens a second TCP connection and connects to the specified
  port.  If the connection fails, the server sends a TPKT with code DR
  specifying "CONNECTION NEGOTIATION FAILED", closes the TCP
  connection, and goes back to the LISTEN state.  If the connection
  succeeded, the server notes the local port number used to connect to
  the expedited port.

  If an expedited port was not specified in the TPKT with code CR, and
  the server's TS-user indicates that it wants to use expedited data,
  then the server sends a TPKT with code DR specifying "CONNECTION
  NEGOTIATION FAILED", fires T-DISCONNECT.INDICATION with this error to
  the TS-user, closes the TCP connection, and goes back to the LISTEN
  state.

  The server now sends a TPKT with code CC containing:

     - the TSAP ID of the TS-user responding to the connection
       (usually the "called")
     - if an expedited port was specified in the TPKT with code CR,




Cass & Rose                                                     [Page 9]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


       the TSAP ID of the port number on the server's host that was
       used to connect to the expedited port
     - any TS-user data from the T-CONNECT.RESPONSE

  After sending the TPKT, the server enters the SYMMETRIC PEER state.

  The client, upon receipt of the TPKT, validates the contents of the
  TPKT (checking the version number, verifying that the code is CC or
  DR, and so forth).  If the packet is invalid, the client sends a TPKT
  with code DR specifying "PROTOCOL ERROR", fires
  T-DISCONNECT.INDICATION with this error to the TS-user, and closes
  the TCP connection (and the expedited port, if any).

  If the packet's code is DR, the client fires T-DISCONNECT.INDICATION
  with the reason given in the TPKT to the TS-user, and closes the TCP
  connection (and the expedited port, if any).

  If the packet's code is CC, the client checks if an expedited port
  was specified and that a connection is waiting on the expedited port.
  If not, a protocol error has occurred, a TPKT with code DR is
  returned, T-DISCONNECT.INDICATION is fired, and so on.  Otherwise,
  the client checks the remote address that connected to the expedited
  port.  If it differs from the port listed in the TPKT with code CC, a
  protocol error has occurred.  Otherwise, all is well, two TCP
  connections have been established, one for all TPKTs except expedited
  data, and the second for the exclusive use of expedited data.

  The client now fires T-CONNECT.CONFIRMATION, and enters the SYMMETRIC
  PEER state.

  Once both sides have reached the SYMMETRIC PEER state, the protocol
  is completely symmetric, the notion of client/server is lost.  Both
  TS-peers act in the following fashion:

  If the TCP indicates that data can be read, the TS-peer, upon receipt
  of the TPKT, validates the contents.  If the packet is invalid, the
  TS-peer sends a TPKT with code DR specifying "PROTOCOL ERROR", fires
  T-DISCONNECT.INDICATION with this error to the TS-user, and closes
  the TCP connection (and expedited data connection, if any).  If the
  TS-peer was the server, it goes back to the LISTEN state.

     NOTE:  If the expedited data option was requested, then there are
     two TCP connections that can supply data for reading.  The
     dialogue below assumes that only ED TPKTs are read from the
     expedited data connection. For simplicity's sake, when reading
     from TCP the relation between connections and TPKTs is unimportant
     and this memo URGES all implementations to be very lenient in this


Cass & Rose                                                    [Page 10]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


     regard.  When writing to TCP, implementations should use the
     expedited data connection only to send TPKTs with code ED.
     Section 7 of this memo discusses the handling of expedited data in
     greater detail.

  If the packet's code is DR, the TS-peer fires T-DISCONNECT.INDICATION
  with the reason given in the TPKT to the TS-user, and closes the TCP
  connection (and expedited data connection, if any).  If the TS-peer
  was the server, it goes back to the LISTEN state.

  If the packet's code is ED or DT, the TS-peer fires T-DATA.INDICATION
  or T-EXPEDITED DATA.INDICATION as appropriate with the enclosed user
  data for the TS-user.  It then goes back to the SYMMETRIC PEER state.

  If the packet is invalid, the TS-peer sends a TPKT with code DR
  specifying "PROTOCOL ERROR", fires T-DISCONNECT.INDICATION with this
  error to the TS-user, and closes the TCP connection (and expedited
  data connection, if any).  If the TS-peer was the server, it goes
  back to the LISTEN state.

  If the TCP indicates that an error has occurred and the connection
  has closed, then the TS-peer fires T-DISCONNECT.INDICATION to the
  TS-user specifying the reason for the failure.  If the expedited data
  connection, if any, is still open, it is closed.  If the TS-peer was
  the server, it goes back to the LISTEN state.

  If the TS-user issues a T-DATA.REQUEST or T-EXPEDITED DATA.REQUEST
  action, the TS-peer sends a TPKT with code DT or ED containing the
  TS-user data.  It then goes back to the SYMMETRIC PEER state.

  If the TS-user issues a T-DISCONNECT.REQUEST action, the TS-peer
  sends a TPKT with code DR containing the reason for the disconnect as
  supplied by the TS-user.  The TS-peer then closes the TCP connection,
  (and expedited data connection, if any).  If the TS-peer was the
  server, it goes back to the LISTEN state.

  In terms of (augmented) state tables, the protocol can be explained
  as follows.  The server starts in state S0, the client starts in
  state C0.  "TCP:"  refers to an event or action from the TCP service,
  "SS:"  refers to an event or action from the TS-user (e.g., the ISO
  session service [ISO-8327]).








Cass & Rose                                                    [Page 11]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


                       S E R V E R   S T A T E S

  state        event                   action                      goto
  -----        -----                   ------                      ----
  S0                                   TCP: listen on port 102     S1

  S1           TCP: connected          TCP: read TPKT
                                       parse, on error
                                         TCP: send DR, close       S0
                                       code is CR
                                         start session server
                                         SS: T-CONNECT             S2
                                               .INDICATION
                                       otherwise,
                                         TCP: send DR, close       S0

  S2           SS: T-CONNECT.RESPONSE  if expedited option,
                                         TCP: open port EXPD
                                       TCP: send CC                P0

  S2           SS: T-DISCONNECT        TCP: send DR, close         S0
                       .REQUEST

  Any event occuring for a state not listed above is considered an
  error, and handled thusly:

  state        event                   action                      goto
  -----        -----                   ------                      ----
  S*           TCP: other              if TCP is open, TCP: close  S0
                                       otherwise ignore            S0
  S*           SS: other               SS: T-DISCONNECT
                                             .INDICATION
                                       if TCP is open, close       S0
















Cass & Rose                                                    [Page 12]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


                       C L I E N T   S T A T E S

  state        event                   action                      goto
  -----        -----                   ------                      ----
  C0           SS: T-CONNECT.REQUEST   if expedited option,
                                         TCP: non-blocking
                                              listen on port EXPD
                                       TCP: open port 102          C1

  C1           TCP: connected          TCP: send CR                C2

  C1           TCP: connect fails      TCP: close
                                       SS: T-DISCONNECT            C0
                                                .INDICATION


  C2           TCP: data ready         TCP: read TPKT
                                       parse, on error
                                         TCP: send DR, close
                                         SS: T-DISCONNECT          C0
                                               .INDICATION
                                       code is CC
                                         if expedited option,
                                            verify port EXPD
                                            connected correctly,
                                            if not, treat as error
                                         SS: T-CONNECT             P0
                                               .CONFIRMATION
                                       code is DR
                                         TCP: close
                                         SS: T-DISCONNECT          C0
                                               .INDICATION
                                       otherwise
                                         TCP: send DR, close
                                         SS: T-DISCONNECT          C0
                                               .INDICATION













Cass & Rose                                                    [Page 13]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


  Any event occuring for a state not listed above is considered an
  error, and handled thusly:

  state        event                   action                      goto
  -----        -----                   ------                      ----
  C*           TCP: other              if TCP is open, close       C0
                                       otherwise ignore            C0

  C*           SS: other               SS: T-DISCONNECT
                                             .INDICATION
                                       if TCP is open, close       C0






































Cass & Rose                                                    [Page 14]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


                         P E E R   S T A T E S

  state        event                   action                      goto
  -----        -----                   ------                      ----
  P0           TCP: data ready         TCP: read TPKT
                                       parse, on error
                                         TCP: send DR, close
                                         SS: T-DISCONNECT          end
                                               .INDICATION
                                       code is DT
                                         SS: T-DATA.INDICATION      P0
                                       code is ED
                                         SS: T-EXPEDITED DATA       P0
                                               .INDICATION
                                       code is DR
                                         TCP: close
                                         SS: T-DISCONNECT          end
                                               .INDICATION
                                       otherwise
                                         TCP: send DR, close
                                         SS: T-DISCONNECT          end
                                               .INDICATION

  P0           TCP: other              TCP: close
                                       SS: T-DISCONNECT            end
                                                 .INDICATION

  P0           SS: T-DATA.REQUEST      TCP: send DT                 P0

  P0           SS: T-EXPEDITED DATA    TCP: send ED                 P0
                       .REQUEST

  P0           SS: T-DISCONNECT        TCP: send DR, close         end
                       .REQUEST

  P0           SS: other               TCP: send DR, close
                                       SS: T-DISCONNECT            end
                                               .INDICATION











Cass & Rose                                                    [Page 15]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


6.  Packet Format

  Two TS-peers exchange information over a TCP connection by
  encapsulating information in well-defined packets.  A packet, denoted
  as "TPKT" in the previous sections, is viewed as an object composed
  of an integral number of octets, of variable length.

     NOTE:  For the purposes of presentation, these objects are shown
     as being 4 octets (32 bits wide).  This representation is an
     artifact of the style of this memo and should not be interpreted
     as requiring that a TPDU be a multiple of 4 octets in length.

  A packet consists of two parts: a packet-header and a pseudo-TPDU.
  The format of the header is constant regardless of the type of
  packet.  The format of the pseudo-TPDU follows the [ISO-8073]
  recommendation very closely with the exceptions listed below.  As per
  [ISO-8073], each TPDU consists of two parts: header and data.

  It is EXTREMELY important to observe that TPKTs represent
  "indivisible" units of data to the TS-user.  That is, a
  T-DATA.REQUEST initiated by the TS-user at the sending end of a
  connection should result in exactly one T-DATA.INDICATION being
  generated (with exactly that data) for the TS-user at the receiving
  end.  To ensure this behavior, it is critical that any INDICATION
  event resulting from a TPKT be initiated ONLY after the entire TPKT
  is fully received.  Furthermore, exactly one such INDICATION event
  should be generated by the TS-peer.  The packet length field, as
  described below, can accommodate on the order of 65K octets of user
  data.  This should be well above the requirements of the size of any
  SPDU (Session Protocol Data Unit) for any real implementation.  As a
  result, version 1 of this protocol has no need to either fragment or
  re-assemble TS-user data.  If an application arises which requires an
  SPDU of size greater than 65K octets, this memo will be revised.

  The format of the packet-header is as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |      vrsn     |    reserved   |          packet length        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  where:

     1.  vrsn                  8 bits

        This field is always 1 for this memo.


Cass & Rose                                                    [Page 16]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


     2.  packet length         16 bits (min=8, max=65535)

        The length of entire packet in octets, including packet-header.

  The format of the TPDU (to re-phrase from [ISO-8073]) depends on the
  type of a TPDU.  All TPDUs start with a fixed-part header length and
  the code.  The information following after the code varies, depending
  on the value of the code.  In the context of this memo, the following
  codes are valid:

     CR: connect request
     CC: connect confirm
     DR: disconnect request
     DT: data
     ED: expedited data

  The format of a CR or CC TPDU is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | header length | code  | credit|     destination reference     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       source reference        | class |options| variable data |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    ...        |      ...      |      ...      |      ...      |
     |    ...        |      ...      |      ...      |      ...      |
     |    ...        |   user data   |      ...      |      ...      |
     |    ...        |      ...      |      ...      |      ...      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  where:

     3.  header length          8 bits (min=6, max=min(254,packet
     length-6))

        The TPDU-header length in octets including parameters but
        excluding the header length field and user data (if any).











Cass & Rose                                                    [Page 17]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


     4.  code                   4 bits

        The type of TPDU.  Values, in the context of this memo, are:

           value       meaning
           -----       -------
            14         CR: connection request  (binary 1110)
            13         CC: connection confirm  (binary 1101)
             8         DR: disconnect request  (binary 1000)
            15         DT: data                (binary 1111)
             1         ED: expedited data      (binary 0001)
           all other   reserved

     5.  credit                 4 bits

        This field is always ZERO on output and ignored on input.

     6.  destination reference 16 bits

        This field is always ZERO on output and ignored on input.

     7.  source reference      16 bits

        This field is always ZERO on output and ignored on input.

     8.  class                  4 bits

        This field is always 4 (binary 0100) on output and ignored on
        input. It is anticipated that future versions of this protocol
        will make use of this field.

     9.  options                4 bits

        This field is always ZERO on output and ignored on input.

     10.  variable data        (header length - 6) octets

        This portion of the TPDU is of variable length.  For most
        TPDUs, this portion is empty (the header length field of the
        TPDU is exactly 6).  The contents of the variable data consist
        of zero or more "parameters".  Each parameter has the following
        format:

           parameter code        1 octet in size
           parameter length      1 octet in size, value is the number
                                   of octets in parameter value
           parameter value       parameter data


Cass & Rose                                                    [Page 18]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


        Normally, the parameter length is 1 octet.  Any implementation
        conforming to this version of the protocol must recognize all
        parameter types listed in [ISO-8073].  With the exception of
        the parameters listed below, these parameters are simply
        ignored.

        o   Parameter name:       Transport service access point
                                  identifier (TSAP-ID) of the client
        TSAP

           Parameter code:        193 (binary 1100 0001)
           Parameter length:      variable
           Parameter value:       TSAP-ID attributes

           Each TSAP-ID consists of 1 or more attributes.  Each
           attribute has this format:

              Attribute code      1 octet in size
              Attribute length    1 octet in size, value is the number
                                    of octets in attribute value
              Attribute value     attribute data

           In version 1 of this protocol, only two attributes are
           defined. All others are reserved.

              Attribute name:     Internet Address

              Attribute code:     1
              Attribute length:   6
              Attribute value:    IP address (4 octets)
                                  session port (2 octets, unsigned
                                  integer)

                 This attribute is ALWAYS required.  Values for session
                 port can be found in Appendix A of this memo.

              Attribute name:     Internet Address for Expedited Data

              Attribute code:     2
              Attribute length:   6
              Attribute value:    IP address (4 octets)
                                  TCP port (2 octets, unsigned integer)

                 This attribute is required ONLY if expedited data is
                 to be exchanged.  The attribute value is an <IP
                 address, TCP port> pair designated by the TS-peer for
                 use with expedited data.


Cass & Rose                                                    [Page 19]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


        o   Parameter name:       TSAP-ID of the server TSAP

           Parameter code:        194 (binary 1100 0010)
           Parameter length:      variable
           Parameter value:       TSAP-ID attributes

        o   Parameter name:       Additional option selection

           Parameter code:        198 (binary 1100 0110)
           Parameter length:      1
           Parameter value:       additional flags

           The additional flags octet consists of 8-bits of optional
           flags.  Only one bit is of interest to this memo, the
           remaining bits should be ZERO on output and ignored on
           input.  This bit indicates if the transport expedited data
           service is to be used.  If this bit is set (bit mask 0000
           0001) or this parameter does not appear in the TPDU, then
           the expedited data service is requested.  If this parameter
           appears in the TPDU and the bit is not set then the service
           is disabled.  If the service is requested, then the TSAP-ID
           of the sender of the TPDU must include an attribute
           indicating the internet address to use for expedited data.

        o   Parameter name:       Alternative protocol classes

           Parameter code:        199 (binary 1100 0111)

           Parameter length:      variable
           Parameter value:       64 (binary 0100 0000) in each octet

              This is used as a NOOP in the variable data.  Its use is
              HIGHLY discouraged, but for those implementors who wish
              to align the user data portion of the TPDU on word (or
              page) boundaries, use of this parameter for filling is
              recommended.

     11.  user data            (packet length - header length - 5)
                                  octets

        This portion of the TPDU is actual user data, most probably one
        or more SPDUs (session protocol data units).







Cass & Rose                                                    [Page 20]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


  The format of a DR TPDU is:

      0                   1                   2                   3
      0 1  2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | header length | code  | credit|     destination reference     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       source reference        |     reason    | variable data |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    ...        |      ...      |      ...      |      ...      |
     |    ...        |      ...      |      ...      |      ...      |
     |      ...      |   user data   |      ...      |      ...      |
     |    ...        |      ...      |      ...      |      ...      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The format of the fields is identical to those of a CR or CC TPDU,
  with the following exceptions:

  where:

     8.  reason                        8 bits

        This replaces the class/option fields of the CR or CC TPDU. Any
        value, as specified in [ISO-8073], may be used in this field.
        This memo makes use of several:

           value       meaning
           -----       -------
             1         Congestion at TSAP
             2         Session entity not attached to TSAP
             3         Address unknown (at TCP connect time)
           128+0       Normal disconnect initiated by the session
                       entity
           128+1       Remote transport entity congestion at connect
                       request time
           128+3       Connection negotiation failed
           128+5       Protocol Error
           128+8       Connection request refused on this network
                       connection










Cass & Rose                                                    [Page 21]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


  The format of a DT or ED TPDU is:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+
     | header length | code  | credit|         TPDU-NR and EOT       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   user data   |      ...      |      ...      |      ...      |
     |    ...        |      ...      |      ...      |      ...      |
     |    ...        |      ...      |      ...      |      ...      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  where:

     After the credit field (which is always ZERO on output and ignored
     on input), there is one additional field prior to the user data:

     6.  TPDU-NR and EOT               16 bits

        This field is always ZERO on output and ignored on input.

7.  Expedited Data

  This memo utilizes a second TCP connection to handle expedited data
  and does not make use of the TCP URGENT mechanism.  The primary
  disadvantage of this decision is that single-threaded implementations
  of TCP may have some difficulty in supporting two simultaneous
  connections.  There are however several advantages to this approach:

     a.  Use of a single connection to implement the semantics of
     expedited data implies that the TSAP peer manage a set of buffers
     independent from TCP.  The peer would, upon indication of TCP
     urgent information, have to buffer all preceeding TPKTs until the
     TCP buffer was empty.  Expedited data would then be given to the
     TS-user.  When the expedited data was flushed, then the buffered
     (non-expedited) data could be passed up to the receiving user.

     b.  It assumes that implementations support TCP urgency correctly.
     This is perhaps an untrue assumption, particular in the case of
     TCP urgency occuring when the send window is zero-sized.  Further,
     it assumes that the implementations can signal this event to the
     TCP-user in a meaningful fashion.  In a single-threaded
     implementation, this is not likely.

  Given a reasonable TCP implementation, the TS-peer need listen on two




Cass & Rose                                                    [Page 22]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


  TCP sockets in either polling or interrupt mode.  When the TS-peer is
  given data, the TCP must indicate which connection should be read
  from.

  The only tricky part of the protocol is that the client must be able
  to start a passive OPEN for the expedited port, and then wait to read
  from another connection.  In between the passive OPEN and the other
  connection supplying data, the server will connect to the expedited
  port, prior to sending data on the other connection.  To summarize
  from Section 5, the sequence of events, with respect to TCP, is:

     time      client                          Server
     ----      ------                          ------
     0.                                        passive OPEN of port 102

     1.        T-CONNECT.REQUEST from user
               passive OPEN of expedited
               port (non-blocking)

     2.        active OPEN of port 102

     3.        send CC TPKT

     4.                                        port 102 connected

     5.                                        receive CC TPKT
                                               T-CONNECT.INDICATION to
                                               user
                                               T-CONNECT.RESPONSE from
                                               user

     6.                                        active OPEN to expedited
                                               port

     7.        expedited port connected

     8.                                        send CR TPKT

     9.        receive CR TPKT
               verify expedited port
               connected correctly

  Multi-threaded implementations of TCP should be able to support this
  sequence of events without any great difficulty.





Cass & Rose                                                    [Page 23]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


8.  Conclusions

  There are two design decisions which should be considered.  The first
  deals with particular packet format used.  It should be obvious to
  the reader that the TP packet format was adopted for use in this
  memo.  Although this results in a few fields being ignored (e.g.,
  source reference), it does not introduce an unacceptable amount of
  overhead.  For example, on a connection request packet (the worst
  case) there are 6 bytes of "zero on output, ignore on input" fields.
  Considering that the packet overhead processing is fixed, requiring
  that implementations allocate an additional 1.5 words is not
  unreasonable!  Of course, it should be noted that some of these
  fields (i.e., class) may be used in future versions of the protocol
  as experience is gained.

  The second decision deals with how the TCP and TSAP port space is
  administered.  It is probably a very bad idea to take any
  responsibility, whatsoever, for managing this addressing space, even
  after ISO has stabilized.  There are two issues involved.  First, at
  what level do the TCP and TSAP port spaces interact; second, who
  defines what this interaction looks like.  With respect to the first,
  it wholly undesirable to require that each TSAP port map to a unique
  TCP port.  The administrative problems for the TCP "numbers czar (and
  czarina)" would be non-trivial.  Therefore, it is desirable to
  allocate a single TCP port, namely port 102, as the port where the
  "ISO Transport Services" live in the TCP domain. Second, the
  interaction defined in Appendix A of this memo is embryonic at best.
  It will no doubt be replaced as soon as the ISO world reaches
  convergence on how services are addressed in ISO TP. Therefore
  readers (and implementors) are asked to keep in mind that this aspect
  of the memo is guaranteed to change.  Unfortunately, the authors are
  not permitted the luxury of waiting for a consensus in ISO.  As a
  result, the minimal effort approach outlined in the appendix below
  was adopted.

  A prototype implementation of the protocol described by this memo is
  available for 4.2BSD UNIX.  Interested parties should contact the
  authors for a copy.  To briefly mention its implementation, a given
  ISO service is implemented as a separate program.  A daemon listens
  on TCP port 102, consults a database when a connection request packet
  is received, and fires the appropriate program for the ISO service
  requested.  Of course, given the nature of the BSD implementation of
  TCP, as the child fires, responsibility of that particular connection
  is delegated to the child; the daemon returns to listening for new
  connection requests.  The prototype implementation consists of both
  the daemon program and subroutine libraries which are loaded with
  programs providing ISO services.


Cass & Rose                                                    [Page 24]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


9.  References

  [ISO-8072]   ISO.
               "International Standard 8072.  Information Processing
               Systems -- Open Systems Interconnection: Transport
               Service Definition."
               (June, 1984)

  [ISO-8073]   ISO.
               "International Standard 8073.  Information Processing
               Systems -- Open Systems Interconnection: Transport
               Protocol Specification."
               (June, 1984)

  [ISO-8327]   ISO.
               "International Standard 8327.  Information Processing
               Systems -- Open Systems Interconnection: Session
               Protocol Specification."
               (June, 1984)

  [RFC-791]    Internet Protocol.
               Request for Comments 791
               (September, 1981)
               (See also: MIL-STD-1777)

  [RFC-793]    Transmission Control Protocol.
               Request for Comments 793
               (September, 1981)
               (See also: MIL-STD-1778)

  [RFC-960]    Assigned Numbers.
               Request for Comments 960
               (December, 1985)

  [X.214]      CCITT.
               "Recommendation X.214.  Transport Service Definitions
               for Open Systems Interconnection (OSI) for CCITT
               Applications."
               (October, 1984)

  [X.224]      CCITT.
               "Recommendation X.224.  Transport Protocol Specification
               for Open Systems Interconnection (OSI) for CCITT
               Applications."
               (October, 1984)




Cass & Rose                                                    [Page 25]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


  [X.225]      CCITT.
               "Recommendation X.225.  Session Protocol Specification
               for Open Systems Interconnection (OSI) for CCITT
               Applications."
               (October, 1984)

  [X.410]      CCITT.
               "Recommendation X.410.  Message Handling Systems: Remote
               Operations and Reliable Transfer Server."
               (October, 1984)

Appendix A:  Reserved TSAP IDs

  Version 1 of this protocol uses a relatively simple encoding scheme
  for TSAP IDs.  A TSAP ID is an attribute list containing two
  parameters, a 32-bit IP address, and a 16-bit port number.  This is
  used to identify both the client TSAP and the server TSAP.  When it
  appears in a TPKT with code CR or CC, the TSAP ID is encoded in the
  variable data part for the client TSAP as:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |      193      |       8       |       1       |       6       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       a       |       b       |       c       |       d       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              port             |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        and for the server TSAP as:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |      194      |       8       |       1       |       6       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |       a       |       b       |       c       |       d       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              port             |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  (Neither of these examples include an attribute for a TCP connection
  for expedited data.  If one were present, the length of the TSAP ID
  attribute would be 16 instead of 8, and the 8 bytes following the
  Internet address would be "2" for the attribute code, "6" for the



Cass & Rose                                                    [Page 26]



RFC 983                                                       April 1986
ISO Transport Services on Top of the TCP


  attribute length, and then 6 octets for the Internet address to use
  for expedited data, 4 octets for IP address, and 2 octets for TCP
  port.)

  Where [a.b.c.d] is the IP address of the host where the respective
  TSAP peer resides, and port is a 16-bit unsigned integer describing
  where in the TSAP port space the TS-user lives.

     Port value        Designation
     ----------        -----------
         0             illegal
        1-4096         privileged
     4097-65535        user

  The following table contains the list of the "official" TSAP ID port
  numbers as of the first release of this memo.  It is expected that
  future editions of the "Assigned Numbers" document[RFC-960] will
  contain updates to this list.

     Port    name        ISO service
     ----    ----        -----------
     1       echo        unofficial echo
     2       sink        unofficial data sink
     3       FTAM        File Transfer, Access, and Management
     4       VTS         ISO-8571 Virtual Terminal Service
     5       MHS         Message Handling System [X.411]
                         CCITT X.400
     6       JTM         Job Transfer and Manipulation
                         ISO 8831/8832
     7       CASE        Common Application Service Elements
                         Kernel ISO-8650/2

  If anyone knows of a list of "official" ISO services, the authors
  would be very interested.















Cass & Rose                                                    [Page 27]