Internet Engineering Task Force (IETF)                      F. Palombini
Request for Comments: 9668                                   Ericsson AB
Category: Standards Track                                      M. Tiloca
ISSN: 2070-1721                                               R. Höglund
                                                                RISE AB
                                                           S. Hristozov
                                                                Eriptic
                                                            G. Selander
                                                               Ericsson
                                                          November 2024


Using Ephemeral Diffie-Hellman Over COSE (EDHOC) with the Constrained
Application Protocol (CoAP) and Object Security for Constrained RESTful
                        Environments (OSCORE)

Abstract

  The lightweight authenticated key exchange protocol Ephemeral Diffie-
  Hellman Over COSE (EDHOC) can be run over the Constrained Application
  Protocol (CoAP) and used by two peers to establish a Security Context
  for the security protocol Object Security for Constrained RESTful
  Environments (OSCORE).  This document details this use of the EDHOC
  protocol by specifying a number of additional and optional
  mechanisms, including an optimization approach for combining the
  execution of EDHOC with the first OSCORE transaction.  This
  combination reduces the number of round trips required to set up an
  OSCORE Security Context and to complete an OSCORE transaction using
  that Security Context.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9668.

Copyright Notice

  Copyright (c) 2024 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
    1.1.  Terminology
  2.  EDHOC Overview
  3.  EDHOC Combined with OSCORE
    3.1.  EDHOC Option
    3.2.  Client Processing
      3.2.1.  Processing of the EDHOC + OSCORE Request
      3.2.2.  Supporting Block-Wise Transfers
    3.3.  Server Processing
      3.3.1.  Processing of the EDHOC + OSCORE Request
      3.3.2.  Supporting Block-Wise Transfers
    3.4.  Example of the EDHOC + OSCORE Request
  4.  Use of EDHOC Connection Identifiers with OSCORE
    4.1.  Additional Processing of EDHOC Messages
      4.1.1.  Initiator Processing of Message 1
      4.1.2.  Responder Processing of Message 2
      4.1.3.  Initiator Processing of Message 2
  5.  Extension and Consistency of Application Profiles
  6.  Web Linking
  7.  Security Considerations
  8.  IANA Considerations
    8.1.  CoAP Option Numbers Registry
    8.2.  Target Attributes Registry
    8.3.  EDHOC Authentication Credential Types Registry
    8.4.  Expert Review Instructions
  9.  References
    9.1.  Normative References
    9.2.  Informative References
  Acknowledgments
  Authors' Addresses

1.  Introduction

  Ephemeral Diffie-Hellman Over COSE (EDHOC) [RFC9528] is a lightweight
  authenticated key exchange protocol that is specifically intended for
  use in constrained scenarios.  In particular, EDHOC messages can be
  transported over the Constrained Application Protocol (CoAP)
  [RFC7252] and used for establishing a Security Context for Object
  Security for Constrained RESTful Environments (OSCORE) [RFC8613].

  This document details the use of the EDHOC protocol with CoAP and
  OSCORE and specifies a number of additional and optional mechanisms.
  These include an optimization approach that combines the EDHOC
  execution with the first OSCORE transaction (see Section 3).  This
  allows for a minimum number of two round trips necessary to set up
  the OSCORE Security Context and complete an OSCORE transaction, e.g.,
  when an Internet of Things (IoT) device gets configured in a network
  for the first time.

  This optimization is desirable since the number of message exchanges
  can have a substantial impact on the latency of conveying the first
  OSCORE request when using certain radio technologies.

  Without this optimization, it is not possible to achieve the minimum
  number of two round trips.  This optimization makes it possible since
  the message_3 of the EDHOC protocol can be made relatively small (see
  Section 1.2 of [RFC9528]), thus allowing additional OSCORE-protected
  CoAP data within target MTU sizes.

  The minimum number of two round trips can be achieved only if the
  default forward message flow of EDHOC is used, i.e., when a CoAP
  client acts as EDHOC Initiator and a CoAP server acts as EDHOC
  Responder.  The performance advantage of using this optimization can
  be lost when used in combination with Block-wise transfers [RFC7959]
  that rely on specific parameter values and block sizes.

  Furthermore, this document defines a number of parameters
  corresponding to different information elements of an EDHOC
  application profile (see Section 6).  These parameters can be
  specified as target attributes in the link to an EDHOC resource
  associated with that application profile, thus enabling an enhanced
  discovery of such a resource for CoAP clients.

1.1.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  The reader is expected to be familiar with terms and concepts defined
  in CoAP [RFC7252], Concise Binary Object Representation (CBOR)
  [RFC8949], OSCORE [RFC8613], and EDHOC [RFC9528].

2.  EDHOC Overview

  This section is not normative and summarizes what is specified in
  [RFC9528] (specifically Appendix A.2 of [RFC9528]).  Thus, it
  provides a baseline for the enhancements in the subsequent sections.

  The EDHOC protocol specified in [RFC9528] allows two peers to agree
  on a cryptographic secret in a mutually-authenticated way and
  achieves forward secrecy by using Diffie-Hellman ephemeral keys.  The
  two peers are denoted as the "Initiator" and "Responder", as the one
  sending or receiving the initial EDHOC message_1, respectively.

  After successful processing of EDHOC message_3, both peers agree on a
  cryptographic secret that can be used to derive further security
  material and establish an OSCORE Security Context [RFC8613].  The
  Responder can also send an optional EDHOC message_4 in order for the
  Initiator to achieve key confirmation, e.g., in deployments where no
  protected application message is sent from the Responder to the
  Initiator.

  Appendix A.2 of [RFC9528] specifies how to transfer EDHOC over CoAP.
  That is, the EDHOC data (i.e., the EDHOC message possibly with a
  prepended connection identifier) is transported in the payload of
  CoAP requests and responses.  The default forward message flow of
  EDHOC consists in the CoAP client acting as Initiator and the CoAP
  server acting as Responder (see Appendix A.2.1 of [RFC9528]).
  Alternatively, the two roles can be reversed as per the reverse
  message flow of EDHOC (see Appendix A.2.2 of [RFC9528]).  In the rest
  of this document, EDHOC messages are considered to be transferred
  over CoAP.

  Figure 1 shows a successful execution of EDHOC, with a CoAP client
  and a CoAP server running EDHOC as Initiator and Responder,
  respectively.  In particular, it extends Figure 10 from
  Appendix A.2.1 of [RFC9528] by highlighting when the two peers
  perform EDHOC verification and establish the OSCORE Security Context,
  and by adding an exchange of OSCORE-protected CoAP messages after
  completing the EDHOC execution.

  That is, the client sends a POST request to a reserved EDHOC resource
  at the server, by default at the Uri-Path "/.well-known/edhoc".  The
  request payload consists of the CBOR simple value true (0xf5)
  concatenated with EDHOC message_1, which also includes the EDHOC
  connection identifier C_I of the client encoded as per Section 3.3 of
  [RFC9528].  The request has Content-Format application/cid-
  edhoc+cbor-seq.

  This triggers the EDHOC execution at the server, which replies with a
  2.04 (Changed) response.  The response payload consists of EDHOC
  message_2, which also includes the EDHOC connection identifier C_R of
  the server encoded as per Section 3.3 of [RFC9528].  The response has
  Content-Format application/edhoc+cbor-seq.

  Finally, the client sends a POST request to the same EDHOC resource
  used earlier when it sent EDHOC message_1.  The request payload
  consists of the EDHOC connection identifier C_R encoded as per
  Section 3.3 of [RFC9528] concatenated with EDHOC message_3.  The
  request has Content-Format application/cid-edhoc+cbor-seq.

  After this exchange takes place, and after successful verifications
  as specified in the EDHOC protocol, the client and server can derive
  an OSCORE Security Context as defined in Appendix A.1 of [RFC9528].
  After that, the client and server can use OSCORE to protect their
  communications as per [RFC8613].  Note that the EDHOC connection
  identifier C_R is used as the OSCORE Sender ID of the client (see
  Appendix A.1 of [RFC9528]).  Therefore, C_R is transported in the
  'kid' field of the OSCORE option of the OSCORE Request (see
  Section 6.1 of [RFC8613]).

  The client and server are required to agree in advance on certain
  information and parameters describing how they should use EDHOC.
  These are specified in an application profile associated with the
  EDHOC resource addressed (see Section 3.9 of [RFC9528]).

     CoAP client                                         CoAP server
   (EDHOC Initiator)                                 (EDHOC Responder)
          |                                                    |
          |                                                    |
          | ----------------- EDHOC Request -----------------> |
          |   Header: 0.02 (POST)                              |
          |   Uri-Path: "/.well-known/edhoc"                   |
          |   Content-Format: application/cid-edhoc+cbor-seq   |
          |   Payload: true, EDHOC message_1                   |
          |                                                    |
          | <---------------- EDHOC Response------------------ |
          |       Header: 2.04 (Changed)                       |
          |       Content-Format: application/edhoc+cbor-seq   |
          |       Payload: EDHOC message_2                     |
          |                                                    |
   EDHOC verification                                          |
          |                                                    |
          | ----------------- EDHOC Request -----------------> |
          |   Header: 0.02 (POST)                              |
          |   Uri-Path: "/.well-known/edhoc"                   |
          |   Content-Format: application/cid-edhoc+cbor-seq   |
          |   Payload: C_R, EDHOC message_3                    |
          |                                                    |
          |                                         EDHOC verification
          |                                                    +
          |                                            OSCORE Sec Ctx
          |                                             Derivation
          |                                                    |
          | <---------------- EDHOC Response------------------ |
          |       Header: 2.04 (Changed)                       |
          |       Content-Format: application/edhoc+cbor-seq   |
          |       Payload: EDHOC message_4                     |
          |                                                    |
   OSCORE Sec Ctx                                              |
    Derivation                                                 |
          |                                                    |
          | ---------------- OSCORE Request -----------------> |
          |   Header: 0.02 (POST)                              |
          |   OSCORE: { ... ; kid: C_R }                       |
          |   Payload: OSCORE-protected data                   |
          |                                                    |
          | <--------------- OSCORE Response ----------------- |
          |                 Header: 2.04 (Changed)             |
          |                 OSCORE: { ... }                    |
          |                 Payload: OSCORE-protected data     |
          |                                                    |

     Figure 1: Sequential Flow of EDHOC and OSCORE with the Optional
                            message_4 Included

  The sequential flow of EDHOC and OSCORE (where EDHOC runs first and
  OSCORE is used after) takes three round trips to complete, as shown
  in Figure 1.

  Section 3 defines an optimization for combining EDHOC with the first
  OSCORE transaction.  This reduces the number of round trips required
  to set up an OSCORE Security Context and complete an OSCORE
  transaction using that Security Context.

3.  EDHOC Combined with OSCORE

  This section defines an optimization for combining the EDHOC message
  exchange with the first OSCORE transaction, thus minimizing the
  number of round trips between the two peers to the absolute possible
  minimum of two round trips.

  To this end, this approach can be used only if the default forward
  message flow of EDHOC is used, i.e., when the client acts as
  Initiator and the server acts as Responder.  The same is not possible
  in the case with reversed roles as per the reverse message flow of
  EDHOC.

  When running the sequential flow of Section 2, the client has all the
  information to derive the OSCORE Security Context already after
  receiving EDHOC message_2 and before sending EDHOC message_3.

  Hence, the client can potentially send both EDHOC message_3 and the
  subsequent OSCORE Request at the same time.  On a semantic level,
  this requires sending two REST requests at once as shown in Figure 2.

    CoAP client                                          CoAP server
  (EDHOC Initiator)                                  (EDHOC Responder)
         |                                                     |
         | ------------------ EDHOC Request -----------------> |
         |   Header: 0.02 (POST)                               |
         |   Uri-Path: "/.well-known/edhoc"                    |
         |   Content-Format: application/cid-edhoc+cbor-seq    |
         |   Payload: true, EDHOC message_1                    |
         |                                                     |
         | <----------------- EDHOC Response------------------ |
         |        Header: 2.04 (Changed)                       |
         |        Content-Format: application/edhoc+cbor-seq   |
         |        Payload: EDHOC message_2                     |
         |                                                     |
  EDHOC verification                                           |
         +                                                     |
   OSCORE Sec Ctx                                              |
     Derivation                                                |
         |                                                     |
         | -------------- EDHOC + OSCORE Request ------------> |
         |   Header: 0.02 (POST)                               |
         |   OSCORE: { ... ; kid: C_R }                        |
         |   Payload: EDHOC message_3 + OSCORE-protected data  |
         |                                                     |
         |                                          EDHOC verification
         |                                                     +
         |                                            OSCORE Sec Ctx
         |                                               Derivation
         |                                                     |
         | <--------------- OSCORE Response ------------------ |
         |                    Header: 2.04 (Changed)           |
         |                    OSCORE: { ... }                  |
         |                    Payload: OSCORE-protected data   |
         |                                                     |

                   Figure 2: EDHOC and OSCORE Combined

  To this end, the specific approach defined in this section consists
  of sending a single EDHOC + OSCORE request, which conveys the pair
  (C_R, EDHOC message_3) within an OSCORE-protected CoAP message.

  That is, the EDHOC + OSCORE request is composed of the following two
  parts combined together in a single CoAP message.  The steps for
  processing the EDHOC + OSCORE request and the two parts combined in
  the request itself are defined in Sections 3.2.1 and 3.3.1.

  *  The OSCORE Request from Figure 1, which, in this case, is also
     sent to a protected resource with the correct CoAP method and
     options intended for accessing that resource.

  *  EDHOC data consisting of the pair (C_R, EDHOC message_3) required
     for completing the EDHOC session transported as follows:

     -  C_R is the OSCORE Sender ID of the client; hence, it is
        transported in the 'kid' field of the OSCORE option (see
        Section 6.1 of [RFC8613]).  Unlike the sequential workflow
        shown in Figure 1, C_R is not transported in the payload of the
        EDHOC + OSCORE request.

     -  EDHOC message_3 is transported in the payload of the EDHOC +
        OSCORE request and prepended to the payload of the OSCORE
        Request.  This is because EDHOC message_3 may be too large to
        be included in a CoAP option, e.g., when conveying a large
        public key certificate chain in the ID_CRED_I field (see
        Section 3.5.3 of [RFC9528]), or when conveying large External
        Authorization Data in the EAD_3 field (see Section 3.8 of
        [RFC9528]).

  The rest of this section specifies how to transport the data in the
  EDHOC + OSCORE request and their processing order.  In particular,
  the use of this approach is explicitly signalled by including an
  EDHOC option (Section 3.1) in the EDHOC + OSCORE request.  The
  processing of the EDHOC + OSCORE request is specified in Section 3.2
  for the client side and in Section 3.3 for the server side.

3.1.  EDHOC Option

  This section defines the EDHOC option.  This option is used in a CoAP
  request to signal that the request payload conveys both an EDHOC
  message_3 and OSCORE-protected data combined together.

  The EDHOC option has the properties summarized in Table 1, which
  extends Table 4 of [RFC7252].  The option is Critical, Safe-to-
  Forward, and part of the Cache-Key.  The option MUST occur at most
  once and MUST be empty.  If any value is sent, the recipient MUST
  ignore it.  (Future documents may update the definition of the option
  by expanding its semantics and specifying admitted values.)  The
  option is intended only for CoAP requests and is of Class U for
  OSCORE [RFC8613].

       +=====+===+===+===+===+=======+========+========+=========+
       | No. | C | U | N | R | Name  | Format | Length | Default |
       +=====+===+===+===+===+=======+========+========+=========+
       | 21  | x |   |   |   | EDHOC | Empty  | 0      | (none)  |
       +-----+---+---+---+---+-------+--------+--------+---------+

            Table 1: The EDHOC Option.  C=Critical, U=Unsafe,
                        N=NoCacheKey, R=Repeatable

  The presence of this option means that the message payload also
  contains EDHOC data that must be extracted and processed as defined
  in Section 3.3 before the rest of the message can be processed.

  Figure 3 shows an example of a CoAP message that is transported over
  UDP and that contains both the EDHOC data and the OSCORE ciphertext
  using the newly defined EDHOC option for signalling.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Ver| T |  TKL  |      Code     |          Message ID           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Token (if any, TKL bytes) ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Observe Option| OSCORE Option ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | EDHOC Option  | Other Options (if any) ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1 1 1 1 1 1 1 1| Payload ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Figure 3: Example of a CoAP Message Containing the Combined EDHOC
      and OSCORE Data, Signalled by the EDHOC Option and Transported
                                 over UDP

3.2.  Client Processing

  This section describes the processing on the client side.

3.2.1.  Processing of the EDHOC + OSCORE Request

  The client prepares an EDHOC + OSCORE request as follows.

  Step 1.  Compose EDHOC message_3 into EDHOC_MSG_3 as per
           Section 5.4.2 of [RFC9528].

  Step 2.  Establish the new OSCORE Security Context and use it to
           encrypt the original CoAP request as per Section 8.1 of
           [RFC8613].

           Note that the OSCORE ciphertext is not computed over EDHOC
           message_3, which is not protected by OSCORE.  That is, the
           result of this step is the OSCORE Request as in Figure 1.

  Step 3.  Build COMB_PAYLOAD as the concatenation of EDHOC_MSG_3 and
           OSCORE_PAYLOAD in the order of COMB_PAYLOAD = EDHOC_MSG_3 |
           OSCORE_PAYLOAD, where | denotes byte string concatenation
           and:

           *  EDHOC_MSG_3 is the binary encoding of EDHOC message_3
              resulting from Step 1.  As per Section 5.4.1 of
              [RFC9528], EDHOC message_3 consists of one CBOR data item
              CIPHERTEXT_3, which is a CBOR byte string.  Therefore,
              EDHOC_MSG_3 is the binary encoding of CIPHERTEXT_3.

           *  OSCORE_PAYLOAD is the OSCORE ciphertext of the OSCORE-
              protected CoAP request resulting from Step 2.

  Step 4.  Compose the EDHOC + OSCORE request, as the OSCORE-protected
           CoAP request resulting from Step 2, where the payload is
           replaced with COMB_PAYLOAD built at Step 3.

           Note that the new payload includes EDHOC message_3, but it
           does not include the EDHOC connection identifier C_R.  As
           the client is the EDHOC Initiator, C_R is the OSCORE Sender
           ID of the client, which is already specified as the value of
           the 'kid' field in the OSCORE option of the request from
           Step 2; hence, C_R is specified as the value of the 'kid'
           field of the EDHOC + OSCORE request.

  Step 5.  Include the new EDHOC option defined in Section 3.1 into the
           EDHOC + OSCORE request.

           The application/cid-edhoc+cbor-seq media type does not apply
           to this message, whose media type is unnamed.

  Step 6.  Send the EDHOC + OSCORE request to the server.

  With the same server, the client SHOULD NOT have multiple
  simultaneous outstanding interactions (see Section 4.7 of [RFC7252]),
  such that they consist of an EDHOC + OSCORE request and their EDHOC
  data pertains to the EDHOC session with the same connection
  identifier C_R.

  An exception might apply for clients that operate under particular
  time constraints over particularly unreliable networks, thus raising
  the chances to promptly complete the EDHOC execution with the server
  through multiple simultaneous EDHOC + OSCORE requests.  As discussed
  in Section 7, this does not have any impact in terms of security.

3.2.2.  Supporting Block-Wise Transfers

  If Block-wise transfers [RFC7959] are supported, the client may
  fragment the first CoAP application request before protecting it as
  an original message with OSCORE as defined in Section 4.1.3.4.1 of
  [RFC8613].

  In such a case, the OSCORE processing in Step 2 of Section 3.2.1 is
  performed on each inner block of the first CoAP application request.
  The following also applies.

  *  The client takes the following additional step between Steps 2 and
     3 of Section 3.2.1.

     Step 2.1. If the OSCORE-protected request from Step 2 conveys a
               non-first inner block of the first CoAP application
               request (i.e., the Block1 option processed at Step 2 had
               NUM different than 0), then the client skips the
               following steps and sends the OSCORE-protected request
               to the server.  In particular, the client MUST NOT
               include the EDHOC option in the OSCORE-protected
               request.

  *  The client takes the following additional step between Steps 3 and
     4 of Section 3.2.1.

     Step 3.1. If the size of COMB_PAYLOAD exceeds
               MAX_UNFRAGMENTED_SIZE (see Section 4.1.3.4.2 of
               [RFC8613]), the client MUST stop processing the request
               and MUST abandon the Block-wise transfer.  Then, the
               client can continue by switching to the sequential
               workflow shown in Figure 1.  That is, the client first
               sends EDHOC message_3 prepended by the EDHOC connection
               identifier C_R encoded as per Section 3.3 of [RFC9528].
               Then, the client sends the OSCORE-protected CoAP request
               once the EDHOC execution is completed.

  The performance advantage of using the EDHOC + OSCORE request can be
  lost when used in combination with Block-wise transfers that rely on
  specific parameter values and block sizes.  Application policies at
  the CoAP client can define when and how to detect whether the
  performance advantage is lost.  If that is the case, they can also
  define whether to appropriately adjust the parameter values and block
  sizes or to fall back on the sequential workflow of EDHOC.

3.3.  Server Processing

  This section describes the processing on the server side.

3.3.1.  Processing of the EDHOC + OSCORE Request

  In order to process a request containing the EDHOC option, i.e., an
  EDHOC + OSCORE request, the server MUST perform the following steps.

  Step 1.  Check that the EDHOC + OSCORE request includes the OSCORE
           option and that the request payload has the format defined
           at Step 3 of Section 3.2.1 for COMB_PAYLOAD.  If this is not
           the case, the server MUST stop processing the request and
           MUST reply with a 4.00 (Bad Request) error response.

  Step 2.  Extract EDHOC message_3 from the payload COMB_PAYLOAD of the
           EDHOC + OSCORE request as the first element EDHOC_MSG_3 (see
           Step 3 of Section 3.2.1).

  Step 3.  Take the value of the 'kid' field from the OSCORE option of
           the EDHOC + OSCORE request (i.e., the OSCORE Sender ID of
           the client), and use it as the EDHOC connection identifier
           C_R.

  Step 4.  Retrieve the correct EDHOC session by using the connection
           identifier C_R from Step 3.

           If the application profile used in the EDHOC session
           specifies that EDHOC message_4 shall be sent, the server
           MUST stop the EDHOC processing and consider it failed due to
           a client error.

           Otherwise, perform the EDHOC processing on the EDHOC
           message_3 extracted at Step 2 as per Section 5.4.3 of
           [RFC9528] based on the protocol state of the retrieved EDHOC
           session.

           The application profile used in the EDHOC session is the
           same one associated with the EDHOC resource where the server
           received the request conveying EDHOC message_1 that started
           the session.  This is relevant in case the server provides
           multiple EDHOC resources that may generally refer to
           different application profiles.

  Step 5.  Establish a new OSCORE Security Context associated with the
           client as per Appendix A.1 of [RFC9528] using the EDHOC
           output from Step 4.

  Step 6.  Extract the OSCORE ciphertext from the payload COMB_PAYLOAD
           of the EDHOC + OSCORE request as the second element
           OSCORE_PAYLOAD (see Step 3 of Section 3.2.1).

  Step 7.  Rebuild the OSCORE-protected CoAP request as the EDHOC +
           OSCORE request, where the payload is replaced with the
           OSCORE ciphertext extracted at Step 6.  Then, remove the
           EDHOC option.

  Step 8.  Decrypt and verify the OSCORE-protected CoAP request rebuilt
           at Step 7 as per Section 8.2 of [RFC8613] by using the
           OSCORE Security Context established at Step 5.

           When the decrypted request is checked for any critical CoAP
           options (as it is during regular CoAP processing), the
           presence of an EDHOC option MUST be regarded as an
           unprocessed critical option unless it is processed by some
           further mechanism.

  Step 9.  Deliver the CoAP request resulting from Step 8 to the
           application.

  If Steps 4 (EDHOC processing) and 8 (OSCORE processing) are both
  successfully completed, the server MUST reply with an OSCORE-
  protected response (see Section 5.4.3 of [RFC9528]).  The usage of
  EDHOC message_4 as defined in Section 5.5 of [RFC9528] is not
  applicable to the approach defined in this document.

  If Step 4 (EDHOC processing) fails, the server aborts the session as
  per Section 5.4.3 of [RFC9528] and responds with an EDHOC error
  message with error code 1, which is formatted as defined in
  Section 6.2 of [RFC9528].  The server MUST NOT establish a new OSCORE
  Security Context from the present EDHOC session with the client.  The
  CoAP response conveying the EDHOC error message is not protected with
  OSCORE.  As per Section 9.5 of [RFC9528], the server has to make sure
  that the error message does not reveal sensitive information.  The
  CoAP response conveying the EDHOC error message MUST have Content-
  Format set to application/edhoc+cbor-seq registered in Section 10.9
  of [RFC9528].

  If Step 4 (EDHOC processing) is successfully completed but Step 8
  (OSCORE processing) fails, the same OSCORE error handling as defined
  in Section 8.2 of [RFC8613] applies.

3.3.2.  Supporting Block-Wise Transfers

  If Block-wise transfers [RFC7959] are supported, the server takes the
  additional following step before any other in Section 3.3.1.

  Step 0.  If a Block option is present in the request, then process
           the Outer Block options according to [RFC7959] until all
           blocks of the request have been received (see
           Section 4.1.3.4 of [RFC8613]).

3.4.  Example of the EDHOC + OSCORE Request

  Figure 4 shows an example of an EDHOC + OSCORE request transported
  over UDP.  In particular, the example assumes that:

  *  The OSCORE Partial IV in use is 0 consistently with the first
     request protected with the new OSCORE Security Context.

  *  The OSCORE Sender ID of the client is 0x01.

     As per Section 3.3.3 of [RFC9528], this straightforwardly
     corresponds to the EDHOC connection identifier C_R 0x01.

     As per Section 3.3.2 of [RFC9528], when using the sequential flow
     shown in Figure 1, the same C_R with a value of 0x01 would be
     encoded on the wire as the CBOR integer 1 (0x01 in CBOR encoding)
     and prepended to EDHOC message_3 in the payload of the second
     EDHOC request.

  This results in the following components shown in Figure 4:

  OSCORE option value:  0x090001 (3 bytes)

  EDHOC option value:  - (0 bytes)

  EDHOC message_3:  0x52d5535f3147e85f1cfacd9e78abf9e0a81bbf (19 bytes)

  OSCORE ciphertext:  0x612f1092f1776f1c1668b3825e (13 bytes)

     0x44025d1f               ; CoAP 4-byte Header
       00003974               ; Token
       93 090001              ; OSCORE Option
       c0                     ; EDHOC Option
       ff 52d5535f3147e85f1cfacd9e78abf9e0a81bbf
          612f1092f1776f1c1668b3825e
     (46 bytes)

    Figure 4: Example of a Protected CoAP Request Combining EDHOC and
                               OSCORE Data

4.  Use of EDHOC Connection Identifiers with OSCORE

  The OSCORE Sender/Recipient IDs are the EDHOC connection identifiers
  (see Section 3.3.3 of [RFC9528]).  This applies also to the optimized
  workflow defined in Section 3 of this document.

  Note that the value of the 'kid' field in the OSCORE option of the
  EDHOC + OSCORE request is both the server's Recipient ID (i.e., the
  client's Sender ID) and the EDHOC connection identifier C_R of the
  server at Step 3 of Section 3.3.1.

4.1.  Additional Processing of EDHOC Messages

  When using EDHOC to establish an OSCORE Security Context, the client
  and server MUST perform the following additional steps during an
  EDHOC execution, thus extending Section 5 of [RFC9528].

4.1.1.  Initiator Processing of Message 1

  The Initiator selects an EDHOC connection identifier C_I as follows.

  The Initiator MUST choose a C_I that is neither used in any current
  EDHOC session as this peer's EDHOC connection identifier nor the
  Recipient ID in a current OSCORE Security Context where the ID
  Context is not present.

  The chosen C_I SHOULD NOT be the Recipient ID of any current OSCORE
  Security Context.  Note that, unless the two peers concurrently use
  alternative methods to establish OSCORE Security Contexts, this
  allows the Responder to always omit the 'kid context' in the OSCORE
  option of its messages sent to the Initiator when protecting those
  with an OSCORE Security Context where C_I is the Responder's OSCORE
  Sender ID (see Section 6.1 of [RFC8613]).

4.1.2.  Responder Processing of Message 2

  The Responder selects an EDHOC connection identifier C_R as follows.

  The Responder MUST choose a C_R that is none of the following:

  *  used in any current EDHOC session as this peer's EDHOC connection
     identifier,

  *  equal to the EDHOC connection identifier C_I specified in the
     EDHOC message_1 of the present EDHOC session, or

  *  the Recipient ID in a current OSCORE Security Context where the ID
     Context is not present.

  The chosen C_R SHOULD NOT be the Recipient ID of any current OSCORE
  Security Context.  Note that, for a reason analogous to the one given
  in Section 4.1.1 with C_I, this allows the Initiator to always omit
  the 'kid context' in the OSCORE option of its messages sent to the
  Responder when protecting those with an OSCORE Security Context where
  C_R is the Initiator's OSCORE Sender ID (see Section 6.1 of
  [RFC8613]).

4.1.3.  Initiator Processing of Message 2

  If the EDHOC connection identifier C_I is equal to the EDHOC
  connection identifier C_R specified in EDHOC message_2, then the
  Initiator MUST abort the session and reply with an EDHOC error
  message with error code 1 formatted as defined in Section 6.2 of
  [RFC9528].

5.  Extension and Consistency of Application Profiles

  It is possible to include the information below in the application
  profile referred by the client and server according to the specified
  consistency rules.

  If the server supports the EDHOC + OSCORE request within an EDHOC
  execution started at a certain EDHOC resource, then the application
  profile associated with that resource SHOULD explicitly specify
  support for the EDHOC + OSCORE request.

  In the case where the application profile indicates that the server
  supports the optional EDHOC message_4 (see Section 5.5 of [RFC9528]),
  it is still possible to use the optimized workflow based on the EDHOC
  + OSCORE request.  However, this means that the server is not going
  to send EDHOC message_4 since it is not applicable to the optimized
  workflow (see Section 3.3.1).

  Also, in the case where the application profile indicates that the
  server shall send EDHOC message_4, the application profile MUST NOT
  specify support for the EDHOC + OSCORE request.  There is no point
  for the client to use the optimized workflow that is bound to fail
  (see Section 3.3.1).

6.  Web Linking

  Section 10.10 of [RFC9528] registers the resource type "core.edhoc",
  which can be used as target attribute in a web link [RFC8288] to an
  EDHOC resource, e.g., using a link-format document [RFC6690].  This
  enables clients to discover the presence of EDHOC resources at a
  server, possibly using the resource type as a filter criterion.

  At the same time, the application profile associated with an EDHOC
  resource provides information describing how the EDHOC protocol can
  be used through that resource.  A client may become aware of the
  application profile, e.g., by obtaining its information elements upon
  discovering the EDHOC resources at the server.  This allows the
  client to discover the EDHOC resources whose associated application
  profile denotes a way of using EDHOC that is most suitable to the
  client, e.g., with EDHOC cipher suites or authentication methods that
  the client also supports or prefers.

  That is, while discovering an EDHOC resource, a client can
  contextually obtain relevant pieces of information from the
  application profile associated with that resource.  The resource
  discovery can occur by means of a direct interaction with the server
  or by means of the CoRE Resource Directory [RFC9176] where the server
  may have registered the links to its resources.

  In order to enable the above, this section defines a number of
  parameters, each of which can be optionally specified as a target
  attribute with the same name in the link to the respective EDHOC
  resource or as filter criterion in a discovery request from the
  client.  When specifying these parameters in a link to an EDHOC
  resource, the target attribute rt="core.edhoc" MUST be included and
  the same consistency rules defined in Section 5 for the corresponding
  information elements of an application profile MUST be followed.

  The following parameters are defined.

  'ed-i':  If present, specifies that the server supports the EDHOC
     Initiator role, hence the reverse message flow of EDHOC.  A value
     MUST NOT be given to this parameter and any present value MUST be
     ignored by the recipient.

  'ed-r':  If present, specifies that the server supports the EDHOC
     Responder role, hence the forward message flow of EDHOC.  A value
     MUST NOT be given to this parameter and any present value MUST be
     ignored by the recipient.

  'ed-method':  Specifies an authentication method supported by the
     server.  This parameter MUST specify a single value, which is
     taken from the 'Value' column of the "EDHOC Method Type" registry
     defined in Section 10.3 of [RFC9528].  This parameter MAY occur
     multiple times, with each occurrence specifying an authentication
     method.

  'ed-csuite':  Specifies an EDHOC cipher suite supported by the
     server.  This parameter MUST specify a single value, which is
     taken from the 'Value' column of the "EDHOC Cipher Suites"
     registry defined in Section 10.2 of [RFC9528].  This parameter MAY
     occur multiple times, with each occurrence specifying a cipher
     suite.

  'ed-cred-t':  Specifies a type of authentication credential supported
     by the server.  This parameter MUST specify a single value, which
     is taken from the 'Value' column of the "EDHOC Authentication
     Credential Types" Registry defined in Section 8.3 of this
     document.  This parameter MAY occur multiple times, with each
     occurrence specifying a type of authentication credential.

  'ed-idcred-t':  Specifies a type of identifier supported by the
     server for identifying authentication credentials.  This parameter
     MUST specify a single value, which is taken from the 'Label'
     column of the "COSE Header Parameters" registry
     [COSE.Header.Parameters].  This parameter MAY occur multiple
     times, with each occurrence specifying a type of identifier for
     authentication credentials.

     Note that the values in the 'Label' column of the "COSE Header
     Parameters" registry are strongly typed.  On the contrary, CoRE
     Link Format is weakly typed; thus, it does not distinguish
     between, for instance, the string value "-10" and the integer
     value -10.  Therefore, if responses in CoRE Link Format are
     returned, string values that look like an integer are not
     supported.  Thus, such values MUST NOT be used in the 'ed-idcred-
     t' parameter.

  'ed-ead':  Specifies the support of the server for an External
     Authorization Data (EAD) item (see Section 3.8 of [RFC9528]).
     This parameter MUST specify a single value, which is taken from
     the 'Label' column of the "EDHOC External Authorization Data"
     registry defined in Section 10.5 of [RFC9528].  This parameter MAY
     occur multiple times, with each occurrence specifying the
     ead_label of an EAD item that the server supports.

  'ed-comb-req':  If present, specifies that the server supports the
     EDHOC + OSCORE request defined in Section 3.  A value MUST NOT be
     given to this parameter and any present value MUST be ignored by
     the recipient.

  Future documents may update the definition of the parameters 'ed-i',
  'ed-r', and 'ed-comb-req' by expanding their semantics and specifying
  what they can take as value.

  The example in Figure 5 shows how a client discovers one EDHOC
  resource at a server and obtains information elements from the
  respective application profile.  The CoRE Link Format notation from
  Section 5 of [RFC6690] is used.

     REQ: GET /.well-known/core

     RES: 2.05 Content
         </sensors/temp>;osc,
         </sensors/light>;if=sensor,
         </.well-known/edhoc>;rt=core.edhoc;ed-csuite=0;ed-csuite=2;
             ed-method=0;ed-cred-t=0;ed-cred-t=1;ed-idcred-t=4;
             ed-i;ed-r;ed-comb-req

                          Figure 5: The Web Link

7.  Security Considerations

  The same security considerations from OSCORE [RFC8613] and EDHOC
  [RFC9528] hold for this document.  In addition, the following
  considerations apply.

  Section 3.2.1 specifies that a client SHOULD NOT have multiple
  outstanding EDHOC + OSCORE requests pertaining to the same EDHOC
  session.  Even if a client did not fulfill this requirement, it would
  not have any impact in terms of security.  That is, the server would
  still not process different instances of the same EDHOC message_3
  more than once in the same EDHOC session (see Section 5.1 of
  [RFC9528]) and would still enforce replay protection of the OSCORE-
  protected request (see Sections 7.4 and 8.2 of [RFC8613]).

  When using the optimized workflow in Figure 2, a minimum of 128-bit
  security against online brute-force attacks is achieved after the
  client receives and successfully verifies the first OSCORE-protected
  response (see Sections 9.1 and 9.4 of [RFC9528]).  As an example, if
  EDHOC is used with method 3 (see Section 3.2 of [RFC9528]) and cipher
  suite 2 (see Section 3.6 of [RFC9528]), then the following holds:

  *  The Initiator is authenticated with 128-bit security against
     online attacks.  As per Section 9.1 of [RFC9528], this results
     from the combination of the strength of the 64-bit Message
     Authentication Code (MAC) in EDHOC message_3 and of the 64-bit MAC
     in the Authenticated Encryption with Associated Data (AEAD) of the
     first OSCORE-protected CoAP request as rebuilt at Step 7 of
     Section 3.3.1.

  *  The Responder is authenticated with 128-bit security against
     online attacks.  As per Section 9.1 of [RFC9528], this results
     from the combination of the strength of the 64-bit MAC in EDHOC
     message_2 and of the 64-bit MAC in the AEAD of the first OSCORE-
     protected CoAP response.

  With reference to the sequential workflow in Figure 1, the OSCORE
  request might have to undergo access-control checks at the server
  before being actually executed for accessing the target protected
  resource.  The same MUST hold when the optimized workflow in Figure 2
  is used, i.e., when using the EDHOC + OSCORE request.

  That is, the rebuilt OSCORE-protected application request from Step 7
  in Section 3.3.1 MUST undergo the same access-control checks that
  would be performed on a traditional OSCORE-protected application
  request sent individually as shown in Figure 1.

  To this end, validated information to perform access-control checks
  (e.g., an access token issued by a trusted party) has to be available
  at the server before starting to process the rebuilt OSCORE-protected
  application request.  Such information may have been provided to the
  server separately before starting the EDHOC execution altogether, or
  instead as External Authorization Data during the EDHOC execution
  (see Section 3.8 of [RFC9528]).

  Thus, a successful completion of the EDHOC protocol and the following
  derivation of the OSCORE Security Context at the server do not play a
  role in determining whether the rebuilt OSCORE-protected request is
  authorized to access the target protected resource at the server.

8.  IANA Considerations

  This document has the following actions for IANA.

8.1.  CoAP Option Numbers Registry

  IANA has registered the following option number in the "CoAP Option
  Numbers" registry within the "Constrained RESTful Environments (CoRE)
  Parameters" registry group.

                     +========+=======+===========+
                     | Number | Name  | Reference |
                     +========+=======+===========+
                     | 21     | EDHOC | RFC 9668  |
                     +--------+-------+-----------+

                        Table 2: Registration in
                       the "CoAP Option Numbers"
                                Registry

8.2.  Target Attributes Registry

  IANA has registered the following entries in the "Target Attributes"
  registry [CORE.Target.Attributes] within the "Constrained RESTful
  Environments (CoRE) Parameters" registry group as per [RFC9423].  For
  all entries, the Change Controller is IETF and the reference is RFC
  9668.

    +================+=============================================+
    | Attribute Name | Brief Description                           |
    +================+=============================================+
    | ed-i           | Hint: support for the EDHOC Initiator role  |
    +----------------+---------------------------------------------+
    | ed-r           | Hint: support for the EDHOC Responder role  |
    +----------------+---------------------------------------------+
    | ed-method      | A supported authentication method for EDHOC |
    +----------------+---------------------------------------------+
    | ed-csuite      | A supported cipher suite for EDHOC          |
    +----------------+---------------------------------------------+
    | ed-cred-t      | A supported type of authentication          |
    |                | credential for EDHOC                        |
    +----------------+---------------------------------------------+
    | ed-idcred-t    | A supported type of authentication          |
    |                | credential identifier for EDHOC             |
    +----------------+---------------------------------------------+
    | ed-ead         | A supported External Authorization Data     |
    |                | (EAD) item for EDHOC                        |
    +----------------+---------------------------------------------+
    | ed-comb-req    | Hint: support for the EDHOC + OSCORE        |
    |                | request                                     |
    +----------------+---------------------------------------------+

       Table 3: Registrations in the "Target Attributes" Registry

8.3.  EDHOC Authentication Credential Types Registry

  IANA has created the "EDHOC Authentication Credential Types" registry
  within the "Ephemeral Diffie-Hellman Over COSE (EDHOC)" registry
  group defined in [RFC9528].

  The registration policy is either "Private Use", "Standards Action
  with Expert Review", or "Specification Required" per [RFC8126].
  "Expert Review" guidelines are provided in Section 8.4.

  All assignments according to "Standards Action with Expert Review"
  are made on a "Standards Action" basis per Section 4.9 of [RFC8126]
  with "Expert Review" additionally required per Section 4.5 of
  [RFC8126].  The procedure for early IANA allocation of "standards
  track code points" defined in [RFC7120] also applies.  When such a
  procedure is used, IANA will ask the designated expert(s) to approve
  the early allocation before registration.  In addition, working group
  chairs are encouraged to consult the expert(s) early during the
  process outlined in Section 3.1 of [RFC7120].

  The columns of this registry are:

  Value:  This field contains the value used to identify the type of
     authentication credential.  These values MUST be unique.  The
     value can be an unsigned integer or a negative integer.  Different
     ranges of values use different registration policies:

     *  Integer values from -24 to 23 are designated as "Standards
        Action With Expert Review".

     *  Integer values from -65536 to -25 and from 24 to 65535 are
        designated as "Specification Required".

     *  Integer values smaller than -65536 and greater than 65535 are
        marked as "Private Use".

  Description:  This field contains a short description of the type of
     authentication credential.

  Reference:  This field contains a pointer to the public specification
     for the type of authentication credential.

   +=======+============================================+===========+
   | Value | Description                                | Reference |
   +=======+============================================+===========+
   | 0     | CBOR Web Token (CWT) containing a COSE_Key | [RFC8392] |
   |       | in a 'cnf' claim and possibly other        |           |
   |       | claims.  CWT is defined in RFC 8392.       |           |
   +-------+--------------------------------------------+-----------+
   | 1     | CWT Claims Set (CCS) containing a COSE_Key | [RFC8392] |
   |       | in a 'cnf' claim and possibly other        |           |
   |       | claims.  CCS is defined in RFC 8392.       |           |
   +-------+--------------------------------------------+-----------+
   | 2     | X.509 certificate                          | [RFC5280] |
   +-------+--------------------------------------------+-----------+

         Table 4: Initial Entries in the "EDHOC Authentication
                       Credential Types" Registry

8.4.  Expert Review Instructions

  "Standards Action with Expert Review" and "Specification Required"
  are two of the registration policies defined for the IANA registry
  established in Section 8.3.  This section gives some general
  guidelines for what the experts should be looking for; however, they
  are being designated as experts for a reason, so they should be given
  substantial latitude.

  Expert reviewers should take into consideration the following points:

  *  Clarity and correctness of registrations.  Experts are expected to
     check the clarity of purpose and use of the requested entries.
     Experts need to make sure that registered identifiers indicate a
     type of authentication credential whose format and encoding is
     clearly defined in the corresponding specification.  Identifiers
     of types of authentication credentials that do not meet these
     objectives of clarity and completeness must not be registered.

  *  Point squatting should be discouraged.  Reviewers are encouraged
     to get sufficient information for registration requests to ensure
     that the usage is not going to duplicate one that is already
     registered and that the point is likely to be used in deployments.
     The zones tagged as "Private Use" are intended for testing
     purposes and closed environments.  Code points in other ranges
     should not be assigned for testing.

  *  Specifications are required for the "Standards Action With Expert
     Review" range of point assignment.  Specifications should exist
     for "Specification Required" ranges, but early assignment before a
     specification is available is considered to be permissible.  When
     specifications are not provided, the description provided needs to
     have sufficient information to identify what the point is being
     used for.

  *  Experts should take into account the expected usage of fields when
     approving point assignment.  Documents published via Standards
     Action can also register points outside the Standards Action
     range.  The length of the encoded value should be weighed against
     how many code points of that length are left, the size of device
     it will be used on, and the number of code points left that encode
     to that size.

9.  References

9.1.  Normative References

  [CORE.Target.Attributes]
             IANA, "Target Attributes",
             <https://www.iana.org/assignments/core-parameters>.

  [COSE.Header.Parameters]
             IANA, "COSE Header Parameters",
             <https://www.iana.org/assignments/cose>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
             <https://www.rfc-editor.org/info/rfc5280>.

  [RFC6690]  Shelby, Z., "Constrained RESTful Environments (CoRE) Link
             Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
             <https://www.rfc-editor.org/info/rfc6690>.

  [RFC7120]  Cotton, M., "Early IANA Allocation of Standards Track Code
             Points", BCP 100, RFC 7120, DOI 10.17487/RFC7120, January
             2014, <https://www.rfc-editor.org/info/rfc7120>.

  [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
             Application Protocol (CoAP)", RFC 7252,
             DOI 10.17487/RFC7252, June 2014,
             <https://www.rfc-editor.org/info/rfc7252>.

  [RFC7959]  Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
             the Constrained Application Protocol (CoAP)", RFC 7959,
             DOI 10.17487/RFC7959, August 2016,
             <https://www.rfc-editor.org/info/rfc7959>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8288]  Nottingham, M., "Web Linking", RFC 8288,
             DOI 10.17487/RFC8288, October 2017,
             <https://www.rfc-editor.org/info/rfc8288>.

  [RFC8392]  Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
             "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
             May 2018, <https://www.rfc-editor.org/info/rfc8392>.

  [RFC8613]  Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
             "Object Security for Constrained RESTful Environments
             (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
             <https://www.rfc-editor.org/info/rfc8613>.

  [RFC8949]  Bormann, C. and P. Hoffman, "Concise Binary Object
             Representation (CBOR)", STD 94, RFC 8949,
             DOI 10.17487/RFC8949, December 2020,
             <https://www.rfc-editor.org/info/rfc8949>.

  [RFC9176]  Amsüss, C., Ed., Shelby, Z., Koster, M., Bormann, C., and
             P. van der Stok, "Constrained RESTful Environments (CoRE)
             Resource Directory", RFC 9176, DOI 10.17487/RFC9176, April
             2022, <https://www.rfc-editor.org/info/rfc9176>.

  [RFC9528]  Selander, G., Preuß Mattsson, J., and F. Palombini,
             "Ephemeral Diffie-Hellman Over COSE (EDHOC)", RFC 9528,
             DOI 10.17487/RFC9528, March 2024,
             <https://www.rfc-editor.org/info/rfc9528>.

9.2.  Informative References

  [RFC9423]  Bormann, C., "Constrained RESTful Environments (CoRE)
             Target Attributes Registry", RFC 9423,
             DOI 10.17487/RFC9423, April 2024,
             <https://www.rfc-editor.org/info/rfc9423>.

Acknowledgments

  The authors sincerely thank Christian Amsüss, Emmanuel Baccelli,
  Carsten Bormann, Roman Danyliw, Esko Dijk, Joel Halpern, Wes
  Hardaker, Klaus Hartke, John Preuß Mattsson, David Navarro, Shuping
  Peng, Jim Schaad, Jürgen Schönwälder, John Scudder, Orie Steele,
  Gunter Van de Velde, Mališa Vučinić, and Paul Wouters for their
  feedback and comments.

  The work on this document has been partly supported by the Sweden's
  Innovation Agency VINNOVA and the Celtic-Next project CRITISEC, and
  by the H2020 project SIFIS-Home (Grant agreement 952652).

Authors' Addresses

  Francesca Palombini
  Ericsson AB
  Torshamnsgatan 23
  SE-164 40 Kista
  Sweden
  Email: [email protected]


  Marco Tiloca
  RISE AB
  Isafjordsgatan 22
  SE-164 40 Kista
  Sweden
  Email: [email protected]


  Rikard Höglund
  RISE AB
  Isafjordsgatan 22
  SE-164 40 Kista
  Sweden
  Email: [email protected]


  Stefan Hristozov
  Eriptic
  Email: [email protected]


  Göran Selander
  Ericsson
  Email: [email protected]