Internet Engineering Task Force (IETF)                          M. Tüxen
Request for Comments: 9653               Münster Univ. of Appl. Sciences
Category: Standards Track                                      V. Boivie
ISSN: 2070-1721                                              F. Castelli
                                                                 Google
                                                               R. Jesup
                                                                Mozilla
                                                         September 2024


      Zero Checksum for the Stream Control Transmission Protocol

Abstract

  The Stream Control Transmission Protocol (SCTP) uses a 32-bit
  checksum in the common header of each packet to provide some level of
  data integrity.  If another method used by SCTP already provides the
  same or a higher level of data integrity, computing this checksum
  does not provide any additional protection but does consume computing
  resources.

  This document provides a simple extension allowing SCTP to save these
  computing resources by using zero as the checksum in a backwards-
  compatible way.  It also defines how this feature can be used when
  SCTP packets are encapsulated in Datagram Transport Layer Security
  (DTLS) packets.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9653.

Copyright Notice

  Copyright (c) 2024 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
  2.  Conventions
  3.  Alternate Error Detection Methods
  4.  A New Chunk Parameter
  5.  Procedures
    5.1.  Declaration of Feature Support
    5.2.  Sender-Side Considerations
    5.3.  Receiver-Side Considerations
  6.  Error Detection via SCTP over DTLS
  7.  Socket API Considerations
    7.1.  Set Accepting a Zero Checksum (SCTP_ACCEPT_ZERO_CHECKSUM)
  8.  IANA Considerations
  9.  Security Considerations
  10. References
    10.1.  Normative References
    10.2.  Informative References
  Acknowledgments
  Authors' Addresses

1.  Introduction

  SCTP as specified in [RFC9260] uses a CRC32c checksum to provide some
  level of data integrity.  When using, for example, Datagram Transport
  Layer Security (DTLS) as the lower layer for SCTP as specified in
  [RFC8261], using the CRC32c checksum does not provide any additional
  protection over that already provided by DTLS.  However, computing
  the CRC32c checksum at the sender and receiver sides does consume
  computational resources for no benefit.  This is particularly
  important for endpoints that are computationally limited and use SCTP
  over DTLS.

  The extension described in this document allows an SCTP endpoint to
  declare that it accepts SCTP packets with a checksum of zero when
  using a specific alternate error detection method.  This declaration
  happens during the setup of the SCTP association and allows endpoints
  that support this extension to be interoperable with endpoints that
  don't.  To provide this backwards compatibility, endpoints using this
  extension still need to implement the CRC32c checksum algorithm.

2.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

3.  Alternate Error Detection Methods

  SCTP uses a CRC32c checksum to provide some level of data integrity.
  The CRC32c checksum is computed based on the SCTP common header and
  the chunks contained in the packet.  In particular, the computation
  of the CRC32c checksum does not involve a pseudo header for IPv4 or
  IPv6 like the computation of the TCP checksum, as specified in
  [RFC9293], or the UDP checksum, as specified in [RFC0768].

  Zero is a valid result of the CRC32c checksum algorithm.  For
  example, the following figure depicts an SCTP packet containing a
  minimal INIT chunk with a correct CRC32c checksum of zero.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Source Port Number = 5001   |Destination Port Number = 5001 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Verification Tag = 0                      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         Checksum = 0                          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Type = 1    |Chunk Flags = 0|       Chunk Length = 20       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                   Initiate Tag = 0xFCB75CCA                   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |       Advertised Receiver Window Credit (a_rwnd) = 1500       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Number of Outbound Streams = 1 | Number of Inbound Streams = 1 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Initial TSN = 0                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

       Figure 1: SCTP Packet with a Correct CRC32c Checksum of Zero

  Using SCTP in combination with other mechanisms or protocol
  extensions might provide data integrity protection with an equal or
  lower probability of false negatives than the one provided by using
  the CRC32c checksum algorithm.  When using such alternate error
  detection methods, the SCTP common header containing the 32-bit
  checksum field might or might not be visible to middleboxes on the
  paths between the two endpoints.

  Alternate error detection methods have two requirements:

  1.  An alternate error detection method MUST provide an equal or
      lower probability of false negatives than the one provided by
      using the CRC32c checksum algorithm.  This MAY only apply to
      packets satisfying some method-specific constraints.

  2.  Using an alternate error detection method MUST NOT result in a
      path failure for more than two retransmission timeouts (RTOs) due
      to middleboxes on the path expecting correct CRC32c checksums.

  To fulfill the second requirement, alternate error detection methods
  could use a heuristic to detect the existence of such middleboxes and
  use correct CRC32c checksums on these affected paths.

  Using DTLS as the lower layer of SCTP as specified in [RFC8261] is
  one example that fulfills the first requirement.  Another example is
  using SCTP Authentication as specified in [RFC4895].  Of course, this
  only applies to each SCTP packet having an AUTH chunk as its first
  chunk.  However, using SCTP Authentication without any heuristic does
  not fulfill the second requirement.  Since using DTLS as the lower
  layer of SCTP as specified in [RFC8261] also fulfills the second
  requirement, it can be used as an alternate error detection method
  (see Section 6).

  If an alternate error detection method is used, the computation of
  the CRC32c checksum consumes computational resources without
  providing any benefit.  To avoid this, an SCTP endpoint could be
  willing to accept SCTP packets with an incorrect CRC32c checksum
  value of zero in addition to SCTP packets with correct CRC32c
  checksum values.

  Because zero is a valid result of the CRC32c checksum algorithm, a
  receiver of an SCTP packet containing a checksum value of zero cannot
  determine whether the sender included an incorrect CRC32c checksum of
  zero to reduce the CPU cost or the result of the CRC32c checksum
  computation was actually zero.  However, if the receiver is willing
  to use an alternate error detection method, this ambiguity is
  irrelevant, since the receiver is fine with not using the CRC32c
  checksum to protect incoming packets.

4.  A New Chunk Parameter

  The Zero Checksum Acceptable Chunk Parameter is defined by the
  following figure.

     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Type = 0x8001        |          Length = 8           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |           Error Detection Method Identifier (EDMID)           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 2: Zero Checksum Acceptable Chunk Parameter

  Type: 16 bits (unsigned integer)
     This field holds the IANA-defined parameter type for the "Zero
     Checksum Acceptable" chunk parameter.  IANA has assigned the value
     32769 (0x8001) for this parameter type.

  Length: 16 bits (unsigned integer)
     This field holds the length in bytes of the chunk parameter; the
     value MUST be 8.

  Error Detection Method Identifier (EDMID): 32 bits (unsigned
  integer)
     An IANA-registered value specifying the alternate error detection
     method the sender of this parameter is willing to use for received
     packets.

  All transported integer numbers are in network byte order, a.k.a. big
  endian.

  The Zero Checksum Acceptable Chunk Parameter MAY appear in INIT and
  INIT ACK chunks and MUST NOT appear in any other chunk.  The
  Parameter MUST NOT appear more than once in any chunk.

  If an endpoint not supporting the extension described in this
  document receives this parameter in an INIT or INIT ACK chunk, it is
  REQUIRED to skip this parameter and continue to process further
  parameters in the chunk.  This behavior is specified by [RFC9260]
  because the highest-order two bits of the Type are '10'.

5.  Procedures

5.1.  Declaration of Feature Support

  An endpoint willing to accept SCTP packets with an incorrect checksum
  of zero MUST include the Zero Checksum Acceptable Chunk Parameter
  indicating the alternate error detection method it is willing to use
  in the INIT or INIT ACK chunk it sends.

  An SCTP implementation MAY also require the upper layer to indicate
  that it is fine to use a specific alternate error detection method
  before including the corresponding Zero Checksum Acceptable Chunk
  Parameter.

5.2.  Sender-Side Considerations

  An SCTP endpoint cannot just use an incorrect CRC32c checksum value
  of zero for all SCTP packets it sends.  The following restrictions
  apply:

  1.  If an endpoint has not received an INIT or INIT ACK chunk
      containing a Zero Checksum Acceptable Chunk Parameter indicating
      an alternate error detection method it supports from its peer
      during the association setup, it MUST use a correct CRC32c
      checksum.  In particular, when an endpoint

      a.  sends a packet containing an INIT chunk, it MUST include a
          correct CRC32c checksum in the packet containing the INIT
          chunk.

      b.  responds to an "Out of the Blue" (OOTB) SCTP packet, it MUST
          include a correct CRC32c checksum in the response packet.

  2.  When an endpoint sends a packet containing a COOKIE ECHO chunk,
      it MUST include a correct CRC32c checksum in the packet
      containing the COOKIE ECHO chunk.

  3.  When an endpoint supports the dynamic address reconfiguration
      specified in [RFC5061] and sends a packet containing an ASCONF
      chunk, it MUST include a correct CRC32c checksum in the packet
      containing the ASCONF chunk.

  4.  If an alternate error detection method has some method-specific
      constraints, the sender MUST include a correct CRC32c checksum in
      all packets that don't fulfill these method-specific constraints.

  The first restriction allows backwards compatibility.  The second and
  third restrictions allow a simpler implementation of the extension
  defined in this document, because looking up the association for SCTP
  packets containing a COOKIE ECHO chunk or an ASCONF chunk might be
  more complex than for other packets.  Finally, the last restriction
  covers constraints specific to the alternate error detection method.

  An SCTP endpoint MAY require that the upper layer allow the use of
  the alternate error detection method that was announced by the peer
  before sending packets with an incorrect checksum of zero.

  If none of the above restrictions apply, an endpoint SHOULD use zero
  as the checksum when sending an SCTP packet.

5.3.  Receiver-Side Considerations

  If an endpoint has sent the Zero Checksum Acceptable Chunk Parameter
  indicating the support of an alternate error detection method in an
  INIT or INIT ACK chunk, in addition to SCTP packets containing the
  correct CRC32c checksum value it MUST accept SCTP packets that have
  an incorrect checksum value of zero and that fulfill the requirements
  of the announced alternate error detection method used for this
  association.  Otherwise, the endpoint MUST drop all SCTP packets with
  an incorrect CRC32c checksum.

  In addition to processing OOTB packets with a correct CRC32c checksum
  as specified in [RFC9260], an SCTP implementation MAY also process
  OOTB packets having an incorrect zero checksum.  Doing so might
  result in faster SCTP association failure detection.

6.  Error Detection via SCTP over DTLS

  Using SCTP over DTLS as specified in [RFC8261] provides a stronger
  error detection method than using the CRC32c checksum algorithm.
  Since middleboxes will not observe the unencrypted SCTP packet, there
  is no risk in interfering with using zero as an incorrect checksum.
  There are no additional constraints (specific to the error detection
  method) on packets when using DTLS encapsulation.

7.  Socket API Considerations

  This section describes how the socket API defined in [RFC6458] needs
  to be extended to provide a way for the application to control the
  acceptance of a zero checksum.

  A 'Socket API Considerations' section is contained in all SCTP-
  related specifications published after [RFC6458] describing an
  extension for which implementations using the socket API as specified
  in [RFC6458] would require some extension of the socket API.  Please
  note that this section is informational only.

  A socket API implementation based on [RFC6458] is extended by
  supporting one new write-only IPPROTO_SCTP-level socket option.

7.1.  Set Accepting a Zero Checksum (SCTP_ACCEPT_ZERO_CHECKSUM)

  This IPPROTO_SCTP-level socket option with the name
  SCTP_ACCEPT_ZERO_CHECKSUM can be used to control the acceptance of a
  zero checksum.  It is a write-only socket option and applies only to
  future SCTP associations on the socket.

  This option expects an unsigned integer.  Possible values include:

  SCTP_EDMID_NONE:  Disable the use of any alternate error detection
     method.  This means that all SCTP packets being received are only
     accepted if they have a correct CRC32c checksum value.

  SCTP_EDMID_LOWER_LAYER_DTLS:  Use the alternate error detection
     method described in Section 6.

  An implementation might only send packets with an incorrect checksum
  of zero, if the alternate error detection method announced by the
  peer is also enabled locally via this socket option.

  The default for this socket option is that the use of alternate error
  detection methods is disabled.

8.  IANA Considerations

  A new chunk parameter type has been assigned by IANA in the "Chunk
  Parameter Types" registry for SCTP:

      +==========+===================================+===========+
      | ID Value | Chunk Parameter Type              | Reference |
      +==========+===================================+===========+
      | 32769    | Zero Checksum Acceptable (0x8001) | RFC 9653  |
      +----------+-----------------------------------+-----------+

         Table 1: New Entry in "Chunk Parameter Types" Registry

  Furthermore, IANA has established a new "Error Detection Method"
  registry for SCTP.  The assignment of new error detection methods is
  done through the Specification Required policy as defined in
  [RFC8126].  Documentation for a new error detection method MUST
  contain the following information:

  1.  A name of an alternate error detection method.

  2.  A reference to a specification describing:

      (a)  the alternate error detection method,

      (b)  why the alternate error detection method provides an equal
           or lower probability of false negatives than the one
           provided by using the CRC32c checksum,

      (c)  any constraints (specific to the alternate error detection
           method) that are referred to in the fourth exception in
           Section 5.2, and

      (d)  why using the alternate error detection method does not
           result in path failures due to middleboxes expecting correct
           CRC32c checksums for more than two RTOs.  In case the
           alternate error detection method uses a heuristic for
           detecting such middleboxes, this heuristic needs to be
           described.

  The initial contents of the registry are as follows:

         +================+========================+===========+
         | ID Value       | Error Detection Method | Reference |
         +================+========================+===========+
         | 0              | Reserved               | RFC 9653  |
         +----------------+------------------------+-----------+
         | 1              | SCTP over DTLS         | RFC 9653  |
         +----------------+------------------------+-----------+
         | 2 - 4294967295 | Unassigned             |           |
         +----------------+------------------------+-----------+

            Table 2: Initial Contents of the "Error Detection
                             Method" Registry

  A designated expert (DE) is expected to ascertain the existence of
  suitable documentation (a specification) as described in [RFC8126]
  and to verify that the document is permanently and publicly
  available.  Furthermore, the DE is expected to ensure that the above
  four points have been addressed appropriately.

9.  Security Considerations

  This document does not change the considerations given in [RFC9260].

  Due to the first requirement in Section 3, using an alternate error
  detection method provides an equal or better level of data integrity
  than the one provided by using the CRC32c checksum algorithm.  The
  second requirement in Section 3 ensures that the existence of
  middleboxes expecting correct CRC32c checksums does not result in
  permanent path failures.

10.  References

10.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC5061]  Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.
             Kozuka, "Stream Control Transmission Protocol (SCTP)
             Dynamic Address Reconfiguration", RFC 5061,
             DOI 10.17487/RFC5061, September 2007,
             <https://www.rfc-editor.org/info/rfc5061>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8261]  Tuexen, M., Stewart, R., Jesup, R., and S. Loreto,
             "Datagram Transport Layer Security (DTLS) Encapsulation of
             SCTP Packets", RFC 8261, DOI 10.17487/RFC8261, November
             2017, <https://www.rfc-editor.org/info/rfc8261>.

  [RFC9260]  Stewart, R., Tüxen, M., and K. Nielsen, "Stream Control
             Transmission Protocol", RFC 9260, DOI 10.17487/RFC9260,
             June 2022, <https://www.rfc-editor.org/info/rfc9260>.

10.2.  Informative References

  [RFC0768]  Postel, J., "User Datagram Protocol", STD 6, RFC 768,
             DOI 10.17487/RFC0768, August 1980,
             <https://www.rfc-editor.org/info/rfc768>.

  [RFC4895]  Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
             "Authenticated Chunks for the Stream Control Transmission
             Protocol (SCTP)", RFC 4895, DOI 10.17487/RFC4895, August
             2007, <https://www.rfc-editor.org/info/rfc4895>.

  [RFC6458]  Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
             Yasevich, "Sockets API Extensions for the Stream Control
             Transmission Protocol (SCTP)", RFC 6458,
             DOI 10.17487/RFC6458, December 2011,
             <https://www.rfc-editor.org/info/rfc6458>.

  [RFC9293]  Eddy, W., Ed., "Transmission Control Protocol (TCP)",
             STD 7, RFC 9293, DOI 10.17487/RFC9293, August 2022,
             <https://www.rfc-editor.org/info/rfc9293>.

Acknowledgments

  The authors wish to thank Bernard Aboba, Deb Cooley, Martin Duke,
  Gorry Fairhurst, Mike Heard, Peter Lei, Nils Ohlmeier, Claudio
  Porfiri, Greg Skinner, Timo Völker, Éric Vyncke, and Magnus
  Westerlund for their invaluable comments.

Authors' Addresses

  Michael Tüxen
  Münster University of Applied Sciences
  Stegerwaldstrasse 39
  48565 Steinfurt
  Germany
  Email: [email protected]


  Victor Boivie
  Google
  Kungsbron 2
  SE-11122 Stockholm
  Sweden
  Email: [email protected]


  Florent Castelli
  Google
  Kungsbron 2
  SE-11122 Stockholm
  Sweden
  Email: [email protected]


  Randell Jesup
  Mozilla Corporation
  1835 Horse Shoe Trl
  Malvern, PA 19355
  United States of America
  Email: [email protected]