Network Working Group                                    Lorenzo Aguilar
Request for Comments: 965                              SRI International
                                                          December 1985

           A Format for a Graphical Communication Protocol


STATUS OF THIS MEMO

  This paper describes the requirements for a graphical format on which
  to base a graphical on-line communication protocol.  The proposal is
  an Interactive Graphical Communication Format using the GKSM session
  metafile.  Distribution of this memo is unlimited.

ABSTRACT

  This paper describes the requirements for a graphical format on which
  to base a graphical on-line communication protocol. It is argued that
  on-line graphical communication is similar to graphical session
  capture, and thus we propose an Interactive Graphical Communication
  Format using the GKSM session metafile.

  We discuss the items that we believe complement the GKSM metafile as
  a format for on-line interactive exchanges. One key application area
  of such a format is multi-media on-line conferencing; therefore, we
  present a conferencing software architecture for processing the
  proposed format. We make this format specification available to those
  planning multi-media conferencing systems as a contribution toward
  the development of a graphical communication protocol that will
  permit the interoperation of these systems.

  We hope this contribution will encourage the discussion of multimedia
  data exchange and the proposal of solutions. At SRI, we stay open to
  the exploration of alternatives and we will continue our research and
  development work in this problem area.

ACKNOWLEDGEMENTS

  The author wants to thank Andy Poggio of SRI who made many insightful
  and valuable suggestions that trimmed and improved level U. His
  expertise in multi-media communication systems and his encouragement
  were a most positive input to the creation of this IGCF. Dave
  Worthington of SRI also participated in the project discussions
  involving this IGCF. Thanks are also due to Tom Powers, chairman of
  ANSI X3H33, who opened this forum to the presentation of an earlier
  version of this paper, thereby providing an opportunity for the
  invaluable feedback of the X3H33 members. Jon Postel of ISI
  recommended a number of changes that made this paper more coherent
  and accessible.




Aguilar                                                         [Page 1]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


  Most of the work reported in this paper was sponsored by the U.S.
  Navy, Naval Electronic Systems Command, Washington D.C., under
  Contract No. N00039-83-K-0623.

I.  INTRODUCTION

  A. Use of a Graphical Communication Protocol

     In the field of computer communications, a protocol is a procedure
     executed by two cooperating processes in order to attain a
     meaningful exchange of information. A graphical communication
     protocol is needed to exchange interactive vector graphics
     information, possibly in conjunction with other information media
     like voice, text, and video. Within this multi-media communication
     environment, computer vector graphics plays a key role because it
     takes full advantage of the processing capabilities of
     communicating computers and human users, and thus it is far more
     compact than digital images which are not generated from data
     structures containing positional information. Vector graphical
     communication trades intensive use of storage and processing, at
     the communicating ends, in return for a low volume of exchanged
     data, because workstations with graphical hardware exchange
     graphics commands in conjunction with large data structures at the
     transmitter and receivers. In this manner, the transmission of a
     single command can produce extensive changes in the data displayed
     at the sending and receiving ends.

     It is helpful to situate the aforesaid protocol at one of the
     functional levels of the ISO Open Systems Interconnection
     Reference Model [1]. Within such a model, a graphical protocol
     functionality belongs primarily in the application level, though
     some of it fits in the presentation level.  We can distinguish the
     following components of a communication protocol:

        a) a data format
        b) rules to interpret transmitted data
        c) state information tables
        d) message exchange rules

     A format for a graphical protocol should provide the layout of the
     transmitted data, and indicate how the formated data are
     associated with interpretation rules. The choice of format
     influences the state tables to be maintained for the correct
     processing of the transmitted data stream. The graphical format
     has a minor influence on the exchange rules, which should provide
     for the efficient use of transmission capacity to transport the
     data under such a format. Besides the graphical format, there are


Aguilar                                                         [Page 2]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     other aspects of a graphical protocol that determine state tables
     and exchange rules. This paper concentrates in the data format,
     and it does not discuss the message exchange. Nevertheless, we
     discuss a simple software architecture for generating and
     interpreting data streams written in our proposed format. Further,
     we give an example of an application of a proposed format (in
     Appendix B), and it illustrates the type of message exchanges that
     are needed for establishing a communication session and exchanging
     graphical information.

     Those in the computer communication field are well aware of the
     importance of widely accepted protocols in order to achieve
     meaningful communication. Those who need to implement interactive
     graphical communications today are confronted with the lack of an
     standard for computer graphics communication among application
     programs. Nevertheless, we can use some of the work already done
     by the computer graphics standard bodies. As a matter of fact, ISO
     and ANSI have already appended, to the Graphical Kernel System
     (GKS) standard, the GKSM session metafile specification that has
     many of the features needed for an on-line graphical protocol.

     It is pertinent to mention an example of graphical communication
     that illustrates the real-time nature of the interaction and also
     illustrates the use of graphics in conjunction with other
     information media. With audio-graphics conferencing, a group of
     individuals at two or more locations can carry on an electronic
     meeting. They can converse over voice channels and concurrently
     share a graphics space on which they can display, point at, and
     manipulate vector graphics pictures [2, 3, 4, 5, 6, 7].

     The conference voice channels can be provided by a variety of
     transmission technologies. The shared graphics space can be
     implemented on workstations that display the pictures and permit
     graphical interaction and communication with other locations. The
     communication of operations upon pictures involves modifications
     to the underlying data structures, but we are concerned with
     graphical database updating only to the extent that such updating
     supports the communication.

     In order to play out a recorded graphical session, we will need
     indications of the rate at which the graphical elements must be
     shown and the graphical operations recreated. We do not include
     the means for indicating the timing of a session in a format
     because our main purpose is to use it in mixed-media communication
     environments.  In these environments, the play-out timing must be
     compatible across information media in order to coordinate them.
     Therefore, we leave the timing mechanisms to conference-control


Aguilar                                                         [Page 3]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     modules. We also leave to conference control processes the manner
     in which a conferee station emulates a graphical capability that
     it lacks. One example is the representation of color in monochrome
     displays.

  B. Relationship to Other Work

     There are a number of actual, and proposed, standards for graphics
     information exchange. In the following, we explain the reasons
     why, at present, none of them can be used as the basis of an
     on-line protocol. As some of these standards evolve, however, some
     may become suitable. Moreover, the experience gained with early
     on-line graphics communication systems will provide insight into
     the proper standard extensions to support more advanced systems.
     Such insight could also be used to modify the format proposed in
     this paper, which we consider an initial approach to the problem.
     In the future, the format proposed in this paper could be replaced
     by one of the aforesaid extended standards.

     The North American Presentation Level Protocol Syntax, NAPLPS,
     specifies a data syntax and application semantics for one-way
     teletext information dissemination and two-way videotex database
     access and transaction services. The two-way videotex operational
     model is based on the concept of a consumer and an information
     provider or service operator. Because of this asymmetry, it is
     assumed that almost all graphical information will flow from the
     provider toward the consumer. In the reverse direction, the
     consumer is expected to manipulate and transmit alphanumeric
     information, for the most part. Although this standard includes
     geometric drawing primitives, a user cannot directly modify shapes
     drawn with the primitives.

     At present, NAPLPS does not include interaction concepts like
     picture transformations or detectability, which are fundamental
     for attaining a shared graphical workspace. Neither does it allow
     key graphics input devices like mice, joysticks, stylus, rotating
     balls, or light pens, which are needed for simple and efficient
     editing of the shared workspace.

     We want to have user-to-user graphical communication that features
     the level of sophistication and ease of interaction provided by
     today's interactive graphics packages. Computer vector graphics
     can provide both because its paradigm includes an application
     program that keeps track of a very large number of possible
     changes of state of the displayed picture. In addition, the
     application drives a powerful graphics package, like GKS or ACM
     Core. In the videotex paradigm, the provider application only


Aguilar                                                         [Page 4]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     allows limited changes to the displayed image, primarily database
     retrieval requests. Also, the paradigm does not include a separate
     graphics package. Both the graphics functionality and the data
     format are collapsed into a coding specification, like NAPLPS.

     In this paper we are interested primarily in business and
     industrial applications where there is a two-way, or multi-way,
     flow of vector graphics information among the users. The users
     will have workstations with substantial processing and storage
     capacities, and high-resolution monitors; moreover, the
     communication will be on a distributed architecture not depending
     on a central server host, like the provider application host of
     videotex.

     Currently, the videotex equipment at the consumer end consists of
     inexpensive microprocessor-based decoders or personal computer
     boards driving, in most cases, low-resolution standard TV sets and
     personal computer displays. There is already affordable technology
     to produce sophisticated decoders and high-resolution graphics
     devices. The videotex standards need extensive revisions to take
     advantage of these advances; in particular, they should consider
     the receiving devices as capable of hosting a programmable
     customer-application process. When this happens, videotex
     protocols will be applicable to our intended problem areas [8].

     The Computer Graphics Metafile [9] will become an international
     and North American standard for graphics picture interchange in
     the near future. However, the CGM, also referred as VDM, is a
     picture-capture metafile that only records the final result of a
     graphics session. It is not intended to record the
     picture-creation process, which is fundamental for the interactive
     applications that we are addressing. Moreover, the CGM is
     presently aimed at a minimum support of GKS functionality. It will
     be some time before the CGM will have some of the elements needed
     for on-line interaction. If, after these additions, the CGM is
     augmented for session capture, it would become a logical candidate
     for a protocol format.

     Another future standard is the Computer Graphics Interface, CGI
     also referred as VDI [10]. The CGI is a standard functional and
     syntactical specification of the control and data exchange between
     device-independent graphics software and one or more
     device-dependent graphics device drivers. A major use of the CGI
     is for the communication between an application host and a
     graphics device, but the asymmetry between its intended
     communicating ends hinders the use of CGI for our purposes.



Aguilar                                                         [Page 5]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     As previously stated, we want to take advantage of intelligence
     and storage at the communicating ends in order to achieve powerful
     information-conveying effects using narrow-bandwidth channels.
     This requires that the format we seek must have items for
     communication between two applications. In contrast, the CGI
     streams are processed by device-dependent drivers, rather than by
     applications. The CGI specification does include application data
     elements, but only to be stored in a metafile. These application
     data elements are not interpreted by the drivers, but by
     applications that read the metafile, some time after metafile
     creation.

     Furthermore, the CGI has elements for obtaining graphical input,
     as well as elements for inquiring graphics device capabilities,
     characteristics, and states. Later, in Section III, we explain why
     these two classes of elements are unnecessary for the
     communication protocol we need. As the CGI evolves, it will
     undergo significant changes, and, in the future, it may become a
     very suitable kernel for the graphics protocol we seek.  As a
     matter of fact, the CGI will be the communication protocol between
     graphical application hosts and graphics terminals.  At SRI we are
     tracking its evolution, and we are interested in defining a format
     based on the CGI.

     Finally, the Initial Graphics Exchange Specification [11] is not
     aimed at our primary area of interest. The IGES defines standard
     file and language formats for storing and transmitting
     product-definition data that can be used, in part, to generate
     engineering drawings and other graphical representations of
     engineering products.  Besides the CAD orientation of IGES, the
     graphical output function may be secondary to other goals like
     transmitting numerical-control machine instructions.

II.  OPERATIONAL REQUIREMENTS AND USABILITY

  The main goal of this paper is to lay the groundwork for the
  development of a vector graphics format to be used as a basis for an
  on-line graphical communication protocol. We call such a format an
  "interactive graphical communication format," or IGCF. In this
  section we describe some operational requirements and usable
  characteristics for an IGCF.

  A. Interoperation of Heterogeneous Systems

     A first functional requirement is that an IGCF must permit
     communication among heterogeneous graphical systems differing both
     in the hardware used and in the software of their graphics


Aguilar                                                         [Page 6]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     application interfaces. This is a fundamental for attaining
     communication among similar graphical application programs running
     on dissimilar hardware and using dissimilar graphics interface
     packages. Some examples of such application programs are graphics
     editors, CAD systems, and graphical database retrieval programs
     communicating with other editors, CAD programs, and graphical
     databases, respectively.

  B. Picture Capture

     A required characteristic of an IGCF is that it must be usable for
     the exchange of static graphic pictures, i.e. for picture capture;
     yet, it must not be restricted to final picture recording only.
     There will be picture exchanges as part of the interactive
     communication, and we anticipate the need to record the state of a
     picture at some points during the on-line graphics engagement. We
     foresee the creation of graphical IGCF libraries containing object
     definitions and pictures for inclusion in new pictures. Since
     metafiles have been used for a long time to capture pictures,
     there is a strong motivation to base an IGCF on a metafile
     standard in order to secure compatibility with a large number of
     metafile sources and consumers.

  C. Prompt Transmission

     In some forms of interactive graphical communication, like
     audiographics conferencing, it is critical to convey across users
     the real-time nature of the interaction. This dictates that object
     creations and manipulations be transmitted as they happen rather
     than as a final result since a substantial part of the information
     may be transmitted concurrently with the construction or operation
     of an object, possibly through associated media like voice. Since
     both construction and manipulation processes have to be
     transmitted, there is a limit to the number of intermediate states
     that can be economically transmitted.

     A third requirement is, therefore, that the IGCF elements provide
     fine "granularity" to convey the dynamics of the constructions and
     manipulations. We believe that it is sufficient that the IGCF have
     basic construction elements like polygons, markers, polylines, and
     text strings and that it transmit them only when they are
     completed; i.e., it is not necessary to transmit partial
     constructions of such elements.

     The problem for manipulations extends beyond an IGCF. Whereas we
     know that an IGCF should include segment transformations, segment
     highlighting and segment visibility on/off, the transmitter must


Aguilar                                                         [Page 7]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     decide how often to sample an on-going transformation and transmit
     its current state. The choice of a sampling frequency will depend
     on the available transmission bandwidth.

  D. Low Traffic Volume

     In many of the applications we envision, coordinate graphics will
     be transmitted over narrow bandwidth channels, and thus it is
     essential to minimize traffic. Accordingly, several requirements
     are imposed on an IGCF to take advantage of the characteristics of
     the graphics communication intercourse and architecture in order
     to minimize traffic.

     An IGCF can help reduce traffic by including the basic geometric
     objects from which so many other objects are built. Moreover, an
     IGCF should permit the use of objects for the creation of more
     complex objects; since reuse is very common, the result is a
     reduction of traffic and storage cost.

  E. Preservation of Application Semantic Units

     A related requirement is that an IGCF must include elements to
     represent graphical objects corresponding to real world entities
     of the intended applications. For example, in a Navy application,
     the entities of interest are carriers, submarines, planes, and the
     like. We want to communicate such semantic units across systems
     and to treat them as unitary objects because, in many
     applications, communication is based on creating and operating
     such units. If an IGCF has elements to represent such semantic
     units, the communication traffic decreases because the entity
     definitions can be transmitted only once and then reused, and
     because the entities are manipulated as units rather than
     separately manipulating their components.

     It turns out that there is a small set of primary operations that
     can be applied to a graphical object, and an IGCF must have
     elements representing such operations. In contrast to dumb
     graphics terminals receiving screen refresh information from a
     host, we foresee graphical communication taking place among
     intelligent workstations that can exchange encoded operations,
     interpret them, and apply them to objects stored locally.

  F. Transmission Batching

     We previously indicated the desirability of conveying to the human
     users the real-time tempo of interactive graphics exchanges.
     However, it is possible to do so without having to transmit


Aguilar                                                         [Page 8]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     immediately all IGCF elements. As a matter of fact, IGCF elements
     should be divided into those causing a change on a displayed
     picture and those that do not, although both classes may cause
     changes to the stored graphical data structures.

     It is only necessary to transmit immediately those elements
     causing a visible change on a displayed picture because they are
     the ones whose reception and interpretation delivers information
     to a human user. The second class of elements can be batched and
     queued for transmission until one element of the first class is
     submitted. We call the first class update Group-1, and the second,
     update Group-2.

     The aforesaid division is quite important for packet
     communications because each packet contains a hefty amount of
     overhead control traffic. It is therefore mandatory to batch, into
     a packet, as much client data as possible in order to reduce total
     traffic. The batching units can be varied in size according to the
     network traffic and response time of conference hosts. During
     congested periods, the units may have to be increased, thus
     lowering the number of messages, and then reduced when congestion
     eases, thus increasing the number of messages.

  G. Simple Translation Between IGCF and User Interface

     According to the first requirement, an IGCF must permit the
     interoperation of related heterogeneous graphics applications.
     Such interoperation has, as an objective, the communication
     between human users or between a human and a database.
     Correspondingly, the interoperation involves a mapping between the
     user interface commands and the IGCF elements. It is not advisable
     to use the commands themselves as the IGCF elements; otherwise the
     exchange would depend on the communicating systems, and every pair
     of communicating systems would require an ad-hoc protocol.

     An additional usability characteristic is that there must be a
     simple mapping between IGCF elements and the actions represented
     by the user interface commands employed for graphical
     communications. This simplicity is a must because every
     communicating graphical system must have a translator that ideally
     should be very simple. It seems that the inclusion of command
     sequence delimiters in the IGCF helps the simplicity since the
     delimiters permit keeping a smaller amount of state information
     for processing an IGCF stream.

     We have verified the mapping from one set of commands for
     audiographics conferencing to the IGCF proposed in this paper. The


Aguilar                                                         [Page 9]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     mapping from user interface commands to IGCF can be done in a
     direct and efficient manner; on the other hand, the reverse
     mapping, from IGCF to user interface commands, is a more difficult
     task. We anticipate that, in order to improve performance, we will
     have to map the IGCF elements to calls to lower level subroutines
     implementing the user interface actions. Whereas such mapping is
     conceptually no more complex than translating IGCF to the commands
     themselves, it will require considerably more programming.

III.  ELEMENTS OF AN IGCF

  IGCF Element Classes

     In this section we list the classes of elements that we believe an
     IGCF should have in order to exchange vector graphics under the
     requirements of the previous section. The classes correspond to
     the common function classes in computer graphics interfaces, and
     each contains elements corresponding to interface primitives and
     attributes. We do not list the elements for each class because
     they are exemplified by the elements in the proposed IGCF.

     In the following list, two categories of functions are missing:
     functions used to query the status of a graphics system, and input
     functions. As a matter of fact, an IGCF only needs to have
     elements representing actions that cause a change in the state of
     the communicating graphical systems, and the inquire functions
     obviously do not change their state. Even though an input function
     executed at the transmitting end causes a local change, it is not
     necessary to transmit the input command itself. The receivers only
     need to get the data input, in IGCF representation, and they can
     process the data in any manner, maybe simulating local input
     actions.

     Control

        Elements for workstation: initialization, control and
        transformation; and elements for normalization transformation.
        (The normalization and workstation transformations can be used
        to implement zooming.)

     Primitive attributes

        Elements for primitive, segment, and workstation attributes.

     Output primitives

        Elements for output primitives.


Aguilar                                                        [Page 10]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     Segmentation

        Elements for basic segmentation and workstation independent
        segment storage.

        Object manipulations can be implemented with segment
        transformations. Object insertion can be implemented using
        segment recall and segment visibility. Object deletion can be
        implemented using segment deletion and segment visibility.
        Object selection can use segment highlighting as feedback to
        the user.

     Dynamics

        A considerable part of the graphical information exchanged
        through an IGCF will be in the form of pointer movements over a
        background picture. Pointer tracking is used to transmit points
        sampled from a graphical pointer trace in order to reproduce,
        at the receivers, the movement of the pointer at the sender
        site. This can be done either by just moving the cursor or by
        tracing its movement with a line. Rubber band echoes are used
        to signal areas, routes, and scopes in a highly dynamic way.
        These are indicated by an echo reference point and a feedback
        point.

  Hierarchical object definitions

     The requirement for preserving application semantics dictated that
     an IGCF include the means to represent objects that stand for
     application entities, and to manipulate such entities as graphical
     units. Furthermore, the low-traffic-volume requirement called for
     the use of already existing objects for the creation of new ones.

     One way to meet the aforesaid requirements is by including in an
     IGCF the means to represent object hierarchies. In such a
     hierarchy an object is a set of output primitives associated with
     a set of attribute values or a set of lower-level objects, each
     associated with a composition of transformations [12].

     Graphics segments can be used to implement objects in the lowest
     level of a hierarchy. The definition of a higher-level object can
     be represented by sequences of IGCF elements describing the
     definition process. Such a definition can be done by instantiating
     lower-level objects with specific transformation parameters. Thus
     an IGCF must incorporate brackets to mark the beginning and end of
     object definitions, object instantiations, and object
     redefinitions.


Aguilar                                                        [Page 11]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     In order to complement the mechanism for object definition, an
     IGCF must permit the use of a flexible alphabet for creating
     object identifiers that ensure the uniqueness of an identifier in
     a hierarchy. The construction of the object identifiers is not
     part of an IGCF, an IGCF only has to represent the identifiers.
     Further, an identifier has to be independent of a communication
     session and a particular graphics system so that identifiers
     created at a host during one session can be used, in other
     sessions possibly involving other hosts, to recall the objects
     they label.

     We also leave to the communicating systems the implementation of
     mechanisms to resolve duplicate identifiers when merging two
     hierarchies, created in different sessions. In this paper we shall
     limit ourselves to the warning that segment numbers do not qualify
     as identifiers because they depend on the session and state of the
     system in which they are created.

     In addition to object definition and instantiation, an IGCF should
     have elements representing operations on objects. The operations
     so far identified are: transformation, deletion, display,
     disappearance, expose, and hide. Expose is used to uncover objects
     on a screen that are hidden by other objects; hide is used to
     place an object behind others on a screen.

IV.  A PROPOSED IGCF

  A. Using the GKSM as a Basis

     An IGCF must be usable to transmit all graphical actions in a
     conference session. This suggests to base an IGCF on a standard
     session-capture graphics metafile, thus ensuring compatibility
     with a large user population. We have based the proposed IGCF,
     PIGCF, on the GKSM session-capture metafile specification because
     GKSM contains many of the elements identified for an IGCF [14]. In
     addition, the audit trail orientation of GKSM permits the
     recording of interactive communication sessions for later play
     out, and this is a feature that we anticipate will be frequently
     used.

     The GKSM is a proper subset of our PIGCF and thus any graphical
     system developed to handle the PIGCF, can read a GKSM metafile.
     Conversely, the applications using the PIGCF should have an option
     for constraining session recording only to the GKSM part, possibly
     suppressing some session events.  By doing so, we will be able to
     ship a GKSM metafile to any correspondent who has GKSM



Aguilar                                                        [Page 12]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     interpretation software.  Alternatively, an application with a
     GKSM interpreter but without an PIGCF interpreter can read a PIGCF
     file interpreting only the GKSM part and ignoring the rest.

     Whereas the GKSM was specified for the GKS system, we believe that
     the GKSM is a sound and general basis for all of our 2-D
     applications. We feel that the GKSM specification is not parochial
     to GKS systems but contains all the most useful items desired in a
     metafile. In the future, we expect to tackle applications
     requiring 3-D, like interactive repair and maintenance aids. When
     GKS be augmented with 3-D capabilities [13], we will extend the
     PIGCF with any necessary elements.

     We are aware that the GKSM specification is not part of the GKS
     standard itself but is an appendix recommending such a metafile
     format. Nevertheless, all the GKS vendor implementations that we
     know of, at the present time, support GKSM metafile output and
     interpretation. If this trend continues, as we expect, we will be
     able to exchange graphical files with a large base of GKS
     installations. There will indeed be many of them since GKS will be
     adopted as an standard by ISO and by many national standard bodies
     in the near future.

  B. Positional Information Coordinates

     Following the GKSM convention, the PIGCF positional information is
     in normalized device coordinates, NDC. Thus the originator of a
     conference must indicate the workstation window for the
     conference. This window is the sub-rectangle of the NDC space
     enclosing the area of interest for the conference. In most cases,
     the participating workstations will take this window as their own.
     However, the graphical systems should provide for the possibility
     of a workstation choosing a different workstation window, which
     may contain the conference window or just overlap it. Except for
     special cases, a conference originator should not state a
     conference workstation viewport. In this manner, each workstation
     can display its workstation viewport in the most convenient
     portion of the screen.

     There will be conferences where the participating workstations
     will maintain the positional information in world coordinates, WC.
     It might be necessary to reconstruct the world dimensions after
     transmission because such dimensions have a relevant meaning for
     the application, like sizes of components or distances. In this
     case, a workstation will have to map from WC to NDC before
     transmitting and from NDC to WC after receiving. At the outset,
     the conference originator has to specify the world window and the


Aguilar                                                        [Page 13]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     NDC viewport used in the conference in order for the conferencing
     workstations to do such mappings. These mappings could be done by
     the presentation layer, in terms of the ISO Open Systems
     Interconnection Reference Model, in a manner that is transparent
     to the communicating application programs.

     Most often all workstations will have the same world windows and
     NDC viewports. However, the graphical systems will provide for the
     possibility of a workstation choosing a different window or
     viewport, but such workstation will have to record the conference
     ones for doing the aforesaid mappings. There are graphical
     systems, like the ACM Core, that do not provide for a workstation
     transformation. In such systems, the NDC viewport is considered to
     be the workstation window for the aforesaid mappings.

  C. Layers of the PIGCF

     There are two levels in the PIGCF a lower level L and an upper one
     U. The lower level L is just the GKSM metafile specification as
     defined in Appendix E of the proposed GKS ANSI standard [14].  We
     have excerpted most of Appendix E of [14] at the end of this RFC
     as our Appendix A.  All level L elements belong to the update
     Group-1 except: SET DEFERRAL STATE, the output primitive attribute
     elements, the workstation attribute elements, CLIPPING RECTANGLE,
     CREATE SEGMENT, CLOSE SEGMENT, RENAME SEGMENT, SET SEGMENT
     PRIORITY, and SET DETECTABILITY.

     The upper level U is those elements that we believe complement the
     GKSM for general on-line graphical exchanges. This layering
     conforms to the graphics metafile level-structure described in
     Enderle et. al [15]. Under such structuring, an application
     oriented metafile can be based on graphical metafiles.

  D. PIGCF Elements in the Level U

     The level U items are encoded as GKSM user item elements so that a
     PIGCF file will conform to the GKSM metafile specification.
     Accordingly, a PIGCF file will be a GKSM metafile in its entirety.
     We use the same formatting conventions as the GKSM specification.
     Those unfamiliar with these conventions should read the beginning
     of the appendix. The following items belong to the second update
     group: the two items for object definition, the two items for
     object redefinition, the two items for object instantiation, the
     two items for normalization transformation, SELECT COMPONENT, and
     RECALL LIBRARY. The remaining items belong to the first update
     group.



Aguilar                                                        [Page 14]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     Items for Object Definition

        BEGIN DEFINITION

           | 'GKSM 120' | L |

           Indicates beginning of object definition sequence

        END DEFINITION

           | 'GKSM 121' | L | I |

           Indicates end of object definition sequence. I(Nc): object
           identifier ( N preceding c, i, r means an arbitrary number
           of characters, integers, or reals.) Objects defined
           interactively are made visible on the screen; i.e. they are
           automatically instantiated. If only the definition is to be
           kept but not the image, a DISAPPEAR item must follow.

        BEGIN REDEFINITION

           | 'GKSM 122' | L | I |

           Indicates beginning of object redefinition sequence
           I(Nc): object identifier

        END REDEFINITION

           | 'GKSM 123' | L |

           Indicates end of object redefinition sequence

     Items for Object Instantiation

        BEGIN INSTANTIATION

           | 'GKSM 124' | L | I |

           Indicates beginning of object instantiation sequence
           I(Nc): Object identifier

        END INSTANTIATION

           | 'GKSM 125' | L |

           Indicates end of object instantiation sequence



Aguilar                                                        [Page 15]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     Items for Object Manipulation

        TRANSFORM OBJECT

           | 'GKSM 126' | L | C | I | M |

           Apply transformation M to object I
           C: number of characters in identifier
           I(Nc): object id
           M(6r): upper and center rows of a 3x3 matrix representing
                  a 2D homogeneous transformation [12].
                  M 11 M 12 M 13 M 21 M 22 M 23

        DELETE OBJECT

           | 'GKSM 127' | L | I |

           I(Nc): object identifier

        DISPLAY OBJECT

           | 'GKSM 128' | L | I |

           Turn on visibility of object I
           I(Nc): object identifier

        DISAPPEAR OBJECT

           | 'GKSM 129' | L | I |

           Turn off visibility of object I
           I(Nc): object identifier

        EXPOSE OBJECT

           | 'GKSM 130' | L | I |

           Redisplay object I on top of any overlapping objects
           I(c):  object identifier

        HIDE OBJECT

           | 'GKSM 131' | L | I |

           Redisplay object I behind any overlapping objects
           I(c):  object identifier



Aguilar                                                        [Page 16]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


        SELECT COMPONENT

           | 'GKSM 132' | L | I | P |

           Select component P of object I
           I(c):  object identifier
           P(i):  pick id of component
           This is used to select a group of output primitives
           identified by P in a segment associated with I.

        ERASE COMPONENT

           | 'GKSM 133' | L | I | P |

           Erase component P of object I
           I(c):  object identifier
           P(i):  pick id of component

           This erases a group of output primitives identified by P in
           a segment associated with I. This element can be used only
           within a REDEFINE OBJECT sequence.

     Items for Normalization Transformation

        SET WINDOW

           | 'GKSM 134' | L | W |

           Define boundaries of world window for normalization
           transformation.
           W(4r): limits of world window (XMIN, XMAX, YMIN, YMAX )

        SET VIEWPORT

           | 'GKSM 135' | L | V |

           Define boundaries of NDC viewport for normalization
           transformation.
           V(4r): limits of NDC viewport (XMIN, XMAX, YMIN, YMAX )










Aguilar                                                        [Page 17]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     Items for Other Operations

        ABORT

           | 'GKSM 136' | L |

           Abort ongoing operation transmitted in PIGCF stream. This
           provides the means to abort unwanted or erroneous
           operations. Only the innermost operation of a nested
           sequence is aborted; successive aborts can be used to get
           out of several levels of operation nesting.

        POINTER TRACKING

           | 'GKSM 137' | L | T | P |

           Update graphical pointer position to P
           T(i):  0 causes only cursor to be moved
                  1 causes cursor movement to be traced with
                  a line
           P(p):  a point sampled from graphical pointer
                  movement trace



























Aguilar                                                        [Page 18]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


        RUBBER BAND

           | 'GKSM 138' | L | T | P |

           Echo a rubber band of type T with given reference and
           feedback points. The first occurrence of this item in a
           sequence carries the coordinates of the echo reference
           point. Subsequent occurrences carry updates to a pointer
           position indicating an echo feedback point.

           T(i):  echo type
                  ( 0 echo reference point;
                  > 0 echo feedback:
                    1 = line,
                    2 = rectangle,
                    3 = circle )
           P(r):  echo reference point (T = 0),
                  or echo feedback point (T > 0)

              The reference and feedback points are:
                 T = 1 - reference is one end of line, feedback is
                         other end.
                 T = 2 - reference is one corner of rectangle, feedback
                         is opposite corner.
                 T = 3 - reference is center of circle, feedback is
                         perimeter point.

        RECALL LIBRARY

           | 'GKSM 139' | L | F |

           Recall graphical library in file F
           F(i):  name of file containing library

           The graphical pictures in F and all their components become
           available for use during the communication session. The
           pictures are assumed to be recorded with the PIGCF, and
           their components have to be displayed with DISPLAY OBJECT
           elements or similar actions so that the pictures become
           visible.









Aguilar                                                        [Page 19]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


V.  AN ARCHITECTURE FOR PIGCF PROCESSING

  This section presents an example software architecture for the
  generation and interpretation of PIGCF in a multimedia conferencing
  system using GKS as the underlying programmer's graphics interface.
  This section should not be interpreted as a definitive statement of
  such an architecture, but only as an exercise to illustrate how the
  format proposed in this paper fits within the overall framework of a
  conferencing system. Choosing GKS simplifies the example
  architecture; nevertheless, other graphics packages can be used by
  adding, to the architecture, the modules to interpret and generate
  the PIGCF level L items.

  Figure 1 shows the major software modules charged with graphics
  interaction and display at a conferencing workstation. This is a
  familiar programmer's view of the graphics pipeline. A conferencing
  application program updates data structures and uses
  device-independent graphics services through a language binding.
  These services, in turn, use device-dependent graphics services that
  call on device drivers to accept input and to present graphic
  pictures. The application performs numerous other functions for
  conference management and control of other media streams, but we need
  not consider them in this example.

  In Figure 2, the basic graphics pipeline has been augmented with the
  software modules involved in the generation, transmission, reception,
  and interpretation of PIGCF streams. The application has a module for
  interpreting the lower and higher levels of PIGCF and one for
  generating the upper level U. The device-independent graphics
  services include modules for generating and interpreting the lower
  level, L. This reflects the current practice of including the
  generation and interpretation functions in the graphics package.
  There is also a module that transmits the outgoing PIGCF streams to
  remote work stations. Similarly, there is a module that receives
  incoming streams from remote stations. In actual practice, the
  transmit and receive modules are decomposed into several processes
  implementing a layered protocol architecture. A process receives both
  levels of PIGCF and writes them into a conference record metafile for
  future use. A router process receives and forwards PIGCF traffic from
  and to the modules previously referred. This router is likely to be
  replaced by independent communication interfaces between pairs of
  modules exchanging PIGCF.

  The thick arrows show the flow of outgoing PIGCF, whereas the thin
  arrows show the incoming PIGCF flow. We first follow the outgoing
  path, starting at the application.  The application processes local
  user actions which are transformed into data structure updates, level


Aguilar                                                        [Page 20]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


  U PIGCF elements, and executions of device independent graphics
  subroutines that, among other things, generate level L PIGCF (GKSM)
  elements.

  The router merges both level streams according to generation order
  and sends them to the local copy of the conference record and to the
  transmission module. The latter batches Group-2 PIGCF items until it
  receives a Group-1 item. It also timestamps the PIGCF stream to
  synchronize its play-back, at the receiver, with the play-back of
  other media information.  The PIGCF may be separated into traffic
  categories transmitted over diverse communication facilities
  according to the transport services required by the categories, for
  example, real-time service for pointer updates, highly reliable
  transmission for new object definitions, or low-priority service for
  graphical library transfers. Finally, the transmit module must
  acknowledge the reception of incoming PIGCF, and of other media
  traffic as well.

  The receive module is the entry point for incoming PIGCF streams that
  may come within diverse traffic categories requiring merging. It
  checks the timestamps for synchronizing PIGCF items with related data
  in other media, for example, voice. It is possible to include here a
  high-level error-correction function that validates the received
  streams using state and context information about PIGCF syntax and
  semantics. The receive module passes the streams to the router which
  forwards them to three processes: It sends level L items to the GKSM
  interpreter which produces the corresponding changes on the displayed
  picture; it sends level L and level U items to the conference record,
  as well as to the PIGCF interpretation code in the application. The
  level U items cause updates to both the data structures modeling
  object hierarchies, and the pictorial representation of the
  hierarchies, through the execution of graphics services. U items also
  update graphics cursors and may recall new graphics libraries. The
  application must process level L items because they could indicate
  updates to the data structures; this happens if, for example, the
  structures record attribute value information for the object
  hierarchies. The application coordinates these actions with other
  media effects according to the timestamps. Conference record
  play-back is done in off-line mode. Record items are received by the
  router and thereafter processed similarly to incoming PIGCF.









Aguilar                                                        [Page 21]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


                +------------+        +-------------+
                |APPLICATION |        |    OTHER    |
                |    DATA    |        |    MEDIA    |
                |STRUCTURES  |        |-------------|
                +-----|------+        |  CONFERENCE |
                      |---------->    | APPLICATION |
                                      |   GRAPHICS  |
                      |---------->    |             |
                +-----|------+        |             |
                |  LANGUAGE  |        +-------------+
                |  BINDING   |
                +-----|------+        +-------------+
                      |---------->    |   DEVICE-   |
                +------------+        | INDEPENDENT |
                |  DEVICE    |        |   GRAPHICS  |
                |  DEPENDENT |  <---> |   SERVICES  |
                |  GRAPHICS  |        |             |
                |  SERVICES  |        |             |
                +-----|------+        |             |
                      |               |             |
                      v               |             |
                +------------+        |             |
                |    DEVICE  |        |             |
                |  DRIVERS   |        |             |
                +------------+        +-------------+

                FIGURE 1 - THE BASIC GRAPHICS PIPELINE
                       IN A CONFERENCING SYSTEM





















Aguilar                                                        [Page 22]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


+------------+    +------------+                 +------------------+
|APPLICATION |    |   OTHER    |                 |    TRANSMIT      |
|   DATA     |    |   MEDIA    |                 |       ACK        |=>
| STRUCTURES |    |------------|     +-----+     | SEPARATE TRAFFIC |=>
+-----|------+    | CONFERENCE |     |     |===> |    BATCHING      |=>
     |---------->|APPLICATION |     |     |     |   TIMESTAMPING   |
                 |  GRAPHICS  |     |     |     +------------------+
     |---------->|------------|     |     |
     |           | PIGCF L, U | <---|     |     +------------------+
+-----|------|    | INTERPRETER|     |     |     |     RECEIVE      |
| LANGUAGE   |    +------------+     |  R  |     |  MERGE TRAFFIC   |<-
| BINDING    |    | PIGCF U    |===> |  O  | <---| CHECK TIMESTAMPS |<-
+-----|------+    |  GENERATOR |     |  U  |     | ERROR CORRECTION |<-
     |           +------------+     |  T  |     |                  |
     ------------------|            |  E  |     +------------------+
+------------+    +-----V------+     |  R  |
|  DEVICE    |    |  DEVICE    |     |     |     +------------------+
| DEPENDENT  |    |INDEPENDENT |     |     |====>|                  |
| GRAPHICS   |<-->|  GRAPHICS  |     |     |---->|    CONFERENCE    |
| SERVICES   |    |  SERVICES  |     |     |     |       RECORD     |
|            |    |            |     |     |     |                  |
+-----|------+    |------------|     |     |     +------------------+
     |           |    GKSM    |     |     |
     v           | INTERPRETER|<--- |     |       <--- INCOMING PIGCF
+------------+    +------------+     |     |
|   DEVICE   |    |    GKSM    |     |     |       ===> OUTGOING PIGCF
| DRIVERS    |    | GENERATOR  |===> |     |
+------------+    +------------+     +-----+

FIGURE 2 - A CONFERENCING SOFTWARE ARCHITECTURE FOR PROCESSING PIGCF

VI.  CONCLUSIONS

  Teleconferencing and other multi-media applications will be part of
  the communication resources available to organizations in the near
  future. This will prompt computer graphics and computer communication
  practitioners to address the issue of application-to-application
  graphics communication. A key element of the issue is a protocol, and
  a key component of the protocol is a data format. We have presented
  the operational requirements for such a protocol and have proposed a
  format that fulfills these requirements.

  At present, none of the existing or emerging graphics standards can
  be used as the needed protocol or as a format for the protocol, but
  this may change as the standards evolve.  We are monitoring the
  standards development and will study the use of some of them as a
  format basis, in particular the CGI.  Nevertheless, the computer


Aguilar                                                        [Page 23]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


  communication community badly needs experience with multi-media
  conferencing implementations. In order for these applications to
  happen, one can base a graphics communication protocol on an official
  or on a de-facto standard that is likely to gain wide use thus
  assuring interoperability with a broad user base.  We believe that,
  by using the GKSM session metafile, we are moving in the proper
  direction.

  Planning the software architecture for generating and interpreting
  the proposed PIGCF has brought up some problems we will confront as
  we continue our work toward the development of a complete graphics
  protocol.  This is being done as part of the SRI on-going program in
  multimedia communications.  Within this program, we are implementing
  a simple multi-media conferencing prototype and will design a more
  complete one.  The experience from both exercises will be a valuable
  input to the protocol architecture design.

































Aguilar                                                        [Page 24]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


APPENDIX A

  Excerpt from "Draft Proposal: Graphical Kernel System" [14]

  E.2  Metafile Based on ISO DIS7942

     This metafile may be categorized as one which aims to provide a
     means of recording the exact sequence of function calls made to
     GKS. Its functional capability covers the entire range of GKS
     output functions, from level m to level 2. It is, therefore,
     suitable for applications where the individual graphics actions
     need to be 'played back', perhaps with selective graphical editing
     being done by the interpreter.

     Two encodings have been specified for this metafile. One encoding
     is inefficient for many applications. The second allows an
     unspecified binary format. The remainder of this IGCF appendix
     gives full details of these metafile structures and encodings.

     E.2.1 File Format and Data Format

        The GKS metafile is built up as a sequence of logical data
        items. The file starts with a file header in fixed format which
        describes the origin of the metafile (author, installation),
        the format of the following items, and the number
        representation. The file ends with an end item indicating the
        logical end of the file. In between these two items, the
        following information is recorded in the sense of an audit
        trail:

           a)      workstation control items and message items;

           b)      output primitive items, describing elementary
                   graphics objects;

           c)      attribute information, including output primitive
                   attributes; segment attributes, and workstation
                   attributes;

           d)      segment items, describing the segment structure and
                   dynamic segment manipulations;

           e)      user items.






Aguilar                                                        [Page 25]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


        The overall structure of the GKS metafile is as follows:

           FILE:     |file  |item|---|item|---|end |
                     |header| 1  |   | i  |   |item|

           ITEM:     |item   |item data record|
                     |header |                |

           ITEM      |'GKSM'  |identification|length of item data|

           HEADER:   |optional|    number    |       in bytes    |

        All data items except the file header have an item header
        containing:

           a)      the character string 'GKSM' (optional) which is
                   present to improve legibility of the file and to
                   provide an error control facility;

           b)      the item type identification number which indicates
                   the kind of information that is contained in the
                   item;

           c)      the length of the item data record.

        The lengths of these fields of the item header are
        implementation dependent and are specified in the file header.
        The content of the item data record is fully described below
        for each item type.

        The metafile contains characters, integer numbers, and real
        numbers marked (c), (i), (r) in the item description.
        Characters in the metafile are represented according to ISO 646
        and ISO 2022. Numbers will be represented according to ISO 6093
        using format F1 for integers and format F2 for reals. (Remark:
        Formats F1 and F2 can be written and read via FORTRAN formats I
        and F respectively.)

        Real numbers describing coordinates and length units are stored
        as normalized device coordinates. The workstation
        transformation, if specified in the application program for a
        workstation writing a metafile of this format, is not performed
        but WORKSTATION WINDOW and WORKSTATION VIEWPORT are stored in
        data items for later usage. Real numbers may be stored as
        integers. In this case transformation parameters are specified
        in the file header to allow proper transformation of integers
        into normalized device coordinates.


Aguilar                                                        [Page 26]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


        For reasons of economy, numbers can be stored using an internal
        binary format. As no standard exists for binary number
        representation, this format limits the portability of the
        metafile. The specification of such a binary number
        representation is outside the scope of this document.

        When exchanging metafiles between different installations, the
        physical structure of data sets on specific storage media
        should be standardized. Such a definition is outside the scope
        of this standard.

  E.3  Generation of Metafiles

     Table E1 contains a list, by class, of all GKS functions which
     apply to workstations of category MO, and their effects on this
     GKSM. In the table, GKSM-OUT is a workstation identifier
     indicating a workstation writing a metafile of this format.

     The concepts of clipping rectangle and clipping indicator are
     encapsulated in one metafile item which specifies a clipping
     rectangle. This item is written to the metafile on activate
     workstation with the values (0, 1, 0, 1), if the clipping
     indicator is OFF, or the viewport of the current normalization
     transformation, if the clipping indicator is ON. If the viewport
     of the current normalization transformation is redefined or a
     different normalization transformation is selected when the
     clipping indicator is ON, a further clipping rectangle item is
     written. If the clipping indicator is changed to OFF, a clipping
     rectangle item (0, 1, 0, 1) is written. If the clipping indicator
     is changed to ON, an item containing the viewport of the current
     normalization transformation is written. This is analogous to the
     handling of clipping in segments (see 4.7.6 [14]).


GKS functions which apply to workstations        GKSM item created
of category MO                                   or effect
========================================================================

Control functions

OPEN WORKSTATION (GKSM-OUT,...)                  - (file header)
                                                1 (CONDITIONAL)
CLOSE WORKSTATION (GKSM-OUT)                     0 (end item)
ACTIVATE WORKSTATION (GKSM-OUT)                  (61, 21-44)
                                                ensure attributes
                                                current;
                                                enable output


Aguilar                                                        [Page 27]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


DEACTIVATE WORKSTATION (GKSM-OUT)                disable output
CLEAR WORKSTATION (GKSM-OUT,...)                 1
                                                2
REDRAW ALL SEGMENTS ON WORKSTATION (GKSM-OUT)
UPDATE WORKSTATION (GKSM-OUT,...)                3
SET DEFERRAL STATE (GKSM-OUT,...)                4
MESSAGE (GKSM-OUT,...)                           5 (message)
ESCAPE                                           6
________________________________________________________________________

Output Primitives

POLYLINE                                         11
POLYMARKER                                       12
TEXT                                             13
FILL AREA                                        14
CELL ARRAY                                       15
GENERALIZED DRAWING PRIMITIVE                    16
________________________________________________________________________

Output Attributes

SET POLYLINE INDEX                               21
SET LINETYPE                                     22
SET LINEWIDTH SCALE FACTOR                       23
SET POLYLINE COLOUR INDEX                        24
SET POLYMARKER INDEX                             25
SET MARKER TYPE                                  26
SET MARKER SIZE SCALE FACTOR                     27
SET POLYMARKER COLOUR INDEX                      28
SET TEXT INDEX                                   29
SET TEXT FONT AND PRECISION                      30
SET CHARACTER EXPANSION FACTOR                   31
SET CHARACTER SPACING                            32
SET TEXT COLOUR INDEX                            33
SET CHARACTER HEIGHT                             34
SET CHARACTER UP VECTOR                          34
SET TEXT PATH                                    35
SET TEXT ALIGNMENT                               36
SET FILL AREA INDEX                              37
SET FILL AREA INTERIOR STYLE                     38
SET FILL AREA STYLE INDEX                        39
SET FILL AREA COLOUR INDEX                       40

SET PATTERN SIZE                                 41
SET PATTERN REFERENCE POINT                      42



Aguilar                                                        [Page 28]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


SET ASPECT SOURCE FLAGS                          43
SET PICK IDENTIFIER                              44
________________________________________________________________________

Workstation Attributes

SET POLYLINE REPRESENTATION (GKSM-OUT,...)       51
SET POLYMARKER REPRESENTATION (GKSM-OUT,...)     52
SET TEXT REPRESENTATION (GKSM-OUT,...)           53
SET FILL AREA REPRESENTATION (GKSM-OUT,...)      54
SET PATTERN REPRESENTATION (GKSM-OUT,...)        55
SET COLOUR REPRESENTATION (GKSM-OUT,...)         56
________________________________________________________________________

Transformation Functions

SET WINDOW of current normalization              34, 41, 42
transformation
SET VIEWPOINT of current normalization           61, 34, 41, 42
transformation
SELECT NORMALIZATION TRANSFORMATION              61, 34, 41, 42
SET CLIPPING INDICATOR                           61
SET WORKSTATION WINDOW (GKSM-OUT,...)            71
SET WORKSTATION WINDOW VIEWPORT (GKSM-OUT,...)   72

Note:  item 61 (CLIPPING RECTANGLE) is described more fully in E.2.2.

Note: When the current normalization transformation is altered, items
corresponding to attributes containing coordinate information are sent
(items 34, 41, and 42).
________________________________________________________________________

Segment Functions

CREATE SEGMENT                                   81
CLOSE SEGMENT                                    82
RENAME SEGMENT                                   83
DELETE SEGMENT                                   84

DELETE SEGMENT FROM WORKSTATION (GKSM-OUT,...)   84
ASSOCIATE SEGMENT WITH WORKSTATION               81, (21-44), (11-16),
(GKSM-OUT,...)                                   (61), 82
COPY SEGMENT TO WORKSTATION (GKSM-OUT,...)       (21-44), (11-16), (61)

INSERT SEGMENT                                   (21-44), (11-16), (61)
________________________________________________________________________



Aguilar                                                        [Page 29]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


Segment Attributes

SET SEGMENT TRANSFORMATION                       91

SET VISIBILITY                                   92
SET HIGHLIGHTING                                 93
SET SEGMENT PRIORITY                             94
SET DETECTABILITY                                95
________________________________________________________________________

Metafile Functions

WRITE ITEM TO GKSM                               > 100
________________________________________________________________________

  E.4  Interpretation of Metafiles

     E.4.1  Introduction

        The interpretation of metafiles in GKS is described in 4.9
        [14]. The effects of INTERPRET ITEM for all types of metafile
        item are described in the following sections. Items are grouped
        by class of functionality.

     E.4.2  Control Items

        Interpretation of items in this class is described under the
        definitions of each item in E.5. ([14] reads "E.2.4" instead of
        "E.5" which we believe is an error).

     E.4.3  Output Primitives

        Interpretation of items in this class generates output
        corresponding to the primitive functions, except that
        coordinates of points are expressed in NDC. Primitive
        attributes bound to primitives are those which have originated
        from interpretation of primitive attribute items in this
        particular metafile (see E.4.4).

     E.4.4  Output Primative Attributes

        Interpretation of items in this class sets values for use in
        the display of primitives subsequently originating from this
        particular metafile (see E.4.3). No changes are made to entries
        in the GKS state list.




Aguilar                                                        [Page 30]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     E.4.5  Workstation Attributes

        Interpretation of items in this class has the same effect as
        invocation of the corresponding GKS functions shown in Table
        E1. The GKS functions are performed on all active workstations.

     E.4.6  Transformations

        Interpretation of a clipping rectangle item sets values for use
        in clipping output primitives subsequently originating from
        this particular metafile. No changes are made to entries in the
        GKS state list. Interpretation of other items in this class
        (WORKSTATION WINDOW and WORKSTATION VIEWPORT) causes the
        invocation of the corresponding GKS functions on all active
        workstations.

     E.4.7   Segment Manipulation

        Interpretation of items in this class has the same effect as
        invocation of the corresponding GKS functions shown in Table
        E1. (Item 84 causes an invocation of DELETE SEGMENT.)

     E.4.8 Segment Attributes

        Interpretation of items in this class has the same effect as
        invocation of the corresponding GKS functions shown in Table
        E1.

  E.5  Control Items

     FILE HEADER

        | GKSM | N | D | V | H | T | L | I | R | F | RI | ZERO | ONE |

All fields in the file header item have fixed length.  Numbers are
formated according to ISO 6093 - Format F1.

General Information:

GKSM    4 bytes   containing string 'GKSM'
N       40 bytes  containing name of author/installation
D       8 bytes   date (year/month/day, e.g., 79/12/31)
V       2 bytes   version number: the metafile described here has
                 version number 1
H       2 bytes   integer specifying how many bytes of the string 'GKSM'
                 are repeated at the beginning of each record.
                 Possible values:  0, 1, 2, 3, 4


Aguilar                                                        [Page 31]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


T       2 bytes   length of item type indicator field
L       2 bytes   length of item data record length indicator field
I       2 bytes   length of field for each integer in the
                 item data record (applied to all data marked (i)
                 in the item description)
R       2 bytes   length of field for each real in the item data record
                 (applies to all data marked (r) in the item
                 description).

Specification of Number Representation:

F       2 bytes   Possible values:  1, 2.  This applies to all data
                 in the items marked (i) or (r) and to item type
                 and item data record length:
                 1:  all numbers are formatted according to ISO 6093
                 2:  all numbers (except in the file header) are
                 stored in an internal binary format
RI      2 bytes   Possible values:  1, 2.  This is the number
                 representation for data marked (r):
                 1 = real, 2 = integer
ZERO    11 bytes  integer equivalent to 0.0, if RI = 2
ONE     11 bytes  integer equivalent to 1.0, if RI = 2

        After the file header, which is in fixed format, all values in
        the following items are in the format defined by the file
        header. For the following description, the setting:

                         H = 4; T = 3; F = 1

        is assumed. In addition to formats (c), (i) and (r), which are
        already described, (p) denotes a point represented by a pair of
        real numbers (2r). The notation allows the single letter to be
        preceded by an expression, indicating the number of values of
        that type.

        {Explanatory comments have been added to some item
        specifications; these are not part of the GKS Appendix E and
        they are enclosed in braces {}. A complete definition of the
        generation and interpretation of the GKSM items is given by the
        definition of the corresponding GKS functions [14].}

     END ITEM

        | 'GKSM 0' | L |

        Last item of every GKS Metafile. Sets condition for the error.



Aguilar                                                        [Page 32]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     CLEAR WORKSTATION

        | 'GKSM 1' | L | C |

        Requests CLEAR WORKSTATION on all active workstations.

        C(i):  clearing control flag
               (0 = CONDITIONAL, 1 = ALWAYS)

     REDRAW ALL SEGMENTS ON WORKSTATION

        | 'GKSM  3' | L | R |

        Requests UPDATE WORKSTATION on all active workstations.

        R(i):  regeneration flag
               (0 = PERFORM, 1 = SUSPEND)

     DEFERRAL STATE

        | 'GKSM  4' | L | D | R |

        Requests SET DEFERRAL STATE on all active workstations.

        D(i): deferral mode
              (0 = ASAP, 1 = BNIG, 2 = BNIL, 3 = ASTI)

        R(i):  implicit regeneration mode
               (0 = ALLOWED, 1 = SUPPRESSED)

        {This item provides control over the occurrence of the visual
        effect of GKS functions in order to optimize the use of
        workstation capabilities according to application needs.}

     MESSAGE

        | 'GKSM  5' | L | N | T |

        Requests MESSAGE on all active workstations.
        N(i):   number of characters in string
        T(Nc):  string with N characters.

        {The message is not part of a metafile output primitives; the
        message is only for interpretation by workstation operators.}





Aguilar                                                        [Page 33]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     ESCAPE

        | 'GKSM  6' | L | FI | L | M | I | R |

        Requests ESCAPE

        FI(i):  function identifier
        L(i):   length of integer data in data record
        M(i):   length of real data in data record
        I(Li):  integer data
        R(Mr):  real data.

        {This item permits the invocation of a specific non-standard
        escape function FI. The execution of the function with the
        given parameters must not alter the GKS state list nor produce
        geometrical output.}

  E.6  Items for Output Primitives

     POLYLINE

        | 'GKSM 11' | L | N | P |

        N(i):   number of points of the polyline
        P(Np):  list of points

     POLYMARKER

        | 'GKSM 12' | L | N | P |

        N(i):   number of points
        P(Np):  list of points.

     TEXT

        | 'GKSM 13' | L | P | N | T |

        P(p):   starting point of character string
        N(i):   number of characters in string T
        T(Nc):  string with N characters from the set of ISO 646

     FILL AREA

        | 'GKSM 14' | L | N | P |

        N(i):   number of points
        P(Np):  list of points.


Aguilar                                                        [Page 34]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     CELL ARRAY

        | 'GKSM 15' | L | P | Q | R | N | M | CT |

        P(p),Q(p),R(p):  coordinates of corner points of pixel array
                         (P and Q are the images of the points P and
                         Q specified in the function CELL ARRAY and
                         R is another corner)
        M(i):            number of rows in array
        N(i):            number of columns in array
        CT(MNi):         array of colour indices stored row by row

        {This item permits passing raster images to GKS. The raster
        image is defined by the colour index matrix CT, and its World
        Coordinate position given by points P and Q.}

     GENERALIZED DRAWING PRIMITIVE

        | 'GKSM 16' | L | GI | N | P | L | M | I | R |

        GI(i):  GDP identifier
        N(i):   number of points
        P(Np):  list of points
        L(i):   length of integer data in data record
        M(i):   length of real data in data record
        I(Li):  integer data
        R(Mr):  real data.

        {This item provides a standard way for drawing additional
        non-standard output primitives. The generalized drawing
        primitive GI is drawn according to the point list P and the
        data record in I and R.}

  E.7  Items for Output Primitive Attributes

     POLYLINE INDEX

        | 'GKSM 21' | L | LT |

        LT(i):  linetype









Aguilar                                                        [Page 35]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     LINEWIDTH SCALE FACTOR

        | 'GKSM 23' | L | LW |

        LW(r):  linewidth scale factor

        {In GKS, the line width is not affected by GKS transformations.
        However, the effective line width is calculated as the product
        of the nominal line width times the line width scale factor in
        effect when a line is drawn.}

     POLYLINE COLOUR INDEX

        | 'GKSM 24' | L | CI |

        CI(i):  polyline colour index

     POLYMARKER INDEX

        | 'GKSM 25' | L | I |

        I(i):  polymarker index

     MARKER TYPE

        | 'GKSM 26' | L | MT |

        MT(i):  marker type

     MARKER SIZE SCALE FACTOR

        | 'GKSM 27' | L | MS |

        MS(r):  marker size scale factor

        {In GKS, the marker size is not affected by GKS
        transformations. However, the effective marker size is
        calculated as the product of the nominal marker size times the
        marker size scale factor in effect when a marker is drawn.}

     POLYMARKER COLOUR INDEX

        | 'GKSM 28' | L | CI |

        CI(i):  polymarker colour index




Aguilar                                                        [Page 36]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     TEXT INDEX

        | 'GKSM 29' | L | I |

        I(i):  text index

     TEXT FONT AND PRECISION

        | 'GKSM 30' | L | F | P |

        F(i):  text font
        P(i):  text precision
        (0 = STRING, 1 = CHAR, 2 = STROKE)

     CHARACTER EXPANSION FACTOR

        | 'GKSM 31' | L | CEF |

        CEF(r):  character expansion factor

        {This item allows the manipulation of the width/height of the
        character body. The width of the character body is scaled by
        the CEF factor.}

     CHARACTER SPACING

        | 'GKSM 32' | L | CS |

        CS(r):  character spacing

     TEXT COLOUR INDEX

        | 'GKSM 33' | L | CI |

        CI(i):  text colour index














Aguilar                                                        [Page 37]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     CHARACTER VECTORS

        | 'GKSM 34' | L | CH | CW |

        CH(2r):  character height vector
        CW(2r):  character width vector

        Note:  These vectors are the height and width vectors described
        in 4.4.5 of [14].

        {The character height vector is parallel to the character up
        vector and has a length equal to character height. The
        character height specifies the height of a capital letter. The
        character width vector is perpendicular to the height vector,
        in the direction of the character baseline, and has the same
        length.}

     TEXT PATH

        | 'GKSM 35' | L | P |

        P(i):  text path
        (0 = LEFT, 1 = RIGHT, 2 = UP, 3 = DOWN)

     TEXT ALIGNMENT

        | 'GKSM 36' | L | H | V |

        H(i):  horizontal character alignment
               (0 = NORMAL, 1 = LEFT, 2 = CENTRE, 3 = RIGHT)
        V(i):  vertical character alignment
               (0 = NORMAL, 1 = TOP, 2 = CAP, 3 = HALF, 4 = BASE,
                5 = BOTTOM)

     FILL AREA INDEX

        | 'GKSM 37' | L | I |

        I(i):  fill area index

     FILL AREA INTERIOR STYLE

        | 'GKSM 38' | L | S |

        S(i):  fill area interior style
               (0 = HOLLOW, 1 = SOLID, 2 = PATTERN, 3 = HATCH)



Aguilar                                                        [Page 38]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     FILL AREA STYLE INDEX

        | 'GKSM 39' | L | SI |

        SI(i):  fill area style index

     FILL AREA COLOUR INDEX

        | 'GKSM 40' | L | CI |

        CI(i):  fill area colour index

     PATTERN SIZE

        | 'GKSM 41' | L | PW | PH |

        PW(2r):  pattern width vector
        PH(2r):  pattern height vector

        {One style for filling areas is with a pattern of color cells.
        Such a pattern is defined by an array of color indices which is
        mapped into a pattern rectangle with dimensions given by PW and
        PH.}

     PATTERN REFERENCE POINT

        | 'GKSM 42' | L | P |

        P(p):  reference point

        {One style for filling areas is with a pattern of color cells.
        Such a pattern is defined by an array of color indices which is
        mapped into a pattern rectangle whose lower left corner is
        given by P.}















Aguilar                                                        [Page 39]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     ASPECT SOURCE FLAGS

        | 'GKSM 43' | L | F |

        F(13i):  aspect source flags
                 (0 = BUNDLED, 1 = INDIVIDUAL)

        {An application can set an output primitive attribute to either
        bundled or individual. Bundled attributes are
        workstation-dependent, their binding is delayed, and their
        values can change dynamically. Individual attributes are global
        attributes, they are bound immediately, and their value is
        static and cannot be manipulated.}

     PICK IDENTIFIER

        | 'GKSM 44' | L | P |

        P(i):  pick identifier

  E.8  Items for Workstation Attributes

     POLYLINE REPRESENTATION

        | 'GKSM 51' | L | I | LT | LW | CI |

        I(i):   polyline index
        LT(i):  linetype number
        LW(r):  linewidth scale factor
        CI(i):  polyline colour index

     POLYMARKER REPRESENTATION

        | 'GKSM 52' | L | I | MT | MS | CI |

        I(i):   polymarker index
        MT(i):  marker type
        MS(r):  marker size scale factor
        CI(i):  polymarker colour index










Aguilar                                                        [Page 40]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     TEXT REPRESENTATION

        | 'GKSM 53' | L | I | F | P | CEF | CS | CI |

        I(i):    text index
        F(i):    text font
        P(i):    text precision
        (0 = STRING, 1 = CHAR, 2 = STROKE)
        CEF(r):  character expansion factor
        CS(r):   character spacing
        CI(i):   text colour index

     FILL AREA REPRESENTATION

        | 'GKSM 54' | L | I | S | SI | CI |

        I(i):   fill area index
        S(i):   fill area interior style
        (0 = HOLLOW, 1 = SOLID, 2 = PATTERN, 3 = HATCH) SI(i):  fill
        area style index
        CI(i):  fill area colour index

     PATTERN REPRESENTATION

        | 'GKSM 55' | L | I | N | M | CT |

        I(i):     pattern index
        N(i):     number of columns in array*
        M(i):     number of rows in array
        CT(MNi):  table of colour indices stores row by row

           {* The ANSI document reads "area" instead of "array".}

        {One style for filling areas is with a pattern of color cells.
        Such a pattern is defined by a pattern representation.}

     COLOUR REPRESENTATION

        | 'GKSM 56' | L | CI | RGB |

        CI(i):    colour index
        RGB(3r):  red, green, blue intensities







Aguilar                                                        [Page 41]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


  E.9  Items for Transformations

     CLIPPING RECTANGLE

        | 'GKSM 61' | L | C |

        C(4r):  limits of clipping rectangle (XMIN, XMAX, YMIN, YMAX)

     WORKSTATION WINDOW

        | 'GKSM 71' | L | W |

        W(4r):  limits of workstation window (XMIN, XMAX, YMIN, YMAX)

        {GKS includes a workstation transformation that maps a
        rectangle of the NDC space (a workstation window) into a
        rectangle of the device coordinate space (a workstation
        viewport).}

     WORKSTATION VIEWPORT

        | 'GKSM 72' | L | V |

        V(4r):  limits of workstation viewport (XMIN, XMAX, YMIN, YMAX)

  E.10  Items for Segment Manipulation

     CREATE SEGMENT

        | 'GKSM 81' | L | S |

        S(i):  segment name

     CLOSE SEGMENT

        | 'GKSM 82' | L |

        indicates end of segment

     RENAME SEGMENT

        | 'GKSM 83' | L | SO | SN |

        SO(i):  old segment name
        SN(i):  new segment name




Aguilar                                                        [Page 42]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     DELETE SEGMENT

        | 'GKSM 84' | L | S |

        S(i):  segment name

  E.11  Items for Segment Attributes

     SET SEGMENT TRANSFORMATION

        | 'GKSM 91' | L | S | M |

        S(i):   segment name
        M(6r):  transformation matrix
                upper and center rows of a 3x3 matrix representing
                a 2D homogeneous transformation [9]
                M 11  M 12  M 13  M 21  M 22  M 23

        {This differs from the ANSI X3.124 Jan. 5 1984 document, in the
        matrix elements indicated. We believe there is an error in such
        document.}

     SET VISIBILITY

        | 'GKSM 92' | L | S | V |

        S(i):  segment name
        V(i):  visibility
               (0 = VISIBLE, 1 = INVISIBLE)

     SET HIGHLIGHTING

        | 'GKSM 93' | L | S | H |

        S(i):  segment name
        H(i):  highlighting
               (0 = NORMAL, 1 = HIGHLIGHTED)

     SET SEGMENT PRIORITY

        | 'GKSM 94' | L | S | P |

        S(i):  segment name
        P(r):  segment priority





Aguilar                                                        [Page 43]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


     SET DETECTABILITY

        | 'GKSM 95' | L | S | D |

        S(i):  segment name
        D(i):  detectability
               (0 = UNDETECTABLE, 1 = DETECTABLE)

  E.12  User Items

     USER ITEM

        | 'GKSMXXX' | L | D |

        XXX   > 100
        D:    user data (L bytes)

        {The PIGCF level U items are encoded as GKSM USER ITEM elements
        so that a PIGCF file will conform to the GKSM metafile
        specification.}





























Aguilar                                                        [Page 44]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


APPENDIX B

  Example of PIGCF Use in Conferencing

  This section presents an example illustrating the proposed PIGCF
  graphical component in an audio-graphics conference exchange. We
  present only the graphical part of the conference exchange, which
  actually would be complemented with speech. For the sake of briefness
  the example does not contain all the parameter negotiation that a
  conference set-up would require.

  The example is about an on-line audio-graphics conference between a
  Navy command and control center and a Navy task force. The PIGCF
  items shown do not belong to a single transmission stream. The stream
  they belong to is determined by the station that transmits them, and
  the identification of the transmitter belongs to lower level
  communication protocols. We use the character encoding, rather than
  the binary one, for this PIGCF example. We illustrate just a few of
  the possible groups of items that could be batched in this example.
  The plot of the example is as follows.

  The command center (center) establishes a conference with some ships
  in a task force (platforms) to coordinate the interception of an
  unidentified ship that has been sighted in a conflict area. After
  recalling graphical libraries, all conference sites can see in their
  screens a map of the sighting area as well as iconic representations
  of the task force ships. Then the center interactively draws an
  iconic representation of the unidentified vessel, scales it, and
  places it in the sighting location.

  The platforms explain possible courses of action using graphical
  pointers. The center draws the expected trajectory of the
  unidentified ship and the platforms situate the task force icons at
  the expected points of interception. Then the center zooms into the
  interception area and the platforms use rubber bands to discuss
  interception maneuvers.

  Now we proceed to list the PIGCF items exchanged. The  center
  initiates  the conference graphical set-up with the FILE HEADER item
  to set basic representation parameters for  the  graphical
  information  to  be exchanged.   This item can be interpreted
  according to its definition in E.5 [14].  The most important
  parameter selections for this example are:

     i)   The items contain 0 characters of the "GKSM" string in the
          identification field of the item header.
     ii)  The item type indicator field containing the PIGCF


Aguilar                                                        [Page 45]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


          item number is three bytes long in each item.
     iii) The integers are 4 bytes long, and the reals 6 bytes long.
     iv)  The item data record length indicator is 2 bytes long.

  We will obey the PIGCF specification field lengths and the aforesaid
  field length settings. However, we will add one space before and
  after the "|" separator to improve legibility. Also, every item will
  be preceded with its name to help identification.

  FILE HEADER:

     | GKSM | center | 84/11/10 | 1 | 0 | 3 | 2 | 4 | 6 | 1 | 1
     |           |           |

  The center states the boundaries of the work station window for the
  conference.

  WORKSTATION WINDOW:  |  71 | 24 |  0.0  0.5  0.0  0.375 |

  In this example, we assume that the conferencing work stations  use
  world coordinates for the internal representation of positional
  information. Accordingly, the center states the boundaries of the
  world  window for the normalization transformation used in the
  conference.

  SET WINDOW:  | 134 | 28 |  0.0  320.0  0.0  240.0 |

  The center informs the location of its local NDC viewport, however,
  other conferees can choose different NDC viewports for the same
  transformation, but their work station window should include the
  conference's.  All systems record the conference: world window, NDC
  viewport, and work station widow.

  SET VIEWPORT:  | 135 | 28 |  0.0  0.5  0.0  0.375 |

  The center recalls graphical libraries containing geographical maps
  of  the  crisis  area  and icons of the task forces in the area. It
  also displays a graphical object that provides a background picture.

  RECALL LIBRARY:  | 139 |  9 | caribbean |
  DISPLAY OBJECT:  | 128 | 11 | coast_lines |
  RECALL LIBRARY:  | 139 | 10 | task_units |

  The center proceeds to instantiate one of the task forces in the
  task_units library. This is done by recalling some of the library
  objects and applying transformations to the objects, later. Since set
  window, set viewport, and recall library belong to the update


Aguilar                                                        [Page 46]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


  Group-2, they can be batched until display object, from update
  Group-1, is entered. The second recall library can be batched
  together with the following begin instantiation until display object
  is produced. The rest of the example contains more cases of item
  sequences which can be batched; however, for briefness we do not
  indicate any more of them.

  BEGIN INSTANTIATION:  | 124 | 15 | US_CONSTITUTION |
  DISPLAY OBJECT:       | 128 | 15 | US_CONSTITUTION |
  TRANSFORM OBJECT:     | 126 | 55 |   15 | US_CONSTITUTION |
                          0.1   0.0   0.0   0.0   0.1   0.0 |
  TRANSFORM OBJECT:     | 126 | 55 |   15 | US_CONSTITUTION |
                          0.1   0.0  0.312   0.0   0.1  0.078 |
  END INSTANTIATION:    | 125 |  0 |

  BEGIN INSTANTIATION:  | 124 | 13 | US_NEW_JERSEY |
  DISPLAY OBJECT:       | 128 | 13 | US_NEW_JERSEY |
  TRANSFORM OBJECT:     | 126 | 53 |   13 | US_NEW_JERSEY |
                          0.1   0.0  0.0   0.0   0.1   0.0 |
  TRANSFORM OBJECT:     | 126 | 53 |   13 | US_NEW_JERSEY |
                          0.1   0.0  0.312   0.0   0.1  0.093 |
  END INSTANTIATION:    | 125 |  0 |

  Next the center sets values for two output primitive attributes in
  preparation for drawing a new icon on the screens. We assume that all
  the other attributes have been assigned default values as a result of
  the conference set-up.

  POLYLINE INDEX:         |  21 |  4 |   20 |
  POLYLINE COLOUR INDEX:  |  24 |  4 |  200 |

  The following items correspond to the interactive definition of the
  unidentified vessel. Since the definition is done interactively, the
  vessel image remains visible on the screens after definition.

  BEGIN DEFINITION:  | 120 |  0 |
  POLYLINE:          |  11 | 64 |    5 |
  0.047  0.063  0.063  0.047  0.125  0.047  0.14  0.063  0.047  0.047 |
  POLYLINE:          |  11 | 52 |    3 |
                0.078 0.063  0.078  0.078  0.109  0.078  0.109  0.063 |
  END DEFINITION:    | 121 |  8 | sighting |

  Then the unidentified vessel "sighting" is scaled and placed at the
  sighting site.





Aguilar                                                        [Page 47]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


  BEGIN INSTANTIATION:  | 124 |  8 | sighting |
  TRANSFORM OBJECT:     | 126 | 48 |    8 | sighting |
                          0.2   0.0   0.0
                          0.0   0.2   0.0 |
  TRANSFORM OBJECT:     | 126 | 48 |    8 | sighting |
                          0.1   0.0 0.156
                          0.0   0.1  0.016 |
  END INSTANTIATION:    | 125 |  0 |

  The center and the platforms use graphical pointer movements to
  discuss possible routes the unidentified vessel might follow. We only
  show a few pointer updates. In practice, there would typically be a
  large number of points transmitted to convey the movement of the
  pointers over the screens.

  from the center:

  POINTER TRACKING:  | 137 | 16 |    0 |  0.39  0.032 |
  POINTER TRACKING:  | 137 | 16 |    0 |  0.388 0.035 |
  POINTER TRACKING:  | 137 | 16 |    0 |  0.388 0.039 |
  POINTER TRACKING:  | 137 | 16 |    0 |  0.386 0.04  |

  from one of the platforms:

  POINTER TRACKING:  | 137 | 16 |    0 |  0.22  0.016 |
  POINTER TRACKING:  | 137 | 16 |    0 |  0.222 0.159 |
  POINTER TRACKING:  | 137 | 16 |    0 |  0.233 0.157 |
  POINTER TRACKING:  | 137 | 16 |    0 |  0.24  0.155 |

  The center now draws the expected route to be followed by the
  unidentified ship. This time the pointer trace is recorded on the
  screen by drawing a line.

  POINTER TRACKING:  | 137 | 16 |    1 |  0.388 0.038 |
  POINTER TRACKING:  | 137 | 16 |    1 |  0.386 0.038 |
  POINTER TRACKING:  | 137 | 16 |    1 |  0.386 0.052 |
  POINTER TRACKING:  | 137 | 16 |    1 |  0.375 0.078 |
  POINTER TRACKING:  | 137 | 16 |    1 |  0.369 0.105 |
  POINTER TRACKING:  | 137 | 16 |    1 |  0.361 0.125 |
  POINTER TRACKING:  | 137 | 16 |    1 |  0.352 0.144 |
  POINTER TRACKING:  | 137 | 16 |    1 |  0.351 0.156 |
  POINTER TRACKING:  | 137 | 16 |    1 |  0.35  0.16  |

  A platform moves the two US ship icons to interception positions.





Aguilar                                                        [Page 48]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


  TRANSFORM OBJECT:  | 126 | 55 |   15 | US_CONSTITUTION |
                       1.0   0.0 0.16
                       0.0   1.0 -0.046 |
  TRANSFORM OBJECT:  | 126 | 53 |   13 | US_NEW_JERSEY |
                       1.0   0.0 0.113
                       0.0   1.0 -0.034 |

  The center zooms into the interception area in order to obtain a
  larger view for further discussion.

  WORKSTATION WINDOW:  |  71 | 24 | 0.286 0.403 0.077 0.177 |

  The two platforms indicate their striking ranges using circular
  rubber bands centered at each ship. For each platform, we show first
  the echo reference point and then two echo feedback points. Typically
  there will be a large number of feedback points.

  RUBBER BAND:  | 138 | 10 |   0 | 0.335 0.125 |
  RUBBER BAND:  | 138 | 10 |   3 | 0.35  0.128 |
  RUBBER BAND:  | 138 | 10 |   3 | 0.37  0.128 |

  RUBBER BAND:  | 138 | 10 |   0 | 0.384 0.13  |
  RUBBER BAND:  | 138 | 10 |   3 | 0.367 0.128 |
  RUBBER BAND:  | 138 | 10 |   3 | 0.346 0.129 |

  Once the interception strategy has been agreed upon, the center zooms
  out to the original, larger picture.

  WORKSTATION WINDOW:  |  71 | 24 |    0.0   0.5   0.0 0.375 |

  The center terminates the conference

  END ITEM:  |   0 |  0 |

  At the end of a conference, the final pictures remain visible on the
  screens. In addition, the PIGCF items will be recorded in its
  entirety in order to play back the conference session if necessary.
  The conference record could also be sent to other locations as part
  of a multi-media message.










Aguilar                                                        [Page 49]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


REFERENCES

  [1]   J. D. Day and H. Zimmermann, "The OSI Reference Model",
        Proceedings of the IEEE, V 71, N 12; Dec. 1983, pp 1334-1340.

  [2]   W. Pferd, L. A. Peralta and F. X. Prendergast, "Interactive
        Graphics Teleconferencing", IEEE Computer, V 12, N 11; Nov.
        1979, pp 62-72.

  [3]   K. S. Sarin, "Interactive On-Line Conferences", Ph.D. Diss.
        MIT, Dept. of EE and CS, 1984.

  [4]   S. Randall, "The Shared Graphic Workspace: Interactive Data
        Sharing in a Teleconference Environment", Proceedings CompCon
        82 Fall, IEEE Computer Society, pp 535-542.

  [5]   G. Heffron, "Teleconferencing Comes of Age", IEEE Spectrum,
        Oct. 1984, pp 61-66, pp 61-66.

  [6]   R. W. Hough and R. R. Panko, "Teleconferencing Systems: A
        State-of-the-Art Survey and Preliminary Analysis", SRI
        International, Menlo Park California, SRI project 3735, April
        1977.

  [7]   C. W. Kelly III, "An Enhanced Presence Video Teleconferencing
        System" Proc. CompCon 1982, Sept. 20-23 Washington D.C., pp
        544-551.

  [8]   J. Vanglian, "Private Communication", Comments on the
        suitability of videotex for on-line graphical communication.

  [9]   ANSI Technical Committee X3H, "Draft Proposal: Virtual Device
        Metafile", X3.122, X3 Secretariat, CBEMA, Washington, D.C.

  [10]  American National Standards Committee X3H3, "Virtual Device
        Interface", X3 - Information Processing Systems, Working
        Document, Jan. 2, 1985 Available from Computer and Business
        Equipment Manufacturers Association, Washington D.C.

  [11]  E. Van Deusen, "Graphics Standards Handbook", CC Exchange 1984,
        P.O. Box 1251, Laguna Beach, CA 92652.

  [12]  J. D. Foley and A. Van Dam, "Fundamentals of Interactive
        Computer Graphics", Addison-Wesley, 1982.





Aguilar                                                        [Page 50]



RFC 965                                                    December 1985
A Format for a Graphical Communication Protocol


  [13]  American National Standards Committee X3H3, "GKS -- 3D
        Extensions", X3 - Information Processing Systems, Working
        Document, Nov. 16 1984 Available from Computer and Business
        Equipment Manufacturers Association, Washington D.C.

  [14]  ANSI Technical Committee X3H3, "Draft Proposal: Graphical
        Kernel System", X3.124, X3 Secretariat, CBEMA, Washington, D.C.

  [15]  G. Enderle, K. Kansy, and G. Pfaff, "Computer Graphics
        Programming", Springer-Verlag, 1984.

  [16]  International Organization for Standardization "Information
        processing - Representation of numerical values in character
        strings for information interchange", ISO/DIS 6093.2, ISO/TC
        97, 1984-01-19; available from ANSI, New York, N.Y.


































Aguilar                                                        [Page 51]