Internet Engineering Task Force (IETF)                           J. Zern
Request for Comments: 9649                                  P. Massimino
Category: Informational                                    J. Alakuijala
ISSN: 2070-1721                                               Google LLC
                                                          November 2024


                          WebP Image Format

Abstract

  This document defines the WebP image format and registers a media
  type supporting its use.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are candidates for any level of Internet
  Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9649.

Copyright Notice

  Copyright (c) 2024 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
  2.  WebP Container Specification
    2.1.  Introduction (from "WebP Container Specification")
    2.2.  Terminology & Basics
    2.3.  RIFF File Format
    2.4.  WebP File Header
    2.5.  Simple File Format (Lossy)
    2.6.  Simple File Format (Lossless)
    2.7.  Extended File Format
      2.7.1.  Chunks
        2.7.1.1.  Animation
        2.7.1.2.  Alpha
        2.7.1.3.  Bitstream (VP8/VP8L)
        2.7.1.4.  Color Profile
        2.7.1.5.  Metadata
        2.7.1.6.  Unknown Chunks
      2.7.2.  Canvas Assembly from Frames
      2.7.3.  Example File Layouts
  3.  Specification for WebP Lossless Bitstream
    3.1.  Abstract (from "Specification for WebP Lossless Bitstream")
    3.2.  Introduction (from "Specification for WebP Lossless
          Bitstream")
    3.3.  Nomenclature
    3.4.  RIFF Header
    3.5.  Transforms
      3.5.1.  Predictor Transform
      3.5.2.  Color Transform
      3.5.3.  Subtract Green Transform
      3.5.4.  Color Indexing Transform
    3.6.  Image Data
      3.6.1.  Roles of Image Data
      3.6.2.  Encoding of Image Data
        3.6.2.1.  Prefix-Coded Literals
        3.6.2.2.  LZ77 Backward Reference
        3.6.2.3.  Color Cache Coding
    3.7.  Entropy Code
      3.7.1.  Overview
      3.7.2.  Details
        3.7.2.1.  Decoding and Building the Prefix Codes
        3.7.2.2.  Decoding of Meta Prefix Codes
        3.7.2.3.  Decoding Entropy-Coded Image Data
    3.8.  Overall Structure of the Format
      3.8.1.  Basic Structure
      3.8.2.  Structure of Transforms
      3.8.3.  Structure of the Image Data
  4.  Security Considerations
  5.  Interoperability Considerations
  6.  IANA Considerations
    6.1.  The 'image/webp' Media Type
      6.1.1.  Registration Details
  7.  References
    7.1.  Normative References
    7.2.  Informative References
  Authors' Addresses

1.  Introduction

  WebP is an image file format based on the Resource Interchange File
  Format (RIFF) [RIFF-spec] (Section 2) that supports lossless and
  lossy compression as well as alpha (transparency) and animation.  It
  covers use cases similar to JPEG [JPEG-spec], PNG [RFC2083], and the
  Graphics Interchange Format (GIF) [GIF-spec].

  WebP consists of two compression algorithms used to reduce the size
  of image pixel data, including alpha (transparency) information.
  Lossy compression is achieved using VP8 intra-frame encoding
  [RFC6386].  The lossless algorithm (Section 3) stores and restores
  the pixel values exactly, including the color values for fully
  transparent pixels.  A universal algorithm for sequential data
  compression [LZ77], prefix coding [Huffman], and a color cache are
  used for compression of the bulk data.

2.  WebP Container Specification

     |  Note that this section is based on the documentation in the
     |  libwebp source repository [webp-riff-src].

2.1.  Introduction (from "WebP Container Specification")

  WebP is an image format that uses either (i) the VP8 intra-frame
  encoding [RFC6386] to compress image data in a lossy way or (ii) the
  WebP lossless encoding (Section 3).  These encoding schemes should
  make it more efficient than older formats, such as JPEG, GIF, and
  PNG.  It is optimized for fast image transfer over the network (for
  example, for websites).  The WebP format has feature parity (color
  profile, metadata, animation, etc.) with other formats as well.  This
  section describes the structure of a WebP file.

  The WebP container (that is, the RIFF container for WebP) allows
  feature support over and above the basic use case of WebP (that is, a
  file containing a single image encoded as a VP8 key frame).  The WebP
  container provides additional support for the following:

  *  Lossless Compression: An image can be losslessly compressed, using
     the WebP lossless format.

  *  Metadata: An image may have metadata stored in Exchangeable Image
     File Format [Exif] or Extensible Metadata Platform [XMP] format.

  *  Transparency: An image may have transparency, that is, an alpha
     channel.

  *  Color Profile: An image may have an embedded ICC profile (ICCP)
     [ICC].

  *  Animation: An image may have multiple frames with pauses between
     them, making it an animation.

2.2.  Terminology & Basics

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  A WebP file contains either a still image (that is, an encoded matrix
  of pixels) or an animation (Section 2.7.1.1).  Optionally, it can
  also contain transparency information, a color profile, and metadata.
  We refer to the matrix of pixels as the _canvas_ of the image.

  Bit numbering in chunk diagrams starts at 0 for the most significant
  bit ('MSB 0'), as described in [RFC1166].

  Below are additional terms used throughout this section:

  Reader/Writer
      Code that reads WebP files is referred to as a _reader_, while
      code that writes them is referred to as a _writer_.

  uint16
      A 16-bit, little-endian, unsigned integer.

  uint24
      A 24-bit, little-endian, unsigned integer.

  uint32
      A 32-bit, little-endian, unsigned integer.

  FourCC
      A four-character code (FourCC) is a uint32 created by
      concatenating four ASCII characters in little-endian order.  This
      means 'aaaa' (0x61616161) and 'AAAA' (0x41414141) are treated as
      different FourCCs.

  1-based
      An unsigned integer field storing values offset by -1, for
      example, such a field would store value _25_ as _24_.

  ChunkHeader('ABCD')
      Used to describe the _FourCC_ and _Chunk Size_ header of
      individual chunks, where 'ABCD' is the FourCC for the chunk.
      This element's size is 8 bytes.

2.3.  RIFF File Format

  The WebP file format is based on the RIFF [RIFF-spec] document
  format.

  The basic element of a RIFF file is a _chunk_. It consists of:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Chunk FourCC                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Chunk Size                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                         Chunk Payload                         :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 1: 'RIFF' Chunk Structure

  Chunk FourCC: 32 bits
      ASCII four-character code used for chunk identification.

  Chunk Size: 32 bits (_uint32_)
      The size of the chunk in bytes, not including this field, the
      chunk identifier, or padding.

  Chunk Payload: _Chunk Size_ bytes
      The data payload.  If _Chunk Size_ is odd, a single padding byte
      -- which MUST be 0 to conform with RIFF [RIFF-spec] -- is added.

     |  Note: RIFF has a convention that all uppercase chunk FourCCs
     |  are standard chunks that apply to any RIFF file format, while
     |  FourCCs specific to a file format are all lowercase.  WebP does
     |  not follow this convention.

2.4.  WebP File Header

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      'R'      |      'I'      |      'F'      |      'F'      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           File Size                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      'W'      |      'E'      |      'B'      |      'P'      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 2: WebP File Header Chunk

  'RIFF': 32 bits
      The ASCII characters 'R', 'I', 'F', 'F'.

  File Size: 32 bits (_uint32_)
      The size of the file in bytes, starting at offset 8.  The maximum
      value of this field is 2^32 minus 10 bytes, and thus the size of
      the whole file is at most 4 GiB minus 2 bytes.

  'WEBP': 32 bits
      The ASCII characters 'W', 'E', 'B', 'P'.

  A WebP file MUST begin with a RIFF header with the FourCC 'WEBP'.
  The file size in the header is the total size of the chunks that
  follow plus 4 bytes for the 'WEBP' FourCC.  The file SHOULD NOT
  contain any data after the data specified by _File Size_.  Readers
  MAY parse such files, ignoring the trailing data.  As the size of any
  chunk is even, the size given by the RIFF header is also even.  The
  contents of individual chunks are described in the following
  sections.

2.5.  Simple File Format (Lossy)

  This layout SHOULD be used if the image requires lossy encoding and
  does not require transparency or other advanced features provided by
  the extended format.  Files with this layout are smaller and
  supported by older software.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                    WebP file header (12 bytes)                |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                        'VP8 ' Chunk                           :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 3: Simple WebP (Lossy) File Format

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      ChunkHeader('VP8 ')                      |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                           VP8 data                            :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                          Figure 4: 'VP8 ' Chunk

  VP8 data: _Chunk Size_ bytes
      VP8 bitstream data.

     |  Note that the fourth character in the 'VP8 ' FourCC is an ASCII
     |  space (0x20).

  The VP8 bitstream format specification is described in [RFC6386].

     |  Note that the VP8 frame header contains the VP8 frame width and
     |  height.  That is assumed to be the width and height of the
     |  canvas.

  The VP8 specification describes how to decode the image into Y'CbCr
  format.  To convert to RGB, Recommendation 601 [REC601] SHOULD be
  used.  Applications MAY use another conversion method, but visual
  results may differ among decoders.

2.6.  Simple File Format (Lossless)

     |  Note: Older readers may not support files using the lossless
     |  format.

  This layout SHOULD be used if the image requires lossless encoding
  (with an optional transparency channel) and does not require advanced
  features provided by the extended format.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                    WebP file header (12 bytes)                |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                         'VP8L' Chunk                          :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 5: Simple WebP (Lossless) File Format

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      ChunkHeader('VP8L')                      |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                           VP8L data                           :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                          Figure 6: 'VP8L' Chunk

  VP8L data: _Chunk Size_ bytes
      VP8L bitstream data.

  The specification of the VP8L bitstream can be found in Section 3.

     |  Note that the VP8L header contains the VP8L image width and
     |  height.  That is assumed to be the width and height of the
     |  canvas.

2.7.  Extended File Format

     |  Note: Older readers may not support files using the extended
     |  format.

  An extended format file consists of:

  *  A 'VP8X' Chunk with information about features used in the file.

  *  An optional 'ICCP' Chunk with a color profile.

  *  An optional 'ANIM' Chunk with animation control data.

  *  Image data.

  *  An optional 'EXIF' Chunk with Exif metadata.

  *  An optional 'XMP ' Chunk with XMP metadata.

  *  An optional list of unknown chunks (Section 2.7.1.6).

  For a _still image_, the _image data_ consists of a single frame,
  which is made up of:

  *  An optional alpha subchunk (Section 2.7.1.2).

  *  A bitstream subchunk (Section 2.7.1.3).

  For an _animated image_, the _image data_ consists of multiple
  frames.  More details about frames can be found in Section 2.7.1.1.

  All chunks necessary for reconstruction and color correction, that
  is, 'VP8X', 'ICCP', 'ANIM', 'ANMF', 'ALPH', 'VP8 ', and 'VP8L', MUST
  appear in the order described earlier.  Readers SHOULD fail when
  chunks necessary for reconstruction and color correction are out of
  order.

  Metadata (Section 2.7.1.5) and unknown chunks (Section 2.7.1.6) MAY
  appear out of order.

     |  Rationale: The chunks necessary for reconstruction should
     |  appear first in the file to allow a reader to begin decoding an
     |  image before receiving all of the data.  An application may
     |  benefit from varying the order of metadata and custom chunks to
     |  suit the implementation.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                   WebP file header (12 bytes)                 |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      ChunkHeader('VP8X')                      |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Rsv|I|L|E|X|A|R|                   Reserved                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Canvas Width Minus One               |             ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ...  Canvas Height Minus One    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 7: Extended WebP File Header

  Reserved (Rsv): 2 bits
      MUST be 0.  Readers MUST ignore this field.

  ICC profile (I): 1 bit
      Set if the file contains an 'ICCP' Chunk.

  Alpha (L): 1 bit
      Set if any of the frames of the image contain transparency
      information ("alpha").

  Exif metadata (E): 1 bit
      Set if the file contains Exif metadata.

  XMP metadata (X): 1 bit
      Set if the file contains XMP metadata.

  Animation (A): 1 bit
      Set if this is an animated image.  Data in 'ANIM' and 'ANMF'
      Chunks should be used to control the animation.

  Reserved (R): 1 bit
      MUST be 0.  Readers MUST ignore this field.

  Reserved: 24 bits
      MUST be 0.  Readers MUST ignore this field.

  Canvas Width Minus One: 24 bits
      _1-based_ width of the canvas in pixels.  The actual canvas width
      is 1 + Canvas Width Minus One.

  Canvas Height Minus One: 24 bits
      _1-based_ height of the canvas in pixels.  The actual canvas
      height is 1 + Canvas Height Minus One.

  The product of _Canvas Width_ and _Canvas Height_ MUST be at most
  2^32 - 1.

  Future specifications may add more fields.  Unknown fields MUST be
  ignored.

2.7.1.  Chunks

2.7.1.1.  Animation

  An animation is controlled by 'ANIM' and 'ANMF' Chunks.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      ChunkHeader('ANIM')                      |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Background Color                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Loop Count           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                          Figure 8: 'ANIM' Chunk

  For an animated image, this chunk contains the _global parameters_ of
  the animation.

  Background Color: 32 bits (_uint32_)
      The default background color of the canvas in [Blue, Green, Red,
      Alpha] byte order.  This color MAY be used to fill the unused
      space on the canvas around the frames, as well as the transparent
      pixels of the first frame.  The background color is also used
      when the Disposal method is 1.

      Notes:

      *  The background color MAY contain a nonopaque alpha value, even
         if the _Alpha_ flag in the 'VP8X' Chunk (Figure 7) is unset.

      *  Viewer applications SHOULD treat the background color value as
         a hint and are not required to use it.

      *  The canvas is cleared at the start of each loop.  The
         background color MAY be used to achieve this.

  Loop Count: 16 bits (_uint16_)
      The number of times to loop the animation.  If it is 0, this
      means infinitely.

  This chunk MUST appear if the _Animation_ flag in the 'VP8X' Chunk is
  set.  If the _Animation_ flag is not set and this chunk is present,
  it MUST be ignored.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      ChunkHeader('ANMF')                      |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Frame X                |             ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ...          Frame Y            |   Frame Width Minus One     ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ...             |           Frame Height Minus One              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 Frame Duration                |  Reserved |B|D|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                         Frame Data                            :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                          Figure 9: 'ANMF' Chunk

  For animated images, this chunk contains information about a _single_
  frame.  If the _Animation flag_ is not set, then this chunk SHOULD
  NOT be present.

  Frame X: 24 bits (_uint24_)
      The X coordinate of the upper left corner of the frame is Frame X
      * 2.

  Frame Y: 24 bits (_uint24_)
      The Y coordinate of the upper left corner of the frame is Frame Y
      * 2.

  Frame Width Minus One: 24 bits (_uint24_)
      The _1-based_ width of the frame.  The frame width is 1 + Frame
      Width Minus One.

  Frame Height Minus One: 24 bits (_uint24_)
      The _1-based_ height of the frame.  The frame height is 1 + Frame
      Height Minus One.

  Frame Duration: 24 bits (_uint24_)
      The time to wait before displaying the next frame, in
      1-millisecond units.  Note that the interpretation of the Frame
      Duration of 0 (and often <= 10) is defined by the implementation.
      Many tools and browsers assign a minimum duration similar to GIF.

  Reserved: 6 bits
      MUST be 0.  Readers MUST ignore this field.

  Blending method (B): 1 bit
      Indicates how transparent pixels of _the current frame_ are to be
      blended with corresponding pixels of the previous canvas:

      *  0: Use alpha-blending.  After disposing of the previous frame,
         render the current frame on the canvas using alpha-blending.
         If the current frame does not have an alpha channel, assume
         the alpha value is 255, effectively replacing the rectangle.

      *  1: Do not blend.  After disposing of the previous frame,
         render the current frame on the canvas by overwriting the
         rectangle covered by the current frame.

  Disposal method (D): 1 bit
      Indicates how _the current frame_ is to be treated after it has
      been displayed (before rendering the next frame) on the canvas:

      *  0: Do not dispose.  Leave the canvas as is.

      *  1: Dispose to the background color.  Fill the _rectangle_ on
         the canvas covered by the _current frame_ with the background
         color specified in the 'ANIM' Chunk (Figure 8).

      Notes:

      *  The frame disposal only applies to the _frame rectangle_, that
         is, the rectangle defined by _Frame X_, _Frame Y_, _frame
         width_, and _frame height_. It may or may not cover the whole
         canvas.

      *  Alpha-blending:

         Given that each of the R, G, B, and A channels is 8 bits and
         the RGB channels are _not premultiplied_ by alpha, the formula
         for blending 'dst' onto 'src' is:

         blend.A = src.A + dst.A * (1 - src.A / 255)
         if blend.A = 0 then
           blend.RGB = 0
         else
           blend.RGB =
               (src.RGB * src.A +
                dst.RGB * dst.A * (1 - src.A / 255)) / blend.A

      *  Alpha-blending SHOULD be done in linear color space by taking
         into account the color profile (Section 2.7.1.4) of the image.
         If the color profile is not present, standard RGB (sRGB) is to
         be assumed.  (Note that sRGB also needs to be linearized due
         to a gamma of ~2.2.)

  Frame Data: _Chunk Size_ bytes - 16
      Consists of:

      *  An optional alpha subchunk (Section 2.7.1.2) for the frame.

      *  A bitstream subchunk (Section 2.7.1.3) for the frame.

      *  An optional list of unknown chunks (Section 2.7.1.6).

     |  Note: The 'ANMF' payload, _Frame Data_, consists of individual
     |  _padded_ chunks, as described by the RIFF file format
     |  (Section 2.3).

2.7.1.2.  Alpha

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      ChunkHeader('ALPH')                      |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Rsv| P | F | C |     Alpha Bitstream...                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                         Figure 10: 'ALPH' Chunk

  Reserved (Rsv): 2 bits
      MUST be 0.  Readers MUST ignore this field.

  Preprocessing (P): 2 bits
      These informative bits are used to signal the preprocessing that
      has been performed during compression.  The decoder can use this
      information to, for example, dither the values or smooth the
      gradients prior to display.

      *  0: No preprocessing.

      *  1: Level reduction.

      Decoders are not required to use this information in any
      specified way.

  Filtering method (F): 2 bits
      The filtering methods used are described as follows:

      *  0: None.

      *  1: Horizontal filter.

      *  2: Vertical filter.

      *  3: Gradient filter.

      For each pixel, filtering is performed using the following
      calculations.  Assume the alpha values surrounding the current X
      position are labeled as:

       C | B |
      ---+---+
       A | X |

                  Figure 11: Pixels Used in Alpha Filtering

      We seek to compute the alpha value at position X.  First, a
      prediction is made depending on the filtering method:

      *  Method 0: predictor = 0

      *  Method 1: predictor = A

      *  Method 2: predictor = B

      *  Method 3: predictor = clip(A + B - C)

      where clip(v) is equal to:

      *  0 if v < 0,

      *  255 if v > 255, or

      *  v otherwise.

      The final value is derived by adding the decompressed value X to
      the predictor and using modulo-256 arithmetic to wrap the
      [256..511] range into the [0..255] one:

      alpha = (predictor + X) % 256

      There are special cases for the left-most and top-most pixel
      positions.

      For example, the top-left value at location (0, 0) uses 0 as the
      predictor value.  Otherwise:

      *  For horizontal or gradient filtering methods, the left-most
         pixels at location (0, y) are predicted using the location (0,
         y-1) just above.

      *  For vertical or gradient filtering methods, the top-most
         pixels at location (x, 0) are predicted using the location
         (x-1, 0) on the left.

  Compression method (C): 2 bits
      The compression method used:

      *  0: No compression.

      *  1: Compressed using the WebP lossless format.

  Alpha bitstream: _Chunk Size_ bytes - 1
      Encoded alpha bitstream.

  This optional chunk contains encoded alpha data for this frame.  A
  frame containing a 'VP8L' Chunk SHOULD NOT contain this chunk.

     |  Rationale: The transparency information is already part of the
     |  'VP8L' Chunk.

  The alpha channel data is stored as uncompressed raw data (when the
  compression method is '0') or compressed using the lossless format
  (when the compression method is '1').

  *  Raw data: This consists of a byte sequence of length = width *
     height, containing all the 8-bit transparency values in scan
     order.

  *  Lossless format compression: The byte sequence is a compressed
     image-stream (as described in Section 3) of implicit dimensions
     width x height.  That is, this image-stream does NOT contain any
     headers describing the image dimensions.

     |  Rationale: The dimensions are already known from other sources,
     |  so storing them again would be redundant and prone to errors.

     Once the image-stream is decoded into Alpha, Red, Green, Blue
     (ARGB) color values, following the process described in the
     lossless format specification, the transparency information must
     be extracted from the green channel of the ARGB quadruplet.

     |  Rationale: The green channel is allowed extra transformation
     |  steps in the specification -- unlike the other channels -- that
     |  can improve compression.

2.7.1.3.  Bitstream (VP8/VP8L)

  This chunk contains compressed bitstream data for a single frame.

  A bitstream chunk may be either (i) a 'VP8 ' Chunk, using 'VP8 '
  (note the significant fourth-character space) as its FourCC, _or_
  (ii) a 'VP8L' Chunk, using 'VP8L' as its FourCC.

  The formats of' VP8 ' and 'VP8L' Chunks are as described in Sections
  2.5 and 2.6, respectively.

2.7.1.4.  Color Profile

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      ChunkHeader('ICCP')                      |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                       Color Profile                           :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                         Figure 12: 'ICCP' Chunk

  Color Profile: _Chunk Size_ bytes
      ICC profile.

  This chunk MUST appear before the image data.

  There SHOULD be at most one such chunk.  If there are more such
  chunks, readers MAY ignore all except the first one.  See the ICC
  specification [ICC] for details.

  If this chunk is not present, sRGB SHOULD be assumed.

2.7.1.5.  Metadata

  Metadata can be stored in 'EXIF' or 'XMP ' Chunks.

  There SHOULD be at most one chunk of each type ('EXIF' and 'XMP ').
  If there are more such chunks, readers MAY ignore all except the
  first one.

  The chunks are defined as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      ChunkHeader('EXIF')                      |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                        Exif Metadata                          :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                         Figure 13: 'EXIF' Chunk

  Exif Metadata: _Chunk Size_ bytes
      Image metadata in [Exif] format.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      ChunkHeader('XMP ')                      |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  :                        XMP Metadata                           :
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                         Figure 14: 'XMP ' Chunk

  XMP Metadata: _Chunk Size_ bytes
      Image metadata in [XMP] format.

     |  Note that the fourth character in the 'XMP ' FourCC is an ASCII
     |  space (0x20).

  Additional guidance about handling metadata can be found in the
  Metadata Working Group's "Guidelines For Handling Image Metadata"
  [MWG].

2.7.1.6.  Unknown Chunks

  A RIFF chunk (described in Section 2.3) whose _FourCC_ is different
  from any of the chunks described in this section is considered an
  _unknown chunk_.

     |  Rationale: Allowing unknown chunks gives a provision for future
     |  extension of the format and also allows storage of any
     |  application-specific data.

  A file MAY contain unknown chunks:

  *  at the end of the file, as described in Section 2.7, or

  *  at the end of 'ANMF' Chunks, as described in Section 2.7.1.1.

  Readers SHOULD ignore these chunks.  Writers SHOULD preserve them in
  their original order (unless they specifically intend to modify these
  chunks).

2.7.2.  Canvas Assembly from Frames

  Here, we provide an overview of how a reader MUST assemble a canvas
  in the case of an animated image.

  The process begins with creating a canvas using the dimensions given
  in the 'VP8X' Chunk, Canvas Width Minus One + 1 pixels wide by Canvas
  Height Minus One + 1 pixels high.  The Loop Count field from the
  'ANIM' Chunk controls how many times the animation process is
  repeated.  This is Loop Count - 1 for nonzero Loop Count values or
  infinite if the Loop Count is zero.

  At the beginning of each loop iteration, the canvas is filled using
  the background color from the 'ANIM' Chunk or an application-defined
  color.

  'ANMF' Chunks contain individual frames given in display order.
  Before rendering each frame, the previous frame's Disposal method is
  applied.

  The rendering of the decoded frame begins at the Cartesian
  coordinates (2 * Frame X, 2 * Frame Y), using the top-left corner of
  the canvas as the origin.  Frame Width Minus One + 1 pixels wide by
  Frame Height Minus One + 1 pixels high are rendered onto the canvas
  using the Blending method.

  The canvas is displayed for Frame Duration milliseconds.  This
  continues until all frames given by 'ANMF' Chunks have been
  displayed.  A new loop iteration is then begun, or the canvas is left
  in its final state if all iterations have been completed.

  The following pseudocode illustrates the rendering process.  The
  notation _VP8X.field_ means the field in the 'VP8X' Chunk with the
  same description.

  VP8X.flags.hasAnimation MUST be TRUE
  canvas <- new image of size VP8X.canvasWidth x VP8X.canvasHeight with
            background color ANIM.background_color or
            application-defined color.
  loop_count <- ANIM.loopCount
  dispose_method <- Dispose to background color
  if loop_count == 0:
    loop_count = inf
  frame_params <- nil
  next chunk in image_data is ANMF MUST be TRUE
  for loop = 0..loop_count - 1
    clear canvas to ANIM.background_color or application-defined color
    until eof or non-ANMF chunk
      frame_params.frameX = Frame X
      frame_params.frameY = Frame Y
      frame_params.frameWidth = Frame Width Minus One + 1
      frame_params.frameHeight = Frame Height Minus One + 1
      frame_params.frameDuration = Frame Duration
      frame_right = frame_params.frameX + frame_params.frameWidth
      frame_bottom = frame_params.frameY + frame_params.frameHeight
      VP8X.canvasWidth >= frame_right MUST be TRUE
      VP8X.canvasHeight >= frame_bottom MUST be TRUE
      for subchunk in 'Frame Data':
        if subchunk.tag == "ALPH":
          alpha subchunks not found in 'Frame Data' earlier MUST be
            TRUE
          frame_params.alpha = alpha_data
        else if subchunk.tag == "VP8 " OR subchunk.tag == "VP8L":
          bitstream subchunks not found in 'Frame Data' earlier MUST
            be TRUE
          frame_params.bitstream = bitstream_data
      apply dispose_method.
      render frame with frame_params.alpha and frame_params.bitstream
        on canvas with top-left corner at (frame_params.frameX,
        frame_params.frameY), using Blending method
        frame_params.blendingMethod.
      canvas contains the decoded image.
      Show the contents of the canvas for
      frame_params.frameDuration * 1 ms.
      dispose_method = frame_params.disposeMethod

2.7.3.  Example File Layouts

  A lossy-encoded image with alpha may look as follows:

  RIFF/WEBP
  +- VP8X (descriptions of features used)
  +- ALPH (alpha bitstream)
  +- VP8 (bitstream)

               Figure 15: A Lossy-Encoded Image with Alpha

  A lossless-encoded image may look as follows:

  RIFF/WEBP
  +- VP8X (descriptions of features used)
  +- VP8L (lossless bitstream)
  +- XYZW (unknown chunk)

                   Figure 16: A Lossless-Encoded Image

  A lossless image with an ICC profile and XMP metadata may look as
  follows:

  RIFF/WEBP
  +- VP8X (descriptions of features used)
  +- ICCP (color profile)
  +- VP8L (lossless bitstream)
  +- XMP  (metadata)

     Figure 17: A Lossless Image with an ICC Profile and XMP Metadata

  An animated image with Exif metadata may look as follows:

  RIFF/WEBP
  +- VP8X (descriptions of features used)
  +- ANIM (global animation parameters)
  +- ANMF (frame1 parameters + data)
  +- ANMF (frame2 parameters + data)
  +- ANMF (frame3 parameters + data)
  +- ANMF (frame4 parameters + data)
  +- EXIF (metadata)

             Figure 18: An Animated Image with Exif Metadata

3.  Specification for WebP Lossless Bitstream

     |  Note that this section is based on the documentation in the
     |  libwebp source repository [webp-lossless-src].

3.1.  Abstract (from "Specification for WebP Lossless Bitstream")

  WebP lossless is an image format for lossless compression of ARGB
  images.  The lossless format stores and restores the pixel values
  exactly, including the color values for pixels whose alpha value is
  0.  The format uses subresolution images, recursively embedded into
  the format itself, for storing statistical data about the images,
  such as the used entropy codes, spatial predictors, color space
  conversion, and color table.  A universal algorithm for sequential
  data compression [LZ77], prefix coding, and a color cache are used
  for compression of the bulk data.  Decoding speeds faster than PNG
  have been demonstrated, as well as 25% denser compression than can be
  achieved using today's PNG format [webp-lossless-study].

3.2.  Introduction (from "Specification for WebP Lossless Bitstream")

  This section describes the compressed data representation of a WebP
  lossless image.

  In this section, we extensively use C programming language syntax
  [ISO.9899.2018] to describe the bitstream and assume the existence of
  a function for reading bits, ReadBits(n).  The bytes are read in the
  natural order of the stream containing them, and bits of each byte
  are read in least-significant-bit-first order.  When multiple bits
  are read at the same time, the integer is constructed from the
  original data in the original order.  The most significant bits of
  the returned integer are also the most significant bits of the
  original data.  Thus, the statement

  b = ReadBits(2);

  is equivalent with the two statements below:

  b = ReadBits(1);
  b |= ReadBits(1) << 1;

  We assume that each color component (that is, alpha, red, blue, and
  green) is represented using an 8-bit byte.  We define the
  corresponding type as uint8.  A whole ARGB pixel is represented by a
  type called uint32, which is an unsigned integer consisting of 32
  bits.  In the code showing the behavior of the transforms, these
  values are codified in the following bits: alpha in bits 31..24, red
  in bits 23..16, green in bits 15..8, and blue in bits 7..0; however,
  implementations of the format are free to use another representation
  internally.

  Broadly, a WebP lossless image contains header data, transform
  information, and actual image data.  Headers contain the width and
  height of the image.  A WebP lossless image can go through four
  different types of transforms before being entropy encoded.  The
  transform information in the bitstream contains the data required to
  apply the respective inverse transforms.

3.3.  Nomenclature

  ARGB
      A pixel value consisting of alpha, red, green, and blue values.

  ARGB image
      A two-dimensional array containing ARGB pixels.

  color cache
      A small hash-addressed array to store recently used colors to be
      able to recall them with shorter codes.

  color indexing image
      A one-dimensional image of colors that can be indexed using a
      small integer (up to 256 within WebP lossless).

  color transform image
      A two-dimensional subresolution image containing data about
      correlations of color components.

  distance mapping
      Changes LZ77 distances to have the smallest values for pixels in
      two-dimensional proximity.

  entropy image
      A two-dimensional subresolution image indicating which entropy
      coding should be used in a respective square in the image, that
      is, each pixel is a meta prefix code.

  LZ77 [LZ77]
      A dictionary-based sliding window compression algorithm that
      either emits symbols or describes them as sequences of past
      symbols.

  meta prefix code
      A small integer (up to 16 bits) that indexes an element in the
      meta prefix table.

  predictor image
      A two-dimensional subresolution image indicating which spatial
      predictor is used for a particular square in the image.

  prefix code
      A classic way to do entropy coding where a smaller number of bits
      are used for more frequent codes.

  prefix coding
      A way to entropy code larger integers, which codes a few bits of
      the integer using an entropy code and codifies the remaining bits
      raw.  This allows for the descriptions of the entropy codes to
      remain relatively small even when the range of symbols is large.

  scan-line order
      A processing order of pixels (left to right and top to bottom),
      starting from the left-hand-top pixel.  Once a row is completed,
      continue from the left-hand column of the next row.

3.4.  RIFF Header

  The beginning of the header has the RIFF container.  This consists of
  the following 21 bytes:

  1.  String 'RIFF'.

  2.  A little-endian, 32-bit value of the chunk length, which is the
      whole size of the chunk controlled by the RIFF header.  Normally,
      this equals the payload size (file size minus 8 bytes: 4 bytes
      for the 'RIFF' identifier and 4 bytes for storing the value
      itself).

  3.  String 'WEBP' (RIFF container name).

  4.  String 'VP8L' (FourCC for lossless-encoded image data).

  5.  A little-endian, 32-bit value of the number of bytes in the
      lossless stream.

  6.  1-byte signature 0x2f.

  The first 28 bits of the bitstream specify the width and height of
  the image.  Width and height are decoded as 14-bit integers as
  follows:

  int image_width = ReadBits(14) + 1;
  int image_height = ReadBits(14) + 1;

  The 14-bit precision for image width and height limits the maximum
  size of a WebP lossless image to 16384x16384 pixels.

  The alpha_is_used bit is a hint only and SHOULD NOT impact decoding.
  It SHOULD be set to 0 when all alpha values are 255 in the picture
  and 1 otherwise.

  int alpha_is_used = ReadBits(1);

  The version_number is a 3-bit code that MUST be set to 0.  Any other
  value MUST be treated as an error.

  int version_number = ReadBits(3);

3.5.  Transforms

  The transforms are reversible manipulations of the image data that
  can reduce the remaining symbolic entropy by modeling spatial and
  color correlations.  They can make the final compression more dense.

  An image can go through four types of transforms.  A 1 bit indicates
  the presence of a transform.  Each transform is allowed to be used
  only once.  The transforms are used only for the main-level ARGB
  image; the subresolution images (color transform image, entropy
  image, and predictor image) have no transforms, not even the 0 bit
  indicating the end of transforms.

     |  Typically, an encoder would use these transforms to reduce the
     |  Shannon entropy in the residual image.  Also, the transform
     |  data can be decided based on entropy minimization.

  while (ReadBits(1)) {  // Transform present.
    // Decode transform type.
    enum TransformType transform_type = ReadBits(2);
    // Decode transform data.
    ...
  }

  // Decode actual image data.

  If a transform is present, then the next two bits specify the
  transform type.  There are four types of transforms.

  +==========================+=====+
  | Transform                | Bit |
  +==========================+=====+
  | PREDICTOR_TRANSFORM      | 0   |
  +--------------------------+-----+
  | COLOR_TRANSFORM          | 1   |
  +--------------------------+-----+
  | SUBTRACT_GREEN_TRANSFORM | 2   |
  +--------------------------+-----+
  | COLOR_INDEXING_TRANSFORM | 3   |
  +--------------------------+-----+

       Table 1: Transform Types

  The transform type is followed by the transform data.  Transform data
  contains the information required to apply the inverse transform and
  depends on the transform type.  The inverse transforms are applied in
  the reverse order that they are read from the bitstream, that is,
  last one first.

  Next, we describe the transform data for different types.

3.5.1.  Predictor Transform

  The predictor transform can be used to reduce entropy by exploiting
  the fact that neighboring pixels are often correlated.  In the
  predictor transform, the current pixel value is predicted from the
  pixels already decoded (in scan-line order) and only the residual
  value (actual - predicted) is encoded.  The green component of a
  pixel defines which of the 14 predictors is used within a particular
  block of the ARGB image.  The _prediction mode_ determines the type
  of prediction to use.  We divide the image into squares, and all the
  pixels in a square use the same prediction mode.

  The first 3 bits of prediction data define the block width and height
  in number of bits.

  int size_bits = ReadBits(3) + 2;
  int block_width = (1 << size_bits);
  int block_height = (1 << size_bits);
  #define DIV_ROUND_UP(num, den) (((num) + (den) - 1) / (den))
  int transform_width = DIV_ROUND_UP(image_width, 1 << size_bits);

  The transform data contains the prediction mode for each block of the
  image.  It is a subresolution image where the green component of a
  pixel defines which of the 14 predictors is used for all the
  block_width * block_height pixels within a particular block of the
  ARGB image.  This subresolution image is encoded using the same
  techniques described in Section 3.6.

  The number of block columns, transform_width, is used in two-
  dimensional indexing.  For a pixel (x, y), one can compute the
  respective filter block address by:

  int block_index = (y >> size_bits) * transform_width +
                    (x >> size_bits);

  There are 14 different prediction modes.  In each prediction mode,
  the current pixel value is predicted from one or more neighboring
  pixels whose values are already known.

  We chose the neighboring pixels (TL, T, TR, and L) of the current
  pixel (P) as follows:

  O    O    O    O    O    O    O    O    O    O    O
  O    O    O    O    O    O    O    O    O    O    O
  O    O    O    O    TL   T    TR   O    O    O    O
  O    O    O    O    L    P    X    X    X    X    X
  X    X    X    X    X    X    X    X    X    X    X
  X    X    X    X    X    X    X    X    X    X    X

          Figure 19: Neighboring Pixels of the Current Pixel (P)

  where TL means top-left, T means top, TR means top-right, and L means
  left.  At the time of predicting a value for P, all O, TL, T, TR, and
  L pixels have already been processed, and the P pixel and all X
  pixels are unknown.

  Given the preceding neighboring pixels, the different prediction
  modes are defined as follows.

  +======+======================================================+
  | Mode | Predicted Value of Each Channel of the Current Pixel |
  +======+======================================================+
  | 0    | 0xff000000 (represents solid black color in ARGB)    |
  +------+------------------------------------------------------+
  | 1    | L                                                    |
  +------+------------------------------------------------------+
  | 2    | T                                                    |
  +------+------------------------------------------------------+
  | 3    | TR                                                   |
  +------+------------------------------------------------------+
  | 4    | TL                                                   |
  +------+------------------------------------------------------+
  | 5    | Average2(Average2(L, TR), T)                         |
  +------+------------------------------------------------------+
  | 6    | Average2(L, TL)                                      |
  +------+------------------------------------------------------+
  | 7    | Average2(L, T)                                       |
  +------+------------------------------------------------------+
  | 8    | Average2(TL, T)                                      |
  +------+------------------------------------------------------+
  | 9    | Average2(T, TR)                                      |
  +------+------------------------------------------------------+
  | 10   | Average2(Average2(L, TL), Average2(T, TR))           |
  +------+------------------------------------------------------+
  | 11   | Select(L, T, TL)                                     |
  +------+------------------------------------------------------+
  | 12   | ClampAddSubtractFull(L, T, TL)                       |
  +------+------------------------------------------------------+
  | 13   | ClampAddSubtractHalf(Average2(L, T), TL)             |
  +------+------------------------------------------------------+

                     Table 2: Prediction Modes

  Average2 is defined as follows for each ARGB component:

  uint8 Average2(uint8 a, uint8 b) {
    return (a + b) / 2;
  }

  The Select predictor is defined as follows:

  uint32 Select(uint32 L, uint32 T, uint32 TL) {
    // L = left pixel, T = top pixel, TL = top-left pixel.

    // ARGB component estimates for prediction.
    int pAlpha = ALPHA(L) + ALPHA(T) - ALPHA(TL);
    int pRed = RED(L) + RED(T) - RED(TL);
    int pGreen = GREEN(L) + GREEN(T) - GREEN(TL);
    int pBlue = BLUE(L) + BLUE(T) - BLUE(TL);

    // Manhattan distances to estimates for left and top pixels.
    int pL = abs(pAlpha - ALPHA(L)) + abs(pRed - RED(L)) +
             abs(pGreen - GREEN(L)) + abs(pBlue - BLUE(L));
    int pT = abs(pAlpha - ALPHA(T)) + abs(pRed - RED(T)) +
             abs(pGreen - GREEN(T)) + abs(pBlue - BLUE(T));

    // Return either left or top, the one closer to the prediction.
    if (pL < pT) {
      return L;
    } else {
      return T;
    }
  }

  The functions ClampAddSubtractFull and ClampAddSubtractHalf are
  performed for each ARGB component as follows:

  // Clamp the input value between 0 and 255.
  int Clamp(int a) {
    return (a < 0) ? 0 : (a > 255) ? 255 : a;
  }

  int ClampAddSubtractFull(int a, int b, int c) {
    return Clamp(a + b - c);
  }

  int ClampAddSubtractHalf(int a, int b) {
    return Clamp(a + (a - b) / 2);
  }

  There are special handling rules for some border pixels.  If there is
  a predictor transform, regardless of the mode [0..13] for these
  pixels, the predicted value for the left-topmost pixel of the image
  is 0xff000000, all pixels on the top row are L-pixel, and all pixels
  on the leftmost column are T-pixel.

  Addressing the TR-pixel for pixels on the rightmost column is
  exceptional.  The pixels on the rightmost column are predicted by
  using the modes [0..13], just like pixels not on the border, but the
  leftmost pixel on the same row as the current pixel is instead used
  as the TR-pixel.

  The final pixel value is obtained by adding each channel of the
  predicted value to the encoded residual value.

  void PredictorTransformOutput(uint32 residual, uint32 pred,
                                uint8* alpha, uint8* red,
                                uint8* green, uint8* blue) {
    *alpha = ALPHA(residual) + ALPHA(pred);
    *red = RED(residual) + RED(pred);
    *green = GREEN(residual) + GREEN(pred);
    *blue = BLUE(residual) + BLUE(pred);
  }

3.5.2.  Color Transform

  The goal of the color transform is to decorrelate the R, G, and B
  values of each pixel.  The color transform keeps the green (G) value
  as it is, transforms the red (R) value based on the green value, and
  transforms the blue (B) value based on the green value and then on
  the red value.

  As is the case for the predictor transform, first the image is
  divided into blocks, and the same transform mode is used for all the
  pixels in a block.  For each block, there are three types of color
  transform elements.

  typedef struct {
    uint8 green_to_red;
    uint8 green_to_blue;
    uint8 red_to_blue;
  } ColorTransformElement;

  The actual color transform is done by defining a color transform
  delta.  The color transform delta depends on the
  ColorTransformElement, which is the same for all the pixels in a
  particular block.  The delta is subtracted during the color
  transform.  The inverse color transform then is just adding those
  deltas.

  The color transform function is defined as follows:

  void ColorTransform(uint8 red, uint8 blue, uint8 green,
                      ColorTransformElement *trans,
                      uint8 *new_red, uint8 *new_blue) {
    // Transformed values of red and blue components
    int tmp_red = red;
    int tmp_blue = blue;

    // Applying the transform is just subtracting the transform deltas
    tmp_red  -= ColorTransformDelta(trans->green_to_red,  green);
    tmp_blue -= ColorTransformDelta(trans->green_to_blue, green);
    tmp_blue -= ColorTransformDelta(trans->red_to_blue, red);

    *new_red = tmp_red & 0xff;
    *new_blue = tmp_blue & 0xff;
  }

  ColorTransformDelta is computed using a signed 8-bit integer
  representing a 3.5-fixed-point number and a signed 8-bit RGB color
  channel (c) [-128..127] and is defined as follows:

  int8 ColorTransformDelta(int8 t, int8 c) {
    return (t * c) >> 5;
  }

  A conversion from the 8-bit unsigned representation (uint8) to the
  8-bit signed one (int8) is required before calling
  ColorTransformDelta().  The signed value should be interpreted as an
  8-bit two's complement number (that is: uint8 range [128..255] is
  mapped to the [-128..-1] range of its converted int8 value).

  The multiplication is to be done using more precision (with at least
  16-bit precision).  The sign extension property of the shift
  operation does not matter here; only the lowest 8 bits are used from
  the result, and in these bits, the sign extension shifting and
  unsigned shifting are consistent with each other.

  Now, we describe the contents of color transform data so that
  decoding can apply the inverse color transform and recover the
  original red and blue values.  The first 3 bits of the color
  transform data contain the width and height of the image block in
  number of bits, just like the predictor transform:

  int size_bits = ReadBits(3) + 2;
  int block_width = 1 << size_bits;
  int block_height = 1 << size_bits;

  The remaining part of the color transform data contains
  ColorTransformElement instances, corresponding to each block of the
  image.  Each ColorTransformElement 'cte' is treated as a pixel in a
  subresolution image whose alpha component is 255, red component is
  cte.red_to_blue, green component is cte.green_to_blue, and blue
  component is cte.green_to_red.

  During decoding, ColorTransformElement instances of the blocks are
  decoded and the inverse color transform is applied on the ARGB values
  of the pixels.  As mentioned earlier, that inverse color transform is
  just adding ColorTransformElement values to the red and blue
  channels.  The alpha and green channels are left as is.

  void InverseTransform(uint8 red, uint8 green, uint8 blue,
                        ColorTransformElement *trans,
                        uint8 *new_red, uint8 *new_blue) {
    // Transformed values of red and blue components
    int tmp_red = red;
    int tmp_blue = blue;

    // Applying the inverse transform is just adding the
    // color transform deltas
    tmp_red  += ColorTransformDelta(trans->green_to_red, green);
    tmp_blue += ColorTransformDelta(trans->green_to_blue, green);
    tmp_blue +=
        ColorTransformDelta(trans->red_to_blue, tmp_red & 0xff);

    *new_red = tmp_red & 0xff;
    *new_blue = tmp_blue & 0xff;
  }

3.5.3.  Subtract Green Transform

  The subtract green transform subtracts green values from red and blue
  values of each pixel.  When this transform is present, the decoder
  needs to add the green value to both the red and blue values.  There
  is no data associated with this transform.  The decoder applies the
  inverse transform as follows:

  void AddGreenToBlueAndRed(uint8 green, uint8 *red, uint8 *blue) {
    *red  = (*red  + green) & 0xff;
    *blue = (*blue + green) & 0xff;
  }

  This transform is redundant, as it can be modeled using the color
  transform, but since there is no additional data here, the subtract
  green transform can be coded using fewer bits than a full-blown color
  transform.

3.5.4.  Color Indexing Transform

  If there are not many unique pixel values, it may be more efficient
  to create a color index array and replace the pixel values by the
  array's indices.  The color indexing transform achieves this.  (In
  the context of WebP lossless, we specifically do not call this a
  palette transform because a similar but more dynamic concept exists
  in WebP lossless encoding: color cache.)

  The color indexing transform checks for the number of unique ARGB
  values in the image.  If that number is below a threshold (256), it
  creates an array of those ARGB values, which is then used to replace
  the pixel values with the corresponding index: the green channel of
  the pixels are replaced with the index, all alpha values are set to
  255, and all red and blue values are set to 0.

  The transform data contains the color table size and the entries in
  the color table.  The decoder reads the color indexing transform data
  as follows:

  // 8-bit value for the color table size
  int color_table_size = ReadBits(8) + 1;

  The color table is stored using the image storage format itself.  The
  color table can be obtained by reading an image, without the RIFF
  header, image size, and transforms, assuming the height of 1 pixel
  and the width of color_table_size.  The color table is always
  subtraction-coded to reduce image entropy.  The deltas of palette
  colors contain typically much less entropy than the colors
  themselves, leading to significant savings for smaller images.  In
  decoding, every final color in the color table can be obtained by
  adding the previous color component values by each ARGB component
  separately and storing the least significant 8 bits of the result.

  The inverse transform for the image is simply replacing the pixel
  values (which are indices to the color table) with the actual color
  table values.  The indexing is done based on the green component of
  the ARGB color.

  // Inverse transform
  argb = color_table[GREEN(argb)];

  If the index is equal to or larger than color_table_size, the argb
  color value should be set to 0x00000000 (transparent black).

  When the color table is small (equal to or less than 16 colors),
  several pixels are bundled into a single pixel.  The pixel bundling
  packs several (2, 4, or 8) pixels into a single pixel, reducing the
  image width respectively.

     |  Pixel bundling allows for a more efficient joint distribution
     |  entropy coding of neighboring pixels and gives some arithmetic
     |  coding-like benefits to the entropy code, but it can only be
     |  used when there are 16 or fewer unique values.

  color_table_size specifies how many pixels are combined:

  +==================+==================+
  | color_table_size | width_bits value |
  +==================+==================+
  | 1..2             | 3                |
  +------------------+------------------+
  | 3..4             | 2                |
  +------------------+------------------+
  | 5..16            | 1                |
  +------------------+------------------+
  | 17..256          | 0                |
  +------------------+------------------+

        Table 3: Color Table Size to
      Bundled Pixel Bit Width Mapping

  width_bits has a value of 0, 1, 2, or 3.  A value of 0 indicates no
  pixel bundling is to be done for the image.  A value of 1 indicates
  that two pixels are combined, and each pixel has a range of [0..15].
  A value of 2 indicates that four pixels are combined, and each pixel
  has a range of [0..3].  A value of 3 indicates that eight pixels are
  combined, and each pixel has a range of [0..1], that is, a binary
  value.

  The values are packed into the green component as follows:

  *  width_bits = 1: For every x value, where x = 2k + 0, a green value
     at x is positioned into the 4 least significant bits of the green
     value at x / 2, and a green value at x + 1 is positioned into the
     4 most significant bits of the green value at x / 2.

  *  width_bits = 2: For every x value, where x = 4k + 0, a green value
     at x is positioned into the 2 least significant bits of the green
     value at x / 4, and green values at x + 1 to x + 3 are positioned
     in order to the more significant bits of the green value at x / 4.

  *  width_bits = 3: For every x value, where x = 8k + 0, a green value
     at x is positioned into the least significant bit of the green
     value at x / 8, and green values at x + 1 to x + 7 are positioned
     in order to the more significant bits of the green value at x / 8.

  After reading this transform, image_width is subsampled by
  width_bits.  This affects the size of subsequent transforms.  The new
  size can be calculated using DIV_ROUND_UP, as defined in
  Section 3.5.1.

  image_width = DIV_ROUND_UP(image_width, 1 << width_bits);

3.6.  Image Data

  Image data is an array of pixel values in scan-line order.

3.6.1.  Roles of Image Data

  We use image data in five different roles:

  1.  ARGB image: Stores the actual pixels of the image.

  2.  Entropy image: Stores the meta prefix codes (see "Decoding of
      Meta Prefix Codes" (Section 3.7.2.2)).

  3.  Predictor image: Stores the metadata for the predictor transform
      (see "Predictor Transform" (Section 3.5.1)).

  4.  Color transform image: Created by ColorTransformElement values
      (defined in "Color Transform" (Section 3.5.2)) for different
      blocks of the image.

  5.  Color indexing image: An array of the size of color_table_size
      (up to 256 ARGB values) that stores the metadata for the color
      indexing transform (see "Color Indexing Transform"
      (Section 3.5.4)).

3.6.2.  Encoding of Image Data

  The encoding of image data is independent of its role.

  The image is first divided into a set of fixed-size blocks (typically
  16x16 blocks).  Each of these blocks are modeled using their own
  entropy codes.  Also, several blocks may share the same entropy
  codes.

     |  Rationale: Storing an entropy code incurs a cost.  This cost
     |  can be minimized if statistically similar blocks share an
     |  entropy code, thereby storing that code only once.  For
     |  example, an encoder can find similar blocks by clustering them
     |  using their statistical properties or by repeatedly joining a
     |  pair of randomly selected clusters when it reduces the overall
     |  amount of bits needed to encode the image.

  Each pixel is encoded using one of the three possible methods:

  1.  Prefix-coded literals: Each channel (green, red, blue, and alpha)
      is entropy-coded independently.

  2.  LZ77 backward reference: A sequence of pixels are copied from
      elsewhere in the image.

  3.  Color cache code: Using a short multiplicative hash code (color
      cache index) of a recently seen color.

  The following subsections describe each of these in detail.

3.6.2.1.  Prefix-Coded Literals

  The pixel is stored as prefix-coded values of green, red, blue, and
  alpha (in that order).  See Section 3.7.2.3 for details.

3.6.2.2.  LZ77 Backward Reference

  Backward references are tuples of _length_ and _distance code_:

  *  Length indicates how many pixels in scan-line order are to be
     copied.

  *  Distance code is a number indicating the position of a previously
     seen pixel, from which the pixels are to be copied.  The exact
     mapping is described below (Section 3.6.2.2.1).

  The length and distance values are stored using *LZ77 prefix coding*.

  LZ77 prefix coding divides large integer values into two parts: the
  _prefix code_ and the _extra bits_. The prefix code is stored using
  an entropy code, while the extra bits are stored as they are (without
  an entropy code).

     |  Rationale: This approach reduces the storage requirement for
     |  the entropy code.  Also, large values are usually rare, so
     |  extra bits would be used for very few values in the image.
     |  Thus, this approach results in better compression overall.

  The following table denotes the prefix codes and extra bits used for
  storing different ranges of values.

     |  Note: The maximum backward reference length is limited to 4096.
     |  Hence, only the first 24 prefix codes (with the respective
     |  extra bits) are meaningful for length values.  For distance
     |  values, however, all the 40 prefix codes are valid.

  +=================+=============+============+
  | Value Range     | Prefix Code | Extra Bits |
  +=================+=============+============+
  | 1               | 0           | 0          |
  +-----------------+-------------+------------+
  | 2               | 1           | 0          |
  +-----------------+-------------+------------+
  | 3               | 2           | 0          |
  +-----------------+-------------+------------+
  | 4               | 3           | 0          |
  +-----------------+-------------+------------+
  | 5..6            | 4           | 1          |
  +-----------------+-------------+------------+
  | 7..8            | 5           | 1          |
  +-----------------+-------------+------------+
  | 9..12           | 6           | 2          |
  +-----------------+-------------+------------+
  | 13..16          | 7           | 2          |
  +-----------------+-------------+------------+
  | ...             | ...         | ...        |
  +-----------------+-------------+------------+
  | 3072..4096      | 23          | 10         |
  +-----------------+-------------+------------+
  | ...             | ...         | ...        |
  +-----------------+-------------+------------+
  | 524289..786432  | 38          | 18         |
  +-----------------+-------------+------------+
  | 786433..1048576 | 39          | 18         |
  +-----------------+-------------+------------+

     Table 4: Value to Prefix Code and Extra
                   Bits Mapping

  The pseudocode to obtain a (length or distance) value from the prefix
  code is as follows:

  if (prefix_code < 4) {
    return prefix_code + 1;
  }
  int extra_bits = (prefix_code - 2) >> 1;
  int offset = (2 + (prefix_code & 1)) << extra_bits;
  return offset + ReadBits(extra_bits) + 1;

3.6.2.2.1.  Distance Mapping

  As noted previously, a distance code is a number indicating the
  position of a previously seen pixel, from which the pixels are to be
  copied.  This subsection defines the mapping between a distance code
  and the position of a previous pixel.

  Distance codes larger than 120 denote the pixel distance in scan-line
  order, offset by 120.

  The smallest distance codes [1..120] are special and are reserved for
  a close neighborhood of the current pixel.  This neighborhood
  consists of 120 pixels:

  *  Pixels that are 1 to 7 rows above the current pixel and are up to
     8 columns to the left or up to 7 columns to the right of the
     current pixel [Total such pixels = 7 * (8 + 1 + 7) = 112].

  *  Pixels that are in the same row as the current pixel and are up to
     8 columns to the left of the current pixel [8 such pixels].

  The mapping between distance code distance_code and the neighboring
  pixel offset (xi, yi) is as follows:

  (0, 1),  (1, 0),  (1, 1),  (-1, 1), (0, 2),  (2, 0),  (1, 2),
  (-1, 2), (2, 1),  (-2, 1), (2, 2),  (-2, 2), (0, 3),  (3, 0),
  (1, 3),  (-1, 3), (3, 1),  (-3, 1), (2, 3),  (-2, 3), (3, 2),
  (-3, 2), (0, 4),  (4, 0),  (1, 4),  (-1, 4), (4, 1),  (-4, 1),
  (3, 3),  (-3, 3), (2, 4),  (-2, 4), (4, 2),  (-4, 2), (0, 5),
  (3, 4),  (-3, 4), (4, 3),  (-4, 3), (5, 0),  (1, 5),  (-1, 5),
  (5, 1),  (-5, 1), (2, 5),  (-2, 5), (5, 2),  (-5, 2), (4, 4),
  (-4, 4), (3, 5),  (-3, 5), (5, 3),  (-5, 3), (0, 6),  (6, 0),
  (1, 6),  (-1, 6), (6, 1),  (-6, 1), (2, 6),  (-2, 6), (6, 2),
  (-6, 2), (4, 5),  (-4, 5), (5, 4),  (-5, 4), (3, 6),  (-3, 6),
  (6, 3),  (-6, 3), (0, 7),  (7, 0),  (1, 7),  (-1, 7), (5, 5),
  (-5, 5), (7, 1),  (-7, 1), (4, 6),  (-4, 6), (6, 4),  (-6, 4),
  (2, 7),  (-2, 7), (7, 2),  (-7, 2), (3, 7),  (-3, 7), (7, 3),
  (-7, 3), (5, 6),  (-5, 6), (6, 5),  (-6, 5), (8, 0),  (4, 7),
  (-4, 7), (7, 4),  (-7, 4), (8, 1),  (8, 2),  (6, 6),  (-6, 6),
  (8, 3),  (5, 7),  (-5, 7), (7, 5),  (-7, 5), (8, 4),  (6, 7),
  (-6, 7), (7, 6),  (-7, 6), (8, 5),  (7, 7),  (-7, 7), (8, 6),
  (8, 7)

       Figure 20: Distance Code to Neighboring Pixel Offset Mapping

  For example, the distance code 1 indicates an offset of (0, 1) for
  the neighboring pixel, that is, the pixel above the current pixel (0
  pixel difference in the X direction and 1 pixel difference in the Y
  direction).  Similarly, the distance code 3 indicates the top-left
  pixel.

  The decoder can convert a distance code distance_code to a scan-line
  order distance dist as follows:

  (xi, yi) = distance_map[distance_code - 1]
  dist = xi + yi * image_width
  if (dist < 1) {
    dist = 1
  }

  where distance_map is the mapping noted above, and image_width is the
  width of the image in pixels.

3.6.2.3.  Color Cache Coding

  Color cache stores a set of colors that have been recently used in
  the image.

     |  Rationale: This way, the recently used colors can sometimes be
     |  referred to more efficiently than emitting them using the other
     |  two methods (described in Sections 3.6.2.1 and 3.6.2.2).

  Color cache codes are stored as follows.  First, there is a 1-bit
  value that indicates if the color cache is used.  If this bit is 0,
  no color cache codes exist, and they are not transmitted in the
  prefix code that decodes the green symbols and the length prefix
  codes.  However, if this bit is 1, the color cache size is read next:

  int color_cache_code_bits = ReadBits(4);
  int color_cache_size = 1 << color_cache_code_bits;

  color_cache_code_bits defines the size of the color cache (1 <<
  color_cache_code_bits).  The range of allowed values for
  color_cache_code_bits is [1..11].  Compliant decoders MUST indicate a
  corrupted bitstream for other values.

  A color cache is an array of size color_cache_size.  Each entry
  stores one ARGB color.  Colors are looked up by indexing them by
  (0x1e35a7bd * color) >> (32 - color_cache_code_bits).  Only one
  lookup is done in a color cache; there is no conflict resolution.

  In the beginning of decoding or encoding of an image, all entries in
  all color cache values are set to zero.  The color cache code is
  converted to this color at decoding time.  The state of the color
  cache is maintained by inserting every pixel, be it produced by
  backward referencing or as literals, into the cache in the order they
  appear in the stream.

3.7.  Entropy Code

3.7.1.  Overview

  Most of the data is coded using a canonical prefix code [Huffman].
  Hence, the codes are transmitted by sending the _prefix code
  lengths_, as opposed to the actual _prefix codes_.

  In particular, the format uses *spatially variant prefix coding*. In
  other words, different blocks of the image can potentially use
  different entropy codes.

     |  Rationale: Different areas of the image may have different
     |  characteristics.  So, allowing them to use different entropy
     |  codes provides more flexibility and potentially better
     |  compression.

3.7.2.  Details

  The encoded image data consists of several parts:

  1.  Decoding and building the prefix codes.

  2.  Meta prefix codes.

  3.  Entropy-coded image data.

  For any given pixel (x, y), there is a set of five prefix codes
  associated with it.  These codes are (in bitstream order):

  *  *Prefix code #1*: Used for green channel, backward-reference
     length, and color cache.

  *  *Prefix code #2, #3, and #4*: Used for red, blue, and alpha
     channels, respectively.

  *  *Prefix code #5*: Used for backward-reference distance.

  From here on, we refer to this set as a *prefix code group*.

3.7.2.1.  Decoding and Building the Prefix Codes

  This section describes how to read the prefix code lengths from the
  bitstream.

  The prefix code lengths can be coded in two ways.  The method used is
  specified by a 1-bit value.

  *  If this bit is 1, it is a _simple code length code_.

  *  If this bit is 0, it is a _normal code length code_.

  In both cases, there can be unused code lengths that are still part
  of the stream.  This may be inefficient, but it is allowed by the
  format.  The described tree must be a complete binary tree.  A single
  leaf node is considered a complete binary tree and can be encoded
  using either the simple code length code or the normal code length
  code.  When coding a single leaf node using the _normal code length
  code_, all but one code length are zeros, and the single leaf node
  value is marked with the length of 1 -- even when no bits are
  consumed when that single leaf node tree is used.

3.7.2.1.1.  Simple Code Length Code

  This variant is used in the special case when only 1 or 2 prefix
  symbols are in the range [0..255] with code length 1.  All other
  prefix code lengths are implicitly zeros.

  The first bit indicates the number of symbols:

  int num_symbols = ReadBits(1) + 1;

  The following are the symbol values.  This first symbol is coded
  using 1 or 8 bits, depending on the value of is_first_8bits.  The
  range is [0..1] or [0..255], respectively.  The second symbol, if
  present, is always assumed to be in the range [0..255] and coded
  using 8 bits.

  int is_first_8bits = ReadBits(1);
  symbol0 = ReadBits(1 + 7 * is_first_8bits);
  code_lengths[symbol0] = 1;
  if (num_symbols == 2) {
    symbol1 = ReadBits(8);
    code_lengths[symbol1] = 1;
  }

     |  The two symbols should be different.  Duplicate symbols are
     |  allowed, but inefficient.

     |  Note: Another special case is when _all_ prefix code lengths
     |  are _zeros_ (an empty prefix code).  For example, a prefix code
     |  for distance can be empty if there are no backward references.
     |  Similarly, prefix codes for alpha, red, and blue can be empty
     |  if all pixels within the same meta prefix code are produced
     |  using the color cache.  However, this case doesn't need special
     |  handling, as empty prefix codes can be coded as those
     |  containing a single symbol 0.

3.7.2.1.2.  Normal Code Length Code

  The code lengths of the prefix code fit in 8 bits and are read as
  follows.  First, num_code_lengths specifies the number of code
  lengths.

  int num_code_lengths = 4 + ReadBits(4);

  The code lengths are themselves encoded using prefix codes; lower-
  level code lengths, code_length_code_lengths, first have to be read.
  The rest of those code_length_code_lengths (according to the order in
  kCodeLengthCodeOrder) are zeros.

  int kCodeLengthCodes = 19;
  int kCodeLengthCodeOrder[kCodeLengthCodes] = {
    17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
  };
  int code_length_code_lengths[kCodeLengthCodes] = { 0 };  // All zeros
  for (i = 0; i < num_code_lengths; ++i) {
    code_length_code_lengths[kCodeLengthCodeOrder[i]] = ReadBits(3);
  }

  Next, if ReadBits(1) == 0, the maximum number of different read
  symbols (max_symbol) for each symbol type (A, R, G, B, and distance)
  is set to its alphabet size:

  *  G channel: 256 + 24 + color_cache_size

  *  Other literals (A, R, and B): 256

  *  Distance code: 40

  Otherwise, it is defined as:

  int length_nbits = 2 + 2 * ReadBits(3);
  int max_symbol = 2 + ReadBits(length_nbits);

  If max_symbol is larger than the size of the alphabet for the symbol
  type, the bitstream is invalid.

  A prefix table is then built from code_length_code_lengths and used
  to read up to max_symbol code lengths.

  *  Code [0..15] indicates literal code lengths.

     -  Value 0 means no symbols have been coded.

     -  Values [1..15] indicate the bit length of the respective code.

  *  Code 16 repeats the previous nonzero value [3..6] times, that is,
     3 + ReadBits(2) times.  If code 16 is used before a nonzero value
     has been emitted, a value of 8 is repeated.

  *  Code 17 emits a streak of zeros of length [3..10], that is, 3 +
     ReadBits(3) times.

  *  Code 18 emits a streak of zeros of length [11..138], that is, 11 +
     ReadBits(7) times.

  Once code lengths are read, a prefix code for each symbol type (A, R,
  G, B, and distance) is formed using their respective alphabet sizes.

3.7.2.2.  Decoding of Meta Prefix Codes

  As noted earlier, the format allows the use of different prefix codes
  for different blocks of the image. _Meta prefix codes_ are indexes
  identifying which prefix codes to use in different parts of the
  image.

  Meta prefix codes may be used _only_ when the image is being used in
  the role (Section 3.6.1) of an _ARGB image_.

  There are two possibilities for the meta prefix codes, indicated by a
  1-bit value:

  *  If this bit is zero, there is only one meta prefix code used
     everywhere in the image.  No more data is stored.

  *  If this bit is one, the image uses multiple meta prefix codes.
     These meta prefix codes are stored as an _entropy image_
     (described below).

  The red and green components of a pixel define a 16-bit meta prefix
  code used in a particular block of the ARGB image.

3.7.2.2.1.  Entropy Image

  The entropy image defines which prefix codes are used in different
  parts of the image.

  The first 3 bits contain the prefix_bits value.  The dimensions of
  the entropy image are derived from prefix_bits:

  int prefix_bits = ReadBits(3) + 2;
  int prefix_image_width =
      DIV_ROUND_UP(image_width, 1 << prefix_bits);
  int prefix_image_height =
      DIV_ROUND_UP(image_height, 1 << prefix_bits);

  where DIV_ROUND_UP is as defined in Section 3.5.1.

  The next bits contain an entropy image of width prefix_image_width
  and height prefix_image_height.

3.7.2.2.2.  Interpretation of Meta Prefix Codes

  The number of prefix code groups in the ARGB image can be obtained by
  finding the _largest meta prefix code_ from the entropy image:

  int num_prefix_groups = max(entropy image) + 1;

  where max(entropy image) indicates the largest prefix code stored in
  the entropy image.

  As each prefix code group contains five prefix codes, the total
  number of prefix codes is:

  int num_prefix_codes = 5 * num_prefix_groups;

  Given a pixel (x, y) in the ARGB image, we can obtain the
  corresponding prefix codes to be used as follows:

  int position =
      (y >> prefix_bits) * prefix_image_width + (x >> prefix_bits);
  int meta_prefix_code = (entropy_image[position] >> 8) & 0xffff;
  PrefixCodeGroup prefix_group = prefix_code_groups[meta_prefix_code];

  where we have assumed the existence of PrefixCodeGroup structure,
  which represents a set of five prefix codes.  Also,
  prefix_code_groups is an array of PrefixCodeGroup (of size
  num_prefix_groups).

  The decoder then uses prefix code group prefix_group to decode the
  pixel (x, y), as explained in Section 3.7.2.3.

3.7.2.3.  Decoding Entropy-Coded Image Data

  For the current position (x, y) in the image, the decoder first
  identifies the corresponding prefix code group (as explained in the
  last section).  Given the prefix code group, the pixel is read and
  decoded as follows.

  Next, read symbol S from the bitstream using prefix code #1.

     |  Note that S is any integer in the range 0 to (256 + 24 +
     |  color_cache_size - 1).  See Section 3.6.2.3 for details about
     |  color_cache_size.

  The interpretation of S depends on its value:

  1.  If S < 256

      i.    Use S as the green component.

      ii.   Read red from the bitstream using prefix code #2.

      iii.  Read blue from the bitstream using prefix code #3.

      iv.   Read alpha from the bitstream using prefix code #4.

  2.  If S >= 256 & S < 256 + 24

      i.    Use S - 256 as a length prefix code.

      ii.   Read extra bits for the length from the bitstream.

      iii.  Determine backward-reference length L from length prefix
            code and the extra bits read.

      iv.   Read the distance prefix code from the bitstream using
            prefix code #5.

      v.    Read extra bits for the distance from the bitstream.

      vi.   Determine backward-reference distance D from the distance
            prefix code and the extra bits read.

      vii.  Copy L pixels (in scan-line order) from the sequence of
            pixels starting at the current position minus D pixels.

  3.  If S >= 256 + 24

      i.   Use S - (256 + 24) as the index into the color cache.

      ii.  Get ARGB color from the color cache at that index.

3.8.  Overall Structure of the Format

  Below is a view into the format in Augmented Backus-Naur Form
  [RFC5234] [RFC7405].  It does not cover all details.  The end-of-
  image (EOI) is only implicitly coded into the number of pixels
  (image_width * image_height).

     |  Note that *element means element can be repeated 0 or more
     |  times. 5element means element is repeated exactly 5 times. %b
     |  represents a binary value.

3.8.1.  Basic Structure

  format        = RIFF-header image-header image-stream
  RIFF-header   = %s"RIFF" 4OCTET %s"WEBPVP8L" 4OCTET
  image-header  = %x2F image-size alpha-is-used version
  image-size    = 14BIT 14BIT ; width - 1, height - 1
  alpha-is-used = 1BIT
  version       = 3BIT ; 0
  image-stream  = optional-transform spatially-coded-image

3.8.2.  Structure of Transforms

  optional-transform   =  (%b1 transform optional-transform) / %b0
  transform            =  predictor-tx / color-tx / subtract-green-tx
  transform            =/ color-indexing-tx

  predictor-tx         =  %b00 predictor-image
  predictor-image      =  3BIT ; sub-pixel code
                          entropy-coded-image

  color-tx             =  %b01 color-image
  color-image          =  3BIT ; sub-pixel code
                          entropy-coded-image

  subtract-green-tx    =  %b10

  color-indexing-tx    =  %b11 color-indexing-image
  color-indexing-image =  8BIT ; color count
                          entropy-coded-image

3.8.3.  Structure of the Image Data

  spatially-coded-image =  color-cache-info meta-prefix data
  entropy-coded-image   =  color-cache-info data

  color-cache-info      =  %b0
  color-cache-info      =/ (%b1 4BIT) ; 1 followed by color cache size

  meta-prefix           =  %b0 / (%b1 entropy-image)

  data                  =  prefix-codes lz77-coded-image
  entropy-image         =  3BIT ; subsample value
                           entropy-coded-image

  prefix-codes          =  prefix-code-group *prefix-codes
  prefix-code-group     =
      5prefix-code ; See "Interpretation of Meta Prefix Codes" to
                   ; understand what each of these five prefix
                   ; codes are for.

  prefix-code           =  simple-prefix-code / normal-prefix-code
  simple-prefix-code    =  ; see "Simple Code Length Code" for details
  normal-prefix-code    =  ; see "Normal Code Length Code" for details

  lz77-coded-image      =
      *((argb-pixel / lz77-copy / color-cache-code) lz77-coded-image)

  The following is a possible example sequence:

  RIFF-header image-size %b1 subtract-green-tx
  %b1 predictor-tx %b0 color-cache-info
  %b0 prefix-codes lz77-coded-image

4.  Security Considerations

  Implementations of this format face security risks, such as integer
  overflows, out-of-bounds reads and writes to both heap and stack,
  uninitialized data usage, null pointer dereferences, resource (disk
  or memory) exhaustion, and extended resource usage (long running
  time) as part of the demuxing and decoding process.  In particular,
  implementations reading this format are likely to take input from
  unknown and possibly unsafe sources -- both clients (for example, web
  browsers or email clients) and servers (for example, applications
  that accept uploaded images).  These may result in arbitrary code
  execution, information leakage (memory layout and contents), or
  crashes and thereby allow a device to be compromised or cause a
  denial of service to an application using the format [mitre-libwebp]
  [issues-security].

  The format does not employ "active content" but does allow metadata
  (for example, [XMP] and [Exif]) and custom chunks to be embedded in a
  file.  Applications that interpret these chunks may be subject to
  security considerations for those formats.

5.  Interoperability Considerations

  The format is defined using little-endian byte ordering (see
  Section 3.1 of [RFC2781]), but demuxing and decoding are possible on
  platforms using a different ordering with the appropriate conversion.
  The container is based on RIFF and allows extension via user-defined
  chunks, but nothing beyond the chunks defined by the container format
  (Section 2) are required for decoding of the image.  These have been
  finalized, but they were extended in the format's early stages, so
  some older readers may not support lossless or animated image
  decoding.

6.  IANA Considerations

  IANA has registered the 'image/webp' media type [RFC2046].

6.1.  The 'image/webp' Media Type

  This section contains the media type registration details per
  [RFC6838].

6.1.1.  Registration Details

  Type name:  image

  Subtype name:  webp

  Required parameters:  N/A

  Optional parameters:  N/A

  Encoding considerations:  Binary.  The Base64 encoding [RFC4648]
     should be used on transports that cannot accommodate binary data
     directly.

  Security considerations:  See RFC 9649, Section 4.

  Interoperability considerations:  See RFC 9649, Section 5.

  Published specification:  RFC 9649

  Applications that use this media type:  Applications that are used to
     display and process images, especially when smaller image file
     sizes are important.

  Fragment identifier considerations:  N/A

  Additional information:

     Deprecated alias names for this type:  N/A
     Magic number(s):  The first 4 bytes are 0x52, 0x49, 0x46, 0x46
        ('RIFF'), followed by 4 bytes for the 'RIFF' Chunk size.  The
        next 7 bytes are 0x57, 0x45, 0x42, 0x50, 0x56, 0x50, 0x38
        ('WEBPVP8').
     File extension(s):  webp
     Apple Uniform Type Identifier:  org.webmproject.webp conforms to
        public.image
     Object Identifiers:  N/A

  Person & email address to contact for further information:  James
     Zern <[email protected]>

  Intended usage:  COMMON

  Restrictions on usage:  N/A

  Author:  James Zern <[email protected]>

  Change controller:  IETF

7.  References

7.1.  Normative References

  [Exif]     Camera & Imaging Products Association (CIPA) and Japan
             Electronics and Information Technology Industries
             Association (JEITA), "Exchangeable image file format for
             digital still cameras: Exif Version 2.3", CIPA DC-
             008-2012, JEITA CP-3451C, December 2012,
             <https://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf>.

  [ICC]      International Color Consortium, "Image technology colour
             management -- Architecture, profile format, and data
             structure", Profile version 4.3.0.0, REVISION of
             ICC.1:2004-10, Specification ICC.1:2010, December 2010,
             <https://www.color.org/specification/ICC1v43_2010-12.pdf>.

  [ISO.9899.2018]
             International Organization for Standardization,
             "Information technology -- Programming languages -- C",
             Fourth Edition, ISO/IEC 9899:2018, June 2018,
             <https://www.iso.org/standard/74528.html>.

  [REC601]   ITU, "Studio encoding parameters of digital television for
             standard 4:3 and wide screen 16:9 aspect ratios", ITU-R
             Recommendation BT.601, March 2011,
             <https://www.itu.int/rec/R-REC-BT.601/>.

  [RFC1166]  Kirkpatrick, S., Stahl, M., and M. Recker, "Internet
             numbers", RFC 1166, DOI 10.17487/RFC1166, July 1990,
             <https://www.rfc-editor.org/info/rfc1166>.

  [RFC2046]  Freed, N. and N. Borenstein, "Multipurpose Internet Mail
             Extensions (MIME) Part Two: Media Types", RFC 2046,
             DOI 10.17487/RFC2046, November 1996,
             <https://www.rfc-editor.org/info/rfc2046>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC2781]  Hoffman, P. and F. Yergeau, "UTF-16, an encoding of ISO
             10646", RFC 2781, DOI 10.17487/RFC2781, February 2000,
             <https://www.rfc-editor.org/info/rfc2781>.

  [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
             Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
             <https://www.rfc-editor.org/info/rfc4648>.

  [RFC5234]  Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
             Specifications: ABNF", STD 68, RFC 5234,
             DOI 10.17487/RFC5234, January 2008,
             <https://www.rfc-editor.org/info/rfc5234>.

  [RFC6386]  Bankoski, J., Koleszar, J., Quillio, L., Salonen, J.,
             Wilkins, P., and Y. Xu, "VP8 Data Format and Decoding
             Guide", RFC 6386, DOI 10.17487/RFC6386, November 2011,
             <https://www.rfc-editor.org/info/rfc6386>.

  [RFC6838]  Freed, N., Klensin, J., and T. Hansen, "Media Type
             Specifications and Registration Procedures", BCP 13,
             RFC 6838, DOI 10.17487/RFC6838, January 2013,
             <https://www.rfc-editor.org/info/rfc6838>.

  [RFC7405]  Kyzivat, P., "Case-Sensitive String Support in ABNF",
             RFC 7405, DOI 10.17487/RFC7405, December 2014,
             <https://www.rfc-editor.org/info/rfc7405>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [XMP]      Adobe Inc., "XMP Specification",
             <https://www.adobe.com/devnet/xmp.html>.

7.2.  Informative References

  [GIF-spec] CompuServe Incorporated, "Graphics Interchange
             Format(sm)", Version 89a, July 1990,
             <https://www.w3.org/Graphics/GIF/spec-gif89a.txt>.

  [Huffman]  Huffman, D., "A Method for the Construction of Minimum-
             Redundancy Codes", Proceedings of the Institute of Radio
             Engineers, Vol. 40, Issue 9, pp. 1098-1101,
             DOI 10.1109/JRPROC.1952.273898, September 1952,
             <https://doi.org/10.1109/JRPROC.1952.273898>.

  [issues-security]
             "libwebp Security Issues",
             <https://issues.webmproject.org/
             issues?q=componentid:1618983%2B%20(%22Restrict-View-
             Security%22%20OR%20type:vulnerability)>.

  [JPEG-spec]
             "Information Technology - Digital Compression and Coding
             of Continuous-Tone Still Images - Requirements and
             Guidelines", ITU-T Recommendation T.81, ISO/IEC 10918-1,
             September 1992,
             <https://www.w3.org/Graphics/JPEG/itu-t81.pdf>.

  [LZ77]     Ziv, J. and A. Lempel, "A Universal Algorithm for
             Sequential Data Compression", IEEE Transactions on
             Information Theory, Vol. 23, Issue 3, pp. 337-343,
             DOI 10.1109/TIT.1977.1055714, May 1977,
             <https://doi.org/10.1109/TIT.1977.1055714>.

  [mitre-libwebp]
             "libwebp CVE List", <https://cve.mitre.org/cgi-bin/
             cvekey.cgi?keyword=libwebp>.

  [MWG]      Metadata Working Group, "Guidelines For Handling Image
             Metadata", Version 2.0, November 2010,
             <https://web.archive.org/web/20180919181934/
             http://www.metadataworkinggroup.org/pdf/mwg_guidance.pdf>.

  [RFC2083]  Boutell, T., "PNG (Portable Network Graphics)
             Specification Version 1.0", RFC 2083,
             DOI 10.17487/RFC2083, March 1997,
             <https://www.rfc-editor.org/info/rfc2083>.

  [RIFF-spec]
             "RIFF (Resource Interchange File Format)",
             <https://www.loc.gov/preservation/digital/formats/fdd/
             fdd000025.shtml>.

  [webp-lossless-src]
             "WebP Lossless Bitstream Specification", July 2024,
             <https://chromium.googlesource.com/webm/libwebp/+/refs/
             tags/webp-rfc9649/doc/webp-lossless-bitstream-spec.txt>.

  [webp-lossless-study]
             Alakuijala, J. and V. Rabaud, "Lossless and Transparency
             Encoding in WebP", August 2017,
             <https://developers.google.com/speed/webp/docs/
             webp_lossless_alpha_study>.

  [webp-riff-src]
             "WebP RIFF Container", July 2024,
             <https://chromium.googlesource.com/webm/libwebp/+/refs/
             tags/webp-rfc9649/doc/webp-container-spec.txt>.

Authors' Addresses

  James Zern
  Google LLC
  1600 Amphitheatre Parkway
  Mountain View, CA 94043
  United States of America
  Phone: +1 650 253-0000
  Email: [email protected]


  Pascal Massimino
  Google LLC
  Email: [email protected]


  Jyrki Alakuijala
  Google LLC
  Email: [email protected]