Internet Engineering Task Force (IETF)                         M. Scharf
Request for Comments: 9648                          Hochschule Esslingen
Category: Standards Track                                M. Jethanandani
ISSN: 2070-1721                                           Kloud Services
                                                              V. Murgai
                                                               F5, Inc.
                                                           October 2024


                       YANG Data Model for TCP

Abstract

  This document specifies a minimal YANG data model for TCP on devices
  that are configured and managed by network management protocols.  The
  YANG data model defines a container for all TCP connections and
  groupings of authentication parameters that can be imported and used
  in TCP implementations or by other models that need to configure TCP
  parameters.  The model also includes basic TCP statistics.  The model
  is compliant with Network Management Datastore Architecture (NMDA)
  (RFC 8342).

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9648.

Copyright Notice

  Copyright (c) 2024 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
    1.1.  Conventions
  2.  Requirements Language
  3.  YANG Module Overview
    3.1.  Scope
    3.2.  Model Design
    3.3.  Tree Diagram
  4.  TCP YANG Data Model
  5.  IANA Considerations
    5.1.  The IETF XML Registry
    5.2.  The YANG Module Names Registry
  6.  Security Considerations
  7.  References
    7.1.  Normative References
    7.2.  Informative References
  Appendix A.  Examples
    A.1.  Keepalive Configuration
    A.2.  TCP-AO Configuration
  Appendix B.  Complete Tree Diagram
  Acknowledgements
  Authors' Addresses

1.  Introduction

  The Transmission Control Protocol (TCP) [RFC9293] is used by many
  applications in the Internet, including control and management
  protocols.  As such, TCP is implemented on network elements that can
  be configured and managed via network management protocols such as
  Network Configuration Protocol (NETCONF) [RFC6241] or RESTCONF
  [RFC8040].

  This document specifies a minimal YANG 1.1 [RFC7950] data model for
  configuring and managing TCP on network elements that support YANG, a
  TCP connection table, a TCP listener table containing information
  about a particular TCP listener, and an augmentation of the YANG data
  model for key chains [RFC8177] to support authentication.  The YANG
  module specified in this document is compliant with Network
  Management Datastore Architecture (NMDA) [RFC8342].

  The YANG module has a narrow scope and focuses on a subset of
  fundamental TCP functions and basic statistics.  It defines a
  container for a list of TCP connections that includes definitions
  from "YANG Groupings for TCP Clients and TCP Servers" [RFC9643].  The
  model adheres to the recommendation in "BGP/MPLS IP Virtual Private
  Networks (VPNs)" [RFC4364].  Therefore, it allows enabling of TCP
  Authentication Option (TCP-AO) [RFC5925] and accommodates the
  installed base that makes use of MD5.  The module can be augmented or
  updated to address more advanced or implementation-specific TCP
  features in the future.

  This specification does not deprecate the Management Information Base
  (MIB) for the Transmission Control Protocol (TCP) [RFC4022].  The
  basic statistics defined in this document follow the model of the TCP
  MIB.  A TCP extended statistics MIB [RFC4898] is also available, but
  this document does not cover such extended statistics.  The YANG
  module also omits some selected parameters included in TCP MIB, most
  notably Retransmission Timeout (RTO) configuration and a maximum
  connection limit.  This is a conscious decision as these parameters
  hardly matter in a state-of-the-art TCP implementation.  It would
  also be possible to translate a MIB into a YANG module, for instance,
  using "Translation of Structure of Management Information Version 2
  (SMIv2) MIB Modules to YANG Modules" [RFC6643].  However, this
  approach is not used in this document, because a translated model
  would not be up-to-date.

  There are other existing TCP-related YANG data models, which are
  orthogonal to this specification.  Examples are:

  *  TCP header attributes are modeled in other security-related
     models, such as those described in "YANG Data Model for Network
     Access Control Lists (ACLs)" [RFC8519], "Distributed Denial-of-
     Service Open Threat Signaling (DOTS) Data Channel Specification"
     [RFC8783], "I2NSF Capability YANG Data Model" [NSF-CAP-YANG], or
     "I2NSF Network Security Function-Facing Interface YANG Data Model"
     [NSF-FACING-YANG].

  *  TCP-related configuration of a NAT (e.g., NAT44, NAT64, or
     Destination NAT) is defined in "A YANG Module for Network Address
     Translation (NAT) and Network Prefix Translation (NPT)" [RFC8512]
     and "A YANG Data Model for Dual-Stack Lite (DS-Lite)" [RFC8513].

  *  TCP-AO and TCP MD5 configuration for Layer 3 VPNs is modeled in "A
     YANG Network Data Model for Layer 3 VPNs" [RFC9182].  This model
     assumes that TCP-AO-specific parameters are preconfigured in
     addition to the key chain parameters.

1.1.  Conventions

  Various examples in this document use the XML [W3C.REC-xml-20081126]
  encoding.  Other encodings, such as JSON [RFC8259], could
  alternatively be used.

  Various examples in this document contain long lines that may be
  folded, as described in [RFC8792].

2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

3.  YANG Module Overview

3.1.  Scope

  TCP is implemented on different system architectures.  As a result,
  there are many different and often implementation-specific ways to
  configure parameters of the TCP engine.  In addition, in many TCP/IP
  stacks, configuration exists for different scopes:

  *  System-wide configuration: Many TCP implementations have
     configuration parameters that affect all TCP connections from or
     to this TCP stack.  Typical examples include enabling or disabling
     optional protocol features.  For instance, many implementations
     can turn on or off use of window scaling (defined in "Transmission
     Control Protocol (TCP)" [RFC9293]) for all TCP connections.

  *  Interface configuration: It can be useful to use different TCP
     parameters on different interfaces, e.g., different device ports
     or IP interfaces.  In that case, TCP parameters can be part of the
     interface configuration.  Typical examples are the Maximum Segment
     Size (MSS) or configuration related to hardware offloading.

  *  Connection parameters: Many implementations have means to
     influence the behavior of each TCP connection, e.g., on the
     programming interface used by applications.  Typical examples are
     socket options in the socket API, such as disabling the Nagle
     algorithm (as described in "Transmission Control Protocol (TCP)"
     [RFC9293]) by TCP_NODELAY.  If an application uses such an
     interface, it is possible that the configuration of the
     application or application protocol includes TCP-related
     parameters.  An example is the BGP YANG module for service
     provider networks [BGP-MODEL].

  *  Application preferences: Setting of TCP parameters can also be
     part of application preferences, templates, or profiles.  An
     example would be the preferences defined in "An Abstract
     Application Layer Interface to Transport Services"
     [TAPS-INTERFACE].

  As a result, there is no ground truth for setting certain TCP
  parameters, and generally different TCP implementations have used
  different modeling approaches.  For instance, one implementation may
  define a given configuration parameter globally, while another one
  uses per-interface settings, and both approaches work well for the
  corresponding use cases.  Also, different systems may use different
  default values.  In addition, TCP can be implemented in different
  ways and design choices by the protocol engine often affect
  configuration options.

  Nonetheless, a number of TCP stack parameters require configuration
  by YANG data models.  This document therefore defines a minimal YANG
  data model with fundamental parameters.  An important use case is the
  TCP configuration on network elements, such as routers, which often
  use YANG data models.  The model therefore specifies TCP parameters
  that are important on such TCP stacks.

  In particular, this applies to the support of the TCP Authentication
  Option (TCP-AO) [RFC5925] and the corresponding cryptographic
  algorithms [RFC5926].  TCP-AO is used on routers to secure routing
  protocols such as BGP.  In that case, a YANG data model for TCP-AO
  configuration is required.  The model defined in this document
  includes the required parameters for TCP-AO configuration, such as
  the values of SendID and RecvID.  The key chain for TCP-AO can be
  modeled by the YANG data model for key chains [RFC8177].  The
  groupings defined in this document can be imported and used as part
  of such a preconfiguration.

  Given an installed base, the model also allows enabling of the legacy
  TCP MD5 [RFC2385] signature option.  The TCP MD5 signature option was
  obsoleted by TCP-AO in 2010.  If current implementations require TCP
  authentication, it is RECOMMENDED to use TCP-AO [RFC5925].

  Similar to the TCP MIB [RFC4022], this document also specifies basic
  statistics, a TCP connection list, and a TCP listener list.

  *  Statistics: Counters for the number of active/passive opens, sent
     and received TCP segments, errors, and possibly other detailed
     debugging information.

  *  TCP connection list: Access to status information for all TCP
     connections.  Note that the connection table is modeled as a list
     that is readable and writable, even though a connection cannot be
     created by adding entries to the table.  Similarly, deletion of
     connections from this list is implementation-specific.

  *  TCP listener list: A list containing information about TCP
     listeners, i.e., applications willing to accept connections.

  This allows implementations of TCP MIB [RFC4022] to migrate to the
  YANG data model defined in this memo.  Note that the TCP MIB does not
  include means to reset statistics, which are defined in this
  document.  This is not a major addition, as a reset can simply be
  implemented by storing offset values for the counters.

  This version of the module does not model details of Multipath TCP
  [RFC8684].  This could be addressed in a later version of this
  document.

3.2.  Model Design

  The YANG data model defined in this document includes definitions
  from "YANG Groupings for TCP Clients and TCP Servers" [RFC9643].
  Similar to that model, this specification defines YANG groupings.
  This allows reuse of these groupings in different YANG data models.
  It is intended that these groupings will be used either standalone or
  for TCP-based protocols as part of a stack of protocol-specific
  configuration models.  An example could be the one described in "YANG
  Model for Border Gateway Protocol (BGP-4)" [BGP-MODEL].

3.3.  Tree Diagram

  This section provides an abridged tree diagram for the YANG module
  defined in this document.  Annotations used in the diagram are
  defined in "YANG Tree Diagrams" [RFC8340].  A complete tree diagram
  can be found in Appendix B.

  module: ietf-tcp
    +--rw tcp!
       +--rw connections
       |     ...
       +--ro tcp-listeners* [type address port]
       |     ...
       +--ro statistics {statistics}?
             ...

    augment /key-chain:key-chains/key-chain:key-chain/key-chain:key:
      +--rw authentication {authentication}?
         +--rw keychain?    key-chain:key-chain-ref
         +--rw (authentication)?
               ...

4.  TCP YANG Data Model

  This YANG module references "The TCP Authentication Option"
  [RFC5925], "Protection of BGP Sessions via the TCP MD5 Signature
  Option" [RFC2385], and "Transmission Control Protocol (TCP)"
  [RFC9293] and imports "Common YANG Data Types" [RFC6991], "Network
  Configuration Access Control Model" [RFC8341], and "YANG Groupings
  for TCP Clients and TCP Servers" [RFC9643].

  <CODE BEGINS> file "[email protected]"
  module ietf-tcp {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-tcp";
    prefix tcp;

    import ietf-yang-types {
      prefix yang;
      reference
        "RFC 6991: Common YANG Data Types.";
    }
    import ietf-tcp-common {
      prefix tcpcmn;
      reference
        "RFC 9643: YANG Groupings for TCP Clients and TCP Servers.";
    }
    import ietf-inet-types {
      prefix inet;
      reference
        "RFC 6991: Common YANG Data Types.";
    }
    import ietf-netconf-acm {
      prefix nacm;
      reference
        "RFC 8341: Network Configuration Access Control Model.";
    }
    import ietf-key-chain {
      prefix key-chain;
      reference
        "RFC 8177: YANG Data Model for Key Chains.";
    }

    organization
      "IETF TCPM Working Group";

    contact
      "WG Web:   https://datatracker.ietf.org/wg/tcpm/about
       WG List:  TCPM WG <[email protected]>

       Authors:  Michael Scharf <[email protected]>
                 Mahesh Jethanandani <[email protected]>
                 Vishal Murgai <[email protected]>";

    description
      "This module focuses on fundamental TCP functions and basic
       statistics.  The model can be augmented to address more advanced
       or implementation-specific TCP features.

       The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
       NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
       'MAY', and 'OPTIONAL' in this document are to be interpreted as
       described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
       they appear in all capitals, as shown here.

       Copyright (c) 2024 IETF Trust and the persons identified as
       authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or
       without modification, is permitted pursuant to, and subject to
       the license terms contained in, the Revised BSD License set
       forth in Section 4.c of the IETF Trust's Legal Provisions
       Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC 9648
       (https://www.rfc-editor.org/info/rfc9648); see the RFC itself
       for full legal notices.";

    revision 2024-10-10 {
      description
        "Initial version.";
      reference
        "RFC 9648: YANG Data Model for TCP.";
    }

    // Typedefs
    typedef mss {
      type uint16;
      description
        "Type definition for the Maximum Segment Size.";
    }

    // Features
    feature statistics {
      description
        "This implementation supports statistics reporting.";
    }

    feature authentication {
      description
        "This implementation supports authentication.";
    }

    // Identities
    identity aes-128 {
      base key-chain:crypto-algorithm;
      description
        "AES128 authentication algorithm used by TCP-AO.";
      reference
        "RFC 5926: Cryptographic Algorithms for the TCP
                   Authentication Option (TCP-AO).";
    }

    // TCP-AO Groupings

    grouping ao {
      leaf send-id {
        type uint8 {
          range "0..max";
        }
        description
          "The SendID is inserted as the KeyID of the TCP-AO option
           of outgoing segments.  In a consistent configuration, the
           SendID matches the RecvID at the other endpoint.";
        reference
          "RFC 5925: The TCP Authentication Option, Section 3.1.";
      }

      leaf recv-id {
        type uint8 {
          range "0..max";
        }
        description
          "The RecvID is matched against the TCP-AO KeyID of incoming
           segments.  In a consistent configuration, the RecvID matches
           the SendID at the other endpoint.";
        reference
          "RFC 5925: The TCP Authentication Option, Section 3.1.";
      }

      leaf include-tcp-options {
        type boolean;
        default "true";
        description
          "When set to true, TCP options are included in the message
           authentication code (MAC) calculation.";
        reference
          "RFC 5925: The TCP Authentication Option, Section 3.1.";
      }

      leaf accept-key-mismatch {
        type boolean;
        description
          "Accept, when set to true, TCP segments with a Master Key
           Tuple (MKT) that is not configured.";
        reference
          "RFC 5925: The TCP Authentication Option, Section 7.3.";
      }

      leaf r-next-key-id {
        type uint8;
        config false;
        description
          "A field indicating the Master Key Tuple (MKT) that is ready
           at the sender to be used to authenticate received segments,
           i.e., the desired 'receive next' key ID.";
        reference
          "RFC 5925: The TCP Authentication Option.";
      }

      description
        "Authentication Option (AO) for TCP.";
      reference
        "RFC 5925: The TCP Authentication Option.";
    }

    // TCP configuration

    container tcp {
      presence "The container for TCP configuration.";

      description
        "TCP container.";

      container connections {
        list connection {
          key "local-address remote-address local-port remote-port";

          leaf local-address {
            type inet:ip-address;
            description
              "Identifies the address that is used by the local
               endpoint for the connection and is one of the four
               elements that form the connection identifier.";
          }

          leaf remote-address {
            type inet:ip-address;
            description
              "Identifies the address that is used by the remote
               endpoint for the connection and is one of the four
               elements that form the connection identifier.";
          }

          leaf local-port {
            type inet:port-number;
            description
              "Identifies the local TCP port used for the connection
               and is one of the four elements that form the
               connection identifier.";
          }

          leaf remote-port {
            type inet:port-number;
            description
              "Identifies the remote TCP port used for the connection
               and is one of the four elements that form the
               connection identifier.";
          }

          leaf mss {
            type mss;
            description
              "Maximum Segment Size (MSS) desired on this connection.
               Note that the 'effective send MSS' can be smaller than
               what is configured here.";
            reference
              "RFC 9293: Transmission Control Protocol (TCP).";
          }

          leaf pmtud {
            type boolean;
            default "false";
            description
              "Turns Path Maximum Transmission Unit Discovery (PMTUD)
               on (true) or off (false).";
            reference
              "RFC 9293: Transmission Control Protocol (TCP).";
          }

          uses tcpcmn:tcp-common-grouping;

          leaf state {
            type enumeration {
              enum closed {
                value 1;
                description
                  "Connection is closed. Connections in this state
                   may not appear in this list.";
              }
              enum listen {
                value 2;
                description
                  "Represents waiting for a connection request from any
                   remote TCP peer and port.";
              }
              enum syn-sent {
                value 3;
                description
                  "Represents waiting for a matching connection request
                   after having sent a connection request.";
              }
              enum syn-received {
                value 4;
                description
                  "Represents waiting for a confirming connection
                   request acknowledgment after having both received
                   and sent a connection request.";
              }
              enum established {
                value 5;
                description
                  "Represents an open connection; data received can be
                   delivered to the user.  The normal state for the
                   data transfer phase of the connection.";
              }
              enum fin-wait-1 {
                value 6;
                description
                  "Represents waiting for a connection termination
                   request from the remote TCP peer or an
                   acknowledgment of the connection termination
                   request previously sent.";
              }
              enum fin-wait-2 {
                value 7;
                description
                  "Represents waiting for a connection termination
                   request from the remote TCP peer.";
              }
              enum close-wait {
                value 8;
                description
                  "Represents waiting for a connection termination
                   request from the local user.";
              }
              enum last-ack {
                value 9;
                description
                  "Represents waiting for an acknowledgment of the
                   connection termination request previously sent to
                   the remote TCP peer (this termination request sent
                   to the remote TCP peer already included an
                   acknowledgment of the termination request sent from
                   the remote TCP peer).";
              }
              enum closing {
                value 10;
                description
                  "Represents waiting for a connection termination
                   request acknowledgment from the remote TCP peer.";
              }
              enum time-wait {
                value 11;
                description
                  "Represents waiting for enough time to pass to be
                   sure the remote TCP peer received the
                   acknowledgment of its connection termination
                   request and to avoid new connections being impacted
                   by delayed segments from previous connections.";
              }
            }
            config false;
            description
              "The state of this TCP connection.";
          }
          description
            "List of TCP connections with their parameters.

             The list is modeled as writable even though only some of
             the nodes are writable, e.g., keepalive.  Connections
             that are created and match this list SHOULD apply the
             writable parameters.  At the same time, implementations
             may not allow creation of new TCP connections simply by
             adding entries to the list.  Furthermore, the behavior
             upon removal is implementation-specific.  Implementations
             may not support closing or resetting a TCP connection
             upon an operation that removes the entry from the list.

             The operational state of this list SHOULD reflect
             connections that have configured but not created and
             connections that have been created.  Connections in the
             CLOSED state are not reflected on this list.";
        }
        description
          "A container of all TCP connections.";
      }

      list tcp-listeners {
        key "type address port";
        config false;

        description
          "A table containing information about a particular
           TCP listener.";

        leaf type {
          type inet:ip-version;
          description
            "The address type of address.  The value
             should be unspecified (0) if connection initiations
             to all local IP addresses are accepted.";
        }

        leaf address {
          type union {
            type inet:ip-address;
            type string {
              length "0";
            }
          }
          description
            "The local IP address for this TCP connection.

             The value of this node can be represented in three
             possible ways, depending on the characteristics of the
             listening application:

             1. For an application willing to accept both IPv4 and
                IPv6 datagrams, the value of this node must be
                ''h (a zero-length octet string), with the value
                of the corresponding 'type' object being
                unspecified (0).

             2. For an application willing to accept only IPv4 or
                IPv6 datagrams, the value of this node must be
                '0.0.0.0' or '::' respectively, with
                'type' representing the appropriate address type.

             3. For an application that is listening for data
                destined only to a specific IP address, the value
                of this node is the specific local address, with
                'type' representing the appropriate address type.";
        }

        leaf port {
          type inet:port-number;
          description
            "The local port number for this TCP connection.";
        }
      }

      container statistics {
        if-feature "statistics";
        config false;

        leaf active-opens {
          type yang:counter64;
          description
            "The number of times that TCP connections have made a
             direct transition to the SYN-SENT state from the CLOSED
             state.";
          reference
            "RFC 9293: Transmission Control Protocol (TCP).";
        }

        leaf passive-opens {
          type yang:counter64;
          description
            "The number of times TCP connections have made a direct
             transition to the SYN-RCVD state from the LISTEN state.";
          reference
            "RFC 9293: Transmission Control Protocol (TCP).";
        }

        leaf attempt-fails {
          type yang:counter64;
          description
            "The number of times that TCP connections have made a
             direct transition to the CLOSED state from either the
             SYN-SENT state or the SYN-RCVD state, plus the number of
             times that TCP connections have made a direct transition
             to the LISTEN state from the SYN-RCVD state.";
          reference
            "RFC 9293: Transmission Control Protocol (TCP).";
        }

        leaf establish-resets {
          type yang:counter64;
          description
            "The number of times that TCP connections have made a
             direct transition to the CLOSED state from either the
             ESTABLISHED state or the CLOSE-WAIT state.";
          reference
            "RFC 9293: Transmission Control Protocol (TCP).";
        }

        leaf currently-established {
          type yang:gauge32;
          description
            "The number of TCP connections for which the current state
             is either ESTABLISHED or CLOSE-WAIT.";
          reference
            "RFC 9293: Transmission Control Protocol (TCP).";
        }

        leaf in-segments {
          type yang:counter64;
          description
            "The total number of TCP segments received, including those
             received in error.  This count includes TCP segments
             received on currently established connections.";
          reference
            "RFC 9293: Transmission Control Protocol (TCP).";
        }

        leaf out-segments {
          type yang:counter64;
          description
            "The total number of TCP segments sent, including those on
             current connections but excluding those containing only
             retransmitted octets.";
          reference
            "RFC 9293: Transmission Control Protocol (TCP).";
        }

        leaf retransmitted-segments {
          type yang:counter64;
          description
            "The total number of TCP segments retransmitted; that is,
             the number of TCP segments transmitted containing one or
             more previously transmitted octets.";
          reference
            "RFC 9293: Transmission Control Protocol (TCP).";
        }

        leaf in-errors {
          type yang:counter64;
          description
            "The total number of TCP segments received in error
             (e.g., bad TCP checksums).";
          reference
            "RFC 9293: Transmission Control Protocol (TCP).";
        }

        leaf out-resets {
          type yang:counter64;
          description
            "The number of TCP segments sent containing the RST flag.";
          reference
            "RFC 9293: Transmission Control Protocol (TCP).";
        }

        leaf auth-failures {
          if-feature "authentication";
          type yang:counter64;
          description
            "The number of times that authentication has failed either
             with TCP-AO or MD5.";
        }

        action reset {
          nacm:default-deny-all;
          description
            "Reset statistics action command.";
          input {
            leaf reset-at {
              type yang:date-and-time;
              description
                "Time when the reset action needs to be
                 executed.";
            }
          }
          output {
            leaf reset-finished-at {
              type yang:date-and-time;
              description
                "Time when the reset action command completed.";
            }
          }
        }
        description
          "Statistics across all connections.";
      }
    }

    augment "/key-chain:key-chains/key-chain:key-chain/key-chain:key" {
      description
        "Augmentation of the key-chain model to add TCP-AO and TCP-MD5
         authentication.";

      container authentication {
        if-feature "authentication";
        leaf keychain {
          type key-chain:key-chain-ref;
          description
            "Reference to the key chain that will be used by
             this model.  Applicable for TCP-AO and TCP-MD5
             only.";
          reference
            "RFC 8177: YANG Data Model for Key Chains.";
        }

        choice authentication {
          container ao {
            presence "Presence container for all TCP-AO related"
                   + " configuration";
            uses ao;
            description
              "Use TCP-AO to secure the connection.";
          }

          container md5 {
            presence "Presence container for all MD5 related"
                   + " configuration";
            description
              "Use TCP-MD5 to secure the connection.  As the TCP MD5
               signature option is obsoleted by TCP-AO, it is
               RECOMMENDED to use TCP-AO instead.";
            reference
              "RFC 2385: Protection of BGP Sessions via the TCP MD5
                         Signature Option.";
          }
          description
            "Choice of TCP authentication.";
        }
        description
          "Authentication definitions for TCP configuration.
           This includes parameters such as how to secure the
           connection, which can be part of either the client
           or server.";
      }
    }
  }
  <CODE ENDS>

5.  IANA Considerations

5.1.  The IETF XML Registry

  IANA has registered the following URI in the "ns" registry defined in
  the "IETF XML Registry" [RFC3688].

  URI:  urn:ietf:params:xml:ns:yang:ietf-tcp
  Registrant Contact:  The IESG
  XML:  N/A; the requested URI is an XML namespace.

5.2.  The YANG Module Names Registry

  IANA has registered the following in the "YANG Module Names" registry
  created by "YANG - A Data Modeling Language for the Network
  Configuration Protocol (NETCONF)" [RFC6020].

  Name:  ietf-tcp
  Namespace:  urn:ietf:params:xml:ns:yang:ietf-tcp
  Prefix:  tcp
  Reference:  RFC 9648

  This is not an IANA maintained module; however, the URI and other
  details of the module are maintained by IANA.

6.  Security Considerations

  This section is modeled after the template defined in Section 3.7.1
  of [RFC8407].

  The "ietf-tcp" YANG module defines a schema for data that is designed
  to be accessed via YANG-based management protocols, such as NETCONF
  [RFC6241] and RESTCONF [RFC8040].  These protocols have mandatory-to-
  implement secure transport layers (e.g., Secure Shell (SSH)
  [RFC4252], TLS [RFC8446], and QUIC [RFC9000]) and mandatory-to-
  implement mutual authentication.

  The Network Configuration Access Control Model (NACM) [RFC8341]
  provides the means to restrict access for particular NETCONF or
  RESTCONF users to a preconfigured subset of all available NETCONF or
  RESTCONF protocol operations and content.

  There are a number of data nodes defined in this YANG module that are
  writable/creatable/deletable (i.e., "config true", which is the
  default).  These data nodes may be considered sensitive or vulnerable
  in some network environments.  Write operations (e.g., edit-config)
  to these data nodes without proper protection can have a negative
  effect on network operations.  These are the subtrees and data nodes
  and their sensitivity/vulnerability:

  *  Common configuration included from NETCONF client and server
     models [RFC9643].  Unrestricted access to all the nodes, e.g.,
     keepalive idle timer, can cause connections to fail or to timeout
     prematurely.

  *  Authentication configuration.  Unrestricted access to the nodes
     under authentication configuration can prevent the use of
     authenticated communication and cause connection setups to fail.
     This can result in massive security vulnerabilities and service
     disruption for the traffic requiring authentication.

  Some of the readable data nodes in this YANG module may be considered
  sensitive or vulnerable in some network environments.  It is thus
  important to control read access (e.g., via get, get-config, or
  notification) to these data nodes.  These are the subtrees and data
  nodes and their sensitivity/vulnerability:

  *  Unrestricted access to connection information of the client or
     server can be used by a malicious user to launch an attack.

  *  Similarly, unrestricted access to statistics of the client or
     server can be used by a malicious user to exploit any
     vulnerabilities of the system.

  Some of the RPC operations in this YANG module may be considered
  sensitive or vulnerable in some network environments.  It is thus
  important to control access to these operations.  These are the
  operations and their sensitivity/vulnerability:

  *  The YANG module allows for the statistics to be cleared by
     executing the reset action.  This action should be restricted to
     users with the right permission.

  The module specified in this document supports MD5 to basically
  accommodate the installed BGP base.  MD5 suffers from the security
  weaknesses discussed in Section 2 of [RFC6151] or Section 2.1 of
  [RFC6952].

7.  References

7.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC2385]  Heffernan, A., "Protection of BGP Sessions via the TCP MD5
             Signature Option", RFC 2385, DOI 10.17487/RFC2385, August
             1998, <https://www.rfc-editor.org/info/rfc2385>.

  [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
             DOI 10.17487/RFC3688, January 2004,
             <https://www.rfc-editor.org/info/rfc3688>.

  [RFC4252]  Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
             Authentication Protocol", RFC 4252, DOI 10.17487/RFC4252,
             January 2006, <https://www.rfc-editor.org/info/rfc4252>.

  [RFC5925]  Touch, J., Mankin, A., and R. Bonica, "The TCP
             Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
             June 2010, <https://www.rfc-editor.org/info/rfc5925>.

  [RFC5926]  Lebovitz, G. and E. Rescorla, "Cryptographic Algorithms
             for the TCP Authentication Option (TCP-AO)", RFC 5926,
             DOI 10.17487/RFC5926, June 2010,
             <https://www.rfc-editor.org/info/rfc5926>.

  [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
             the Network Configuration Protocol (NETCONF)", RFC 6020,
             DOI 10.17487/RFC6020, October 2010,
             <https://www.rfc-editor.org/info/rfc6020>.

  [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
             and A. Bierman, Ed., "Network Configuration Protocol
             (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
             <https://www.rfc-editor.org/info/rfc6241>.

  [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
             RFC 6991, DOI 10.17487/RFC6991, July 2013,
             <https://www.rfc-editor.org/info/rfc6991>.

  [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
             RFC 7950, DOI 10.17487/RFC7950, August 2016,
             <https://www.rfc-editor.org/info/rfc7950>.

  [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
             Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
             <https://www.rfc-editor.org/info/rfc8040>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8177]  Lindem, A., Ed., Qu, Y., Yeung, D., Chen, I., and J.
             Zhang, "YANG Data Model for Key Chains", RFC 8177,
             DOI 10.17487/RFC8177, June 2017,
             <https://www.rfc-editor.org/info/rfc8177>.

  [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
             BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
             <https://www.rfc-editor.org/info/rfc8340>.

  [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
             Access Control Model", STD 91, RFC 8341,
             DOI 10.17487/RFC8341, March 2018,
             <https://www.rfc-editor.org/info/rfc8341>.

  [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
             and R. Wilton, "Network Management Datastore Architecture
             (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
             <https://www.rfc-editor.org/info/rfc8342>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.

  [RFC9000]  Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
             Multiplexed and Secure Transport", RFC 9000,
             DOI 10.17487/RFC9000, May 2021,
             <https://www.rfc-editor.org/info/rfc9000>.

  [RFC9293]  Eddy, W., Ed., "Transmission Control Protocol (TCP)",
             STD 7, RFC 9293, DOI 10.17487/RFC9293, August 2022,
             <https://www.rfc-editor.org/info/rfc9293>.

  [RFC9643]  Watsen, K. and M. Scharf, "YANG Groupings for TCP Clients
             and TCP Servers", RFC 9643, DOI 10.17487/RFC9643, October
             2024, <https://www.rfc-editor.org/info/rfc9643>.

7.2.  Informative References

  [BGP-MODEL]
             Jethanandani, M., Patel, K., Hares, S., and J. Haas, "YANG
             Model for Border Gateway Protocol (BGP-4)", Work in
             Progress, Internet-Draft, draft-ietf-idr-bgp-model-17, 5
             July 2023, <https://datatracker.ietf.org/doc/html/draft-
             ietf-idr-bgp-model-17>.

  [NSF-CAP-YANG]
             Hares, S., Ed., Jeong, J., Ed., Kim, J., Moskowitz, R.,
             and Q. Lin, "I2NSF Capability YANG Data Model", Work in
             Progress, Internet-Draft, draft-ietf-i2nsf-capability-
             data-model-32, 23 May 2022,
             <https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-
             capability-data-model-32>.

  [NSF-FACING-YANG]
             Kim, J., Ed., Jeong, J., Ed., Park, J., Hares, S., and Q.
             Lin, "I2NSF Network Security Function-Facing Interface
             YANG Data Model", Work in Progress, Internet-Draft, draft-
             ietf-i2nsf-nsf-facing-interface-dm-29, 1 June 2022,
             <https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-
             nsf-facing-interface-dm-29>.

  [RFC4022]  Raghunarayan, R., Ed., "Management Information Base for
             the Transmission Control Protocol (TCP)", RFC 4022,
             DOI 10.17487/RFC4022, March 2005,
             <https://www.rfc-editor.org/info/rfc4022>.

  [RFC4364]  Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
             Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
             2006, <https://www.rfc-editor.org/info/rfc4364>.

  [RFC4898]  Mathis, M., Heffner, J., and R. Raghunarayan, "TCP
             Extended Statistics MIB", RFC 4898, DOI 10.17487/RFC4898,
             May 2007, <https://www.rfc-editor.org/info/rfc4898>.

  [RFC6151]  Turner, S. and L. Chen, "Updated Security Considerations
             for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
             RFC 6151, DOI 10.17487/RFC6151, March 2011,
             <https://www.rfc-editor.org/info/rfc6151>.

  [RFC6643]  Schoenwaelder, J., "Translation of Structure of Management
             Information Version 2 (SMIv2) MIB Modules to YANG
             Modules", RFC 6643, DOI 10.17487/RFC6643, July 2012,
             <https://www.rfc-editor.org/info/rfc6643>.

  [RFC6952]  Jethanandani, M., Patel, K., and L. Zheng, "Analysis of
             BGP, LDP, PCEP, and MSDP Issues According to the Keying
             and Authentication for Routing Protocols (KARP) Design
             Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013,
             <https://www.rfc-editor.org/info/rfc6952>.

  [RFC8259]  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
             Interchange Format", STD 90, RFC 8259,
             DOI 10.17487/RFC8259, December 2017,
             <https://www.rfc-editor.org/info/rfc8259>.

  [RFC8407]  Bierman, A., "Guidelines for Authors and Reviewers of
             Documents Containing YANG Data Models", BCP 216, RFC 8407,
             DOI 10.17487/RFC8407, October 2018,
             <https://www.rfc-editor.org/info/rfc8407>.

  [RFC8512]  Boucadair, M., Ed., Sivakumar, S., Jacquenet, C.,
             Vinapamula, S., and Q. Wu, "A YANG Module for Network
             Address Translation (NAT) and Network Prefix Translation
             (NPT)", RFC 8512, DOI 10.17487/RFC8512, January 2019,
             <https://www.rfc-editor.org/info/rfc8512>.

  [RFC8513]  Boucadair, M., Jacquenet, C., and S. Sivakumar, "A YANG
             Data Model for Dual-Stack Lite (DS-Lite)", RFC 8513,
             DOI 10.17487/RFC8513, January 2019,
             <https://www.rfc-editor.org/info/rfc8513>.

  [RFC8519]  Jethanandani, M., Agarwal, S., Huang, L., and D. Blair,
             "YANG Data Model for Network Access Control Lists (ACLs)",
             RFC 8519, DOI 10.17487/RFC8519, March 2019,
             <https://www.rfc-editor.org/info/rfc8519>.

  [RFC8684]  Ford, A., Raiciu, C., Handley, M., Bonaventure, O., and C.
             Paasch, "TCP Extensions for Multipath Operation with
             Multiple Addresses", RFC 8684, DOI 10.17487/RFC8684, March
             2020, <https://www.rfc-editor.org/info/rfc8684>.

  [RFC8783]  Boucadair, M., Ed. and T. Reddy.K, Ed., "Distributed
             Denial-of-Service Open Threat Signaling (DOTS) Data
             Channel Specification", RFC 8783, DOI 10.17487/RFC8783,
             May 2020, <https://www.rfc-editor.org/info/rfc8783>.

  [RFC8792]  Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
             "Handling Long Lines in Content of Internet-Drafts and
             RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
             <https://www.rfc-editor.org/info/rfc8792>.

  [RFC9182]  Barguil, S., Gonzalez de Dios, O., Ed., Boucadair, M.,
             Ed., Munoz, L., and A. Aguado, "A YANG Network Data Model
             for Layer 3 VPNs", RFC 9182, DOI 10.17487/RFC9182,
             February 2022, <https://www.rfc-editor.org/info/rfc9182>.

  [RFC9235]  Touch, J. and J. Kuusisaari, "TCP Authentication Option
             (TCP-AO) Test Vectors", RFC 9235, DOI 10.17487/RFC9235,
             May 2022, <https://www.rfc-editor.org/info/rfc9235>.

  [TAPS-INTERFACE]
             Trammell, B., Ed., Welzl, M., Ed., Enghardt, R.,
             Fairhurst, G., Kühlewind, M., Perkins, C., Tiesel, P., and
             T. Pauly, "An Abstract Application Layer Interface to
             Transport Services", Work in Progress, Internet-Draft,
             draft-ietf-taps-interface-26, 16 March 2024,
             <https://datatracker.ietf.org/doc/html/draft-ietf-taps-
             interface-26>.

  [W3C.REC-xml-20081126]
             Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E.,
             and F. Yergeau, "Extensible Markup Language (XML) 1.0
             (Fifth Edition)", World Wide Web Consortium
             Recommendation REC-xml-20081126, November 2008,
             <https://www.w3.org/TR/2008/REC-xml-20081126/>.

Appendix A.  Examples

A.1.  Keepalive Configuration

  This particular example demonstrates how a particular connection can
  be configured for keepalives.

  NOTE: '\' line wrapping per RFC 8792

  <?xml version="1.0" encoding="UTF-8"?>
  <!--
  This example shows how TCP keepalive, MSS, and PMTU can be configure\
  d for a given connection. An idle connection is dropped after
  idle-time + (max-probes * probe-interval).
  -->
  <tcp
      xmlns="urn:ietf:params:xml:ns:yang:ietf-tcp">
    <connections>
      <connection>
        <local-address>192.0.2.1</local-address>
        <remote-address>192.0.2.2</remote-address>
        <local-port>1025</local-port>
        <remote-port>22</remote-port>
        <mss>1400</mss>
        <pmtud>true</pmtud>
        <keepalives>
          <idle-time>5</idle-time>
          <max-probes>5</max-probes>
          <probe-interval>10</probe-interval>
        </keepalives>
      </connection>
    </connections>
  </tcp>

A.2.  TCP-AO Configuration

  The following example demonstrates how to model a TCP-AO [RFC5925]
  configuration for the example in "TCP Authentication Option (TCP-AO)
  Test Vectors" [RFC9235].  The IP addresses and other parameters are
  taken from the test vectors.

  NOTE: '\' line wrapping per RFC 8792

  <?xml version="1.0" encoding="UTF-8"?>
  <!--
  This example sets TCP-AO configuration parameters similarly to
  the examples in RFC 9235.
  -->

  <key-chains
      xmlns="urn:ietf:params:xml:ns:yang:ietf-key-chain">
    <key-chain>
      <name>ao-config</name>
      <description>"An example for TCP-AO configuration."</description>
      <key>
        <key-id>55</key-id>
        <lifetime>
          <send-lifetime>
            <start-date-time>2017-01-01T00:00:00Z</start-date-time>
            <end-date-time>2017-02-01T00:00:00Z</end-date-time>
          </send-lifetime>
          <accept-lifetime>
            <start-date-time>2016-12-31T23:59:55Z</start-date-time>
            <end-date-time>2017-02-01T00:00:05Z</end-date-time>
          </accept-lifetime>
        </lifetime>
        <crypto-algorithm
            xmlns:tcp=
            "urn:ietf:params:xml:ns:yang:ietf-tcp">tcp:aes-128</crypto\
  -algorithm>
        <key-string>
          <keystring>testvector</keystring>
        </key-string>
        <authentication
            xmlns="urn:ietf:params:xml:ns:yang:ietf-tcp">
          <keychain>ao-config</keychain>
          <ao>
            <send-id>61</send-id>
            <recv-id>84</recv-id>
          </ao>
        </authentication>
      </key>
    </key-chain>
  </key-chains>

Appendix B.  Complete Tree Diagram

  Here is the complete tree diagram for the TCP YANG data model.

  module: ietf-tcp
    +--rw tcp!
       +--rw connections
       |  +--rw connection*
       |          [local-address remote-address local-port remote-port]
       |     +--rw local-address     inet:ip-address
       |     +--rw remote-address    inet:ip-address
       |     +--rw local-port        inet:port-number
       |     +--rw remote-port       inet:port-number
       |     +--rw mss?              mss
       |     +--rw pmtud?            boolean
       |     +--rw keepalives! {keepalives-supported}?
       |     |  +--rw idle-time         uint16
       |     |  +--rw max-probes        uint16
       |     |  +--rw probe-interval    uint16
       |     +--ro state?            enumeration
       +--ro tcp-listeners* [type address port]
       |  +--ro type       inet:ip-version
       |  +--ro address    union
       |  +--ro port       inet:port-number
       +--ro statistics {statistics}?
          +--ro active-opens?             yang:counter64
          +--ro passive-opens?            yang:counter64
          +--ro attempt-fails?            yang:counter64
          +--ro establish-resets?         yang:counter64
          +--ro currently-established?    yang:gauge32
          +--ro in-segments?              yang:counter64
          +--ro out-segments?             yang:counter64
          +--ro retransmitted-segments?   yang:counter64
          +--ro in-errors?                yang:counter64
          +--ro out-resets?               yang:counter64
          +--ro auth-failures?            yang:counter64
          |       {authentication}?
          +---x reset
             +---w input
             |  +---w reset-at?   yang:date-and-time
             +--ro output
                +--ro reset-finished-at?   yang:date-and-time

    augment /key-chain:key-chains/key-chain:key-chain/key-chain:key:
      +--rw authentication {authentication}?
         +--rw keychain?    key-chain:key-chain-ref
         +--rw (authentication)?
            +--:(ao)
            |  +--rw ao!
            |     +--rw send-id?               uint8
            |     +--rw recv-id?               uint8
            |     +--rw include-tcp-options?   boolean
            |     +--rw accept-key-mismatch?   boolean
            |     +--ro r-next-key-id?         uint8
            +--:(md5)
               +--rw md5!

Acknowledgements

  Michael Scharf was supported by the StandICT.eu project, which is
  funded by the European Commission under the Horizon 2020 Programme.

  The following persons have contributed to this document by reviews
  (in alphabetical order): Mohamed Boucadair, Gorry Fairhurst, Jeffrey
  Haas, and Tom Petch.

Authors' Addresses

  Michael Scharf
  Hochschule Esslingen
  University of Applied Sciences
  Kanalstr. 33
  73728 Esslingen am Neckar
  Germany
  Email: [email protected]


  Mahesh Jethanandani
  Kloud Services
  Email: [email protected]


  Vishal Murgai
  F5, Inc.
  Email: [email protected]