Internet Engineering Task Force (IETF)                         K. Watsen
Request for Comments: 9646                               Watsen Networks
Updates: 8572                                                 R. Housley
Category: Standards Track                                 Vigil Security
ISSN: 2070-1721                                                S. Turner
                                                                  sn3rd
                                                           October 2024


 Conveying a Certificate Signing Request (CSR) in a Secure Zero-Touch
              Provisioning (SZTP) Bootstrapping Request

Abstract

  This document extends the input to the "get-bootstrapping-data" RPC
  defined in RFC 8572 to include an optional certificate signing
  request (CSR), enabling a bootstrapping device to additionally obtain
  an identity certificate (e.g., a Local Device Identifier (LDevID)
  from IEEE 802.1AR) as part of the "onboarding information" response
  provided in the RPC-reply.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9646.

Copyright Notice

  Copyright (c) 2024 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
    1.1.  Overview
    1.2.  Terminology
    1.3.  Requirements Language
    1.4.  Conventions
  2.  The "ietf-sztp-csr" Module
    2.1.  Data Model Overview
    2.2.  Example Usage
    2.3.  YANG Module
  3.  The "ietf-ztp-types" Module
    3.1.  Data Model Overview
    3.2.  YANG Module
  4.  Security Considerations
    4.1.  SZTP-Client Considerations
      4.1.1.  Ensuring the Integrity of Asymmetric Private Keys
      4.1.2.  Reuse of a Manufacturer-Generated Private Key
      4.1.3.  Replay Attack Protection
      4.1.4.  Connecting to an Untrusted Bootstrap Server
      4.1.5.  Selecting the Best Origin Authentication Mechanism
      4.1.6.  Clearing the Private Key and Associated Certificate
    4.2.  SZTP-Server Considerations
      4.2.1.  Verifying Proof-of-Possession
      4.2.2.  Verifying Proof-of-Origin
      4.2.3.  Supporting SZTP-Clients That Don't Trust the
              SZTP-Server
    4.3.  Security Considerations for the "ietf-sztp-csr" YANG Module
    4.4.  Security Considerations for the "ietf-ztp-types" YANG
          Module
  5.  IANA Considerations
    5.1.  The IETF XML Registry
    5.2.  The YANG Module Names Registry
  6.  References
    6.1.  Normative References
    6.2.  Informative References
  Acknowledgements
  Contributors
  Authors' Addresses

1.  Introduction

1.1.  Overview

  This document extends the input to the "get-bootstrapping-data" RPC
  defined in [RFC8572] to include an optional certificate signing
  request (CSR) [RFC2986], enabling a bootstrapping device to
  additionally obtain an identity certificate (e.g., an LDevID from
  [Std-802.1AR-2018]) as part of the "onboarding information" response
  provided in the RPC-reply.

  The ability to provision an identity certificate that is purpose-
  built for a production environment during the bootstrapping process
  removes reliance on the manufacturer Certification Authority (CA),
  and it also enables the bootstrapped device to join the production
  environment with an appropriate identity and other attributes in its
  identity certificate (e.g., an LDevID).

  Two YANG [RFC7950] modules are defined.  The "ietf-ztp-types" module
  defines three YANG groupings for the various messages defined in this
  document.  The "ietf-sztp-csr" module augments two groupings into the
  "get-bootstrapping-data" RPC and defines a YANG data structure
  [RFC8791] around the third grouping.

1.2.  Terminology

  This document uses the following terms from [RFC8572]:

  *  Bootstrap Server
  *  Bootstrapping Data
  *  Conveyed Information
  *  Device
  *  Manufacturer
  *  Onboarding Information
  *  Signed Data

  This document defines the following new terms:

  SZTP-client:  The term "SZTP-client" refers to a "device" that is
     using a "bootstrap server" as a source of "bootstrapping data".

  SZTP-server:  The term "SZTP-server" is an alternative term for
     "bootstrap server" that is symmetric with the "SZTP-client" term.

1.3.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

1.4.  Conventions

  Various examples in this document use "BASE64VALUE=" as a placeholder
  value for binary data that has been base64 encoded (per Section 9.8
  of [RFC7950]).  This placeholder value is used because real
  base64-encoded structures are often many lines long and hence
  distracting to the example being presented.

  Various examples in this document contain long lines that may be
  folded, as described in [RFC8792].

2.  The "ietf-sztp-csr" Module

  The "ietf-sztp-csr" module is a YANG 1.1 [RFC7950] module that
  augments the "ietf-sztp-bootstrap-server" module defined in [RFC8572]
  and defines a YANG "structure" that is to be conveyed in the "error-
  info" node defined in Section 7.1 of [RFC8040].

2.1.  Data Model Overview

  The following tree diagram [RFC8340] illustrates the "ietf-sztp-csr"
  module.

  module: ietf-sztp-csr

    augment /sztp-svr:get-bootstrapping-data/sztp-svr:input:
      +---w (msg-type)?
         +--:(csr-support)
         |  +---w csr-support
         |     +---w key-generation!
         |     |  +---w supported-algorithms
         |     |     +---w algorithm-identifier*   binary
         |     +---w csr-generation
         |        +---w supported-formats
         |           +---w format-identifier*   identityref
         +--:(csr)
            +---w (csr-type)
               +--:(p10-csr)
               |  +---w p10-csr?   ct:csr
               +--:(cmc-csr)
               |  +---w cmc-csr?   binary
               +--:(cmp-csr)
                  +---w cmp-csr?   binary

    structure csr-request:
      +-- key-generation!
      |  +-- selected-algorithm
      |     +-- algorithm-identifier    binary
      +-- csr-generation
      |  +-- selected-format
      |     +-- format-identifier    identityref
      +-- cert-req-info?    ct:csr-info

  The augmentation defines two kinds of parameters that an SZTP-client
  can send to an SZTP-server.  The YANG structure defines one
  collection of parameters that an SZTP-server can send to an SZTP-
  client.

  In the order of their intended use:

  1.  The SZTP-client sends a "csr-support" node, encoded in a first
      "get-bootstrapping-data" request to the SZTP-server, to indicate
      that it supports the ability to generate CSRs.  This input
      parameter conveys if the SZTP-client is able to generate a new
      asymmetric key and, if so, which key algorithms it supports, as
      well as what kinds of CSR structures the SZTP-client is able to
      generate.

  2.  The SZTP-server responds with an error, containing the "csr-
      request" structure, to request the SZTP-client to generate a CSR.
      This structure is used to select the key algorithm the SZTP-
      client should use to generate a new asymmetric key (if
      supported), the kind of CSR structure the SZTP-client should
      generate, and optionally the content for the CSR itself.

  3.  The SZTP-client sends one of the "*-csr" nodes, encoded in a
      second "get-bootstrapping-data" request to the SZTP-server.  This
      node encodes the server-requested CSR.

  4.  The SZTP-server responds with onboarding information to
      communicate the signed certificate to the SZTP-client.  How to do
      this is discussed in Section 2.2.

  To further illustrate how the augmentation and structure defined by
  the "ietf-sztp-csr" module are used, below are two additional tree
  diagrams showing these nodes placed where they are used.

  The following tree diagram [RFC8340] illustrates SZTP's "get-
  bootstrapping-data" RPC with the augmentation in place.

  =============== NOTE: '\' line wrapping per RFC 8792 ================

  module: ietf-sztp-bootstrap-server

    rpcs:
      +---x get-bootstrapping-data
         +---w input
         |  +---w signed-data-preferred?          empty
         |  +---w hw-model?                       string
         |  +---w os-name?                        string
         |  +---w os-version?                     string
         |  +---w nonce?                          binary
         |  +---w (sztp-csr:msg-type)?
         |     +--:(sztp-csr:csr-support)
         |     |  +---w sztp-csr:csr-support
         |     |     +---w sztp-csr:key-generation!
         |     |     |  +---w sztp-csr:supported-algorithms
         |     |     |     +---w sztp-csr:algorithm-identifier*   bina\
  ry
         |     |     +---w sztp-csr:csr-generation
         |     |        +---w sztp-csr:supported-formats
         |     |           +---w sztp-csr:format-identifier*   identit\
  yref
         |     +--:(sztp-csr:csr)
         |        +---w (sztp-csr:csr-type)
         |           +--:(sztp-csr:p10-csr)
         |           |  +---w sztp-csr:p10-csr?   ct:csr
         |           +--:(sztp-csr:cmc-csr)
         |           |  +---w sztp-csr:cmc-csr?   binary
         |           +--:(sztp-csr:cmp-csr)
         |              +---w sztp-csr:cmp-csr?   binary
         +--ro output
            +--ro reporting-level?    enumeration {onboarding-server}?
            +--ro conveyed-information    cms
            +--ro owner-certificate?      cms
            +--ro ownership-voucher?      cms

  The following tree diagram [RFC8340] illustrates RESTCONF's "errors"
  RPC-reply message with the "csr-request" structure in place.

  module: ietf-restconf
    +--ro errors
       +--ro error* []
          +--ro error-type       enumeration
          +--ro error-tag        string
          +--ro error-app-tag?   string
          +--ro error-path?      instance-identifier
          +--ro error-message?   string
          +--ro error-info
             +--ro sztp-csr:csr-request
                +--ro sztp-csr:key-generation!
                |  +--ro sztp-csr:selected-algorithm
                |     +--ro sztp-csr:algorithm-identifier    binary
                +--ro sztp-csr:csr-generation
                |  +--ro sztp-csr:selected-format
                |     +--ro sztp-csr:format-identifier    identityref
                +--ro sztp-csr:cert-req-info?    ct:csr-info

2.2.  Example Usage

     |  NOTE: The examples below are encoded using JSON, but they could
     |  equally well be encoded using XML, as is supported by SZTP.

  An SZTP-client implementing this specification would signal to the
  bootstrap server its willingness to generate a CSR by including the
  "csr-support" node in its "get-bootstrapping-data" RPC.  In the
  example below, the SZTP-client additionally indicates that it is able
  to generate keys and provides a list of key algorithms it supports,
  as well as provide a list of certificate formats it supports.

  REQUEST

  =============== NOTE: '\' line wrapping per RFC 8792 ================

  POST /restconf/operations/ietf-sztp-bootstrap-server:get-bootstrappi\
  ng-data HTTP/1.1
  HOST: example.com
  Content-Type: application/yang-data+json

  {
    "ietf-sztp-bootstrap-server:input" : {
      "hw-model": "model-x",
      "os-name": "vendor-os",
      "os-version": "17.3R2.1",
      "nonce": "extralongbase64encodedvalue=",
      "ietf-sztp-csr:csr-support": {
        "key-generation": {
          "supported-algorithms": {
            "algorithm-identifier": [
              "BASE64VALUE1",
              "BASE64VALUE2",
              "BASE64VALUE3"
            ]
          }
        },
        "csr-generation": {
          "supported-formats": {
            "format-identifier": [
              "ietf-ztp-types:p10-csr",
              "ietf-ztp-types:cmc-csr",
              "ietf-ztp-types:cmp-csr"
            ]
          }
        }
      }
    }
  }

  Assuming the SZTP-server wishes to prompt the SZTP-client to provide
  a CSR, then it would respond with an HTTP 400 Bad Request error code.
  In the example below, the SZTP-server specifies that it wishes the
  SZTP-client to generate a key using a specific algorithm and generate
  a PKCS#10-based CSR containing specific content.

  RESPONSE

  HTTP/1.1 400 Bad Request
  Date: Sat, 31 Oct 2021 17:02:40 GMT
  Server: example-server
  Content-Type: application/yang-data+json

  {
    "ietf-restconf:errors" : {
      "error" : [
        {
          "error-type": "application",
          "error-tag": "missing-attribute",
          "error-message": "Missing input parameter",
          "error-info": {
            "ietf-sztp-csr:csr-request": {
              "key-generation": {
                "selected-algorithm": {
                  "algorithm-identifier": "BASE64VALUE="
                }
              },
              "csr-generation": {
                "selected-format": {
                  "format-identifier": "ietf-ztp-types:p10-csr"
                }
              },
              "cert-req-info": "BASE64VALUE="
            }
          }
        }
      ]
    }
  }

  Upon being prompted to provide a CSR, the SZTP-client would POST
  another "get-bootstrapping-data" request but this time including one
  of the "csr" nodes to convey its CSR to the SZTP-server:

  REQUEST

  =============== NOTE: '\' line wrapping per RFC 8792 ================

  POST /restconf/operations/ietf-sztp-bootstrap-server:get-bootstrappi\
  ng-data HTTP/1.1
  HOST: example.com
  Content-Type: application/yang-data+json

  {
    "ietf-sztp-bootstrap-server:input" : {
      "hw-model": "model-x",
      "os-name": "vendor-os",
      "os-version": "17.3R2.1",
      "nonce": "extralongbase64encodedvalue=",
      "ietf-sztp-csr:p10-csr": "BASE64VALUE="
    }
  }

  At this point, it is expected that the SZTP-server, perhaps in
  conjunction with other systems, such as a backend CA or registration
  authority (RA), will validate the CSR's origin and proof-of-
  possession and, assuming the CSR is approved, issue a signed
  certificate for the bootstrapping device.

  The SZTP-server responds with conveyed information (the "conveyed-
  information" node shown below) that encodes "onboarding-information"
  (inside the base64 value) containing a signed identity certificate
  for the CSR provided by the SZTP-client:

  RESPONSE

  HTTP/1.1 200 OK
  Date: Sat, 31 Oct 2021 17:02:40 GMT
  Server: example-server
  Content-Type: application/yang-data+json

  {
    "ietf-sztp-bootstrap-server:output" : {
      "reporting-level": "verbose",
      "conveyed-information": "BASE64VALUE="
    }
  }

  How the signed certificate is conveyed inside the onboarding
  information is outside the scope of this document.  Some
  implementations may choose to convey it inside a script (e.g., SZTP's
  "pre-configuration-script"), while other implementations may choose
  to convey it inside the SZTP "configuration" node.  SZTP onboarding
  information is described in Section 2.2 of [RFC8572].

  Below are two examples of conveying the signed certificate inside the
  "configuration" node.  Both examples assume that the SZTP-client
  understands the "ietf-keystore" module defined in [RFC9642].

  This first example illustrates the case where the signed certificate
  is for the same asymmetric key used by the SZTP-client's
  manufacturer-generated identity certificate (e.g., an Initial Device
  Identifier (IDevID) from [Std-802.1AR-2018]).  As such, the
  configuration needs to associate the newly signed certificate with
  the existing asymmetric key:

  =============== NOTE: '\' line wrapping per RFC 8792 ================

  {
    "ietf-keystore:keystore": {
      "asymmetric-keys": {
        "asymmetric-key": [
          {
            "name": "Manufacturer-Generated Hidden Key",
            "public-key-format": "ietf-crypto-types:subject-public-key\
  -info-format",
            "public-key": "BASE64VALUE=",
            "hidden-private-key": [null],
            "certificates": {
              "certificate": [
                {
                  "name": "Manufacturer-Generated IDevID Cert",
                  "cert-data": "BASE64VALUE="
                },
                {
                  "name": "Newly-Generated LDevID Cert",
                  "cert-data": "BASE64VALUE="
                }
              ]
            }
          }
        ]
      }
    }
  }

  This second example illustrates the case where the signed certificate
  is for a newly generated asymmetric key.  As such, the configuration
  needs to associate the newly signed certificate with the newly
  generated asymmetric key:

  =============== NOTE: '\' line wrapping per RFC 8792 ================

  {
    "ietf-keystore:keystore": {
      "asymmetric-keys": {
        "asymmetric-key": [
          {
            "name": "Manufacturer-Generated Hidden Key",
            "public-key-format": "ietf-crypto-types:subject-public-key\
  -info-format",
            "public-key": "BASE64VALUE=",
            "hidden-private-key": [null],
            "certificates": {
              "certificate": [
                {
                  "name": "Manufacturer-Generated IDevID Cert",
                  "cert-data": "BASE64VALUE="
                }
              ]
            }
          },
          {
            "name": "Newly-Generated Hidden Key",
            "public-key-format": "ietf-crypto-types:subject-public-key\
  -info-format",
            "public-key": "BASE64VALUE=",
            "hidden-private-key": [null],
            "certificates": {
              "certificate": [
                {
                  "name": "Newly-Generated LDevID Cert",
                  "cert-data": "BASE64VALUE="
                }
              ]
            }
          }
        ]
      }
    }
  }

  In addition to configuring the signed certificate, it is often
  necessary to also configure the issuer's signing certificate so that
  the device (i.e., STZP-client) can authenticate certificates
  presented by peer devices signed by the same issuer as its own.
  While outside the scope of this document, one way to do this would be
  to use the "ietf-truststore" module defined in [RFC9641].

2.3.  YANG Module

  This module augments an RPC defined in [RFC8572].  The module uses
  data types and groupings defined in [RFC8572], [RFC8791], and
  [RFC9640].  The module also has an informative reference to
  [Std-802.1AR-2018].

  <CODE BEGINS> file "[email protected]"
  module ietf-sztp-csr {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-sztp-csr";
    prefix sztp-csr;

    import ietf-sztp-bootstrap-server {
      prefix sztp-svr;
      reference
        "RFC 8572: Secure Zero Touch Provisioning (SZTP)";
    }

    import ietf-yang-structure-ext {
      prefix sx;
      reference
        "RFC 8791: YANG Data Structure Extensions";
    }

    import ietf-ztp-types {
      prefix zt;
      reference
        "RFC 9646: Conveying a Certificate Signing Request (CSR)
                   in a Secure Zero-Touch Provisioning (SZTP)
                   Bootstrapping Request";
    }

    organization
      "IETF NETCONF (Network Configuration) Working Group";

    contact
      "WG Web:   https://datatracker.ietf.org/wg/netconf
       WG List:  NETCONF WG list <mailto:[email protected]>
       Authors:  Kent Watsen <mailto:[email protected]>
                 Russ Housley <mailto:[email protected]>
                 Sean Turner <mailto:[email protected]>";

    description
      "This module augments the 'get-bootstrapping-data' RPC,
       defined in the 'ietf-sztp-bootstrap-server' module from
       SZTP (RFC 8572), enabling the SZTP-client to obtain a
       signed identity certificate (e.g., an LDevID from IEEE
       802.1AR) as part of the SZTP onboarding information
       response.

       The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
       'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
       'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
       document are to be interpreted as described in BCP 14
       (RFC 2119) (RFC 8174) when, and only when, they appear
       in all capitals, as shown here.

       Copyright (c) 2024 IETF Trust and the persons identified as
       authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or
       without modification, is permitted pursuant to, and subject to
       the license terms contained in, the Revised BSD License set
       forth in Section 4.c of the IETF Trust's Legal Provisions
       Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC 9646
       (https://www.rfc-editor.org/info/rfc9646); see the
       RFC itself for full legal notices.";

    revision 2024-10-10 {
      description
        "Initial version.";
      reference
        "RFC 9646: Conveying a Certificate Signing Request (CSR)
                   in a Secure Zero-Touch Provisioning (SZTP)
                   Bootstrapping Request";
    }

    // Protocol-accessible nodes

    augment "/sztp-svr:get-bootstrapping-data/sztp-svr:input" {
      description
        "This augmentation adds the 'csr-support' and 'csr' nodes to
         the SZTP (RFC 8572) 'get-bootstrapping-data' request message,
         enabling the SZTP-client to obtain an identity certificate
         (e.g., an LDevID from IEEE 802.1AR) as part of the onboarding
         information response provided by the SZTP-server.

         The 'csr-support' node enables the SZTP-client to indicate
         that it supports generating certificate signing requests
         (CSRs) and to provide details around the CSRs it is able
         to generate.

         The 'csr' node enables the SZTP-client to relay a CSR to
         the SZTP-server.";
      reference
        "IEEE 802.1AR: IEEE Standard for Local and Metropolitan
                       Area Networks - Secure Device Identity
         RFC 8572: Secure Zero Touch Provisioning (SZTP)";
      choice msg-type {
        description
          "Messages are mutually exclusive.";
        case csr-support {
          description
            "Indicates how the SZTP-client supports generating CSRs.

             If present and a SZTP-server wishes to request the
             SZTP-client generate a CSR, the SZTP-server MUST
             respond with an HTTP 400 Bad Request error code with an
             'ietf-restconf:errors' message having the 'error-tag'
             value 'missing-attribute' and the 'error-info' node
             containing the 'csr-request' structure described
             in this module.";
          uses zt:csr-support-grouping;
        }
        case csr {
          description
            "Provides the CSR generated by the SZTP-client.

             When present, the SZTP-server SHOULD respond with
             an SZTP onboarding information message containing
             a signed certificate for the conveyed CSR.  The
             SZTP-server MAY alternatively respond with another
             HTTP error containing another 'csr-request'; in
             which case, the SZTP-client MUST delete any key
             generated for the previously generated CSR.";
          uses zt:csr-grouping;
        }
      }
    }

    sx:structure csr-request {
      description
        "A YANG data structure, per RFC 8791, that specifies
         details for the CSR that the ZTP-client is to generate.";
      reference
        "RFC 8791: YANG Data Structure Extensions";
      uses zt:csr-request-grouping;
    }

  }
  <CODE ENDS>

3.  The "ietf-ztp-types" Module

  This section defines a YANG 1.1 [RFC7950] module that defines three
  YANG groupings, one for each message sent between a ZTP-client and
  ZTP-server.  This module is defined independently of the "ietf-sztp-
  csr" module so that its groupings may be used by bootstrapping
  protocols other than SZTP [RFC8572].

3.1.  Data Model Overview

  The following tree diagram [RFC8340] illustrates the three groupings
  defined in the "ietf-ztp-types" module.

  module: ietf-ztp-types

    grouping csr-support-grouping
      +-- csr-support
         +-- key-generation!
         |  +-- supported-algorithms
         |     +-- algorithm-identifier*   binary
         +-- csr-generation
            +-- supported-formats
               +-- format-identifier*   identityref
    grouping csr-request-grouping
      +-- key-generation!
      |  +-- selected-algorithm
      |     +-- algorithm-identifier    binary
      +-- csr-generation
      |  +-- selected-format
      |     +-- format-identifier    identityref
      +-- cert-req-info?    ct:csr-info
    grouping csr-grouping
      +-- (csr-type)
         +--:(p10-csr)
         |  +-- p10-csr?   ct:csr
         +--:(cmc-csr)
         |  +-- cmc-csr?   binary
         +--:(cmp-csr)
            +-- cmp-csr?   binary

3.2.  YANG Module

  This module uses data types and groupings defined in [RFC8791] and
  [RFC9640].  The module has additional normative references to
  [RFC2986], [RFC4210], [RFC5272], and [ITU.X690.2021] and an
  informative reference to [Std-802.1AR-2018].

  <CODE BEGINS> file "[email protected]"
  module ietf-ztp-types {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-ztp-types";
    prefix zt;

    import ietf-crypto-types {
      prefix ct;
      reference
        "RFC 9640: YANG Data Types and Groupings for Cryptography";
    }

    organization
      "IETF NETCONF (Network Configuration) Working Group";

    contact
      "WG Web:   https://datatracker.ietf.org/wg/netconf
       WG List:  NETCONF WG list <mailto:[email protected]>
       Authors:  Kent Watsen <mailto:[email protected]>
                 Russ Housley <mailto:[email protected]>
                 Sean Turner <mailto:[email protected]>";

    description
      "This module defines three groupings that enable
       bootstrapping devices to 1) indicate if and how they
       support generating CSRs, 2) obtain a request to
       generate a CSR, and 3) communicate the requested CSR.

       The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
       'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
       'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this
       document are to be interpreted as described in BCP 14
       (RFC 2119) (RFC 8174) when, and only when, they appear
       in all capitals, as shown here.

       Copyright (c) 2024 IETF Trust and the persons identified as
       authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or
       without modification, is permitted pursuant to, and subject to
       the license terms contained in, the Revised BSD License set
       forth in Section 4.c of the IETF Trust's Legal Provisions
       Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC 9646
       (https://www.rfc-editor.org/info/rfc9646); see the
       RFC itself for full legal notices.";

    revision 2024-10-10 {
      description
        "Initial version.";
      reference
        "RFC 9646: Conveying a Certificate Signing Request (CSR)
                   in a Secure Zero-Touch Provisioning (SZTP)
                   Bootstrapping Request";
    }

    identity certificate-request-format {
      description
        "A base identity for the request formats supported
         by the ZTP-client.

         Additional derived identities MAY be defined by
         future efforts.";
    }

    identity p10-csr {
      base certificate-request-format;
      description
        "Indicates that the ZTP-client supports generating
         requests using the 'CertificationRequest' structure
         defined in RFC 2986.";
      reference
        "RFC 2986: PKCS #10: Certification Request Syntax
                   Specification Version 1.7";
    }

    identity cmp-csr {
      base certificate-request-format;
      description
        "Indicates that the ZTP-client supports generating
         requests using a profiled version of the PKIMessage
         that MUST contain a PKIHeader followed by a PKIBody
         containing only the ir, cr, kur, or p10cr structures
         defined in RFC 4210.";
      reference
        "RFC 4210: Internet X.509 Public Key Infrastructure
                   Certificate Management Protocol (CMP)";
    }

    identity cmc-csr {
      base certificate-request-format;
      description
        "Indicates that the ZTP-client supports generating
         requests using a profiled version of the 'Full
         PKI Request' structure defined in RFC 5272.";
      reference
        "RFC 5272: Certificate Management over CMS (CMC)";
    }

    // Protocol-accessible nodes

    grouping csr-support-grouping {
      description
        "A grouping enabling use by other efforts.";
      container csr-support {
        description
          "Enables a ZTP-client to indicate that it supports
           generating certificate signing requests (CSRs) and
           provides details about the CSRs it is able to
           generate.";
        container key-generation {
          presence "Indicates that the ZTP-client is capable of
                    generating a new asymmetric key pair.

                    If this node is not present, the ZTP-server MAY
                    request a CSR using the asymmetric key associated
                    with the device's existing identity certificate
                    (e.g., an IDevID from IEEE 802.1AR).";
          description
            "Specifies details for the ZTP-client's ability to
             generate a new asymmetric key pair.";
          container supported-algorithms {
            description
              "A list of public key algorithms supported by the
               ZTP-client for generating a new asymmetric key.";
            leaf-list algorithm-identifier {
              type binary;
              min-elements 1;
              description
                "An AlgorithmIdentifier, as defined in RFC 2986,
                 encoded using ASN.1 Distinguished Encoding Rules
                 (DER), as specified in ITU-T X.690.";
              reference
                "RFC 2986: PKCS #10: Certification Request Syntax
                           Specification Version 1.7
                 ITU-T X.690:
                   Information technology - ASN.1 encoding rules:
                   Specification of Basic Encoding Rules (BER),
                   Canonical Encoding Rules (CER) and Distinguished
                   Encoding Rules (DER)";
            }
          }
        }
        container csr-generation {
          description
            "Specifies details for the ZTP-client's ability to
             generate certificate signing requests.";
          container supported-formats {
            description
              "A list of certificate request formats supported
               by the ZTP-client for generating a new key.";
            leaf-list format-identifier {
              type identityref {
                base zt:certificate-request-format;
              }
              min-elements 1;
              description
                "A certificate request format supported by the
                 ZTP-client.";
            }
          }
        }
      }
    }

    grouping csr-request-grouping {
      description
        "A grouping enabling use by other efforts.";
      container key-generation {
        presence "Provided by a ZTP-server to indicate that it wishes
                  the ZTP-client to generate a new asymmetric key.

                  This statement is present so the mandatory
                  descendant nodes do not imply that this node must
                  be configured.";
        description
          "The key generation parameters selected by the ZTP-server.

           This leaf MUST only appear if the ZTP-client's
           'csr-support' included the 'key-generation' node.";
        container selected-algorithm {
          description
            "The key algorithm selected by the ZTP-server.  The
             algorithm MUST be one of the algorithms specified by
             the 'supported-algorithms' node in the ZTP-client's
             message containing the 'csr-support' structure.";
          leaf algorithm-identifier {
            type binary;
            mandatory true;
            description
              "An AlgorithmIdentifier, as defined in RFC 2986,
               encoded using ASN.1 Distinguished Encoding Rules
               (DER), as specified in ITU-T X.690.";
            reference
              "RFC 2986: PKCS #10: Certification Request Syntax
                         Specification Version 1.7
               ITU-T X.690:
                 Information technology - ASN.1 encoding rules:
                 Specification of Basic Encoding Rules (BER),
                 Canonical Encoding Rules (CER) and Distinguished
                 Encoding Rules (DER)";
          }
        }
      }
      container csr-generation {
        description
          "Specifies details for the CSR that the ZTP-client
           is to generate.";
        container selected-format {
          description
            "The CSR format selected by the ZTP-server.  The
             format MUST be one of the formats specified by
             the 'supported-formats' node in the ZTP-client's
             request message.";
          leaf format-identifier {
            type identityref {
              base zt:certificate-request-format;
            }
            mandatory true;
            description
              "A certificate request format to be used by the
               ZTP-client.";
          }
        }
      }
      leaf cert-req-info {
        type ct:csr-info;
        description
          "A CertificationRequestInfo structure, as defined in
           RFC 2986, and modeled via a 'typedef' statement by
           RFC 9640.

           Enables the ZTP-server to provide a fully populated
           CertificationRequestInfo structure that the ZTP-client
           only needs to sign in order to generate the complete
           'CertificationRequest' structure to send to the ZTP-server
           in its next 'get-bootstrapping-data' request message.

           When provided, the ZTP-client MUST use this structure
           to generate its CSR; failure to do so will result in a
           400 Bad Request response containing another 'csr-request'
           structure.

           When not provided, the ZTP-client SHOULD generate a CSR
           using the same structure defined in its existing identity
           certificate (e.g., an IDevID from IEEE 802.1AR).

           If the 'AlgorithmIdentifier' field contained inside the
           certificate 'SubjectPublicKeyInfo' field does not match
           the algorithm identified by the 'selected-algorithm' node,
           then the client MUST reject the certificate and raise an
           error.";

        reference
          "RFC 2986:
             PKCS #10: Certification Request Syntax Specification
             Version 1.7
           RFC 9640:
             YANG Data Types and Groupings for Cryptography";
      }
    }

    grouping csr-grouping {
      description
        "Enables a ZTP-client to convey a certificate signing
         request, using the encoding format selected by a
         ZTP-server's 'csr-request' response to the ZTP-client's
         previously sent request containing the 'csr-support'
         node.";
      choice csr-type {
        mandatory true;
        description
          "A choice amongst certificate signing request formats.

           Additional formats MAY be augmented into this 'choice'
           statement by future efforts.";
        case p10-csr {
          leaf p10-csr {
            type ct:p10-csr;
            description
              "A CertificationRequest structure, per RFC 2986.
               Encoding details are defined in the 'ct:csr'
               typedef defined in RFC 9640.

               A raw P10 does not support origin authentication in
               the CSR structure.  External origin authentication
               may be provided via the ZTP-client's authentication
               to the ZTP-server at the transport layer (e.g., TLS).";
            reference
              "RFC 2986: PKCS #10: Certification Request Syntax
                         Specification Version 1.7
               RFC 9640: YANG Data Types and Groupings for
                         Cryptography";
          }
        }
        case cmc-csr {
          leaf cmc-csr {
            type binary;
            description
              "A profiled version of the 'Full PKI Request'
               message defined in RFC 5272, encoded using ASN.1
               Distinguished Encoding Rules (DER), as specified
               in ITU-T X.690.

               For asymmetric-key-based origin authentication of a
               CSR based on the initial device identity certificate's
               private key for the associated identity certificate's
               public key, the PKIData contains one reqSequence
               element and no cmsSequence or otherMsgSequence
               elements.  The reqSequence is the TaggedRequest,
               and it is the tcr CHOICE branch.  The tcr is the
               TaggedCertificationRequest, and it is the bodyPartID
               and the certificateRequest elements.  The
               certificateRequest is signed with the initial device
               identity certificate's private key.  The initial device
               identity certificate, and optionally its certificate
               chain is included in the SignedData certificates that
               encapsulate the PKIData.

               For asymmetric-key-based origin authentication based on
               the initial device identity certificate's private key
               that signs the encapsulated CSR signed by the local
               device identity certificate's private key, the
               PKIData contains one cmsSequence element and no
               reqSequence or otherMsgSequence
               elements.  The cmsSequence is the TaggedContentInfo,
               and it includes a bodyPartID element and a contentInfo.
               The contentInfo is a SignedData encapsulating a PKIData
               with one reqSequence element and no cmsSequence or
               otherMsgSequence elements.  The reqSequence is the
               TaggedRequest, and it is the tcr CHOICE.  The tcr is the
               TaggedCertificationRequest, and it is the bodyPartID and
               the certificateRequest elements.  PKIData contains one
               cmsSequence element and no controlSequence, reqSequence,
               or otherMsgSequence elements.  The certificateRequest
               is signed with the local device identity certificate's
               private key.  The initial device identity certificate
               and optionally its certificate chain is included in
               the SignedData certificates that encapsulate the
               PKIData.

               For shared-secret-based origin authentication of a
               CSR signed by the local device identity certificate's
               private key, the PKIData contains one cmsSequence
               element and no reqSequence or otherMsgSequence
               elements.  The cmsSequence is the TaggedContentInfo,
               and it includes a bodyPartID element and a contentInfo.
               The contentInfo is an AuthenticatedData encapsulating
               a PKIData with one reqSequence element and no
               cmsSequences or otherMsgSequence elements.  The
               reqSequence is the TaggedRequest, and it is the tcr
               CHOICE.  The tcr is the TaggedCertificationRequest,
               and it is the bodyPartID and the certificateRequest
               elements.  The certificateRequest is signed with the
               local device identity certificate's private key.  The
               initial device identity certificate and optionally its
               certificate chain is included in the SignedData
               certificates that encapsulate the PKIData.";
            reference
              "RFC 5272: Certificate Management over CMS (CMC)
               ITU-T X.690:
                 Information technology - ASN.1 encoding rules:
                 Specification of Basic Encoding Rules (BER),
                 Canonical Encoding Rules (CER) and Distinguished
                 Encoding Rules (DER)";
          }
        }
        case cmp-csr {
          leaf cmp-csr {
            type binary;
            description
              "A PKIMessage structure, as defined in RFC 4210,
               encoded using ASN.1 Distinguished Encoding Rules
               (DER), as specified in ITU-T X.690.

               For asymmetric-key-based origin authentication of a
               CSR based on the initial device identity certificate's
               private key for the associated initial device identity
               certificate's public key, PKIMessages contain one
               PKIMessage with the header and body elements, do not
               contain a protection element, and SHOULD contain the
               extraCerts element.  The header element contains the
               pvno, sender, and recipient elements.  The pvno contains
               cmp2000, and the sender contains the subject of the
               initial device identity certificate. The body element
               contains an ir, cr, kur, or p10cr CHOICE of type
               CertificationRequest.  It is signed with the initial
               device identity certificate's private key.  The
               extraCerts element contains the initial device identity
               certificate, optionally followed by its certificate
               chain excluding the trust anchor.

               For asymmetric-key-based origin authentication based
               on the initial device identity certificate's private
               key that signs the encapsulated CSR signed by the local
               device identity certificate's private key, PKIMessages
               contain one PKIMessage with the header, body, and
               protection elements and SHOULD contain the extraCerts
               element.  The header element contains the pvno, sender,
               recipient, protectionAlg, and optionally senderKID
               elements.  The pvno contains cmp2000, the sender
               contains the subject of the initial device identity
               certificate, the protectionAlg contains the
               AlgorithmIdentifier of the used signature algorithm,
               and the senderKID contains the subject key identifier
               of the initial device identity certificate. The body
               element contains an ir, cr, kur, or p10cr CHOICE of
               type CertificationRequest.  It is signed with the local
               device identity certificate's private key.  The
               protection element contains the digital signature
               generated with the initial device identity
               certificate's private key.  The extraCerts element
               contains the initial device identity certificate,
               optionally followed by its certificate chain excluding
               the trust anchor.

               For shared-secret-based origin authentication of a
               CSR signed by the local device identity certificate's
               private key, PKIMessages contain one PKIMessage with
               the header, body, and protection element and no
               extraCerts element.  The header element contains the
               pvno, sender, recipient, protectionAlg, and senderKID
               elements.  The pvno contains cmp2000, the protectionAlg
               contains the AlgorithmIdentifier of the used Message
               Authentication Code (MAC) algorithm, and the senderKID
               contains a reference the recipient can use to identify
               the shared secret.  The body element contains an ir, cr,
               kur, or p10cr CHOICE of type CertificationRequest.  It
               is signed with the local device identity certificate's
               private key.  The protection element contains the MAC
               value generated with the shared secret.";
            reference
              "RFC 4210:
                 Internet X.509 Public Key Infrastructure
                 Certificate Management Protocol (CMP)
               ITU-T X.690:
                 Information technology - ASN.1 encoding rules:
                 Specification of Basic Encoding Rules (BER),
                 Canonical Encoding Rules (CER) and Distinguished
                 Encoding Rules (DER)";
          }
        }
      }
    }

  }
  <CODE ENDS>

4.  Security Considerations

  This document builds on top of the solution presented in [RFC8572],
  and therefore all the security considerations discussed in [RFC8572]
  apply here as well.

  For the various CSR formats, when using PKCS#10, the security
  considerations in [RFC2986] apply; when using CMP, the security
  considerations in [RFC4210] apply; and when using CMC, the security
  considerations in [RFC5272] apply.

  For the various authentication mechanisms, when using TLS-level
  authentication, the security considerations in [RFC8446] apply, and
  when using HTTP-level authentication, the security considerations in
  [RFC9110] apply.

4.1.  SZTP-Client Considerations

4.1.1.  Ensuring the Integrity of Asymmetric Private Keys

  The private key the SZTP-client uses for the dynamically generated
  identity certificate MUST be protected from inadvertent disclosure in
  order to prevent identity fraud.

  The security of this private key is essential in order to ensure the
  associated identity certificate can be used to authenticate the
  device it is issued to.

  It is RECOMMENDED that devices are manufactured with a hardware
  security module (HSM), such as a trusted platform module (TPM), to
  generate and contain the private key within the security perimeter of
  the HSM.  In such cases, the private key and its associated
  certificates MAY have long validity periods.

  In cases where the SZTP-client does not possess an HSM or is unable
  to use an HSM to protect the private key, it is RECOMMENDED to
  periodically reset the private key (and associated identity
  certificates) in order to minimize the lifetime of unprotected
  private keys.  For instance, a Network Management System (NMS)
  controller/orchestrator application could periodically prompt the
  SZTP-client to generate a new private key and provide a certificate
  signing request (CSR) or, alternatively, push both the key and an
  identity certificate to the SZTP-client using, e.g., a PKCS#12
  message [RFC7292].  In another example, the SZTP-client could be
  configured to periodically reset the configuration to its factory
  default, thus causing removal of the private key and associated
  identity certificates and re-execution of the SZTP protocol.

4.1.2.  Reuse of a Manufacturer-Generated Private Key

  It is RECOMMENDED that a new private key is generated for each CSR
  described in this document.

  Implementations must randomly generate nonces and private keys.  The
  use of inadequate pseudorandom number generators (PRNGs) to generate
  cryptographic keys can result in little or no security.  An attacker
  may find it much easier to reproduce the PRNG environment that
  produced the keys, searching the resulting small set of
  possibilities, rather than brute force searching the whole key space.
  As an example of predictable random numbers, see CVE-2008-0166
  [CVE-2008-0166], and some consequences of low-entropy random numbers
  are discussed in "Mining Your Ps and Qs" [MiningPsQs].  The
  generation of quality random numbers is difficult.  [ISO.20543-2019],
  [NIST.SP.800-90Ar1], BSI AIS 31 [AIS31], BCP 106 [RFC4086], and
  others offer valuable guidance in this area.

  This private key SHOULD be protected as well as the built-in private
  key associated with the SZTP-client's initial device identity
  certificate (e.g., the IDevID from [Std-802.1AR-2018]).

  In cases where it is not possible to generate a new private key that
  is protected as well as the built-in private key, it is RECOMMENDED
  to reuse the built-in private key rather than generate a new private
  key that is not as well protected.

4.1.3.  Replay Attack Protection

  This RFC enables an SZTP-client to announce an ability to generate a
  new key to use for its CSR.

  When the SZTP-server responds with a request for the SZTP-client to
  generate a new key, it is essential that the SZTP-client actually
  generates a new key.

  Generating a new key each time enables the random bytes used to
  create the key to also serve the dual-purpose of acting like a
  "nonce" used in other mechanisms to detect replay attacks.

  When a fresh public/private key pair is generated for the request,
  confirmation to the SZTP-client that the response has not been
  replayed is enabled by the SZTP-client's fresh public key appearing
  in the signed certificate provided by the SZTP-server.

  When a public/private key pair associated with the manufacturer-
  generated identity certificate (e.g., IDevID) is used for the
  request, there may not be confirmation to the SZTP-client that the
  response has not been replayed; however, the worst case result is a
  lost certificate that is associated to the private key known only to
  the SZTP-client.  Protection of the private-key information is vital
  to public-key cryptography.  Disclosure of the private-key material
  to another entity can lead to masquerades.

4.1.4.  Connecting to an Untrusted Bootstrap Server

  [RFC8572] allows SZTP-clients to connect to untrusted SZTP-servers by
  blindly authenticating the SZTP-server's TLS end-entity certificate.

  As is discussed in Section 9.5 of [RFC8572], in such cases, the SZTP-
  client MUST assert that the bootstrapping data returned is signed if
  the SZTP-client is to trust it.

  However, the HTTP error message used in this document cannot be
  signed data, as described in [RFC8572].

  Therefore, the solution presented in this document cannot be used
  when the SZTP-client connects to an untrusted SZTP-server.

  Consistent with the recommendation presented in Section 9.6 of
  [RFC8572], SZTP-clients SHOULD NOT pass the "csr-support" input
  parameter to an untrusted SZTP-server.  SZTP-clients SHOULD instead
  pass the "signed-data-preferred" input parameter, as discussed in
  Appendix B of [RFC8572].

4.1.5.  Selecting the Best Origin Authentication Mechanism

  The origin of the CSR must be verified before a certificate is
  issued.

  When generating a new key, it is important that the SZTP-client be
  able to provide additional proof that it was the entity that
  generated the key.

  The CMP and CMC certificate request formats defined in this document
  support origin authentication.  A raw PKCS#10 CSR does not support
  origin authentication.

  The CMP and CMC request formats support origin authentication using
  both PKI and a shared secret.

  Typically, only one possible origin authentication mechanism can
  possibly be used, but in the case that the SZTP-client authenticates
  itself using both TLS-level (e.g., IDevID) and HTTP-level credentials
  (e.g., Basic), as is allowed by Section 5.3 of [RFC8572], then the
  SZTP-client may need to choose between the two options.

  In the case that the SZTP-client must choose between an asymmetric
  key option versus a shared secret for origin authentication, it is
  RECOMMENDED that the SZTP-client choose using the asymmetric key.

4.1.6.  Clearing the Private Key and Associated Certificate

  Unlike a manufacturer-generated identity certificate (e.g., IDevID),
  the deployment-generated identity certificate (e.g., LDevID) and the
  associated private key (assuming a new private key was generated for
  the purpose) are considered user data and SHOULD be cleared whenever
  the SZTP-client is reset to its factory default state, such as by the
  "factory-reset" RPC defined in [RFC8808].

4.2.  SZTP-Server Considerations

4.2.1.  Verifying Proof-of-Possession

  Regardless, if using a new asymmetric key or the bootstrapping
  device's manufacturer-generated key (e.g., the IDevID key), the
  public key is placed in the CSR and the CSR is signed by that private
  key.  Proof-of-possession of the private key is verified by ensuring
  the signature over the CSR using the public key placed in the CSR.

4.2.2.  Verifying Proof-of-Origin

  When the bootstrapping device's manufacturer-generated private key
  (e.g., the IDevID key) is reused for the CSR, proof-of-origin is
  verified by validating the IDevID-issuer cert and ensuring that the
  CSR uses the same key pair.

  When the bootstrapping device's manufacturer-generated private key
  (e.g., an IDevID key from IEEE 802.1AR) is reused for the CSR, proof-
  of-origin is verified by validating the IDevID certification path and
  ensuring that the CSR uses the same key pair.

  When a fresh asymmetric key is used with the CMP or CMC formats, the
  authentication is part of the protocols, which could employ either
  the manufacturer-generated private key or a shared secret.  In
  addition, CMP and CMC support processing by an RA before the request
  is passed to the CA, which allows for more robust handling of errors.

4.2.3.  Supporting SZTP-Clients That Don't Trust the SZTP-Server

  [RFC8572] allows SZTP-clients to connect to untrusted SZTP-servers by
  blindly authenticating the SZTP-server's TLS end-entity certificate.

  As is recommended in Section 4.1.4 of this document, in such cases,
  SZTP-clients SHOULD pass the "signed-data-preferred" input parameter.

  The reciprocal of this statement is that SZTP-servers, wanting to
  support SZTP-clients that don't trust them, SHOULD support the
  "signed-data-preferred" input parameter, as discussed in Appendix B
  of [RFC8572].

4.3.  Security Considerations for the "ietf-sztp-csr" YANG Module

  The recommended format for documenting the security considerations
  for YANG modules is described in Section 3.7 of [RFC8407].  However,
  this module only augments two input parameters into the "get-
  bootstrapping-data" RPC in [RFC8572] and therefore only needs to
  point to the relevant Security Considerations sections in that RFC.

  *  Security considerations for the "get-bootstrapping-data" RPC are
     described in Section 9.16 of [RFC8572].

  *  Security considerations for the "input" parameters passed inside
     the "get-bootstrapping-data" RPC are described in Section 9.6 of
     [RFC8572].

4.4.  Security Considerations for the "ietf-ztp-types" YANG Module

  The recommended format for documenting the security considerations
  for YANG modules is described in Section 3.7 of [RFC8407].  However,
  this module does not define any protocol-accessible nodes (it only
  defines "identity" and "grouping" statements), and therefore there
  are no security considerations to report.

5.  IANA Considerations

5.1.  The IETF XML Registry

  IANA has registered two URIs in the "ns" registry of the "IETF XML
  Registry" [RFC3688] maintained at <https://www.iana.org/assignments/
  xml-registry/>.

  URI:  urn:ietf:params:xml:ns:yang:ietf-sztp-csr
  Registrant Contact:  The NETCONF WG of the IETF.
  XML:  N/A; the requested URI is an XML namespace.

  URI:  urn:ietf:params:xml:ns:yang:ietf-ztp-types
  Registrant Contact:  The NETCONF WG of the IETF.
  XML:  N/A; the requested URI is an XML namespace.

5.2.  The YANG Module Names Registry

  IANA has registered two YANG modules in the "YANG Module Names"
  registry [RFC6020] maintained at <https://www.iana.org/assignments/
  yang-parameters/>.

  Name:  ietf-sztp-csr
  Namespace:  urn:ietf:params:xml:ns:yang:ietf-sztp-csr
  Prefix:  sztp-csr
  Reference:  RFC 9646

  Name:  ietf-ztp-types
  Namespace:  urn:ietf:params:xml:ns:yang:ietf-ztp-types
  Prefix:  ztp-types
  Reference:  RFC 9646

6.  References

6.1.  Normative References

  [ITU.X690.2021]
             ITU, "Information technology - ASN.1 encoding rules:
             Specification of Basic Encoding Rules (BER), Canonical
             Encoding Rules (CER) and Distinguished Encoding Rules
             (DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1,
             February 2021, <https://www.itu.int/rec/T-REC-X.690/>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC2986]  Nystrom, M. and B. Kaliski, "PKCS #10: Certification
             Request Syntax Specification Version 1.7", RFC 2986,
             DOI 10.17487/RFC2986, November 2000,
             <https://www.rfc-editor.org/info/rfc2986>.

  [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
             DOI 10.17487/RFC3688, January 2004,
             <https://www.rfc-editor.org/info/rfc3688>.

  [RFC4210]  Adams, C., Farrell, S., Kause, T., and T. Mononen,
             "Internet X.509 Public Key Infrastructure Certificate
             Management Protocol (CMP)", RFC 4210,
             DOI 10.17487/RFC4210, September 2005,
             <https://www.rfc-editor.org/info/rfc4210>.

  [RFC5272]  Schaad, J. and M. Myers, "Certificate Management over CMS
             (CMC)", RFC 5272, DOI 10.17487/RFC5272, June 2008,
             <https://www.rfc-editor.org/info/rfc5272>.

  [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
             the Network Configuration Protocol (NETCONF)", RFC 6020,
             DOI 10.17487/RFC6020, October 2010,
             <https://www.rfc-editor.org/info/rfc6020>.

  [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
             RFC 7950, DOI 10.17487/RFC7950, August 2016,
             <https://www.rfc-editor.org/info/rfc7950>.

  [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
             Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
             <https://www.rfc-editor.org/info/rfc8040>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.

  [RFC8572]  Watsen, K., Farrer, I., and M. Abrahamsson, "Secure Zero
             Touch Provisioning (SZTP)", RFC 8572,
             DOI 10.17487/RFC8572, April 2019,
             <https://www.rfc-editor.org/info/rfc8572>.

  [RFC8791]  Bierman, A., Björklund, M., and K. Watsen, "YANG Data
             Structure Extensions", RFC 8791, DOI 10.17487/RFC8791,
             June 2020, <https://www.rfc-editor.org/info/rfc8791>.

  [RFC9110]  Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
             Ed., "HTTP Semantics", STD 97, RFC 9110,
             DOI 10.17487/RFC9110, June 2022,
             <https://www.rfc-editor.org/info/rfc9110>.

  [RFC9640]  Watsen, K., "YANG Data Types and Groupings for
             Cryptography", RFC 9640, DOI 10.17487/RFC9640, October
             2024, <https://www.rfc-editor.org/info/rfc9640>.

6.2.  Informative References

  [AIS31]    Killmann, W. and W. Schindler, "A proposal for:
             Functionality classes for random number generators -
             Version 2.0", September 2011,
             <https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
             Zertifizierung/Interpretationen/AIS_31_Functionality_class
             es_for_random_number_generators_e.pdf>.

  [CVE-2008-0166]
             National Institute of Science and Technology (NIST),
             "National Vulnerability Database - CVE-2008-0166 Detail",
             May 2008,
             <https://nvd.nist.gov/vuln/detail/CVE-2008-0166>.

  [ISO.20543-2019]
             International Organization for Standardization (ISO),
             "Information technology -- Security techniques -- Test and
             analysis methods for random bit generators within ISO/IEC
             19790 and ISO/IEC 15408", ISO/IEC 20543:2019, October
             2019.

  [MiningPsQs]
             Heninger, N., Durumeric, Z., Wustrow, E., and J.
             Halderman, "Mining Your Ps and Qs: Detection of Widespread
             Weak Keys in Network Devices", Security'12: Proceedings of
             the 21st USENIX Conference on Security Symposium, August
             2012, <https://www.usenix.org/conference/usenixsecurity12/
             technical-sessions/presentation/heninger>.

  [NIST.SP.800-90Ar1]
             Barker, E. and J. Kelsey, "Recommendation for Random
             Number Generation Using Deterministic Random Bit
             Generators", DOI 10.6028/NIST.SP.800-90Ar1, NIST
             SP 800-90Ar1, June 2015,
             <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
             NIST.SP.800-90Ar1.pdf>.

  [RFC4086]  Eastlake 3rd, D., Schiller, J., and S. Crocker,
             "Randomness Requirements for Security", BCP 106, RFC 4086,
             DOI 10.17487/RFC4086, June 2005,
             <https://www.rfc-editor.org/info/rfc4086>.

  [RFC7292]  Moriarty, K., Ed., Nystrom, M., Parkinson, S., Rusch, A.,
             and M. Scott, "PKCS #12: Personal Information Exchange
             Syntax v1.1", RFC 7292, DOI 10.17487/RFC7292, July 2014,
             <https://www.rfc-editor.org/info/rfc7292>.

  [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
             BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
             <https://www.rfc-editor.org/info/rfc8340>.

  [RFC8407]  Bierman, A., "Guidelines for Authors and Reviewers of
             Documents Containing YANG Data Models", BCP 216, RFC 8407,
             DOI 10.17487/RFC8407, October 2018,
             <https://www.rfc-editor.org/info/rfc8407>.

  [RFC8792]  Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
             "Handling Long Lines in Content of Internet-Drafts and
             RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
             <https://www.rfc-editor.org/info/rfc8792>.

  [RFC8808]  Wu, Q., Lengyel, B., and Y. Niu, "A YANG Data Model for
             Factory Default Settings", RFC 8808, DOI 10.17487/RFC8808,
             August 2020, <https://www.rfc-editor.org/info/rfc8808>.

  [RFC9641]  Watsen, K., "A YANG Data Model for a Truststore",
             RFC 9641, DOI 10.17487/RFC9641, October 2024,
             <https://www.rfc-editor.org/info/rfc9641>.

  [RFC9642]  Watsen, K., "A YANG Data Model for a Keystore", RFC 9642,
             DOI 10.17487/RFC9642, October 2024,
             <https://www.rfc-editor.org/info/rfc9642>.

  [Std-802.1AR-2018]
             IEEE, "IEEE Standard for Local and Metropolitan Area
             Networks - Secure Device Identity", August 2018,
             <https://standards.ieee.org/ieee/802.1AR/6995/>.

Acknowledgements

  The authors would like to thank for following for lively discussions
  on list and in the halls (ordered by first name): Benjamin Kaduk, Dan
  Romascanu, David von Oheimb, Éric Vyncke, Guy Fedorkow, Hendrik
  Brockhaus, Joe Clarke, Meral Shirazipour, Murray Kucherawy, Rich
  Salz, Rob Wilton, Roman Danyliw, Qin Wu, Yaron Sheffer, and
  Zaheduzzaman Sarkar.

Contributors

  Special thanks go to David von Oheimb and Hendrik Brockhaus for
  helping with the descriptions for the "cmc-csr" and "cmp-csr" nodes.

Authors' Addresses

  Kent Watsen
  Watsen Networks
  Email: [email protected]


  Russ Housley
  Vigil Security, LLC
  Email: [email protected]


  Sean Turner
  sn3rd
  Email: [email protected]