Internet Engineering Task Force (IETF)                         K. Watsen
Request for Comments: 9645                               Watsen Networks
Category: Standards Track                                   October 2024
ISSN: 2070-1721


            YANG Groupings for TLS Clients and TLS Servers

Abstract

  This document presents four YANG 1.1 modules -- three IETF modules
  and one supporting IANA module.

  The three IETF modules are "ietf-tls-common", "ietf-tls-client", and
  "ietf-tls-server".  The "ietf-tls-client" and "ietf-tls-server"
  modules are the primary productions of this work, supporting the
  configuration and monitoring of TLS clients and servers.

  The IANA module is "iana-tls-cipher-suite-algs".  This module defines
  YANG enumerations that provide support for an IANA-maintained
  algorithm registry.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9645.

Copyright Notice

  Copyright (c) 2024 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
    1.1.  Regarding the Three IETF Modules
    1.2.  Relation to Other RFCs
    1.3.  Specification Language
    1.4.  Adherence to the NMDA
    1.5.  Conventions
  2.  The "ietf-tls-common" Module
    2.1.  Data Model Overview
    2.2.  Example Usage
    2.3.  YANG Module
  3.  The "ietf-tls-client" Module
    3.1.  Data Model Overview
    3.2.  Example Usage
    3.3.  YANG Module
  4.  The "ietf-tls-server" Module
    4.1.  Data Model Overview
    4.2.  Example Usage
    4.3.  YANG Module
  5.  Security Considerations
    5.1.  Considerations for the "iana-tls-cipher-suite-algs" YANG
          Module
    5.2.  Considerations for the "ietf-tls-common" YANG Module
    5.3.  Considerations for the "ietf-tls-client" YANG Module
    5.4.  Considerations for the "ietf-tls-server" YANG Module
  6.  IANA Considerations
    6.1.  The IETF XML Registry
    6.2.  The YANG Module Names Registry
    6.3.  Considerations for the "iana-tls-cipher-suite-algs" YANG
          Module
  7.  References
    7.1.  Normative References
    7.2.  Informative References
  Appendix A.  Script to Generate IANA-Maintained YANG Modules
  Acknowledgements
  Contributors
  Author's Address

1.  Introduction

  This document presents four YANG 1.1 [RFC7950] modules -- three IETF
  modules and one IANA module.

  The three IETF modules are "ietf-tls-common" (Section 2), "ietf-tls-
  client" (Section 3), and "ietf-tls-server" (Section 4).  The "ietf-
  tls-client" and "ietf-tls-server" modules are the primary productions
  of this work, supporting the configuration and monitoring of TLS
  clients and servers.

  The groupings defined in this document are expected to be used in
  conjunction with the groupings defined in an underlying transport-
  level module, such as the groupings defined in [RFC9643].  The
  transport-level data model enables the configuration of transport-
  level values such as a remote address, a remote port, a local
  address, and a local port.

  The IANA module is "iana-tls-cipher-suite-algs".  This module defines
  YANG enumerations that provide support for an IANA-maintained
  algorithm registry.

  IANA used the script in Appendix A to generate the "iana-tls-cipher-
  suite-algs" YANG module.  This document does not publish the initial
  version of the module; it is published and maintained by IANA.

1.1.  Regarding the Three IETF Modules

  The three IETF modules define features and groupings to model
  "generic" TLS clients and TLS servers, where "generic" should be
  interpreted as "least common denominator" rather than "complete."
  Basic TLS protocol support is afforded by these modules, leaving
  configuration of advance features to augmentations made by consuming
  modules.

  It is intended that the YANG groupings will be used by applications
  needing to configure TLS client and server protocol stacks.  For
  instance, these groupings are used to help define the data model for
  HTTPS [RFC9110] and clients and servers based on the Network
  Configuration Protocol (NETCONF) over TLS [RFC7589] in
  [HTTP-CLIENT-SERVER] and [NETCONF-CLIENT-SERVER], respectively.

  The "ietf-tls-client" and "ietf-tls-server" YANG modules each define
  one grouping, which is focused on just TLS-specific configuration,
  and specifically avoid any transport-level configuration, such as
  what ports to listen on or connect to.  This affords applications the
  opportunity to define their own strategy for how the underlying TCP
  connection is established.  For instance, applications supporting
  NETCONF Call Home [RFC8071] could use the "tls-server-grouping"
  grouping for the TLS parts it provides, while adding data nodes for
  the TCP-level call-home configuration.

  Both TLS 1.2 and TLS 1.3 may be configured.  TLS 1.2 [RFC5246] is
  obsoleted by TLS 1.3 [RFC8446] but is still in common use, and hence
  its "feature" statement is marked "status deprecated".

1.2.  Relation to Other RFCs

  This document presents four YANG modules [RFC7950] that are part of a
  collection of RFCs that work together to ultimately support the
  configuration of both the clients and servers of the NETCONF
  [RFC6241] and RESTCONF [RFC8040] protocols.

  The dependency relationship between the primary YANG groupings
  defined in the various RFCs is presented in the diagram below.  In
  some cases, a document may define secondary groupings that introduce
  dependencies not illustrated in the diagram.  The labels in the
  diagram are shorthand names for the defining RFCs.  The citation
  references for the shorthand names are provided below the diagram.

  Please note that the arrows in the diagram point from referencer to
  referenced.  For example, the "crypto-types" RFC does not have any
  dependencies, whilst the "keystore" RFC depends on the "crypto-types"
  RFC.

                                 crypto-types
                                   ^      ^
                                  /        \
                                 /          \
                        truststore         keystore
                         ^     ^             ^  ^
                         |     +---------+   |  |
                         |               |   |  |
                         |      +------------+  |
  tcp-client-server      |     /         |      |
     ^    ^        ssh-client-server     |      |
     |    |           ^            tls-client-server
     |    |           |              ^     ^        http-client-server
     |    |           |              |     |                 ^
     |    |           |        +-----+     +---------+       |
     |    |           |        |                     |       |
     |    +-----------|--------|--------------+      |       |
     |                |        |              |      |       |
     +-----------+    |        |              |      |       |
                 |    |        |              |      |       |
                 |    |        |              |      |       |
              netconf-client-server       restconf-client-server

  +========================+==========================+
  | Label in Diagram       | Originating RFC          |
  +========================+==========================+
  | crypto-types           | [RFC9640]                |
  +------------------------+--------------------------+
  | truststore             | [RFC9641]                |
  +------------------------+--------------------------+
  | keystore               | [RFC9642]                |
  +------------------------+--------------------------+
  | tcp-client-server      | [RFC9643]                |
  +------------------------+--------------------------+
  | ssh-client-server      | [RFC9644]                |
  +------------------------+--------------------------+
  | tls-client-server      | RFC 9645                 |
  +------------------------+--------------------------+
  | http-client-server     | [HTTP-CLIENT-SERVER]     |
  +------------------------+--------------------------+
  | netconf-client-server  | [NETCONF-CLIENT-SERVER]  |
  +------------------------+--------------------------+
  | restconf-client-server | [RESTCONF-CLIENT-SERVER] |
  +------------------------+--------------------------+

        Table 1: Labels in Diagram to RFC Mapping

1.3.  Specification Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

1.4.  Adherence to the NMDA

  This document is compliant with the Network Management Datastore
  Architecture (NMDA) [RFC8342].  For instance, as described in
  [RFC9641] and [RFC9642], trust anchors and keys installed during
  manufacturing are expected to appear in <operational> (Section 5.3 of
  [RFC8342]) and <system> [SYSTEM-CONFIG] if implemented.

1.5.  Conventions

  Various examples in this document use "BASE64VALUE=" as a placeholder
  value for binary data that has been base64 encoded (per Section 9.8
  of [RFC7950]).  This placeholder value is used because real
  base64-encoded structures are often many lines long and hence
  distracting to the example being presented.

  Various examples in this document use the XML [W3C.REC-xml-20081126]
  encoding.  Other encodings, such as JSON [RFC8259], could
  alternatively be used.

  Various examples in this document contain long lines that may be
  folded, as described in [RFC8792].

2.  The "ietf-tls-common" Module

  The TLS common model presented in this section contains features and
  groupings common to both TLS clients and TLS servers.  The "hello-
  params-grouping" grouping can be used to configure the list of TLS
  algorithms permitted by the TLS client or TLS server.  The lists of
  algorithms are ordered such that, if multiple algorithms are
  permitted by the client, the algorithm that appears first in its list
  and that is also permitted by the server is used for the TLS
  transport layer connection.  The ability to restrict the algorithms
  allowed is provided in this grouping for TLS clients and TLS servers
  that are capable of doing so and that may serve to make TLS clients
  and TLS servers compliant with local security policies.  This model
  supports both TLS 1.2 [RFC5246] and TLS 1.3 [RFC8446].

  Thus, in order to support both TLS 1.2 and TLS 1.3, the cipher suites
  part of the "hello-params-grouping" grouping should include the
  following three parameters for configuring its permitted TLS
  algorithms: TLS Cipher Suites, TLS SignatureScheme, and TLS Supported
  Groups.

2.1.  Data Model Overview

  This section provides an overview of the "ietf-tls-common" module in
  terms of its features, identities, and groupings.

2.1.1.  Features

  The following diagram lists all the "feature" statements defined in
  the "ietf-tls-common" module:

  Features:
    +-- tls12
    +-- tls13
    +-- hello-params
    +-- asymmetric-key-pair-generation
    +-- supported-algorithms

  The diagram above uses syntax that is similar to but not defined in
  [RFC8340].

  Please refer to the YANG module for a description of each feature.

2.1.2.  Identities

  The following diagram illustrates the relationship amongst the
  "identity" statements defined in the "ietf-tls-common" module:

  Identities:
    +-- tls-version-base
       +-- tls12
       +-- tls13

  The diagram above uses syntax that is similar to but not defined in
  [RFC8340].

  Comments:

  *  The diagram shows that there are two base identities.
  *  One base identity is used to specify TLS versions.  This base
     identity is "abstract" in the object-oriented programming sense
     because it defines a "class" of things rather than a specific
     thing.
  *  These base identities are "abstract" in the object-oriented
     programming sense because they only define a "class" of things
     rather than a specific thing.

2.1.3.  Groupings

  The "ietf-tls-common" module defines the following "grouping"
  statement:

  *  hello-params-grouping

  This grouping is presented in the following subsection.

2.1.3.1.  The "hello-params-grouping" Grouping

  The following tree diagram [RFC8340] illustrates the "hello-params-
  grouping" grouping:

    grouping hello-params-grouping:
      +-- tls-versions
      |  +-- min?   identityref
      |  +-- max?   identityref
      +-- cipher-suites
         +-- cipher-suite*   tlscsa:tls-cipher-suite-algorithm

  Comments:

  *  This grouping is used by both the "tls-client-grouping" and the
     "tls-server-grouping" groupings defined in Sections 3.1.2.1 and
     4.1.2.1, respectively.

  *  This grouping enables client and server configurations to specify
     the TLS versions and cipher suites that are to be used when
     establishing TLS sessions.

  *  The "cipher-suites" list is "ordered-by user".

2.1.4.  Protocol-Accessible Nodes

  The following tree diagram [RFC8340] lists all the protocol-
  accessible nodes defined in the "ietf-tls-common" module, without
  expanding the "grouping" statements:

  module: ietf-tls-common
    +--ro supported-algorithms {algorithm-discovery}?
       +--ro supported-algorithm*   tlscsa:tls-cipher-suite-algorithm

    rpcs:
      +---x generate-asymmetric-key-pair
              {asymmetric-key-pair-generation}?
         +---w input
         |  +---w algorithm
         |  |       tlscsa:tls-cipher-suite-algorithm
         |  +---w num-bits?               uint16
         |  +---w private-key-encoding
         |     +---w (private-key-encoding)
         |        +--:(cleartext) {ct:cleartext-private-keys}?
         |        |  +---w cleartext?   empty
         |        +--:(encrypted) {ct:encrypted-private-keys}?
         |        |  +---w encrypted
         |        |     +---w ks:encrypted-by-grouping
         |        +--:(hidden) {ct:hidden-private-keys}?
         |           +---w hidden?      empty
         +--ro output
            +--ro (key-or-hidden)?
               +--:(key)
               |  +---u ct:asymmetric-key-pair-grouping
               +--:(hidden)
                  +--ro location?
                          instance-identifier

  Comments:

  *  Protocol-accessible nodes are nodes that are accessible when the
     module is "implemented", as described in Section 5.6.5 of
     [RFC7950].

  *  The protocol-accessible nodes for the "ietf-tls-common" module are
     limited to the "supported-algorithms" container, which is
     constrained by the "algorithm-discovery" feature, and the
     "generate-asymmetric-key-pair" RPC, which is constrained by the
     "asymmetric-key-pair-generation" feature.

  *  The "encrypted-by-grouping" grouping is discussed in
     Section 2.1.3.1 of [RFC9642].

  *  The "asymmetric-key-pair-grouping" grouping is discussed in
     Section 2.1.4.6 of [RFC9640].

2.2.  Example Usage

  The following example illustrates the "hello-params-grouping"
  grouping when populated with some data.

  <!-- The outermost element below doesn't exist in the data model. -->
  <!--  It simulates if the "grouping" were a "container" instead.  -->

  <hello-params
     xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-common"
     xmlns:tlscmn="urn:ietf:params:xml:ns:yang:ietf-tls-common">
    <tls-versions>
      <min>tlscmn:tls12</min>
      <max>tlscmn:tls13</max>
    </tls-versions>
    <cipher-suites>
      <cipher-suite>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA</cipher-suite>
      <cipher-suite>TLS_DHE_RSA_WITH_AES_128_CBC_SHA256</cipher-suite>
      <cipher-suite>TLS_RSA_WITH_3DES_EDE_CBC_SHA</cipher-suite>
    </cipher-suites>
  </hello-params>

  The following example illustrates operational state data indicating
  the TLS algorithms supported by the server.

  =============== NOTE: '\' line wrapping per RFC 8792 ================

  <supported-algorithms
    xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-common">
    <supported-algorithm>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA</support\
  ed-algorithm>
    <supported-algorithm>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384</supp\
  orted-algorithm>
    <supported-algorithm>TLS_DHE_RSA_WITH_AES_128_CBC_SHA256</supporte\
  d-algorithm>
    <supported-algorithm>TLS_RSA_WITH_3DES_EDE_CBC_SHA</supported-algo\
  rithm>
    <supported-algorithm>TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384</suppor\
  ted-algorithm>
    <supported-algorithm>TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256</su\
  pported-algorithm>
    <supported-algorithm>TLS_ECCPWD_WITH_AES_256_GCM_SHA384</supported\
  -algorithm>
    <supported-algorithm>TLS_PSK_WITH_AES_256_CCM</supported-algorithm>
    <supported-algorithm>TLS_PSK_WITH_AES_256_CCM_8</supported-algorit\
  hm>
    <supported-algorithm>TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384</sup\
  ported-algorithm>
    <supported-algorithm>TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384</support\
  ed-algorithm>
    <supported-algorithm>TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA</supported\
  -algorithm>
    <supported-algorithm>TLS_DH_DSS_WITH_AES_128_GCM_SHA256</supported\
  -algorithm>
  </supported-algorithms>

  The following example illustrates the "generate-asymmetric-key-pair"
  RPC.

  REQUEST

  =============== NOTE: '\' line wrapping per RFC 8792 ================

  <rpc message-id="101"
    xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <generate-asymmetric-key-pair
      xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-common">
      <algorithm>TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256</algorithm>
      <num-bits>521</num-bits>
      <private-key-encoding>
        <encrypted>
          <asymmetric-key-ref>hidden-asymmetric-key</asymmetric-key-re\
  f>
        </encrypted>
      </private-key-encoding>
    </generate-asymmetric-key-pair>
  </rpc>

  RESPONSE

  =============== NOTE: '\' line wrapping per RFC 8792 ================

  <rpc-reply message-id="101"
    xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
    xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"
    xmlns:tlscmn="urn:ietf:params:xml:ns:yang:ietf-tls-common">
    <tlscmn:public-key-format>ct:subject-public-key-info-format</tlscm\
  n:public-key-format>
    <tlscmn:public-key>BASE64VALUE=</tlscmn:public-key>
    <tlscmn:private-key-format>ct:ec-private-key-format</tlscmn:privat\
  e-key-format>
    <tlscmn:cleartext-private-key>BASE64VALUE=</tlscmn:cleartext-priva\
  te-key>
  </rpc-reply>

2.3.  YANG Module

  This YANG module has normative references to [RFC5288], [RFC5289],
  [RFC8422], [RFC9640], [RFC9642], [FIPS180-4], and [FIPS186-5].

  This YANG module has informative references to [RFC5246] and
  [RFC8446].

  <CODE BEGINS> file "[email protected]"
  module ietf-tls-common {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-tls-common";
    prefix tlscmn;

    import iana-tls-cipher-suite-algs {
      prefix tlscsa;
      reference
        "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
    }

    import ietf-crypto-types {
      prefix ct;
      reference
        "RFC 9640: YANG Data Types and Groupings for Cryptography";
    }

    import ietf-keystore {
      prefix ks;
      reference
        "RFC 9642: A YANG Data Model for a Keystore";
    }

    organization
      "IETF NETCONF (Network Configuration) Working Group";

    contact
      "WG List:  NETCONF WG list <mailto:[email protected]>
       WG Web:   https://datatracker.ietf.org/wg/netconf
       Author:   Kent Watsen <mailto:[email protected]>
       Author:   Jeff Hartley <mailto:[email protected]>
       Author:   Gary Wu <mailto:[email protected]>";

     description
      "This module defines common features and groupings for
       Transport Layer Security (TLS).

       The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
       'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
       'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
       are to be interpreted as described in BCP 14 (RFC 2119)
       (RFC 8174) when, and only when, they appear in all
       capitals, as shown here.

       Copyright (c) 2024 IETF Trust and the persons identified
       as authors of the code. All rights reserved.

       Redistribution and use in source and binary forms, with
       or without modification, is permitted pursuant to, and
       subject to the license terms contained in, the Revised
       BSD License set forth in Section 4.c of the IETF Trust's
       Legal Provisions Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC 9645
       (https://www.rfc-editor.org/info/rfc9645); see the RFC
       itself for full legal notices.";

    revision 2024-10-10 {
      description
        "Initial version.";
      reference
        "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
    }

    // Features

    feature tls12 {
      description
        "TLS Protocol Version 1.2 is supported. TLS 1.2 is obsolete,
         and thus it is NOT RECOMMENDED to enable this feature.";
      reference
        "RFC 5246: The Transport Layer Security (TLS) Protocol
                   Version 1.2";
    }

    feature tls13 {
      description
        "TLS Protocol Version 1.3 is supported.";
      reference
        "RFC 8446: The Transport Layer Security (TLS)
                   Protocol Version 1.3";
    }

    feature hello-params {
      description
        "TLS hello message parameters are configurable.";
    }

    feature algorithm-discovery {
      description
        "Indicates that the server implements the
         'supported-algorithms' container.";
    }

    feature asymmetric-key-pair-generation {
      description
        "Indicates that the server implements the
         'generate-asymmetric-key-pair' RPC.";
    }

    // Identities

    identity tls-version-base {
      description
        "Base identity used to identify TLS protocol versions.";
    }

    identity tls12 {
      if-feature "tls12";
      base tls-version-base;
      description
        "TLS Protocol Version 1.2.";
      reference
        "RFC 5246: The Transport Layer Security (TLS) Protocol
                   Version 1.2";
    }

    identity tls13 {
      if-feature "tls13";
      base tls-version-base;
      description
        "TLS Protocol Version 1.3.";
      reference
        "RFC 8446: The Transport Layer Security (TLS)
                   Protocol Version 1.3";
    }

    // Typedefs

    typedef epsk-supported-hash {
      type enumeration {
        enum sha-256 {
          description
            "The SHA-256 hash.";
        }
        enum sha-384 {
          description
            "The SHA-384 hash.";
        }
      }
      description
        "As per Section 4.2.11 of RFC 8446, the hash algorithm
         supported by an instance of an External Pre-Shared
         Key (EPSK).";
      reference
        "RFC 8446: The Transport Layer Security (TLS)
                   Protocol Version 1.3";
    }


    // Groupings

    grouping hello-params-grouping {
      description
        "A reusable grouping for TLS hello message parameters.";
      reference
        "RFC 5246: The Transport Layer Security (TLS) Protocol
                   Version 1.2
         RFC 8446: The Transport Layer Security (TLS) Protocol
                   Version 1.3";
      container tls-versions {
        description
          "Parameters limiting which TLS versions, amongst
           those enabled by 'features', are presented during
           the TLS handshake.";
        leaf min {
          type identityref {
            base tls-version-base;
          }
          description
            "If not specified, then there is no configured
             minimum version.";
        }
        leaf max {
          type identityref {
            base tls-version-base;
          }
          description
            "If not specified, then there is no configured
             maximum version.";
        }
      }
      container cipher-suites {
        description
          "Parameters regarding cipher suites.";
        leaf-list cipher-suite {
          type tlscsa:tls-cipher-suite-algorithm;
          ordered-by user;
          description
            "Acceptable cipher suites in order of descending
             preference.  The configured host key algorithms should
             be compatible with the algorithm used by the configured
             private key.  Please see Section 5 of RFC 9645 for
             valid combinations.

             If this leaf-list is not configured (has zero elements),
             the acceptable cipher suites are implementation-
             defined.";
          reference
            "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
        }
      }
    } // hello-params-grouping


    // Protocol-accessible Nodes

    container supported-algorithms {
      if-feature "algorithm-discovery";
      config false;
      description
        "A container for a list of cipher suite algorithms supported
         by the server.";
      leaf-list supported-algorithm {
        type tlscsa:tls-cipher-suite-algorithm;
        description
          "A cipher suite algorithm supported by the server.";
      }
    }

    rpc generate-asymmetric-key-pair {
      if-feature "asymmetric-key-pair-generation";
      description
        "Requests the device to generate an 'asymmetric-key-pair'
         key using the specified key algorithm.";
      input {
        leaf algorithm {
          type tlscsa:tls-cipher-suite-algorithm;
          mandatory true;
          description
            "The cipher suite algorithm that the generated key
             works with.  Implementations derive the public key
             algorithm from the cipher suite algorithm.  For
             example, cipher suite
             'tls-rsa-with-aes-256-cbc-sha256' maps to the RSA
             public key.";
        }
        leaf num-bits {
          type uint16;
          description
            "Specifies the number of bits to create in the key.
             For RSA keys, the minimum size is 1024 bits, and
             the default is 3072 bits.  Generally, 3072 bits is
             considered sufficient.  DSA keys must be exactly
             1024 bits as specified by FIPS 186-2.  For
             elliptical keys, the 'num-bits' value determines
             the key length of the curve (e.g., 256, 384, or 521),
             where valid values supported by the server are
             conveyed via an unspecified mechanism.  For some
             public algorithms, the keys have a fixed length, and
             thus the 'num-bits' value is not specified.";
        }
        container private-key-encoding {
          description
            "Indicates how the private key is to be encoded.";
          choice private-key-encoding {
            mandatory true;
            description
              "A choice amongst optional private key handling.";
            case cleartext {
              if-feature "ct:cleartext-private-keys";
              leaf cleartext {
                type empty;
                description
                  "Indicates that the private key is to be returned
                   as a cleartext value.";
              }
            }
            case encrypted {
              if-feature "ct:encrypted-private-keys";
              container encrypted {
                description
                  "Indicates that the key is to be encrypted using
                   the specified symmetric or asymmetric key.";
                uses ks:encrypted-by-grouping;
              }
            }
            case hidden {
              if-feature "ct:hidden-private-keys";
              leaf hidden {
                type empty;
                description
                  "Indicates that the private key is to be hidden.

                   Unlike the 'cleartext' and 'encrypt' options, the
                   key returned is a placeholder for an internally
                   stored key.  See Section 3 of RFC 9642 ('Support
                   for Built-In Keys') for information about hidden
                   keys.";
              }
            }
          }
        }
      }
      output {
        choice key-or-hidden {
          case key {
            uses ct:asymmetric-key-pair-grouping;
          }
          case hidden {
            leaf location {
              type instance-identifier;
              description
                "The location to where a hidden key was created.";
            }
          }
          description
            "The output can be either a key (for cleartext and
             encrypted keys) or the location to where the key
             was created (for hidden keys).";
        }
      }
    } // end generate-asymmetric-key-pair

  }
  <CODE ENDS>

3.  The "ietf-tls-client" Module

  This section defines a YANG 1.1 [RFC7950] module called "ietf-tls-
  client".  A high-level overview of the module is provided in
  Section 3.1.  Examples illustrating the module's use are provided in
  Section 3.2 ("Example Usage").  The YANG module itself is defined in
  Section 3.3.

3.1.  Data Model Overview

  This section provides an overview of the "ietf-tls-client" module in
  terms of its features and groupings.

3.1.1.  Features

  The following diagram lists all the "feature" statements defined in
  the "ietf-tls-client" module:

  Features:
    +-- tls-client-keepalives
    +-- client-ident-x509-cert
    +-- client-ident-raw-public-key
    +-- client-ident-psk
    +-- server-auth-x509-cert
    +-- server-auth-raw-public-key
    +-- server-auth-psk

  The diagram above uses syntax that is similar to but not defined in
  [RFC8340].

  Please refer to the YANG module for a description of each feature.

3.1.2.  Groupings

  The "ietf-tls-client" module defines the following "grouping"
  statement:

  *  tls-client-grouping

  This grouping is presented in the following subsection.

3.1.2.1.  The "tls-client-grouping" Grouping

  The following tree diagram [RFC8340] illustrates the "tls-client-
  grouping" grouping:

  =============== NOTE: '\' line wrapping per RFC 8792 ================

    grouping tls-client-grouping:
      +-- client-identity!
      |  +-- (auth-type)
      |     +--:(certificate) {client-ident-x509-cert}?
      |     |  +-- certificate
      |     |     +---u ks:inline-or-keystore-end-entity-cert-with-key\
  -grouping
      |     +--:(raw-public-key) {client-ident-raw-public-key}?
      |     |  +-- raw-private-key
      |     |     +---u ks:inline-or-keystore-asymmetric-key-grouping
      |     +--:(tls12-psk) {client-ident-tls12-psk}?
      |     |  +-- tls12-psk
      |     |     +---u ks:inline-or-keystore-symmetric-key-grouping
      |     |     +-- id?
      |     |             string
      |     +--:(tls13-epsk) {client-ident-tls13-epsk}?
      |        +-- tls13-epsk
      |           +---u ks:inline-or-keystore-symmetric-key-grouping
      |           +-- external-identity
      |           |       string
      |           +-- hash?
      |           |       tlscmn:epsk-supported-hash
      |           +-- context?
      |           |       string
      |           +-- target-protocol?
      |           |       uint16
      |           +-- target-kdf?
      |                   uint16
      +-- server-authentication
      |  +-- ca-certs! {server-auth-x509-cert}?
      |  |  +---u ts:inline-or-truststore-certs-grouping
      |  +-- ee-certs! {server-auth-x509-cert}?
      |  |  +---u ts:inline-or-truststore-certs-grouping
      |  +-- raw-public-keys! {server-auth-raw-public-key}?
      |  |  +---u ts:inline-or-truststore-public-keys-grouping
      |  +-- tls12-psks?        empty {server-auth-tls12-psk}?
      |  +-- tls13-epsks?       empty {server-auth-tls13-epsk}?
      +-- hello-params {tlscmn:hello-params}?
      |  +---u tlscmn:hello-params-grouping
      +-- keepalives {tls-client-keepalives}?
         +-- peer-allowed-to-send?   empty
         +-- test-peer-aliveness!
            +-- max-wait?       uint16
            +-- max-attempts?   uint8

  Comments:

  *  The "client-identity" node, which is optionally configured (as
     client authentication MAY occur at a higher protocol layer),
     configures identity credentials, each enabled by a "feature"
     statement defined in Section 3.1.1.

  *  The "server-authentication" node configures trust anchors for
     authenticating the TLS server, with each option enabled by a
     "feature" statement.

  *  The "hello-params" node, which must be enabled by a feature,
     configures parameters for the TLS sessions established by this
     configuration.

  *  The "keepalives" node, which must be enabled by a feature,
     configures a "presence" container to test the aliveness of the TLS
     server.  The aliveness-test occurs at the TLS protocol layer.

  *  For the referenced grouping statement(s):

     -  The "inline-or-keystore-end-entity-cert-with-key-grouping"
        grouping is discussed in Section 2.1.3.6 of [RFC9642].
     -  The "inline-or-keystore-asymmetric-key-grouping" grouping is
        discussed in Section 2.1.3.4 of [RFC9642].
     -  The "inline-or-keystore-symmetric-key-grouping" grouping is
        discussed in Section 2.1.3.3 of [RFC9642].
     -  The "inline-or-truststore-certs-grouping" grouping is discussed
        in Section 2.1.3.3 of [RFC9641].
     -  The "inline-or-truststore-public-keys-grouping" grouping is
        discussed in Section 2.1.3.4 of [RFC9641].
     -  The "hello-params-grouping" grouping is discussed in
        Section 2.1.3.1 in this document.

3.1.3.  Protocol-Accessible Nodes

  The "ietf-tls-client" module defines only "grouping" statements that
  are used by other modules to instantiate protocol-accessible nodes.
  Thus, this module does not itself define any protocol-accessible
  nodes when implemented.

3.2.  Example Usage

  This section presents two examples showing the "tls-client-grouping"
  grouping populated with some data.  These examples are effectively
  the same except the first configures the client identity using a
  local key while the second uses a key configured in a keystore.  Both
  examples are consistent with the examples presented in Section 2.2.1
  of [RFC9641] and Section 2.2.1 of [RFC9642].

  The following configuration example uses inline-definitions for the
  client identity and server authentication:

  =============== NOTE: '\' line wrapping per RFC 8792 ================

  <!-- The outermost element below doesn't exist in the data model. -->
  <!--  It simulates if the "grouping" were a "container" instead.  -->

  <tls-client
    xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-client"
    xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

      <!-- how this client will authenticate itself to the server  -->
      <client-identity>
          <certificate>
              <inline-definition>
                  <private-key-format>ct:rsa-private-key-format</priva\
  te-key-format>
                  <cleartext-private-key>BASE64VALUE=</cleartext-priva\
  te-key>
                  <cert-data>BASE64VALUE=</cert-data>
              </inline-definition>
          </certificate>
      </client-identity>

      <!-- which certificates will this client trust -->
      <server-authentication>
          <ca-certs>
              <inline-definition>
                  <certificate>
                      <name>Server Cert Issuer #1</name>
                      <cert-data>BASE64VALUE=</cert-data>
                  </certificate>
                  <certificate>
                      <name>Server Cert Issuer #2</name>
                      <cert-data>BASE64VALUE=</cert-data>
                  </certificate>
              </inline-definition>
          </ca-certs>
          <ee-certs>
              <inline-definition>
                  <certificate>
                      <name>My Application #1</name>
                      <cert-data>BASE64VALUE=</cert-data>
                  </certificate>
                  <certificate>
                      <name>My Application #2</name>
                      <cert-data>BASE64VALUE=</cert-data>
                  </certificate>
              </inline-definition>
          </ee-certs>
          <raw-public-keys>
              <inline-definition>
                  <public-key>
                      <name>corp-fw1</name>
                      <public-key-format>ct:subject-public-key-info-fo\
  rmat</public-key-format>
                      <public-key>BASE64VALUE=</public-key>
                  </public-key>
                  <public-key>
                      <name>corp-fw2</name>
                      <public-key-format>ct:subject-public-key-info-fo\
  rmat</public-key-format>
                      <public-key>BASE64VALUE=</public-key>
                  </public-key>
              </inline-definition>
          </raw-public-keys>
          <tls12-psks/>
          <tls13-epsks/>
      </server-authentication>

      <keepalives>
          <test-peer-aliveness>
              <max-wait>30</max-wait>
              <max-attempts>3</max-attempts>
          </test-peer-aliveness>
      </keepalives>

  </tls-client>

  The following configuration example uses central-keystore-references
  for the client identity and central-truststore-references for server
  authentication from the keystore:

  =============== NOTE: '\' line wrapping per RFC 8792 ================

  <!-- The outermost element below doesn't exist in the data model. -->
  <!--  It simulates if the "grouping" were a "container" instead.  -->

  <tls-client xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-client">

      <!-- how this client will authenticate itself to the server -->
      <client-identity>
          <certificate>
              <central-keystore-reference>
                  <asymmetric-key>rsa-asymmetric-key</asymmetric-key>
                  <certificate>ex-rsa-cert</certificate>
              </central-keystore-reference>
          </certificate>
      </client-identity>

      <!-- which certificates will this client trust -->
      <server-authentication>
          <ca-certs>
              <central-truststore-reference>trusted-server-ca-certs</c\
  entral-truststore-reference>
          </ca-certs>
          <ee-certs>
              <central-truststore-reference>trusted-server-ee-certs</c\
  entral-truststore-reference>
          </ee-certs>
          <raw-public-keys>
              <central-truststore-reference>Raw Public Keys for TLS Se\
  rvers</central-truststore-reference>
          </raw-public-keys>
          <tls12-psks/>
          <tls13-epsks/>
      </server-authentication>

      <keepalives>
          <test-peer-aliveness>
              <max-wait>30</max-wait>
              <max-attempts>3</max-attempts>
          </test-peer-aliveness>
      </keepalives>

  </tls-client>

3.3.  YANG Module

  This YANG module has normative references to [RFC4279], [RFC5280],
  [RFC6520], [RFC7250], [RFC9640], [RFC9641], and [RFC9642] and
  informative references to [RFC5056], [RFC5246], [RFC8446], [RFC9258],
  and [RFC9257].

  <CODE BEGINS> file "[email protected]"
  module ietf-tls-client {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-tls-client";
    prefix tlsc;

    import ietf-netconf-acm {
      prefix nacm;
      reference
        "RFC 8341: Network Configuration Access Control Model";
    }
    import ietf-crypto-types {
      prefix ct;
      reference
        "RFC 9640: YANG Data Types and Groupings for Cryptography";
    }
    import ietf-truststore {
      prefix ts;
      reference
        "RFC 9641: A YANG Data Model for a Truststore";
    }
    import ietf-keystore {
      prefix ks;
      reference
        "RFC 9642: A YANG Data Model for a Keystore";
    }
    import ietf-tls-common {
      prefix tlscmn;
      reference
        "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
    }

    organization
      "IETF NETCONF (Network Configuration) Working Group";
    contact
      "WG List:  NETCONF WG list <mailto:[email protected]>
       WG Web:   https://datatracker.ietf.org/wg/netconf
       Author:   Kent Watsen <mailto:[email protected]>
       Author:   Jeff Hartley <mailto:[email protected]>";
    description
      "This module defines reusable groupings for TLS clients that
       can be used as a basis for specific TLS client instances.

       The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
       'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
       'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
       are to be interpreted as described in BCP 14 (RFC 2119)
       (RFC 8174) when, and only when, they appear in all
       capitals, as shown here.

       Copyright (c) 2024 IETF Trust and the persons identified
       as authors of the code. All rights reserved.

       Redistribution and use in source and binary forms, with
       or without modification, is permitted pursuant to, and
       subject to the license terms contained in, the Revised
       BSD License set forth in Section 4.c of the IETF Trust's
       Legal Provisions Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC 9645
       (https://www.rfc-editor.org/info/rfc9645); see the RFC
       itself for full legal notices.";

    revision 2024-10-10 {
      description
        "Initial version";
      reference
        "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
    }

    // Features

    feature tls-client-keepalives {
      description
        "Per-socket TLS keepalive parameters are configurable for
         TLS clients on the server implementing this feature.";
    }

    feature client-ident-x509-cert {
      description
        "Indicates that the client supports identifying itself
         using X.509 certificates.";
      reference
        "RFC 5280:
           Internet X.509 Public Key Infrastructure Certificate
           and Certificate Revocation List (CRL) Profile";
    }

    feature client-ident-raw-public-key {
      description
        "Indicates that the client supports identifying itself
         using raw public keys.";
      reference
        "RFC 7250:
           Using Raw Public Keys in Transport Layer Security (TLS)
           and Datagram Transport Layer Security (DTLS)";
    }

    feature client-ident-tls12-psk {
      if-feature "tlscmn:tls12";
      description
        "Indicates that the client supports identifying itself
         using TLS 1.2 PSKs (pre-shared or pairwise symmetric keys).";
      reference
        "RFC 4279:
           Pre-Shared Key Ciphersuites for Transport Layer Security
           (TLS)";
    }

    feature client-ident-tls13-epsk {
      if-feature "tlscmn:tls13";
      description
        "Indicates that the client supports identifying itself
         using TLS 1.3 External PSKs (pre-shared keys).";
      reference
        "RFC 8446:
           The Transport Layer Security (TLS) Protocol Version 1.3";
    }

    feature server-auth-x509-cert {
      description
        "Indicates that the client supports authenticating servers
         using X.509 certificates.";
      reference
        "RFC 5280:
           Internet X.509 Public Key Infrastructure Certificate
           and Certificate Revocation List (CRL) Profile";
    }

    feature server-auth-raw-public-key {
      description
        "Indicates that the client supports authenticating servers
         using raw public keys.";
      reference
        "RFC 7250:
           Using Raw Public Keys in Transport Layer Security (TLS)
           and Datagram Transport Layer Security (DTLS)";
    }

    feature server-auth-tls12-psk {
      description
        "Indicates that the client supports authenticating servers
         using PSKs (pre-shared or pairwise symmetric keys).";
      reference
        "RFC 4279:
           Pre-Shared Key Ciphersuites for Transport Layer Security
           (TLS)";
    }

    feature server-auth-tls13-epsk {
      description
        "Indicates that the client supports authenticating servers
         using TLS 1.3 External PSKs (pre-shared keys).";
      reference
        "RFC 8446:
           The Transport Layer Security (TLS) Protocol Version 1.3";
    }

    // Groupings

    grouping tls-client-grouping {
      description
        "A reusable grouping for configuring a TLS client without
         any consideration for how an underlying TCP session is
         established.

         Note that this grouping uses fairly typical descendant
         node names such that a stack of 'uses' statements will
         have name conflicts.  It is intended that the consuming
         data model will resolve the issue (e.g., by wrapping
         the 'uses' statement in a container called
         'tls-client-parameters').  This model purposely does
         not do this itself so as to provide maximum flexibility
         to consuming models.";
      container client-identity {
        nacm:default-deny-write;
        presence "Indicates that a TLS-level client identity has been
                  configured.  This statement is present so the
                  mandatory descendant nodes do not imply that this
                  node must be configured.";
        description
          "Identity credentials the TLS client MAY present when
           establishing a connection to a TLS server.  If not
           configured, then client authentication is presumed to
           occur in a protocol layer above TLS.  When configured,
           and requested by the TLS server when establishing a
           TLS session, these credentials are passed in the
           Certificate message defined in Section 7.4.2 of
           RFC 5246 and Section 4.4.2 of RFC 8446.";
        reference
          "RFC 5246: The Transport Layer Security (TLS)
                     Protocol Version 1.2
           RFC 8446: The Transport Layer Security (TLS)
                     Protocol Version 1.3
           RFC 9642: A YANG Data Model for a Keystore";
        choice auth-type {
          mandatory true;
          description
            "A choice amongst authentication types, of which one must
             be enabled (via its associated 'feature') and selected.";
          case certificate {
            if-feature "client-ident-x509-cert";
            container certificate {
              description
                "Specifies the client identity using a certificate.";
              uses "ks:inline-or-keystore-end-entity-cert-with-key-"
                 + "grouping" {
                refine "inline-or-keystore/inline/inline-definition" {
                  must 'not(public-key-format) or derived-from-or-self'
                     + '(public-key-format, "ct:subject-public-key-'
                     + 'info-format")';
                }
                refine "inline-or-keystore/central-keystore/"
                     + "central-keystore-reference/asymmetric-key" {
                  must 'not(deref(.)/../ks:public-key-format) or '
                     + 'derived-from-or-self(deref(.)/../ks:public-'
                     + 'key-format, "ct:subject-public-key-info-'
                     + 'format")';
                }
              }
            }
          }
          case raw-public-key {
            if-feature "client-ident-raw-public-key";
            container raw-private-key {
              description
                "Specifies the client identity using a raw
                 private key.";
              uses ks:inline-or-keystore-asymmetric-key-grouping {
                refine "inline-or-keystore/inline/inline-definition" {
                  must 'not(public-key-format) or derived-from-or-self'
                     + '(public-key-format, "ct:subject-public-key-'
                     + 'info-format")';
                }
                refine "inline-or-keystore/central-keystore/"
                     + "central-keystore-reference" {
                  must 'not(deref(.)/../ks:public-key-format) or '
                     + 'derived-from-or-self(deref(.)/../ks:public-'
                     + 'key-format, "ct:subject-public-key-info-'
                     + 'format")';
                }
              }
            }
          }
          case tls12-psk {
            if-feature "client-ident-tls12-psk";
            container tls12-psk {
              description
                "Specifies the client identity using a PSK (pre-shared
                 or pairwise symmetric key).";
              uses ks:inline-or-keystore-symmetric-key-grouping;
              leaf id {
                type string;
                description
                  "The key 'psk_identity' value used in the TLS
                   'ClientKeyExchange' message.";
                reference
                  "RFC 4279: Pre-Shared Key Ciphersuites for
                             Transport Layer Security (TLS)";
              }
            }
          }
          case tls13-epsk {
            if-feature "client-ident-tls13-epsk";
            container tls13-epsk {
              description
                "An External Pre-Shared Key (EPSK) is established
                 or provisioned out of band, i.e., not from a TLS
                 connection.  An EPSK is a tuple of (Base Key,
                 External Identity, Hash).  EPSKs MUST NOT be
                 imported for (D)TLS 1.2 or prior versions.  When
                 PSKs are provisioned out of band, the PSK identity
                 and the Key Derivation Function (KDF) hash algorithm
                 to be used with the PSK MUST also be provisioned.

                 The structure of this container is designed to satisfy
                 the requirements in Section 4.2.11 of RFC 8446, the
                 recommendations from Section 6 of RFC 9257, and the
                 EPSK input fields detailed in Section 5.1 of RFC 9258.
                 The base-key is based upon
                 'ks:inline-or-keystore-symmetric-key-grouping' in
                 order to provide users with flexible and secure
                 storage options.";
              reference
                "RFC 8446: The Transport Layer Security (TLS)
                           Protocol Version 1.3
                 RFC 9257: Guidance for External Pre-Shared Key
                           (PSK) Usage in TLS
                 RFC 9258: Importing External Pre-Shared Keys
                           (PSKs) for TLS 1.3";
              uses ks:inline-or-keystore-symmetric-key-grouping;
              leaf external-identity {
                type string;
                mandatory true;
                description
                  "As per Section 4.2.11 of RFC 8446 and Section 4.1
                   of RFC 9257, a sequence of bytes used to identify
                   an EPSK.  A label for a pre-shared key established
                   externally.";
                reference
                  "RFC 8446: The Transport Layer Security (TLS)
                             Protocol Version 1.3
                   RFC 9257: Guidance for External Pre-Shared Key
                             (PSK) Usage in TLS";
              }
              leaf hash {
                type tlscmn:epsk-supported-hash;
                default "sha-256";
                description
                  "As per Section 4.2.11 of RFC 8446, for EPSKs,
                   the hash algorithm MUST be set when the PSK is
                   established; otherwise, default to SHA-256 if
                   no such algorithm is defined.  The server MUST
                   ensure that it selects a compatible PSK (if any)
                   and cipher suite.  Each PSK MUST only be used
                   with a single hash function.";
                reference
                  "RFC 8446: The Transport Layer Security (TLS)
                             Protocol Version 1.3";
              }
              leaf context {
                type string;
                description
                  "As per Section 5.1 of RFC 9258, context MUST
                   include the context used to determine the EPSK,
                   if any exists.  For example, context may include
                   information about peer roles or identities
                   to mitigate Selfie-style reflection attacks.
                   Since the EPSK is a key derived from an external
                   protocol or a sequence of protocols, context MUST
                   include a channel binding for the deriving
                   protocols (see RFC 5056).  The details of this
                   binding are protocol specific and out of scope
                   for this document.";
                reference
                  "RFC 9258: Importing External Pre-Shared Keys
                             (PSKs) for TLS 1.3";
              }
              leaf target-protocol {
                type uint16;
                description
                  "As per Section 3 of RFC 9258, the protocol
                   for which a PSK is imported for use.";
                reference
                  "RFC 9258: Importing External Pre-Shared Keys
                             (PSKs) for TLS 1.3";
              }
              leaf target-kdf {
                type uint16;
                description
                  "As per Section 3 of RFC 9258, the Key Derivation
                   Function (KDF) for which a PSK is imported for
                   use.";
                reference
                  "RFC 9258: Importing External Pre-Shared Keys
                             (PSKs) for TLS 1.3";
              }
            }
          }
        }
      } // container client-identity
      container server-authentication {
        nacm:default-deny-write;
        must "ca-certs or ee-certs or raw-public-keys or tls12-psks
                      or tls13-epsks";
        description
          "Specifies how the TLS client can authenticate TLS servers.
           Any combination of credentials is additive and unordered.

           Note that no configuration is required for authentication
           based on PSK (pre-shared or pairwise symmetric key) as
           the key is necessarily the same as configured in the
           '../client-identity' node.";
        container ca-certs {
          if-feature "server-auth-x509-cert";
          presence "Indicates that Certification Authority (CA)
                    certificates have been configured.  This
                    statement is present so the mandatory
                    descendant nodes do not imply that this
                    node must be configured.";
          description
            "A set of CA certificates used by the TLS client to
             authenticate TLS server certificates.  A server
             certificate is authenticated if it has a valid chain of
             trust to a configured CA certificate.";
          reference
            "RFC 9641: A YANG Data Model for a Truststore";
          uses ts:inline-or-truststore-certs-grouping;
        }
        container ee-certs {
          if-feature "server-auth-x509-cert";
          presence "Indicates that End-Entity (EE) certificates have
                    been configured.  This statement is present so
                    the mandatory descendant nodes do not imply
                    that this node must be configured.";
          description
            "A set of server certificates (i.e., EE certificates) used
             by the TLS client to authenticate certificates presented
             by TLS servers.  A server certificate is authenticated if
             it is an exact match to a configured server certificate.";
          reference
            "RFC 9641: A YANG Data Model for a Truststore";
          uses ts:inline-or-truststore-certs-grouping;
        }
        container raw-public-keys {
          if-feature "server-auth-raw-public-key";
          presence "Indicates that raw public keys have been
                    configured.  This statement is present so
                    the mandatory descendant nodes do not imply
                    that this node must be configured.";
          description
            "A set of raw public keys used by the TLS client to
             authenticate raw public keys presented by the TLS
             server.  A raw public key is authenticated if it
             is an exact match to a configured raw public key.";
          reference
            "RFC 9641: A YANG Data Model for a Truststore";
          uses ts:inline-or-truststore-public-keys-grouping {
            refine "inline-or-truststore/inline/inline-definition/"
                 + "public-key" {
              must 'derived-from-or-self(public-key-format,'
                 + ' "ct:subject-public-key-info-format")';
            }
            refine "inline-or-truststore/central-truststore/"
                 + "central-truststore-reference" {
              must 'not(deref(.)/../ts:public-key/ts:public-key-'
                 + 'format[not(derived-from-or-self(., "ct:subject-'
                 + 'public-key-info-format"))])';
            }
          }
        }
        leaf tls12-psks {
          if-feature "server-auth-tls12-psk";
          type empty;
          description
            "Indicates that the TLS client can authenticate TLS servers
             using configured PSKs (pre-shared or pairwise symmetric
             keys).

             No configuration is required since the PSK value is the
             same as the PSK value configured in the 'client-identity'
             node.";
        }
        leaf tls13-epsks {
          if-feature "server-auth-tls13-epsk";
          type empty;
          description
            "Indicates that the TLS client can authenticate TLS servers
             using configured External PSKs (pre-shared keys).

             No configuration is required since the PSK value is the
             same as the PSK value configured in the 'client-identity'
             node.";
        }
      } // container server-authentication
      container hello-params {
        nacm:default-deny-write;
        if-feature "tlscmn:hello-params";
        uses tlscmn:hello-params-grouping;
        description
          "Configurable parameters for the TLS hello message.";
      } // container hello-params
      container keepalives {
        nacm:default-deny-write;
        if-feature "tls-client-keepalives";
        description
          "Configures the keepalive policy for the TLS client.";
        leaf peer-allowed-to-send {
          type empty;
          description
            "Indicates that the remote TLS server is allowed to send
             HeartbeatRequest messages, as defined by RFC 6520,
             to this TLS client.";
          reference
            "RFC 6520: Transport Layer Security (TLS) and Datagram
             Transport Layer Security (DTLS) Heartbeat Extension";
        }
        container test-peer-aliveness {
          presence "Indicates that the TLS client proactively tests the
                    aliveness of the remote TLS server.";
          description
            "Configures the keepalive policy to proactively test
             the aliveness of the TLS server.  An unresponsive
             TLS server is dropped after approximately max-wait
             * max-attempts seconds.  The TLS client MUST send
             HeartbeatRequest messages, as defined in RFC 6520.";
          reference
            "RFC 6520: Transport Layer Security (TLS) and Datagram
             Transport Layer Security (DTLS) Heartbeat Extension";
          leaf max-wait {
            type uint16 {
              range "1..max";
            }
            units "seconds";
            default "30";
            description
              "Sets the amount of time in seconds, after which a
               TLS-level message will be sent to test the
               aliveness of the TLS server if no data has been
               received from the TLS server.";
          }
          leaf max-attempts {
            type uint8;
            default "3";
            description
              "Sets the maximum number of sequential keepalive
               messages that can fail to obtain a response from
               the TLS server before assuming the TLS server is
               no longer alive.";
          }
        }
      }
    } // grouping tls-client-grouping

  }
  <CODE ENDS>

4.  The "ietf-tls-server" Module

  This section defines a YANG 1.1 module called "ietf-tls-server".  A
  high-level overview of the module is provided in Section 4.1.
  Examples illustrating the module's use are provided in Section 4.2
  ("Example Usage").  The YANG module itself is defined in Section 4.3.

4.1.  Data Model Overview

  This section provides an overview of the "ietf-tls-server" module in
  terms of its features and groupings.

4.1.1.  Features

  The following diagram lists all the "feature" statements defined in
  the "ietf-tls-server" module:

  Features:
    +-- tls-server-keepalives
    +-- server-ident-x509-cert
    +-- server-ident-raw-public-key
    +-- server-ident-psk
    +-- client-auth-supported
    +-- client-auth-x509-cert
    +-- client-auth-raw-public-key
    +-- client-auth-psk

  The diagram above uses syntax that is similar to but not defined in
  [RFC8340].

  Please refer to the YANG module for a description of each feature.

4.1.2.  Groupings

  The "ietf-tls-server" module defines the following "grouping"
  statement:

  *  tls-server-grouping

  This grouping is presented in the following subsection.

4.1.2.1.  The "tls-server-grouping" Grouping

  The following tree diagram [RFC8340] illustrates the "tls-server-
  grouping" grouping:

  =============== NOTE: '\' line wrapping per RFC 8792 ================

    grouping tls-server-grouping:
      +-- server-identity
      |  +-- (auth-type)
      |     +--:(certificate) {server-ident-x509-cert}?
      |     |  +-- certificate
      |     |     +---u ks:inline-or-keystore-end-entity-cert-with-key\
  -grouping
      |     +--:(raw-private-key) {server-ident-raw-public-key}?
      |     |  +-- raw-private-key
      |     |     +---u ks:inline-or-keystore-asymmetric-key-grouping
      |     +--:(tls12-psk) {server-ident-tls12-psk}?
      |     |  +-- tls12-psk
      |     |     +---u ks:inline-or-keystore-symmetric-key-grouping
      |     |     +-- id-hint?
      |     |             string
      |     +--:(tls13-epsk) {server-ident-tls13-epsk}?
      |        +-- tls13-epsk
      |           +---u ks:inline-or-keystore-symmetric-key-grouping
      |           +-- external-identity
      |           |       string
      |           +-- hash?
      |           |       tlscmn:epsk-supported-hash
      |           +-- context?
      |           |       string
      |           +-- target-protocol?
      |           |       uint16
      |           +-- target-kdf?
      |                   uint16
      +-- client-authentication! {client-auth-supported}?
      |  +-- ca-certs! {client-auth-x509-cert}?
      |  |  +---u ts:inline-or-truststore-certs-grouping
      |  +-- ee-certs! {client-auth-x509-cert}?
      |  |  +---u ts:inline-or-truststore-certs-grouping
      |  +-- raw-public-keys! {client-auth-raw-public-key}?
      |  |  +---u ts:inline-or-truststore-public-keys-grouping
      |  +-- tls12-psks?        empty {client-auth-tls12-psk}?
      |  +-- tls13-epsks?       empty {client-auth-tls13-epsk}?
      +-- hello-params {tlscmn:hello-params}?
      |  +---u tlscmn:hello-params-grouping
      +-- keepalives {tls-server-keepalives}?
         +-- peer-allowed-to-send?   empty
         +-- test-peer-aliveness!
            +-- max-wait?       uint16
            +-- max-attempts?   uint8

  Comments:

  *  The "server-identity" node configures identity credentials, each
     of which is enabled by a "feature".

  *  The "client-authentication" node, which is optionally configured
     (as client authentication MAY occur at a higher protocol layer),
     configures trust anchors for authenticating the TLS client, with
     each option enabled by a "feature" statement.

  *  The "hello-params" node, which must be enabled by a feature,
     configures parameters for the TLS sessions established by this
     configuration.

  *  The "keepalives" node, which must be enabled by a feature,
     configures a flag enabling the TLS client to test the aliveness of
     the TLS server as well as a "presence" container to test the
     aliveness of the TLS client.  The aliveness-tests occur at the TLS
     protocol layer.

  *  For the referenced grouping statement(s):

     -  The "inline-or-keystore-end-entity-cert-with-key-grouping"
        grouping is discussed in Section 2.1.3.6 of [RFC9642].
     -  The "inline-or-keystore-asymmetric-key-grouping" grouping is
        discussed in Section 2.1.3.4 of [RFC9642].
     -  The "inline-or-keystore-symmetric-key-grouping" grouping is
        discussed in Section 2.1.3.3 of [RFC9642].
     -  The "inline-or-truststore-public-keys-grouping" grouping is
        discussed in Section 2.1.3.4 of [RFC9641].
     -  The "inline-or-truststore-certs-grouping" grouping is discussed
        in Section 2.1.3.3 of [RFC9641].
     -  The "hello-params-grouping" grouping is discussed in
        Section 2.1.3.1 in this document.

4.1.3.  Protocol-Accessible Nodes

  The "ietf-tls-server" module defines only "grouping" statements that
  are used by other modules to instantiate protocol-accessible nodes.
  Thus, this module does not itself define any protocol-accessible
  nodes when implemented.

4.2.  Example Usage

  This section presents two examples showing the "tls-server-grouping"
  grouping populated with some data.  These examples are effectively
  the same except the first configures the server identity using a
  local key while the second uses a key configured in a keystore.  Both
  examples are consistent with the examples presented in Section 2.2.1
  of [RFC9641] and Section 2.2.1 of [RFC9642].

  The following configuration example uses inline-definitions for the
  server identity and client authentication:

  =============== NOTE: '\' line wrapping per RFC 8792 ================

  <!-- The outermost element below doesn't exist in the data model. -->
  <!--  It simulates if the "grouping" were a "container" instead.  -->

  <tls-server
    xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server"
    xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

      <!-- how this server will authenticate itself to the client -->
      <server-identity>
          <certificate>
            <inline-definition>
                <private-key-format>ct:rsa-private-key-format</private\
  -key-format>
                <cleartext-private-key>BASE64VALUE=</cleartext-private\
  -key>
                <cert-data>BASE64VALUE=</cert-data>
              </inline-definition>
          </certificate>
      </server-identity>

      <!-- which certificates will this server trust -->
      <client-authentication>
          <ca-certs>
              <inline-definition>
                  <certificate>
                      <name>Identity Cert Issuer #1</name>
                      <cert-data>BASE64VALUE=</cert-data>
                  </certificate>
                  <certificate>
                      <name>Identity Cert Issuer #2</name>
                      <cert-data>BASE64VALUE=</cert-data>
                  </certificate>
              </inline-definition>
          </ca-certs>
          <ee-certs>
              <inline-definition>
                  <certificate>
                      <name>Application #1</name>
                      <cert-data>BASE64VALUE=</cert-data>
                  </certificate>
                  <certificate>
                      <name>Application #2</name>
                      <cert-data>BASE64VALUE=</cert-data>
                  </certificate>
              </inline-definition>
          </ee-certs>
          <raw-public-keys>
              <inline-definition>
                  <public-key>
                      <name>User A</name>
                      <public-key-format>ct:subject-public-key-info-fo\
  rmat</public-key-format>
                      <public-key>BASE64VALUE=</public-key>
                  </public-key>
                  <public-key>
                      <name>User B</name>
                      <public-key-format>ct:subject-public-key-info-fo\
  rmat</public-key-format>
                      <public-key>BASE64VALUE=</public-key>
                  </public-key>
              </inline-definition>
          </raw-public-keys>
          <tls12-psks/>
          <tls13-epsks/>
      </client-authentication>

      <keepalives>
          <peer-allowed-to-send/>
      </keepalives>

  </tls-server>

  The following configuration example uses central-keystore-references
  for the server identity and central-truststore-references for client
  authentication from the keystore:

  =============== NOTE: '\' line wrapping per RFC 8792 ================

  <!-- The outermost element below doesn't exist in the data model. -->
  <!--  It simulates if the "grouping" were a "container" instead.  -->

  <tls-server xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server">

      <!-- how this server will authenticate itself to the client -->
      <server-identity>
          <certificate>
              <central-keystore-reference>
                  <asymmetric-key>rsa-asymmetric-key</asymmetric-key>
                  <certificate>ex-rsa-cert</certificate>
              </central-keystore-reference>
          </certificate>
      </server-identity>

      <!-- which certificates will this server trust -->
      <client-authentication>
          <ca-certs>
              <central-truststore-reference>trusted-client-ca-certs</c\
  entral-truststore-reference>
          </ca-certs>
          <ee-certs>
              <central-truststore-reference>trusted-client-ee-certs</c\
  entral-truststore-reference>
          </ee-certs>
          <raw-public-keys>
              <central-truststore-reference>Raw Public Keys for TLS Cl\
  ients</central-truststore-reference>
          </raw-public-keys>
          <tls12-psks/>
          <tls13-epsks/>
      </client-authentication>

      <keepalives>
          <peer-allowed-to-send/>
      </keepalives>

  </tls-server>

4.3.  YANG Module

  This YANG module has normative references to [RFC4279], [RFC5280],
  [RFC6520], [RFC7250], [RFC9640], [RFC9641], and [RFC9642] and
  informative references to [RFC5056], [RFC5246], [RFC8446], [RFC9258],
  and [RFC9257].

  <CODE BEGINS> file "[email protected]"
  module ietf-tls-server {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-tls-server";
    prefix tlss;

    import ietf-netconf-acm {
      prefix nacm;
      reference
        "RFC 8341: Network Configuration Access Control Model";
    }
    import ietf-crypto-types {
      prefix ct;
      reference
        "RFC 9640: YANG Data Types and Groupings for Cryptography";
    }
    import ietf-truststore {
      prefix ts;
      reference
        "RFC 9641: A YANG Data Model for a Truststore";
    }
    import ietf-keystore {
      prefix ks;
      reference
        "RFC 9642: A YANG Data Model for a Keystore";
    }
    import ietf-tls-common {
      prefix tlscmn;
      reference
        "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
    }

    organization
      "IETF NETCONF (Network Configuration) Working Group";
    contact
      "WG List:  NETCONF WG list <mailto:[email protected]>
       WG Web:   https://datatracker.ietf.org/wg/netconf
       Author:   Kent Watsen <mailto:[email protected]>
       Author:   Jeff Hartley <mailto:[email protected]>";
    description
      "This module defines reusable groupings for TLS servers that
       can be used as a basis for specific TLS server instances.

       The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
       'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
       'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
       are to be interpreted as described in BCP 14 (RFC 2119)
       (RFC 8174) when, and only when, they appear in all
       capitals, as shown here.

       Copyright (c) 2024 IETF Trust and the persons identified
       as authors of the code. All rights reserved.

       Redistribution and use in source and binary forms, with
       or without modification, is permitted pursuant to, and
       subject to the license terms contained in, the Revised
       BSD License set forth in Section 4.c of the IETF Trust's
       Legal Provisions Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC 9645
       (https://www.rfc-editor.org/info/rfc9645); see the RFC
       itself for full legal notices.";

    revision 2024-10-10 {
      description
        "Initial version.";
      reference
        "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
    }

    // Features

    feature tls-server-keepalives {
      description
        "Per-socket TLS keepalive parameters are configurable for
         TLS servers on the server implementing this feature.";
    }

    feature server-ident-x509-cert {
      description
        "Indicates that the server supports identifying itself
         using X.509 certificates.";
      reference
        "RFC 5280:
           Internet X.509 Public Key Infrastructure Certificate
           and Certificate Revocation List (CRL) Profile";
    }

    feature server-ident-raw-public-key {
      description
        "Indicates that the server supports identifying itself
         using raw public keys.";
      reference
        "RFC 7250:
           Using Raw Public Keys in Transport Layer Security (TLS)
           and Datagram Transport Layer Security (DTLS)";
    }

    feature server-ident-tls12-psk {
      if-feature "tlscmn:tls12";
      description
        "Indicates that the server supports identifying itself
         using TLS 1.2 PSKs (pre-shared or pairwise symmetric keys).";
      reference
        "RFC 4279:
           Pre-Shared Key Ciphersuites for Transport Layer Security
           (TLS)";
    }

    feature server-ident-tls13-epsk {
      if-feature "tlscmn:tls13";
      description
        "Indicates that the server supports identifying itself
         using TLS 1.3 External PSKs (pre-shared keys).";
      reference
        "RFC 8446:
           The Transport Layer Security (TLS) Protocol Version 1.3";
    }

    feature client-auth-supported {
      description
        "Indicates that the configuration for how to authenticate
         clients can be configured herein.  TLS-level client
         authentication may not be needed when client authentication
         is expected to occur only at another protocol layer.";
    }

    feature client-auth-x509-cert {
      description
        "Indicates that the server supports authenticating clients
         using X.509 certificates.";
      reference
        "RFC 5280:
           Internet X.509 Public Key Infrastructure Certificate
           and Certificate Revocation List (CRL) Profile";
    }

    feature client-auth-raw-public-key {
      description
        "Indicates that the server supports authenticating clients
         using raw public keys.";
      reference
        "RFC 7250:
           Using Raw Public Keys in Transport Layer Security (TLS)
           and Datagram Transport Layer Security (DTLS)";
    }

    feature client-auth-tls12-psk {
      description
        "Indicates that the server supports authenticating clients
         using PSKs (pre-shared or pairwise symmetric keys).";
      reference
        "RFC 4279:
           Pre-Shared Key Ciphersuites for Transport Layer Security
           (TLS)";
    }

    feature client-auth-tls13-epsk {
      description
        "Indicates that the server supports authenticating clients
         using TLS 1.3 External PSKs (pre-shared keys).";
      reference
        "RFC 8446:
           The Transport Layer Security (TLS) Protocol Version 1.3";
    }

    // Groupings

    grouping tls-server-grouping {
      description
        "A reusable grouping for configuring a TLS server without
         any consideration for how underlying TCP sessions are
         established.

         Note that this grouping uses fairly typical descendant
         node names such that a stack of 'uses' statements will
         have name conflicts.  It is intended that the consuming
         data model will resolve the issue (e.g., by wrapping
         the 'uses' statement in a container called
         'tls-server-parameters').  This model purposely does
         not do this itself so as to provide maximum flexibility
         to consuming models.";
      container server-identity {
        nacm:default-deny-write;
        description
          "A locally defined or referenced End-Entity (EE) certificate,
           including any configured intermediate certificates, that
           the TLS server will present when establishing a TLS
           connection in its Certificate message, as defined in
           Section 7.4.2 of RFC 5246 and Section 4.4.2 of RFC 8446.";
        reference
          "RFC 5246: The Transport Layer Security (TLS) Protocol
                     Version 1.2
           RFC 8446: The Transport Layer Security (TLS) Protocol
                     Version 1.3
           RFC 9642: A YANG Data Model for a Keystore";
        choice auth-type {
          mandatory true;
          description
            "A choice amongst authentication types, of which one must
             be enabled (via its associated 'feature') and selected.";
          case certificate {
            if-feature "server-ident-x509-cert";
            container certificate {
              description
                "Specifies the server identity using a certificate.";
              uses "ks:inline-or-keystore-end-entity-cert-with-key-"
                 + "grouping" {
                refine "inline-or-keystore/inline/inline-definition" {
                  must 'not(public-key-format) or derived-from-or-self'
                     + '(public-key-format,'
                     + ' "ct:subject-public-'
                     + 'key-info-format")';
                }
                refine "inline-or-keystore/central-keystore/"
                     + "central-keystore-reference/asymmetric-key" {
                  must 'not(deref(.)/../ks:public-key-format) or '
                     + 'derived-from-or-self(deref(.)/../ks:public-key'
                     + '-format, "ct:subject-public-key-info-format")';
                }
              }
            }
          }
          case raw-private-key {
            if-feature "server-ident-raw-public-key";
            container raw-private-key {
              description
                "Specifies the server identity using a raw
                 private key.";
              uses ks:inline-or-keystore-asymmetric-key-grouping {
                refine "inline-or-keystore/inline/inline-definition" {
                  must 'not(public-key-format) or derived-from-or-self'
                     + '(public-key-format,'
                     + ' "ct:subject-public-'
                     + 'key-info-format")';
                }
                refine "inline-or-keystore/central-keystore/"
                     + "central-keystore-reference" {
                  must 'not(deref(.)/../ks:public-key-format) or '
                     + 'derived-from-or-self(deref(.)/../ks:public-key'
                     + '-format, "ct:subject-public-key-info-format")';
                }
              }
            }
          }
          case tls12-psk {
            if-feature "server-ident-tls12-psk";
            container tls12-psk {
              description
                "Specifies the server identity using a PSK (pre-shared
                 or pairwise symmetric key).";
              uses ks:inline-or-keystore-symmetric-key-grouping;
              leaf id-hint {
                type string;
                description
                  "The key 'psk_identity_hint' value used in the TLS
                   'ServerKeyExchange' message.";
                reference
                  "RFC 4279: Pre-Shared Key Ciphersuites for
                             Transport Layer Security (TLS)";
              }
            }
          }
          case tls13-epsk {
            if-feature "server-ident-tls13-epsk";
            container tls13-epsk {
              description
                "An External Pre-Shared Key (EPSK) is established
                 or provisioned out of band, i.e., not from a TLS
                 connection.  An EPSK is a tuple of (Base Key,
                 External Identity, Hash).  EPSKs MUST NOT be
                 imported for (D)TLS 1.2 or prior versions.
                 When PSKs are provisioned out of band, the PSK
                 identity and the KDF hash algorithm to be used
                 with the PSK MUST also be provisioned.

                 The structure of this container is designed to
                 satisfy the requirements in Section 4.2.11 of
                 RFC 8446, the recommendations from Section 6 of
                 RFC 9257, and the EPSK input fields detailed in
                 Section 5.1 of RFC 9258.  The base-key is based
                 upon 'ks:inline-or-keystore-symmetric-key-grouping'
                 in order to provide users with flexible and
                 secure storage options.";
              reference
                "RFC 8446: The Transport Layer Security (TLS)
                           Protocol Version 1.3
                 RFC 9257: Guidance for External Pre-Shared Key
                           (PSK) Usage in TLS
                 RFC 9258: Importing External Pre-Shared Keys
                           (PSKs) for TLS 1.3";
              uses ks:inline-or-keystore-symmetric-key-grouping;
              leaf external-identity {
                type string;
                mandatory true;
                description
                  "As per Section 4.2.11 of RFC 8446 and Section 4.1
                   of RFC 9257, a sequence of bytes used to identify
                   an EPSK.  A label for a pre-shared key established
                   externally.";
                reference
                  "RFC 8446: The Transport Layer Security (TLS)
                             Protocol Version 1.3
                   RFC 9257: Guidance for External Pre-Shared Key
                             (PSK) Usage in TLS";
              }
              leaf hash {
                type tlscmn:epsk-supported-hash;
                default "sha-256";
                description
                  "As per Section 4.2.11 of RFC 8446, for EPSKs,
                   the hash algorithm MUST be set when the PSK is
                   established; otherwise, default to SHA-256 if
                   no such algorithm is defined.  The server MUST
                   ensure that it selects a compatible PSK (if any)
                   and cipher suite.  Each PSK MUST only be used
                   with a single hash function.";
                reference
                  "RFC 8446: The Transport Layer Security (TLS)
                             Protocol Version 1.3";
              }
              leaf context {
                type string;
                description
                  "As per Section 5.1 of RFC 9258, context MUST
                   include the context used to determine the EPSK,
                   if any exists.  For example, context may include
                   information about peer roles or identities
                   to mitigate Selfie-style reflection attacks.
                   Since the EPSK is a key derived from an external
                   protocol or sequence of protocols, context MUST
                   include a channel binding for the deriving
                   protocols (see RFC 5056).  The details of this
                   binding are protocol specific and out of scope
                   for this document.";
                reference
                  "RFC 9258: Importing External Pre-Shared Keys
                             (PSKs) for TLS 1.3";
              }
              leaf target-protocol {
                type uint16;
                description
                  "As per Section 3.1 of RFC 9258, the protocol
                   for which a PSK is imported for use.";
                reference
                  "RFC 9258: Importing External Pre-Shared Keys
                             (PSKs) for TLS 1.3";
              }
              leaf target-kdf {
                type uint16;
                description
                  "As per Section 3 of RFC 9258, the KDF for
                   which a PSK is imported for use.";
                reference
                  "RFC 9258: Importing External Pre-Shared Keys
                             (PSKs) for TLS 1.3";
              }
            }
          }
        }
      } // container server-identity
      container client-authentication {
        if-feature "client-auth-supported";
        nacm:default-deny-write;
        must "ca-certs or ee-certs or raw-public-keys or tls12-psks
                      or tls13-epsks";
        presence "Indicates that client authentication is supported
                  (i.e., that the server will request clients send
                  certificates).  If not configured, the TLS server
                  SHOULD NOT request that TLS clients provide
                  authentication credentials.";
        description
          "Specifies how the TLS server can authenticate TLS clients.
           Any combination of credentials is additive and unordered.

           Note that no configuration is required for authentication
           based on PSK (pre-shared or pairwise symmetric key) as the
           the key is necessarily the same as configured in the
           '../server-identity' node.";
        container ca-certs {
          if-feature "client-auth-x509-cert";
          presence "Indicates that Certification Authority (CA)
                    certificates have been configured.  This
                    statement is present so the mandatory
                    descendant nodes do not imply that this node
                    must be configured.";
          description
            "A set of CA certificates used by the TLS server to
             authenticate TLS client certificates.  A client
             certificate is authenticated if it has a valid chain
             of trust to a configured CA certificate.";
          reference
            "RFC 9641: A YANG Data Model for a Truststore";
          uses ts:inline-or-truststore-certs-grouping;
        }
        container ee-certs {
          if-feature "client-auth-x509-cert";
          presence "Indicates that EE certificates have been
                    configured.  This statement is present so the
                    mandatory descendant nodes do not imply that
                    this node must be configured.";
          description
            "A set of client certificates (i.e., EE certificates)
             used by the TLS server to authenticate
             certificates presented by TLS clients.  A client
             certificate is authenticated if it is an exact
             match to a configured client certificate.";
          reference
            "RFC 9641: A YANG Data Model for a Truststore";
          uses ts:inline-or-truststore-certs-grouping;
        }
        container raw-public-keys {
          if-feature "client-auth-raw-public-key";
          presence "Indicates that raw public keys have been
                    configured.  This statement is present so
                    the mandatory descendant nodes do not imply
                    that this node must be configured.";
          description
            "A set of raw public keys used by the TLS server to
             authenticate raw public keys presented by the TLS
             client.  A raw public key is authenticated if it
             is an exact match to a configured raw public key.";
          reference
            "RFC 9641: A YANG Data Model for a Truststore";
          uses ts:inline-or-truststore-public-keys-grouping {
            refine "inline-or-truststore/inline/inline-definition/"
                 + "public-key" {
              must 'derived-from-or-self(public-key-format,'
                 + ' "ct:subject-public-key-info-format")';
            }
            refine "inline-or-truststore/central-truststore/"
                 + "central-truststore-reference" {
              must 'not(deref(.)/../ts:public-key/ts:public-key-'
                 + 'format[not(derived-from-or-self(., "ct:subject-'
                 + 'public-key-info-format"))])';
            }
          }
        }
        leaf tls12-psks {
          if-feature "client-auth-tls12-psk";
          type empty;
          description
            "Indicates that the TLS server can authenticate TLS clients
             using configured PSKs (pre-shared or pairwise symmetric
             keys).

             No configuration is required since the PSK value is the
             same as PSK value configured in the 'server-identity'
             node.";
        }
        leaf tls13-epsks {
          if-feature "client-auth-tls13-epsk";
          type empty;
          description
            "Indicates that the TLS 1.3 server can authenticate TLS
             clients using configured External PSKs (pre-shared keys).

             No configuration is required since the PSK value is the
             same as PSK value configured in the 'server-identity'
             node.";
        }
      } // container client-authentication
      container hello-params {
        nacm:default-deny-write;
        if-feature "tlscmn:hello-params";
        uses tlscmn:hello-params-grouping;
        description
          "Configurable parameters for the TLS hello message.";
      } // container hello-params
      container keepalives {
        nacm:default-deny-write;
        if-feature "tls-server-keepalives";
        description
          "Configures the keepalive policy for the TLS server.";
        leaf peer-allowed-to-send {
          type empty;
          description
            "Indicates that the remote TLS client is allowed to send
             HeartbeatRequest messages, as defined by RFC 6520,
             to this TLS server.";
          reference
            "RFC 6520: Transport Layer Security (TLS) and Datagram
             Transport Layer Security (DTLS) Heartbeat Extension";
        }
        container test-peer-aliveness {
          presence "Indicates that the TLS server proactively tests the
                    aliveness of the remote TLS client.";
          description
            "Configures the keepalive policy to proactively test
             the aliveness of the TLS client.  An unresponsive
             TLS client is dropped after approximately max-wait
             * max-attempts seconds.";
          leaf max-wait {
            type uint16 {
              range "1..max";
            }
            units "seconds";
            default "30";
            description
              "Sets the amount of time in seconds, after which a
               TLS-level message will be sent to test the
               aliveness of the TLS client if no data has been
               received from the TLS client.";
          }
          leaf max-attempts {
            type uint8;
            default "3";
            description
              "Sets the maximum number of sequential keepalive
               messages that can fail to obtain a response from
               the TLS client before assuming the TLS client is
               no longer alive.";
          }
        }
      } // container keepalives
    } // grouping tls-server-grouping

  }
  <CODE ENDS>

5.  Security Considerations

  The three IETF YANG modules in this document define groupings and
  will not be deployed as standalone modules.  Their security
  implications may be context dependent based on their use in other
  modules.  The designers of modules that import these grouping must
  conduct their own analysis of the security considerations.

5.1.  Considerations for the "iana-tls-cipher-suite-algs" YANG Module

  This section is modeled after the template defined in Section 3.7.1
  of [RFC8407].

  The "iana-tls-cipher-suite-algs" YANG module defines a data model
  that is designed to be accessed via YANG-based management protocols,
  such as NETCONF [RFC6241] and RESTCONF [RFC8040].  These protocols
  have mandatory-to-implement secure transport layers (e.g., Secure
  Shell (SSH) [RFC4252], TLS [RFC8446], and QUIC [RFC9000]) and
  mandatory-to-implement mutual authentication.

  The Network Configuration Access Control Model (NACM) [RFC8341]
  provides the means to restrict access for particular users to a
  preconfigured subset of all available protocol operations and
  content.

  This YANG module defines YANG enumerations, for a public IANA-
  maintained registry.

  YANG enumerations are not security-sensitive, as they are statically
  defined in the publicly accessible YANG module.  IANA MAY deprecate
  and/or obsolete enumerations over time as needed to address security
  issues found in the algorithms.

  This module does not define any writable nodes, RPCs, actions, or
  notifications, and thus the security considerations for such are not
  provided here.

5.2.  Considerations for the "ietf-tls-common" YANG Module

  This section is modeled after the template defined in Section 3.7.1
  of [RFC8407].

  The "ietf-tls-common" YANG module defines a data model that is
  designed to be accessed via YANG-based management protocols, such as
  NETCONF [RFC6241] and RESTCONF [RFC8040].  These protocols have
  mandatory-to-implement secure transport layers (e.g., Secure Shell
  (SSH) [RFC4252], TLS [RFC8446], and QUIC [RFC9000]) and mandatory-to-
  implement mutual authentication.

  The Network Configuration Access Control Model (NACM) [RFC8341]
  provides the means to restrict access for particular users to a
  preconfigured subset of all available protocol operations and
  content.

  Please be aware that this YANG module uses groupings from other YANG
  modules that define nodes that may be considered sensitive or
  vulnerable in network environments.  Please review the Security
  Considerations for dependent YANG modules for information as to which
  nodes may be considered sensitive or vulnerable in network
  environments.

  None of the readable data nodes defined in this YANG module are
  considered sensitive or vulnerable in network environments.  The NACM
  "default-deny-all" extension has not been set for any data nodes
  defined in this module.

  None of the writable data nodes defined in this YANG module are
  considered sensitive or vulnerable in network environments.  The NACM
  "default-deny-write" extension has not been set for any data nodes
  defined in this module.

  This module defines the "generate-asymmetric-key-pair" RPC that may,
  if the "ct:cleartext-private-keys" feature is enabled and the client
  requests it, return the private clear in cleartext form.  It is NOT
  RECOMMENDED for private keys to pass the server's security perimeter.

  This module does not define any actions or notifications, and thus
  the security considerations for such are not provided here.

5.3.  Considerations for the "ietf-tls-client" YANG Module

  This section is modeled after the template defined in Section 3.7.1
  of [RFC8407].

  The "ietf-tls-client" YANG module defines a data model that is
  designed to be accessed via YANG-based management protocols, such as
  NETCONF [RFC6241] and RESTCONF [RFC8040].  These protocols have
  mandatory-to-implement secure transport layers (e.g., Secure Shell
  (SSH) [RFC4252], TLS [RFC8446], and QUIC [RFC9000]) and mandatory-to-
  implement mutual authentication.

  The Network Configuration Access Control Model (NACM) [RFC8341]
  provides the means to restrict access for particular users to a
  preconfigured subset of all available protocol operations and
  content.

  Please be aware that this YANG module uses groupings from other YANG
  modules that define nodes that may be considered sensitive or
  vulnerable in network environments.  Please review the Security
  Considerations for dependent YANG modules for information as to which
  nodes may be considered sensitive or vulnerable in network
  environments.

  None of the readable data nodes defined in this YANG module are
  considered sensitive or vulnerable in network environments.  The NACM
  "default-deny-all" extension has not been set for any data nodes
  defined in this module.

  All the writable data nodes defined by this module may be considered
  sensitive or vulnerable in some network environments.  For instance,
  any modification to a key or reference to a key may dramatically
  alter the implemented security policy.  For this reason, the NACM
  extension "default-deny-write" has been set for all data nodes
  defined in this module.

  This module does not define any RPCs, actions, or notifications, and
  thus the security considerations for such are not provided here.

5.4.  Considerations for the "ietf-tls-server" YANG Module

  This section is modeled after the template defined in Section 3.7.1
  of [RFC8407].

  The "ietf-tls-server" YANG module defines a data model that is
  designed to be accessed via YANG-based management protocols, such as
  NETCONF [RFC6241] and RESTCONF [RFC8040].  These protocols have
  mandatory-to-implement secure transport layers (e.g., Secure Shell
  (SSH) [RFC4252], TLS [RFC8446], and QUIC [RFC9000]) and mandatory-to-
  implement mutual authentication.

  The Network Configuration Access Control Model (NACM) [RFC8341]
  provides the means to restrict access for particular users to a
  preconfigured subset of all available protocol operations and
  content.

  Please be aware that this YANG module uses groupings from other YANG
  modules that define nodes that may be considered sensitive or
  vulnerable in network environments.  Please review the Security
  Considerations for dependent YANG modules for information as to which
  nodes may be considered sensitive or vulnerable in network
  environments.

  None of the readable data nodes defined in this YANG module are
  considered sensitive or vulnerable in network environments.  The NACM
  "default-deny-all" extension has not been set for any data nodes
  defined in this module.

  Please be aware that this module uses the "key" and "private-key"
  nodes from the "ietf-crypto-types" module [RFC9640], where said nodes
  have the NACM extension "default-deny-all" set, thus preventing
  unrestricted read access to the cleartext key values.

  All the writable data nodes defined by this module may be considered
  sensitive or vulnerable in some network environments.  For instance,
  any modification to a key or reference to a key may dramatically
  alter the implemented security policy.  For this reason, the NACM
  extension "default-deny-write" has been set for all data nodes
  defined in this module.

  This module does not define any RPCs, actions, or notifications, and
  thus the security considerations for such are not provided here.

6.  IANA Considerations

6.1.  The IETF XML Registry

  IANA has registered the following four URIs in the "ns" registry of
  the "IETF XML Registry" [RFC3688].

  URI:  urn:ietf:params:xml:ns:yang:iana-tls-cipher-suite-algs
  Registrant Contact:  The IESG
  XML:  N/A; the requested URI is an XML namespace.

  URI:  urn:ietf:params:xml:ns:yang:ietf-tls-common
  Registrant Contact:  The IESG
  XML:  N/A; the requested URI is an XML namespace.

  URI:  urn:ietf:params:xml:ns:yang:ietf-tls-client
  Registrant Contact:  The IESG
  XML:  N/A; the requested URI is an XML namespace.

  URI:  urn:ietf:params:xml:ns:yang:ietf-tls-server
  Registrant Contact:  The IESG
  XML:  N/A; the requested URI is an XML namespace.

6.2.  The YANG Module Names Registry

  IANA has registered the following four YANG modules in the "YANG
  Module Names" registry [RFC6020].

  name:  iana-tls-cipher-suite-algs
  Maintained by IANA:  Y
  namespace:  urn:ietf:params:xml:ns:yang:iana-tls-cipher-suite-algs
  prefix:  tlscsa
  reference:  RFC 9645

  name:  ietf-tls-common
  Maintained by IANA:  N
  namespace:  urn:ietf:params:xml:ns:yang:ietf-tls-common
  prefix:  tlscmn
  reference:  RFC 9645

  name:  ietf-tls-client
  Maintained by IANA:  N
  namespace:  urn:ietf:params:xml:ns:yang:ietf-tls-client
  prefix:  tlsc
  reference:  RFC 9645

  name:  ietf-tls-server
  Maintained by IANA:  N
  namespace:  urn:ietf:params:xml:ns:yang:ietf-tls-server
  prefix:  tlss
  reference:  RFC 9645

6.3.  Considerations for the "iana-tls-cipher-suite-algs" YANG Module

  This section follows the template defined in Section 4.30.3.1 of
  [RFC8407BIS].

  IANA used the script in Appendix A to generate the IANA-maintained
  "iana-tls-cipher-suite-algs" YANG module.  The YANG module is
  available from the "YANG Parameters" registry [IANA-YANG-PARAMETERS].

  IANA has added the following note to the registry:

  |  New values must not be directly added to the "iana-tls-cipher-
  |  suite-algs" YANG module.  They must instead be added to the "TLS
  |  Cipher Suites" registry in the "Transport Layer Security (TLS)
  |  Parameters" registry group [IANA-CIPHER-ALGS].

  When a value is added to the "TLS Cipher Suites" registry, a new
  "enum" statement must be added to the "iana-tls-cipher-suite-algs"
  YANG module.  The "enum" statement, and substatements thereof, should
  be defined as follows:

  enum
     Replicates a name from the registry.

  value
     Contains the decimal value of the IANA-assigned value.

  status
     Include only if a registration has been deprecated or obsoleted.
     An IANA "Recommended" value "N" maps to YANG status "deprecated".
     Since the registry is unable to express a logical "MUST NOT"
     recommendation, there is no mapping to YANG status "obsolete",
     which is unfortunate given the moving of single-DES and
     International Data Encryption Algorithm (IDEA) TLS cipher suites
     to Historic [RFC8996].

  description
     Contains "Enumeration for the 'TLS_FOO' algorithm", where
     "TLS_FOO" is a placeholder for the algorithm's name (e.g.,
     "TLS_PSK_WITH_AES_256_CBC_SHA").

  reference
     Replicates the reference(s) from the registry with the title of
     the document(s) added.

  Unassigned or reserved values are not present in the module.

  When the "iana-tls-cipher-suite-algs" YANG module is updated, a new
  "revision" statement with a unique revision date must be added in
  front of the existing revision statements.  The "revision" must have
  a "description" statement explaining why the the update occurred and
  must have a "reference" substatement that points to the document
  defining the registry update that resulted in this change.  For
  instance:

  revision 2024-10-10 {
      description
          "This update reflects the update made to the underlying
           'Foo Bar' registry per RFC XXXX.";
      reference
          "RFC XXXX: Extend the Foo Bar Registry
                     to Support Something Important";
  }

  IANA has added the following note to the "TLS Cipher Suites" registry
  under the "Transport Layer Security (TLS) Parameters" registry group
  [IANA-CIPHER-ALGS].

  |  When this registry is modified, the YANG module "iana-tls-cipher-
  |  suite-algs" [IANA-YANG-PARAMETERS] must be updated as defined in
  |  RFC 9645.

7.  References

7.1.  Normative References

  [FIPS180-4]
             National Institute of Standards and Technology (NIST),
             "Secure Hash Standard (SHS)", FIPS PUB 180-4,
             DOI 10.6028/NIST.FIPS.180-4, August 2015,
             <https://nvlpubs.nist.gov/nistpubs/FIPS/
             NIST.FIPS.180-4.pdf>.

  [FIPS186-5]
             National Institute of Standards and Technology (NIST),
             "Digital Signature Standard (DSS)", FIPS 186-5,
             DOI 10.6028/NIST.FIPS.186-5, February 2023,
             <https://nvlpubs.nist.gov/nistpubs/FIPS/
             NIST.FIPS.186-5.pdf>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC4252]  Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
             Authentication Protocol", RFC 4252, DOI 10.17487/RFC4252,
             January 2006, <https://www.rfc-editor.org/info/rfc4252>.

  [RFC4279]  Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
             Ciphersuites for Transport Layer Security (TLS)",
             RFC 4279, DOI 10.17487/RFC4279, December 2005,
             <https://www.rfc-editor.org/info/rfc4279>.

  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
             <https://www.rfc-editor.org/info/rfc5280>.

  [RFC5288]  Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
             Counter Mode (GCM) Cipher Suites for TLS", RFC 5288,
             DOI 10.17487/RFC5288, August 2008,
             <https://www.rfc-editor.org/info/rfc5288>.

  [RFC5289]  Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-
             256/384 and AES Galois Counter Mode (GCM)", RFC 5289,
             DOI 10.17487/RFC5289, August 2008,
             <https://www.rfc-editor.org/info/rfc5289>.

  [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
             the Network Configuration Protocol (NETCONF)", RFC 6020,
             DOI 10.17487/RFC6020, October 2010,
             <https://www.rfc-editor.org/info/rfc6020>.

  [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
             and A. Bierman, Ed., "Network Configuration Protocol
             (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
             <https://www.rfc-editor.org/info/rfc6241>.

  [RFC6520]  Seggelmann, R., Tuexen, M., and M. Williams, "Transport
             Layer Security (TLS) and Datagram Transport Layer Security
             (DTLS) Heartbeat Extension", RFC 6520,
             DOI 10.17487/RFC6520, February 2012,
             <https://www.rfc-editor.org/info/rfc6520>.

  [RFC7250]  Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
             Weiler, S., and T. Kivinen, "Using Raw Public Keys in
             Transport Layer Security (TLS) and Datagram Transport
             Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
             June 2014, <https://www.rfc-editor.org/info/rfc7250>.

  [RFC7589]  Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
             NETCONF Protocol over Transport Layer Security (TLS) with
             Mutual X.509 Authentication", RFC 7589,
             DOI 10.17487/RFC7589, June 2015,
             <https://www.rfc-editor.org/info/rfc7589>.

  [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
             RFC 7950, DOI 10.17487/RFC7950, August 2016,
             <https://www.rfc-editor.org/info/rfc7950>.

  [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
             Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
             <https://www.rfc-editor.org/info/rfc8040>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
             Access Control Model", STD 91, RFC 8341,
             DOI 10.17487/RFC8341, March 2018,
             <https://www.rfc-editor.org/info/rfc8341>.

  [RFC8422]  Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
             Curve Cryptography (ECC) Cipher Suites for Transport Layer
             Security (TLS) Versions 1.2 and Earlier", RFC 8422,
             DOI 10.17487/RFC8422, August 2018,
             <https://www.rfc-editor.org/info/rfc8422>.

  [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
             Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
             <https://www.rfc-editor.org/info/rfc8446>.

  [RFC9000]  Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
             Multiplexed and Secure Transport", RFC 9000,
             DOI 10.17487/RFC9000, May 2021,
             <https://www.rfc-editor.org/info/rfc9000>.

  [RFC9640]  Watsen, K., "YANG Data Types and Groupings for
             Cryptography", RFC 9640, DOI 10.17487/RFC9640, October
             2024, <https://www.rfc-editor.org/info/rfc9640>.

  [RFC9641]  Watsen, K., "A YANG Data Model for a Truststore",
             RFC 9641, DOI 10.17487/RFC9641, October 2024,
             <https://www.rfc-editor.org/info/rfc9641>.

  [RFC9642]  Watsen, K., "A YANG Data Model for a Keystore", RFC 9642,
             DOI 10.17487/RFC9642, October 2024,
             <https://www.rfc-editor.org/info/rfc9642>.

7.2.  Informative References

  [HTTP-CLIENT-SERVER]
             Watsen, K., "YANG Groupings for HTTP Clients and HTTP
             Servers", Work in Progress, Internet-Draft, draft-ietf-
             netconf-http-client-server-23, 15 August 2024,
             <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
             http-client-server-23>.

  [IANA-CIPHER-ALGS]
             IANA, "TLS Cipher Suites",
             <https://www.iana.org/assignments/tls-parameters/>.

  [IANA-YANG-PARAMETERS]
             IANA, "YANG Parameters",
             <https://www.iana.org/assignments/yang-parameters>.

  [NETCONF-CLIENT-SERVER]
             Watsen, K., "NETCONF Client and Server Models", Work in
             Progress, Internet-Draft, draft-ietf-netconf-netconf-
             client-server-37, 14 August 2024,
             <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
             netconf-client-server-37>.

  [RESTCONF-CLIENT-SERVER]
             Watsen, K., "RESTCONF Client and Server Models", Work in
             Progress, Internet-Draft, draft-ietf-netconf-restconf-
             client-server-38, 14 August 2024,
             <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
             restconf-client-server-38>.

  [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
             DOI 10.17487/RFC3688, January 2004,
             <https://www.rfc-editor.org/info/rfc3688>.

  [RFC5056]  Williams, N., "On the Use of Channel Bindings to Secure
             Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,
             <https://www.rfc-editor.org/info/rfc5056>.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246,
             DOI 10.17487/RFC5246, August 2008,
             <https://www.rfc-editor.org/info/rfc5246>.

  [RFC8071]  Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
             RFC 8071, DOI 10.17487/RFC8071, February 2017,
             <https://www.rfc-editor.org/info/rfc8071>.

  [RFC8259]  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
             Interchange Format", STD 90, RFC 8259,
             DOI 10.17487/RFC8259, December 2017,
             <https://www.rfc-editor.org/info/rfc8259>.

  [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
             BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
             <https://www.rfc-editor.org/info/rfc8340>.

  [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
             and R. Wilton, "Network Management Datastore Architecture
             (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
             <https://www.rfc-editor.org/info/rfc8342>.

  [RFC8407]  Bierman, A., "Guidelines for Authors and Reviewers of
             Documents Containing YANG Data Models", BCP 216, RFC 8407,
             DOI 10.17487/RFC8407, October 2018,
             <https://www.rfc-editor.org/info/rfc8407>.

  [RFC8407BIS]
             Bierman, A., Boucadair, M., and Q. Wu, "Guidelines for
             Authors and Reviewers of Documents Containing YANG Data
             Models", Work in Progress, Internet-Draft, draft-ietf-
             netmod-rfc8407bis-17, 27 September 2024,
             <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
             rfc8407bis-17>.

  [RFC8996]  Moriarty, K. and S. Farrell, "Deprecating TLS 1.0 and TLS
             1.1", BCP 195, RFC 8996, DOI 10.17487/RFC8996, March 2021,
             <https://www.rfc-editor.org/info/rfc8996>.

  [RFC9110]  Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
             Ed., "HTTP Semantics", STD 97, RFC 9110,
             DOI 10.17487/RFC9110, June 2022,
             <https://www.rfc-editor.org/info/rfc9110>.

  [RFC9257]  Housley, R., Hoyland, J., Sethi, M., and C. A. Wood,
             "Guidance for External Pre-Shared Key (PSK) Usage in TLS",
             RFC 9257, DOI 10.17487/RFC9257, July 2022,
             <https://www.rfc-editor.org/info/rfc9257>.

  [RFC9258]  Benjamin, D. and C. A. Wood, "Importing External Pre-
             Shared Keys (PSKs) for TLS 1.3", RFC 9258,
             DOI 10.17487/RFC9258, July 2022,
             <https://www.rfc-editor.org/info/rfc9258>.

  [RFC9643]  Watsen, K. and M. Scharf, "YANG Groupings for TCP Clients
             and TCP Servers", RFC 9643, DOI 10.17487/RFC9643, October
             2024, <https://www.rfc-editor.org/info/rfc9643>.

  [RFC9644]  Watsen, K., "YANG Groupings for SSH Clients and SSH
             Servers", RFC 9644, DOI 10.17487/RFC9644, October 2024,
             <https://www.rfc-editor.org/info/rfc9644>.

  [SYSTEM-CONFIG]
             Ma, Q., Wu, Q., and C. Feng, "System-defined
             Configuration", Work in Progress, Internet-Draft, draft-
             ietf-netmod-system-config-09, 29 September 2024,
             <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
             system-config-09>.

  [W3C.REC-xml-20081126]
             Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,
             and F. Yergeau, "Extensible Markup Language (XML) 1.0
             (Fifth Edition)", W3C Recommendation REC-xml-20081126,
             November 2008, <https://www.w3.org/TR/xml/>.

Appendix A.  Script to Generate IANA-Maintained YANG Modules

  This section is not normative.

  The Python <https://www.python.org> script contained in this section
  was used to create the initial IANA-maintained "iana-tls-cipher-
  suite-algs" YANG module maintained at [IANA-YANG-PARAMETERS].

  Run the script using the command 'python gen-yang-modules.py' to
  produce the YANG module file in the current directory.

  Be aware that the script does not attempt to copy the "revision"
  statements from the previous/current YANG module.  Copying the
  revision statements must be done manually.

  <CODE BEGINS>
  =============== NOTE: '\\' line wrapping per RFC 8792 ===============

  import re
  import csv
  import requests
  import textwrap
  import requests_cache
  from io import StringIO
  from datetime import datetime

  # Metadata for the one YANG module produced by this script
  MODULES = [
      {
          "csv_url": "https://www.iana.org/assignments/tls-parameters/\
  \tls-parameters-4.csv",
          "spaced_name": "cipher-suite",
          "hyphenated_name": "cipher-suite",
          "prefix": "tlscsa",
      }
  ]


  def create_module_begin(module, f):

      # Define template for all four modules
      PREAMBLE_TEMPLATE="""
  module iana-tls-HNAME-algs {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:iana-tls-HNAME-algs";
    prefix PREFIX;

    organization
      "Internet Assigned Numbers Authority (IANA)";

    contact
      "Postal: ICANN
               12025 Waterfront Drive, Suite 300
               Los Angeles, CA  90094-2536
               United States of America
       Tel:    +1 310 301 5800
       Email:  <[email protected]>";

    description
      "This module defines enumerations for the cipher suite
       algorithms defined in the 'TLS Cipher Suites' registry
       under the 'Transport Layer Security (TLS) Parameters'
       registry group maintained by IANA.

       Copyright (c) 2024 IETF Trust and the persons identified as
       authors of the code. All rights reserved.

       Redistribution and use in source and binary forms, with
       or without modification, is permitted pursuant to, and
       subject to the license terms contained in, the Revised
       BSD License set forth in Section 4.c of the IETF Trust's
       Legal Provisions Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       The initial version of this YANG module is part of RFC 9645
       (https://www.rfc-editor.org/info/rfc9645); see the RFC
       itself for full legal notices.

       All versions of this module are published by IANA
       (https://www.iana.org/assignments/yang-parameters).";

    revision DATE {
      description
        "This initial version of the module was created using
         the script defined in RFC 9645 to reflect the contents
         of the SNAME algorithms registry maintained by IANA.";
      reference
        "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
    }

    typedef tls-HNAME-algorithm {
      type enumeration {
  """
      # Replacements
      rep = {
        "DATE": datetime.today().strftime('%Y-%m-%d'),
        "YEAR": datetime.today().strftime('%Y'),
        "SNAME": module["spaced_name"],
        "HNAME": module["hyphenated_name"],
        "PREFIX": module["prefix"]
      }

      # Do the replacement
      rep = dict((re.escape(k), v) for k, v in rep.items())
      pattern = re.compile("|".join(rep.keys()))
      text = pattern.sub(lambda m: rep[re.escape(m.group(0))], PREAMBL\
  \E_TEMPLATE)

      # Write preamble into the file
      f.write(text)


  def create_module_body(module, f):

      # Fetch the current CSV file from IANA
      r = requests.get(module["csv_url"])
      assert r.status_code == 200, "Could not get " + module["csv_url"]

      # Parse each CSV line
      with StringIO(r.text) as csv_file:
          csv_reader = csv.DictReader(csv_file)
          for row in csv_reader:

              # Skip reserved algs
              if row["Description"].startswith("Unassigned"):
                  continue

              # Skip unassigned algs
              if row["Description"].startswith("Reserved"):
                  continue

              # Ensure this is the TLS line
              assert row["Description"].startswith("TLS_"), "Unrecogni\
  \zed description: '" + row["Description"] + "'"

              # Set the 'refs' and 'titles' lists
              if row["Reference"] == "":
                  pass # skip when the Reference field is empty

              else:

                  # There may be more than one ref
                  refs = row["Reference"][1:-1]  # remove the '[' and \
  \']' chars
                  refs = refs.split("][")
                  titles = []
                  for ref in refs:

                      # Ascertain the ref's title
                      if ref.startswith("RFC"):

                          # Fetch the current BIBTEX entry
                          bibtex_url="https://datatracker.ietf.org/doc\
  \/"+ ref.lower() + "/bibtex/"
                          r = requests.get(bibtex_url)
                          assert r.status_code == 200, "Could not GET \
  \" + bibtex_url

                          # Append to 'titles' value from the "title" \
  \line
                          for item in r.text.split("\n"):
                              if "title =" in item:
                                  title = re.sub('.*{{(.*)}}.*', r'\g<\
  \1>', item)
                                  if title.startswith("ECDHE\_PSK"):
                                      title = re.sub("ECDHE\\\\_PSK", \
  \"ECDHE_PSK", title)
                                  titles.append(re.sub('.*{{(.*)}}.*',\
  \ r'\g<1>', title))
                                  break
                          else:
                              raise Exception("RFC title not found")


                          # Insert a space: "RFC9645" --> "RFC 9645"
                          index = refs.index(ref)
                          refs[index] = "RFC " + ref[3:]

                      elif ref == "IESG Action 2018-08-16":

                          # Rewrite the ref value
                          index = refs.index(ref)
                          refs[index] = "IESG Action"

                          # Let title be something descriptive
                          titles.append("IESG Action 2018-08-16")

                      elif ref == "draft-irtf-cfrg-aegis-aead-08":

                          # Manually set the document's title
                          titles.append("The AEGIS Family of Authentic\
  \ated Encryption Algorithms")

                      elif ref:
                          raise Exception(f'ref "{ref}" not found')

                      else:
                          raise Exception(f'ref missing: {row}')

              # Write out the enum
              f.write(f'      enum {row["Description"]} {{\n');
              if row["Recommended"] == 'N':
                  f.write(f'        status deprecated;\n')
              f.write(f'        description\n')
              description = f'          "Enumeration for the \'{row["D\
  \escription"]}\' algorithm.";'
              description = textwrap.fill(description, width=69, subse\
  \quent_indent="           ")
              f.write(f'{description}\n')
              f.write('        reference\n')
              f.write('          "')
              if row["Reference"] == "":
                  f.write('Missing in IANA registry.')
              else:
                  ref_len = len(refs)
                  for i in range(ref_len):
                      ref = refs[i]
                      f.write(f'{ref}:\n')
                      title = "             " + titles[i]
                      if i == ref_len - 1:
                          title += '";'
                      title = textwrap.fill(title, width=69, subsequen\
  \t_indent="             ")
                      f.write(f'{title}')
                      if i != ref_len - 1:
                          f.write('\n           ')
              f.write('\n')
              f.write('      }\n')



  def create_module_end(module, f):

      # Close out the enumeration, typedef, and module
      f.write("    }\n")
      f.write("    description\n")
      f.write(f'      "An enumeration for TLS {module["spaced_name"]} \
  \algorithms.";\n')
      f.write("  }\n")
      f.write('\n')
      f.write('}\n')


  def create_module(module):

      # Install cache for 8x speedup
      requests_cache.install_cache()

      # Ascertain the yang module's name
      yang_module_name = "iana-tls-" + module["hyphenated_name"] + "-a\
  \lgs.yang"

      # Create yang module file
      with open(yang_module_name, "w") as f:
          create_module_begin(module, f)
          create_module_body(module, f)
          create_module_end(module, f)


  def main():
      for module in MODULES:
          create_module(module)


  if __name__ == "__main__":
      main()
  <CODE ENDS>

Acknowledgements

  The authors would like to thank the following for lively discussions
  on list and in the halls (ordered by first name): Alan Luchuk, Andy
  Bierman, Balázs Kovács, Benoit Claise, Bert Wijnen, David Lamparter,
  Dhruv Dhody, Éric Vyncke, Gary Wu, Henk Birkholz, Jeff Hartley,
  Jürgen Schönwälder, Ladislav Lhotka, Liang Xia, Martin Björklund,
  Martin Thomson, Mehmet Ersue, Michal Vaško, Murray Kucherawy, Paul
  Wouters, Phil Shafer, Qin Wu, Radek Krejci, Rob Wilton, Roman
  Danyliw, Russ Housley, Sean Turner, Thomas Martin, and Tom Petch.

Contributors

  Special acknowledgement goes to Gary Wu who contributed the "ietf-
  tls-common" module and Tom Petch who carefully ensured that
  references were set correctly throughout.

Author's Address

  Kent Watsen
  Watsen Networks
  Email: [email protected]