Network Working Group                                 Deepinder P. Sidhu
Request for Comments: 964                               Thomas P. Blumer
                                              SDC - A Burroughs Company
                                                          November 1985

             SOME PROBLEMS WITH THE SPECIFICATION OF THE
           MILITARY STANDARD TRANSMISSION CONTROL PROTOCOL


STATUS OF THIS MEMO

  The purpose of this RFC is to provide helpful information on the
  Military Standard Transmission Control Protocol (MIL-STD-1778) so
  that one can obtain a reliable implementation of this protocol
  standard. Distribution of this note is unlimited.

     Reprinted from: Proc. Protocol Specification, Testing and
     Verification IV, (ed.) Y. Yemini, et al, North-Holland (1984).

ABSTRACT

  This note points out three errors with the specification of the
  Military Standard Transmission Control Protocol (MIL-STD-1778, dated
  August 1983 [MILS83]).  These results are based on an initial
  investigation of this protocol standard.  The first problem is that
  data accompanying a SYN can not be accepted because of errors in the
  acceptance policy.  The second problem is that no retransmission
  timer is set for a SYN packet, and therefore the SYN will not be
  retransmitted if it is lost.  The third problem is that when the
  connection has been established, neither entity takes the proper
  steps to accept incoming data.  This note also proposes solutions to
  these problems.

1.  Introduction

  In recent years, much progress has been made in creating an
  integrated set of tools for developing reliable communication
  protocols.  These tools provide assistance in the specification,
  verification, implementation and testing of protocols.  Several
  protocols have been analyzed and developed using such tools.

  In a recent paper, the authors discussed the verification of the
  connection management of NBS class 4 transport protocol (TP4).  The
  verification was carried out with the help of a software tool we
  developed [BLUT82] [BLUT83] [SIDD83].  In spite of the very precise
  specification of this protocol, our analysis discovered several
  errors in the current specification of NBS TP4.  These errors are
  incompleteness errors in the specification, that is, states where
  there is no transition for the reception of some input event.  Our
  analysis did not find deadlocks, livelocks or any other problem in
  the connection management of TP4.  In that paper, we proposed


Sidhu & Blumer                                                  [Page 1]



RFC 964                                                    November 1985
Some Problems with MIL-STD TCP


  solutions for all errors except for errors associated with 2 states
  whose satisfactory resolution may require redesigning parts of TP4.
  Modifications to TP4 specification are currently underway to solve
  the remaining incompleteness problems with 2 states.  It is important
  to emphasize that we did not find any obvious error in the NBS
  specification of TP4.

  The authors are currently working on the verification of connection
  management of the Military Standard Transmission Control Protocol
  (TCP).  This analysis will be based on the published specification
  [MILS83] of TCP dated 12 August 1983.

  While studying the MIL standard TCP specification in preparation for
  our analysis of the connection management features, we have noticed
  several errors in the specification.  As a consequence of these
  errors, the Transmission Control Protocol (as specified in [MILS83])
  will not permit data to be received by TCP entities in SYN_RECVD and
  ESTAB states.

  The proof of this statement follows from the specification of the
  three-way handshake mechanism of TCP [MILS83] and from a decision
  table associated with ESTAB state.

2.  Transmission Control Protocol

  The Transmission Control Protocol (TCP) is a transport level
  connection-oriented protocol in the DoD protocol hierarchy for use in
  packet-switched and other networks.  Its most important services are
  reliable transfer and ordered delivery of data over full-duplex and
  flow-controlled virtual connections.  TCP is designed to operate
  successfully over channels that are inherently unreliable, i.e., they
  can lose, damage, duplicate, and reorder packets.

  TCP is based, in part, on a protocol discussed by Cerf and Kahn
  [CERV74].  Over the years, DARPA has supported specifications of
  several versions of this protocol, the last one appeared in [POSJ81].
  Some issues in the connection management of this protocol are
  discussed in [SUNC78].

  A few years ago, DCA decided to standardize TCP for use in DoD
  networks and supported formal specification of this protocol
  following the design of this protocol discussed in [POSJ81]. A
  detailed specification of this protocol given in [MILS83] has been
  adopted as the DoD standard for the Transmission Control Protocol, a
  reliable connection-oriented transport protocol for DoD networks.

  A TCP connection progresses through three phases: opening (or


Sidhu & Blumer                                                  [Page 2]



RFC 964                                                    November 1985
Some Problems with MIL-STD TCP


  synchronization), maintenance, and closing.  In this note we consider
  data transfer in the opening and maintenance phases of the
  connection.

3.  Problems with MIL Standard TCP

  One basic feature of TCP is the three-way handshake which is used to
  set up a properly synchronized connection between two remote TCP
  entities.  This mechanism is incorrectly specified in the current
  specification of TCP.  One problem is that data associated with the
  SYN packet can not be delivered.  This results from an incorrect
  specification of the interaction between the accept_policy action
  procedure and the record_syn action procedure.  Neither of the 2
  possible strategies suggested in accept_policy will give the correct
  result when called from the record_syn procedure, because the
  recv_next variable is updated in record_syn before the accept_policy
  procedure is called.

  Another problem with the specification of the three-way handshake is
  apparent in the actions listed for the Active Open event (with or
  without data) when in the CLOSED state.  No retransmission timer is
  set in these actions, and therefore if the initial SYN is lost, there
  will be no timer expiration to trigger retransmission.  This will
  prevent connection establishment if the initial SYN packet is lost by
  the network.

  The third problem with the specification is that the actions for
  receiving data in the ESTAB state are incorrect.  The accept action
  procedure must be called when data is received, so that arriving data
  may be queued and possibly passed to the user.

  A general problem with this specification is that the program
  language and action table portions of the specification were clearly
  not checked by any automatic syntax checking process.  Several
  variable and procedure names are misspelled, and the syntax of the
  action statements is often incorrect.  This can be confusing,
  especially when a procedure name cannot be found in the alphabetized
  list of procedures because of misspelling.

  These are some of the very serious errors that we have discovered
  with the MIL standard TCP.








Sidhu & Blumer                                                  [Page 3]



RFC 964                                                    November 1985
Some Problems with MIL-STD TCP


4.  Detailed Discussion of the Problem

  Problem 1:  Problem with Receiving Data Accompanying SYN

     The following scenario traces the actions of 2 communicating
     entities during the establishment of a connection.  Only the
     simplest case is considered, i.e., the case where the connection
     is established by the exchange of 3 segments.

     TCP entity A                                          TCP entity B
     ------------                                          ------------

     state                segment         segment          state
     transition           recvd or sent   recvd or sent    transition
                          by A            by B

                                                       CLOSED -> LISTEN

     CLOSED -> SYN_SENT   SYN -->

                                          SYN -->   LISTEN -> SYN_RECVD
                                          <-- SYN ACK

     SYN_SENT -> ESTAB    <-- SYN ACK
                          ACK -->

                                          ACK -->    SYN_RECVD -> ESTAB

     As shown in the above diagram, 5 state transitions occur and 3 TCP
     segments are exchanged during the simplest case of the three-way
     handshake.  We now examine in detail the actions of each entity
     during this exchange.  Special attention is given to the sequence
     numbers carried in each packet and recorded in the state variables
     of each entity.

     In the diagram below, the actions occurring within a procedure are
     shown indented from the procedure call.  The resulting values of
     sequence number variables are shown in square brackets to the
     right of each statement.  The sequence number variables are shown
     with the entity name (A or B) as prefix so that the two sets of
     state variables may be easily distinguished.








Sidhu & Blumer                                                  [Page 4]



RFC 964                                                    November 1985
Some Problems with MIL-STD TCP


     Transition 1 (entity B goes from state CLOSED to state LISTEN).
     The user associated with entity B issues a Passive Open.

        Actions: (see p. 104)
           open; (see p. 144)
           new state := LISTEN;

     Transition 2 (entity A goes from state CLOSED to SYN_SENT). The
     user associated with entity A issues an Active Open with Data.

        Actions: (see p. 104)
           open; (see p. 144)
           gen_syn(WITH_DATA); (see p. 141)
              send_isn := gen_isn();                 [A.send_isn = 100]
              send_next := send_isn + 1;            [A.send_next = 101]
              send_una := send_isn;                  [A.send_una = 100]
              seg.seq_num := send_isn;              [seg.seq_num = 100]
              seg.ack_flag := FALSE;             [seg.ack_flag = FALSE]
              seg.wndw := 0;                             [seg.wndw = 0]
              amount := send_policy()               [assume amount > 0]
           new state := SYN_SENT;




























Sidhu & Blumer                                                  [Page 5]



RFC 964                                                    November 1985
Some Problems with MIL-STD TCP


     Transition 3 (Entity B goes from state LISTEN to state SYN_RECVD).
     Entity B receives the SYN segment accompanying data sent by entity
     A.

        Actions: (see p. 106)
           (since this segment has no RESET, no ACK, does have SYN, and
           we assume reasonable security and precedence parameters, row
           3 of the table applies)
           record_syn; (see p. 147)
              recv_isn := seg.seq_num; [B.recv_isn = seg_seq_num = 100]
              recv_next := recv_isn + 1;            [B.recv_next = 101]
              if seg.ack_flag then
                 send_una := seg.ack_num;                   [no change]
              accept_policy; (see p. 131)
                 Accept in-order data only:
                    Acceptance Test is
                       seg.seq_num = recv_next;
                 Accept any data within the receive window:
                    Acceptance Test has two parts
                       recv_next =< seg.seq_num =< recv_next +
                                                              recv_wndw
                       or
                       recv_next =< seg.seq_num + length =<
                                                  recv_next + recv_wndw
                       ********************************************
                          An error occurs here, with either possible
                          strategy given in accept_policy, because
                          recv_next > seg.seq_num.  Therefore
                          accept_policy will incorrectly indicate that
                          the data cannot be accepted.
                       ********************************************
           gen_syn(WITH_ACK); (see p. 141)
              send_isn := gen_isn();                 [B.send_isn = 300]
              send_next := send_isn + 1;            [B.send_next = 301]
              send_una := send_isn;                  [B.send_una = 300]
              seg.seq_num := send_next;             [seg.seq_num = 301]
              seg.ack_flag := TRUE;               [seg.ack_flag = TRUE]
              seg.ack_num := recv_isn + 1;          [seg.ack_num = 102]
           new state := SYN_RECVD;










Sidhu & Blumer                                                  [Page 6]



RFC 964                                                    November 1985
Some Problems with MIL-STD TCP


     Transition 4 (entity A goes from state SYN_SENT to ESTAB) Entity A
     receives the SYN ACK sent by entity B.

        Actions: (see p. 107)
           In order to select the applicable row of the table on p.
           107, we first evaluate the decision function
           ACK_status_test1.
              ACK_status_test1();
                 if(seg.ack_flag = FALSE) then
                    return(NONE);
                 if(seg.ack_num <= send_una) or
                    (seg.ack_num > send_next) then
                       return(INVALID)
                 else
                    return(VALID);

                 ... and so on.

     The important thing to notice in the above scenario is the error
     that occurs in transition 3, where the wrong value for recv_next
     leads to the routine record_syn refusing to accept the data.

  Problem 2:  Problem with Retransmission of SYN Packet

     The actions listed for Active Open (with or without data; see p.
     103) are calls to the routines open and gen_syn.  Neither of these
     routines (or routines that they call) explicitly sets a
     retransmission timer.  Therefore if the initial SYN is lost there
     is no timer expiration to trigger retransmission of the SYN.  If
     this happens, the TCP will fail in its attempt to establish the
     desired connection with a remote TCP.

     Note that this differs with the actions specified for transmission
     of data from the ESTAB state.  In that transition the routine
     dispatch (p. 137) is called first which in turn calls the routine
     send_new_data (p.  156).  One of actions of the last routine is to
     start a retransmission timer for the newly sent data.












Sidhu & Blumer                                                  [Page 7]



RFC 964                                                    November 1985
Some Problems with MIL-STD TCP


  Problem 3:  Problem with Receiving Data in TCP ESTAB State

     When both entities are in the state ESTAB, and one sends data to
     the other, an error in the actions of the receiver prohibits the
     data from being accepted.  The following simple scenario
     illustrates the problem.  Here the user associated with entity A
     issues a Send request, and A sends data to entity B.  When B
     receives the data it replies with an acknowledgment.

     TCP entity A                                          TCP entity B
     ------------                                          ------------

     state                segment         segment          state
     transition           recvd or sent   recvd or sent    transition
                          by A            by B

     ESTAB -> ESTAB       DATA -->

                                          DATA -->       ESTAB -> ESTAB
                                          <-- ACK

     Transition 1 (entity A goes from state ESTAB to ESTAB) Entity A
     sends data packet to entity B.

        Actions: (see p. 110)
           dispatch; (see p. 137)

     Transition 2 (entity B goes from state ESTAB to ESTAB) Entity B
     receives data packet from entity B.

        Actions: (see p. 111)
           Assuming the data is in order and valid, we use row 6 of the
           table.
           update; (see p. 159)
           ************************************************************
              An error occurs here, because the routine update does
              nothing to accept the incoming data, or to arrange to
              pass it on to the user.
           ************************************************************










Sidhu & Blumer                                                  [Page 8]



RFC 964                                                    November 1985
Some Problems with MIL-STD TCP


5.  Solutions to Problems

  The problem with record_syn and accept_policy can be solved by having
  record_syn call accept_policy before the variable recv_next is
  updated.

  The problem with gen_syn can be corrected by having gen_syn or open
  explicitly request the retransmission timer.

  The problem with the reception of data in the ESTAB state is
  apparently caused by the transposition of the action tables on pages
  111 and 112.  These tables should be interchanged.  This solution
  will also correct a related problem, namely that an entity can never
  reach the CLOSE_WAIT state from the ESTAB state.

  Syntax errors in the action statements and tables could be easily
  caught by an automatic syntax checker if the document used a more
  formal description technique.  This would be difficult to do for
  [MILS83] since this document is not based on a formalized description
  technique [BREM83].

  The errors pointed out in this note have been submitted to DCA and
  will be corrected in the next update of the MIL STD TCP
  specification.

6.  Implementation of MIL Standard TCP

  In the discussion above, we pointed out several serious errors in the
  specification of the Military Standard Transmission Control Protocol
  [MILS83].  These errors imply that a TCP implementation that
  faithfully conforms to the Military TCP standard will not be able to

     Receive data sent with a SYN packet.

     Establish a connection if the initial SYN packet is lost.

     Receive data when in the ESTAB state.

  It also follows from our discussion that an implementation of MIL
  Standard TCP [MILS83] must include corrections mentioned above to get
  a running TCP.

  The problems pointed out in this paper with the current specification
  of the MIL Standard TCP [MILS83] are based on an initial
  investigation of this protocol standard by the authors.




Sidhu & Blumer                                                  [Page 9]



RFC 964                                                    November 1985
Some Problems with MIL-STD TCP


REFERENCES

  [BLUT83]  Blumer, T. P., and Sidhu, D. P., "Mechanical Verification
            and Automatic Implementation of Authentication Protocols
            for Computer Networks", SDC Burroughs Report (1983),
            submitted for publication.

  [BLUT82]  Blumer, T. P., and Tenney, R. L., "A Formal Specification
            Technique and Implementation Method for Protocols",
            Computer Networks, Vol. 6, No. 3, July 1982, pp. 201-217.

  [BREM83]  Breslin, M., Pollack, R. and Sidhu D. P., "Formalization of
            DoD Protocol Specification Technique", SDC - Burroughs
            Report 1983.

  [CERV74]  Cerf, V., and Kahn, R., "A Protocol for Packet Network
            Interconnection", IEEE Trans. Comm., May 1974.

  [MILS83]  "Military Standard Transmission Control Protocol",
            MIL-STD-1778, 12 August 1983.

  [POSJ81]  Postel, J. (ed.), "DoD Standard Transmission Control
            Protocol", Defense Advanced Research Projects Agency,
            Information Processing Techniques Office, RFC-793,
            September 1981.

  [SIDD83]  Sidhu, D. P., and Blumer, T. P., "Verification of NBS Class
            4 Transport Protocol", SDC Burroughs Report (1983),
            submitted for publication.

  [SUNC78]  Sunshine, C., and Dalal, Y., "Connection Management in
            Transport Protocols", Computer Networks, Vol. 2, pp.454-473
            (1978).
















Sidhu & Blumer                                                 [Page 10]