Internet Engineering Task Force (IETF)                       N. McCallum
Request for Comments: 9588                                      S. Sorce
Category: Standards Track                                     R. Harwood
ISSN: 2070-1721                                            Red Hat, Inc.
                                                              G. Hudson
                                                                    MIT
                                                            August 2024


     Kerberos Simple Password-Authenticated Key Exchange (SPAKE)
                          Pre-authentication

Abstract

  This document defines a new pre-authentication mechanism for the
  Kerberos protocol.  The mechanism uses a password-authenticated key
  exchange (PAKE) to prevent brute-force password attacks, and it may
  incorporate a second factor.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9588.

Copyright Notice

  Copyright (c) 2024 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
    1.1.  Properties of PAKE
    1.2.  PAKE Algorithm Selection
    1.3.  PAKE and Two-Factor Authentication
    1.4.  SPAKE Overview
  2.  Document Conventions
  3.  Prerequisites
    3.1.  PA-ETYPE-INFO2
    3.2.  Cookie Support
    3.3.  More Pre-authentication Data Required
  4.  SPAKE Pre-authentication Message Protocol
    4.1.  First Pass
    4.2.  Second Pass
    4.3.  Third Pass
    4.4.  Subsequent Passes
    4.5.  Reply Key Strengthening
    4.6.  Optimizations
  5.  SPAKE Parameters and Conversions
  6.  Transcript Hash
  7.  Key Derivation
  8.  Second-Factor Types
  9.  Hint for Authentication Sets
  10. Security Considerations
    10.1.  SPAKE Computations
    10.2.  Unauthenticated Plaintext
    10.3.  Side Channels
    10.4.  KDC State
    10.5.  Dictionary Attacks
    10.6.  Brute-Force Attacks
    10.7.  Denial-of-Service Attacks
    10.8.  Reflection Attacks
    10.9.  Reply Key Encryption Type
    10.10. KDC Authentication
  11. Assigned Constants
  12. IANA Considerations
    12.1.  Kerberos Second-Factor Types
      12.1.1.  Registration Template
      12.1.2.  Initial Registry Contents
    12.2.  Kerberos SPAKE Groups
      12.2.1.  Registration Template
      12.2.2.  Initial Registry Contents
  13. References
    13.1.  Normative References
    13.2.  Informative References
  Appendix A.  ASN.1 Module
  Appendix B.  SPAKE M and N Value Selection
  Appendix C.  Test Vectors
  Acknowledgements
  Authors' Addresses

1.  Introduction

  The Kerberos protocol [RFC4120] commonly uses password-derived long-
  term keys to secure the initial authentication exchange between a
  Kerberos client and a Key Distribution Center (KDC).  As noted in
  Section 10 of [RFC4120], an attacker can perform an offline
  dictionary attack against the password; this is performed either by
  initiating an authentication exchange to a principal for which the
  KDC does not require pre-authentication or after eavesdropping on a
  legitimate authentication exchange that uses encrypted timestamp pre-
  authentication (Section 5.2.7.2 of [RFC4120]).

  This document defines a pre-authentication mechanism that
  authenticates using long-term keys but is resistant to offline
  dictionary attacks.  The mechanism additionally enables the use of
  second-factor authentication without the need for a separately
  established secure channel, by leveraging the trust relationship
  established by the shared long-term key.

1.1.  Properties of PAKE

  Password-authenticated key exchange (PAKE) algorithms [RFC8125]
  provide several properties that defend against offline dictionary
  attacks and make them ideal for use in a Kerberos pre-authentication
  mechanism.

  1.  Each side of the exchange contributes entropy.

  2.  Passive attackers cannot determine the shared key.

  3.  Active attackers cannot perform a machine-in-the-middle attack.

  These properties of PAKE allow us to establish high-entropy
  encryption keys resistant to offline brute-force attacks, even when
  the passwords used are weak (low entropy).

1.2.  PAKE Algorithm Selection

  The SPAKE algorithm (defined in [SPAKE]) works by encrypting the
  public keys of a Diffie-Hellman (DH) key exchange with a shared
  secret.  SPAKE is selected for this pre-authentication mechanism for
  the following properties:

  1.  SPAKE's encryption method ensures that the result is a member of
      the underlying group, so it can be used with elliptic curve
      cryptography, which is believed to provide equivalent security
      levels to finite-field DH key exchange at much smaller key sizes.

  2.  It can compute the shared key after just one message from each
      party, minimizing the need for additional round trips and state.

  3.  It requires a small number of group operations; therefore, it can
      be implemented simply and efficiently.

1.3.  PAKE and Two-Factor Authentication

  Using PAKE in a pre-authentication mechanism also has another benefit
  when used as a component of two-factor authentication (2FA).  2FA
  methods often require the secure transfer of plaintext material to
  the KDC for verification.  This includes one-time passwords,
  challenge/response signatures, and biometric data.  Encrypting this
  data using the long-term secret results in packets that are
  vulnerable to offline brute-force attacks on the password, using
  either an authentication tag or statistical properties of the 2FA
  credentials to determine whether a password guess is correct.

  In "One-Time Password (OTP) Pre-Authentication" [RFC6560], this
  problem is mitigated using flexible authentication secure tunneling
  (FAST) (Section 5.4 of [RFC6113]), which uses a secondary trust
  relationship to create a secure encryption channel within which pre-
  authentication data can be sent.  However, the requirement for a
  secondary trust relationship has proven to be cumbersome to deploy
  and often introduces third parties into the trust chain (such as
  certification authorities).  These requirements make it difficult to
  enable FAST without manual configuration of client hosts.  In
  contrast, SPAKE pre-authentication, can create a secure encryption
  channel implicitly, using the key exchange to negotiate a high-
  entropy encryption key.  This key can then be used to securely
  encrypt 2FA plaintext data without the need for a secondary trust
  relationship.  Further, if the second-factor verifiers are sent at
  the same time as the first-factor verifier, and the KDC is careful to
  prevent timing attacks, then an online brute-force attack cannot be
  used to attack the factors separately.

  For these reasons, this document departs from the advice given in
  Section 1 of [RFC6113], which states: "Mechanism designers should
  design FAST factors, instead of new pre-authentication mechanisms
  outside of FAST."  However, the SPAKE pre-authentication mechanism
  does not intend to replace FAST and may be used with it to further
  conceal the metadata of the Kerberos messages.

1.4.  SPAKE Overview

  The SPAKE algorithm can be broadly described in a series of four
  steps:

  1.  Calculation and exchange of the public key

  2.  Calculation of the shared secret (K)

  3.  Derivation of an encryption key (K')

  4.  Verification of the derived encryption key (K')

  In this mechanism, key verification happens implicitly by a
  successful decryption of the 2FA data or of a placeholder value when
  no second factor is required.  This mechanism uses a tailored method
  of deriving encryption keys from the calculated shared secret K, for
  several reasons:

  *  to fit within the framework of [RFC3961],

  *  to ensure negotiation integrity using a transcript hash,

  *  to derive different keys for each use, and

  *  to bind the KDC-REQ-BODY to the pre-authentication exchange.

2.  Document Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  This document refers to numerous terms and protocol messages defined
  in [RFC4120].

  The terms "encryption type", "key generation seed length", and
  "random-to-key" are defined in [RFC3961].

  The terms "FAST", "PA-FX-COOKIE", "KDC_ERR_PREAUTH_EXPIRED",
  "KDC_ERR_MORE_PREAUTH_DATA_REQUIRED", "KDC_ERR_PREAUTH_FAILED", "pre-
  authentication facility", and "authentication set" are defined in
  [RFC6113].

  [SPAKE] defines SPAKE as a family of two key-exchange algorithms
  differing only in derivation of the final key.  This mechanism uses a
  derivation similar to the second algorithm (SPAKE2).  For simplicity,
  this document refers to the algorithm as "SPAKE".

  The terms "Abstract Syntax Notation One (ASN.1)" and "Distinguished
  Encoding Rules (DER)" are defined in [ITU-T.X680.2021] and
  [ITU-T.X690.2021], respectively.

  When discussing operations within algebraic groups, this document
  uses additive notation (as described in Section 2.2 of [RFC6090]).
  Group elements are denoted with uppercase letters, while scalar
  multiplier values are denoted with lowercase letters.

3.  Prerequisites

3.1.  PA-ETYPE-INFO2

  This mechanism requires the initial KDC pre-authentication state to
  contain a singular reply key.  Therefore, a KDC that offers SPAKE
  pre-authentication as a stand-alone mechanism MUST supply a PA-ETYPE-
  INFO2 value containing a single ETYPE-INFO2-ENTRY, following the
  guidance in Section 2.1 of [RFC6113].  PA-ETYPE-INFO2 is specified in
  Section 5.2.7.5 of [RFC4120].

3.2.  Cookie Support

  KDCs that implement SPAKE pre-authentication MUST have some secure
  mechanism for retaining state between authentication service requests
  (AS-REQs).  For stateless KDC implementations, this method will most
  commonly be an encrypted PA-FX-COOKIE.  Clients that implement SPAKE
  pre-authentication MUST support PA-FX-COOKIE, as described in
  Section 5.2 of [RFC6113].

3.3.  More Pre-authentication Data Required

  Both KDCs and clients that implement SPAKE pre-authentication MUST
  support the use of KDC_ERR_MORE_PREAUTH_DATA_REQUIRED, as described
  in Section 5.2 of [RFC6113].

4.  SPAKE Pre-authentication Message Protocol

  This mechanism uses the reply key and provides the client
  authentication and strengthening reply key pre-authentication
  facilities (Section 3 of [RFC6113]).  When the mechanism completes
  successfully, the client will have proved knowledge of the original
  reply key and possibly a second factor, and the reply key will be
  strengthened to a more uniform distribution based on the PAKE
  exchange.  This mechanism also ensures the integrity of the KDC-REQ-
  BODY contents.  This mechanism can be used in an authentication set;
  no pa-hint value is required or defined.

  This mechanism negotiates a choice of group for the SPAKE algorithm.
  Groups are defined in the "Kerberos SPAKE Groups" registry created by
  this document (see Section 12.2).  Each group definition specifies an
  associated hash function, which will be used for transcript
  protection and key derivation.  Clients and KDCs MUST implement the
  edwards25519 group, but they MAY choose not to offer or accept it by
  default.

  The subsections that follow will describe the flow of messages when
  performing SPAKE pre-authentication.  We will begin by explaining the
  most verbose version of the protocol, which all implementations MUST
  support.  Then, we will describe several optional optimizations to
  reduce round trips.

  Mechanism messages are communicated using PA-DATA elements within the
  padata field of KDC-REQ messages or within the METHOD-DATA in the
  e-data field of KRB-ERROR messages.  All PA-DATA elements for this
  mechanism MUST use the following padata-type:

  PA-SPAKE  151

  The padata-value for all PA-SPAKE PA-DATA values MUST be empty or
  contain a DER encoding for the ASN.1 type PA-SPAKE.

  PA-SPAKE ::= CHOICE {
      support     [0] SPAKESupport,
      challenge   [1] SPAKEChallenge,
      response    [2] SPAKEResponse,
      encdata     [3] EncryptedData,
      ...
  }

4.1.  First Pass

  The SPAKE pre-authentication exchange begins when the client sends an
  initial authentication service request (AS-REQ) without pre-
  authentication data.  Upon receipt of this AS-REQ, a KDC that
  requires pre-authentication and supports SPAKE SHOULD (unless
  configuration indicates otherwise) reply with a
  KDC_ERR_PREAUTH_REQUIRED error, with METHOD-DATA containing an empty
  PA-SPAKE PA-DATA element (possibly in addition to other PA-DATA
  elements).  This message indicates to the client that the KDC
  supports SPAKE pre-authentication.

4.2.  Second Pass

  Once the client knows that the KDC supports SPAKE pre-authentication
  and the client wants to use it, the client will generate a new AS-REQ
  message containing a PA-SPAKE PA-DATA element using the support
  choice.  This message indicates to the KDC which groups the client
  prefers for the SPAKE operation.  The group numbers are defined in
  the "Kerberos SPAKE Groups" registry (see Section 12.2).  The group's
  sequence is ordered from the most preferred group to the least
  preferred group.

  SPAKESupport ::= SEQUENCE {
      groups      [0] SEQUENCE (SIZE(1..MAX)) OF Int32,
      ...
  }

  Upon receipt of the support message, the KDC will select a group.
  The KDC SHOULD choose a group from the groups provided by the support
  message.  However, if the support message does not contain any group
  that is supported by the KDC, the KDC MAY select another group in
  hopes that the client might support it.  Otherwise, the KDC MUST
  respond with a KDC_ERR_PREAUTH_FAILED error.

  The group selection determines the group order, which shall be a
  large prime p multiplied by a small cofactor h (possibly 1), a
  generator P of a prime-order subgroup, and two masking points M and
  N.  The KDC selects a random integer x in the range 0 <= x < h*p,
  which MUST be divisible by h.  The KDC computes a public key
  T=x*P+w*M, where w is computed from the initial reply key according
  to Section 5.

  The KDC will reply to the client with a
  KDC_ERR_MORE_PREAUTH_DATA_REQUIRED error containing a PA-SPAKE PA-
  DATA element using the challenge choice.

  SPAKEChallenge ::= SEQUENCE {
      group       [0] Int32,
      pubkey      [1] OCTET STRING,
      factors     [2] SEQUENCE (SIZE(1..MAX)) OF SPAKESecondFactor,
      ...
  }

  The group field indicates the KDC-selected group used for all SPAKE
  calculations as defined in the "Kerberos SPAKE Groups" registry (see
  Section 12.2).

  The pubkey field indicates the KDC's public key T, serialized
  according to Section 5.

  The factors field contains an unordered list of second factors, which
  can be used to complete the authentication.  Each second factor is
  represented by a SPAKESecondFactor.

  SPAKESecondFactor ::= SEQUENCE {
      type        [0] Int32,
      data        [1] OCTET STRING OPTIONAL
  }

  The type field is a unique integer that identifies the second-factor
  type.  The factors field of SPAKEChallenge MUST NOT contain more than
  one SPAKESecondFactor with the same type value.

  The data field contains optional challenge data.  The contents in
  this field will depend upon the second-factor type chosen.  Note that
  this challenge is initially transmitted as unauthenticated plaintext;
  see Section 10.2.

  The client and KDC will each initialize a transcript hash (Section 6)
  using the hash function associated with the chosen group and update
  it with the concatenation of the DER-encoded PA-SPAKE messages sent
  by the client and the KDC.

4.3.  Third Pass

  Upon receipt of the challenge message, the client observes which
  group was selected by the KDC and deserializes the KDC's public key
  T.  The client selects a random integer y in the range 0 <= x < h*p,
  which MUST be divisible by h.  The client computes a public key
  S=y*P+w*N, where w is computed from the initial reply key according
  to Section 5.  The client computes a shared group element
  K=y*(T-w*M).

  The client will then choose one of the second-factor types listed in
  the factors field of the challenge message and gather whatever data
  is required for the chosen second-factor type, possibly using the
  associated challenge data.  Finally, the client will send an AS-REQ
  containing a PA-SPAKE PA-DATA element using the response choice.

  SPAKEResponse ::= SEQUENCE {
      pubkey      [0] OCTET STRING,
      factor      [1] EncryptedData, -- SPAKESecondFactor
      ...
  }

  The client and KDC will update the transcript hash with the pubkey
  value and use the resulting hash for all encryption key derivations.

  The pubkey field indicates the client's public key S, serialized
  according to Section 5.

  The factor field indicates the client's chosen second-factor data.
  The key for this field is K'[1] (specified in Section 7).  The kvno
  field of the EncryptedData sequence is omitted.  The key usage number
  for the encryption is KEY_USAGE_SPAKE.  The plaintext inside the
  EncryptedData is an encoding of the SPAKESecondFactor.  Once decoded,
  the SPAKESecondFactor provides the type of the second factor and any
  optional data used.  The contents of the data field will depend on
  the second-factor type chosen.  The client MUST NOT send a response
  containing a second-factor type that was not listed in the factors
  field of the challenge message.

  When the KDC receives the response message from the client, it
  deserializes the client's public key S, and computes the shared group
  element K=x*(S-w*N).  The KDC derives K'[1] and decrypts the factors
  field.  If decryption is successful, the first factor is successfully
  validated.  The KDC then validates the second factor.  If either
  factor fails to validate, the KDC MUST respond with a
  KDC_ERR_PREAUTH_FAILED error.

  If validation of the second factor requires further round trips, the
  KDC MUST reply to the client with a
  KDC_ERR_MORE_PREAUTH_DATA_REQUIRED error containing a PA-SPAKE PA-
  DATA element using the encdata choice.  The kvno field of the
  EncryptedData sequence is omitted.  The key for the EncryptedData
  value is K'[2] (specified in Section 7), and the key usage number is
  KEY_USAGE_SPAKE.  The plaintext of this message contains a DER-
  encoded SPAKESecondFactor message.  As before, the type field of this
  message will contain the second-factor type and the data field will,
  optionally, contain data specific to the second-factor type.

4.4.  Subsequent Passes

  Any number of additional round trips may occur using the encdata
  choice.  The contents of the plaintexts are specific to the second-
  factor type.  If a client receives a PA-SPAKE PA-DATA element using
  the encdata choice from the KDC, it MUST reply with a subsequent AS-
  REQ with a PA-SPAKE PA-DATA element using the encdata choice or abort
  the AS exchange.

  The key for client-originated encdata messages in subsequent passes
  is K'[3] (specified in Section 7) for the first subsequent pass,
  K'[5] for the second, and so on.  The key for KDC-originated encdata
  messages is K'[4] for the first subsequent pass, K'[6] for the
  second, and so on.

4.5.  Reply Key Strengthening

  When the KDC has successfully validated both factors, the reply key
  is strengthened and the mechanism is complete.  The strengthening of
  the reply key is accomplished by the client and KDC replacing it with
  K'[0] (as specified in Section 7).  The KDC then replies with a KDC-
  REP message or continues on to the next mechanism in the
  authentication set.  There is no final PA-SPAKE PA-DATA message from
  the KDC to the client.

  Reply key strengthening occurs only once: at the end of the exchange.
  The client and KDC MUST use the initial reply key as the base key for
  all K'[n] derivations.

4.6.  Optimizations

  The full protocol has two possible optimizations.

  First, the KDC MAY reply to the initial AS-REQ (containing no pre-
  authentication data) with a PA-SPAKE PA-DATA element using the
  challenge choice instead of an empty padata-value.  In this case, the
  KDC optimistically selects a group that the client may not support.
  If the group chosen by the challenge message is supported by the
  client, the client MUST skip to the third pass by issuing an AS-REQ
  with a PA-SPAKE message using the response choice.  In this case, no
  SPAKESupport message is sent by the client, so the first update to
  the transcript hash contains only the KDC's optimistic challenge.  If
  the KDC's chosen group is not supported by the client, the client
  MUST continue to the second pass.  In this case, both the client and
  KDC MUST reinitialize the transcript hash for the client's support
  message.  Clients MUST support this optimization.

  Second, clients MAY skip the first pass and send an AS-REQ with a PA-
  SPAKE PA-DATA element using the support choice.  If the KDC accepts
  the support message and generates a challenge, it MUST include a PA-
  ETYPE-INFO2 value within the METHOD-DATA of the
  KDC_ERR_MORE_PREAUTH_DATA_REQUIRED error response, as the client may
  not otherwise be able to compute the initial reply key.  If the KDC
  cannot continue with SPAKE (either because the initial reply key type
  is incompatible with SPAKE or because it does not support any of the
  client's groups) but can offer other pre-authentication mechanisms,
  the KDC MUST respond with a KDC_ERR_PREAUTH_FAILED error containing
  METHOD-DATA for the available mechanisms.  A client supporting this
  optimization MUST continue after a KDC_ERR_PREAUTH_FAILED error as
  described in Section 2 of [RFC6113].  KDCs MUST support this
  optimization.

5.  SPAKE Parameters and Conversions

  Group elements are converted to and from octet strings using the
  serialization method defined in the "Kerberos SPAKE Groups" registry
  (see Section 12.2).

  The SPAKE algorithm requires constants M and N for each group.  These
  constants are defined in the "Kerberos SPAKE Groups" registry (see
  Section 12.2).

  The SPAKE algorithm requires a shared secret input w to be used as a
  scalar multiplier.  This value MUST be produced from the initial
  reply key as follows:

  1.  Determine the length of the multiplier octet string as defined in
      the "Kerberos SPAKE Groups" registry (see Section 12.2).

  2.  Compose a pepper string by concatenating the string "SPAKEsecret"
      and the group number as a big-endian four-byte two's complement
      binary number.

  3.  Produce an octet string of the required length using PRF+(K,
      pepper), where K is the initial reply key and PRF+ is as defined
      in Section 5.1 of [RFC6113].

  4.  Convert the octet string to a multiplier scalar using the
      multiplier conversion method defined in the "Kerberos SPAKE
      Groups" registry (see Section 12.2).

  The KDC chooses a secret scalar value x and the client chooses a
  secret scalar value y.  As required by the SPAKE algorithm, these
  values are chosen randomly and uniformly.  The KDC and client MUST
  NOT reuse x or y values for authentications involving different
  initial reply keys (see Section 10.4).

6.  Transcript Hash

  The transcript hash is an octet string of length equal to the output
  length of the hash function associated with the selected group.  All
  bits are set to zero in the initial value.

  When the transcript hash is updated with an octet string input, the
  new value is the hash function computed over the concatenation of the
  old value and the input.

  In the normal message flow or with the second optimization described
  in Section 4.6, the transcript hash is:

  1.  updated with the concatenation of the client's support message
      and the KDC's challenge, then

  2.  updated a second time with the client's pubkey value.

  Therefore, it incorporates the client's supported groups, the KDC's
  chosen group, the KDC's initial second-factor messages, and the
  client and KDC public values.  Once the transcript hash is finalized,
  it is used without change for all key derivations (Section 7).  In
  particular, encrypted second-factor messages are not included in the
  transcript hash.

  If the first optimization described in Section 4.6 is used
  successfully, the transcript hash is first updated with the KDC's
  challenge message and updated a second time with the client's pubkey
  value.

  If the first optimization is used unsuccessfully (i.e., the client
  does not accept the KDC's selected group), the transcript hash is
  computed as in the normal message flow, without including the KDC's
  optimistic challenge.

7.  Key Derivation

  Implementations MUST NOT use the shared group element (denoted by K)
  directly for any cryptographic operation.  Instead, the SPAKE result
  is used to derive keys K'[n] (defined in this section).

  First, compute the hash function associated with the selected group
  over the concatenation of the following values:

  *  The fixed string "SPAKEkey".

  *  The group number as a big-endian four-byte two's complement binary
     number.

  *  The encryption type of the initial reply key as a big-endian four-
     byte two's complement binary number.

  *  The PRF+ output used to compute the initial secret input w (as
     specified in Section 5).

  *  The SPAKE result K, converted to an octet string (as specified in
     Section 5).

  *  The transcript hash.

  *  The KDC-REQ-BODY encoding for the request being sent or responded
     to.  Within a FAST channel, the inner KDC-REQ-BODY encoding MUST
     be used.

  *  The value n as a big-endian, four-byte, and unsigned binary
     number.

  *  A single-byte block counter with the initial value 0x01.

  If the hash output is too small for the encryption type's key
  generation seed length, the block counter value is incremented and
  the hash function is recomputed to produce as many blocks as are
  required.  The result is truncated to the key generation seed length,
  and the random-to-key function is used to produce an intermediate key
  with the same encryption type as the initial reply key.

  The key K'[n] has the same encryption type as the initial reply key,
  and has the value KRB-FX-CF2(initial-reply-key, intermediate-key,
  "SPAKE", "keyderiv"), where KRB-FX-CF2 is defined in Section 5.1 of
  [RFC6113].

8.  Second-Factor Types

  This document defines one second-factor type:

  SF-NONE  1

  This second-factor type indicates that no second factor is used.
  Whenever a SPAKESecondFactor is used with SF-NONE, the data field
  MUST be omitted.  The SF-NONE second factor always successfully
  validates.

9.  Hint for Authentication Sets

  If a KDC offers SPAKE pre-authentication as part of an authentication
  set (Section 5.3 of [RFC6113]), it SHOULD provide a pa-hint value
  containing the DER encoding of the ASN.1 type PA-SPAKE-HINT.  This
  helps the client determine whether SPAKE pre-authentication is likely
  to succeed if the authentication set is chosen.

  PA-SPAKE-HINT ::= SEQUENCE {
      groups      [0] SEQUENCE (SIZE(1..MAX)) OF Int32,
      factors     [1] SEQUENCE (SIZE(1..MAX)) OF SPAKESecondFactor
  }

  The groups field indicates the KDC's supported groups.  The factors
  field indicates the KDC's supported second factors.  The KDC MAY omit
  the data field of values in the factors list.

  A KDC MUST NOT include a PA-SPAKE-HINT message directly in a pa-value
  field; hints must only be provided within authentication sets.  A KDC
  SHOULD include a hint if SPAKE pre-authentication is offered as the
  second or later element of an authentication set.

  The PA-SPAKE-HINT message is not part of the transcript, and it does
  not replace any part of the SPAKE message flow.

10.  Security Considerations

10.1.  SPAKE Computations

  The deserialized public keys S and T MUST be verified to be elements
  of the group to prevent invalid curve attacks.  It is not necessary
  to verify that they are members of the prime-order subgroup; the
  computation of K by both parties involves a multiplication by the
  cofactor h.

  The aforementioned cofactor multiplication is accomplished by
  choosing private scalars x and y, which are divisible by the
  cofactor.  If the client or KDC chooses a scalar that might not be
  divisible by the cofactor, an attacker might be able to coerce values
  of K that are not members of the prime-order subgroup and deduce a
  limited amount of information about w from the order of K.

  The scalars x and y MUST be chosen uniformly.  They MUST NOT be
  reused for different initial reply keys.  If an x or y value is
  reused for pre-authentications involving two different initial reply
  keys, an attacker who observes both authentications and knows one of
  the initial reply keys can conduct an offline dictionary attack to
  recover the other one.

  The M and N values for a group MUST NOT have known discrete logs.  An
  attacker who knows the discrete log of M or N can perform an offline
  dictionary attack on passwords.  Therefore, it is important to
  demonstrate that the M and N values for each group were computed
  without multiplying a known value by the generator P.

10.2.  Unauthenticated Plaintext

  This mechanism includes unauthenticated plaintext in the support and
  challenge messages.  Beginning with the third pass, the integrity of
  this plaintext is ensured by incorporating the transcript hash into
  the derivation of the final reply key and second-factor encryption
  keys.  Downgrade attacks on support and challenge messages will
  result in the client and KDC deriving different reply keys and
  EncryptedData keys.  The KDC-REQ-BODY contents are also incorporated
  into key derivation, ensuring their integrity.  The unauthenticated
  plaintext in the KDC-REP message is not protected by this mechanism.

  Unless FAST is used, the factors field of a challenge message is not
  integrity protected until the response is verified.  Second-factor
  types MUST account for this when specifying the semantics of the data
  field.  In particular, second-factor data in the challenge should not
  be included in user prompts: it could be modified by an attacker to
  contain misleading or offensive information.

  Unless FAST is used, the factors field of a challenge message is
  visible to an attacker, who can use it to determine whether a second
  factor is required for the client.

  Subsequent factor data, including the data in the response, are
  encrypted in a derivative of the shared secret K.  Therefore, it is
  not possible to exploit the untrustworthiness of the challenge to
  turn the client into an encryption or signing oracle for the second-
  factor credentials, unless the attacker knows the client's long-term
  key.

  Unless FAST is used, any PA-SPAKE-HINT messages are unauthenticated
  and are not protected by the transcript hash if they are included
  when SPAKE is advertised in authentication sets.  Since hints do not
  replace any part of the message flow, manipulation of hint messages
  can only affect the client's decision to use or not use an
  authentication set, which could more easily be accomplished by
  removing authentication sets entirely.

10.3.  Side Channels

  An implementation of the SPAKE pre-authentication mechanism can have
  the property of indistinguishability, meaning that an attacker who
  guesses a long-term key and a second-factor value cannot determine
  whether one of the factors was correct unless both are correct.
  Indistinguishability is only maintained if the second factor can be
  validated solely based on the data in the response; the use of
  additional round trips will reveal to the attacker whether the long-
  term key is correct.  Indistinguishability also requires that there
  are no side channels.  When the KDC processes a response message,
  whether or not it decrypts the factor field, it must reply with the
  same error fields, take the same amount of time, and make the same
  observable communications to other servers.

  Both the size of the EncryptedData and the number of EncryptedData
  messages used for second-factor data (including the factor field of
  the SPAKEResponse message and messages using the encdata PA-SPAKE
  choice) may reveal information about the second factor used in an
  authentication.  Care should be taken to keep second-factor messages
  as small and as few as possible.

  Any side channels in the creation of the shared secret input w, or in
  the multiplications wM and wN, could allow an attacker to recover the
  client long-term key.  Implementations MUST take care to avoid side
  channels, particularly timing channels.  Generation of the secret
  scalar values x and y need not take constant time, but the amount of
  time taken MUST NOT provide information about the resulting value.

  The conversion of the scalar multiplier for the SPAKE w parameter may
  produce a multiplier that is larger than the order of the group.
  Some group implementations may be unable to handle such a multiplier.
  Others may silently accept such a multiplier but proceed to perform
  multiplication that is not constant time.  This is only a minor risk
  in most commonly used groups, but it is a more serious risk for P-521
  due to the extra seven high bits in the input octet string.  A common
  solution to this problem is achieved by reducing the multiplier
  modulo the group order, taking care to ensure constant time
  operation.

10.4.  KDC State

  A stateless KDC implementation generally must use a PA-FX-COOKIE
  value to remember its private scalar value x and the transcript hash.
  The KDC MUST maintain confidentiality and integrity of the cookie
  value, perhaps by encrypting it in a key known only to the realm's
  KDCs.  Cookie values may be replayed by attackers, perhaps by
  splicing them into different SPAKE exchanges.  The KDC SHOULD limit
  the time window of replays using a timestamp, and it SHOULD prevent
  cookie values from being applied to other pre-authentication
  mechanisms or other client principals.  Within the validity period of
  a cookie, an attacker can replay the final message of a pre-
  authentication exchange to any of the realm's KDCs and make it appear
  that the client has authenticated.

  The SPAKE pre-authentication mechanism is not designed to provide
  forward secrecy.  Nevertheless, some measure of forward secrecy may
  result depending on implementation choices.  A passive attacker who
  determines the client long-term key after the exchange generally will
  not be able to recover the ticket session key; however, an attacker
  who also determines the PA-FX-COOKIE encryption key (if the KDC uses
  an encrypted cookie) will be able to recover the ticket session key.
  If the KDC or client retains the x or y value for reuse with the same
  client long-term key, an attacker who recovers the x or y value and
  the long-term key will be able to recover the ticket session key.

10.5.  Dictionary Attacks

  Although the SPAKE pre-authentication mechanism is designed to
  prevent an offline dictionary attack by an active attacker posing as
  the KDC, such an attacker can attempt to downgrade the client to the
  encrypted timestamp pre-authentication mechanism.  Client
  implementations SHOULD provide a configuration option to enable or
  disable the encrypted timestamp mechanism on a per-realm basis to
  mitigate this attack.

  If the user enters the wrong password, the client might fall back to
  the encrypted timestamp mechanism after receiving a
  KDC_ERR_PREAUTH_FAILED error from the KDC, if the encrypted timestamp
  mechanism is offered by the KDC and not disabled by client
  configuration.  This fallback will enable a passive attacker to mount
  an offline dictionary attack against the incorrect password, which
  may be similar to the correct password.  Client implementations
  SHOULD assume that the encrypted timestamp and encrypted challenge
  mechanisms are unlikely to succeed if SPAKE pre-authentication fails
  in the second pass and SF-NONE was used.

  Like any other pre-authentication mechanism using the client long-
  term key, the SPAKE pre-authentication mechanism does not prevent
  online password guessing attacks.  The KDC is made aware of
  unsuccessful guesses and can apply facilities such as rate limiting
  to mitigate the risk of online attacks.

10.6.  Brute-Force Attacks

  The selected group's resistance to offline brute-force attacks may
  not correspond to the size of the reply key.  For performance
  reasons, a KDC MAY select a group whose brute-force work factor is
  less than the reply key length.  A passive attacker who solves the
  group discrete logarithm problem after the exchange will be able to
  conduct an offline attack against the client long-term key.  Although
  the use of password policies and costly, salted string-to-key
  functions may increase the cost of such an attack, the resulting cost
  will likely not be higher than the cost of solving the group discrete
  logarithm.

10.7.  Denial-of-Service Attacks

  Elliptic curve group operations are more computationally expensive
  than secret-key operations.  As a result, the use of this mechanism
  may affect the KDC's performance under normal load and its resistance
  to denial-of-service attacks.

10.8.  Reflection Attacks

  The encdata choice of PA-SPAKE can be used in either direction; the
  factor-specific plaintext does not necessarily indicate a direction.
  However, each encdata message is encrypted using a derived key K'[n],
  with client-originated messages using only odd values of n and KDC-
  originated messages using only even values.  Therefore, an attempted
  reflection attack would result in a failed decryption.

10.9.  Reply Key Encryption Type

  This mechanism does not upgrade the encryption type of the initial
  reply key and relies on that encryption type for confidentiality,
  integrity, and pseudorandom functions.  If the client long-term key
  uses a weak encryption type, an attacker might be able to subvert the
  exchange, and the replaced reply key will also be of the same weak
  encryption type.

10.10.  KDC Authentication

  This mechanism does not directly provide the KDC Authentication pre-
  authentication facility because it does not send a key confirmation
  from the KDC to the client.  When used as a stand-alone mechanism,
  the preexisting KDC authentication provided by the KDC-REP enc-part
  still applies.

11.  Assigned Constants

  The following key usage values are assigned for this mechanism:

  KEY_USAGE_SPAKE  65

12.  IANA Considerations

  IANA has assigned the following number for PA-SPAKE in the "Pre-
  authentication and Typed Data" registry:

                    +==========+=======+===========+
                    | Type     | Value | Reference |
                    +==========+=======+===========+
                    | PA-SPAKE | 151   | RFC 9588  |
                    +----------+-------+-----------+

                                Table 1

  This document establishes two registries (see Sections 12.1 and 12.2)
  with the following procedure, in accordance with [RFC8126]:

  Registry entries are to be evaluated using the Specification Required
  method.  All specifications must be published prior to entry
  inclusion in the registry.  Once published, they can be submitted
  directly to the [email protected] mailing list, where there
  will be a three-week-long review period by designated experts.

  The designated experts ensure that the specification is publicly
  available.  They may provide additional in-depth reviews, but their
  approval should not be taken as endorsement of the specification.

  Prior to the end of the review period, the designated experts must
  approve or deny the request.  This decision is conveyed to both IANA
  and the submitter.  Since the mailing list archives are not public,
  it should include both a reasonably detailed explanation in the case
  of a denial as well as whether the request can be resubmitted.

  IANA must only accept registry updates from the designated experts
  and should direct all requests for registration to the review mailing
  list.

12.1.  Kerberos Second-Factor Types

  This section specifies the "Kerberos Second-Factor Types" registry,
  which records the number, name, and reference for each second-factor
  protocol.

12.1.1.  Registration Template

  ID Number:  A value that uniquely identifies this entry.  It is a
     signed integer in the range -2147483648 to 2147483647, inclusive.
     Positive values must be assigned only for algorithms specified in
     accordance with these rules for use with Kerberos and related
     protocols.  Negative values should be used for private and
     experimental algorithms only.  Zero is reserved and must not be
     assigned.  Values should be assigned in increasing order.

  Name:  A brief, unique, human-readable name for this algorithm.

  Reference:  A URI or otherwise unique identifier for where the
     details of this algorithm can be found.  It should be as specific
     as reasonably possible.

12.1.2.  Initial Registry Contents

  ID Number:  0
  Name:  Reserved
  Reference:  RFC 9588

  ID Number:  1
  Name:  SF-NONE
  Reference:  RFC 9588

12.2.  Kerberos SPAKE Groups

  This section specifies the "Kerberos SPAKE Groups" registry, which
  records the number, name, specification, serialization, multiplier
  length, multiplier conversion, SPAKE M and N constants, and
  associated hash function for each SPAKE Group.

12.2.1.  Registration Template

  ID Number:  A value that uniquely identifies this entry.  It is a
     signed integer in the range -2147483648 to 2147483647, inclusive.
     Positive values must be assigned only for algorithms specified in
     accordance with these rules for use with Kerberos and related
     protocols.  Negative values should be used for private and
     experimental use only.  Zero is reserved and must not be assigned.
     Values should be assigned in increasing order.

  Name:  A brief, unique, human-readable name for this entry.

  Specification:  A reference to the definition of the group parameters
     and operations.

  Serialization:  A reference to the definition of the method used to
     serialize and deserialize group elements.

  Multiplier Length:  The length of the input octet string to
     multiplication operations.

  Multiplier Conversion:  A reference to the definition of the method
     used to convert an octet string to a multiplier scalar.

  SPAKE M Constant:  The serialized value of the SPAKE M constant in
     hexadecimal notation.

  SPAKE N Constant:  The serialized value of the SPAKE N constant in
     hexadecimal notation.

  Hash Function:  The group's associated hash function.

12.2.2.  Initial Registry Contents

12.2.2.1.  Edwards 25519

  ID Number:  1
  Name:  edwards25519
  Specification:  Section 4.1 of [RFC7748] (edwards25519)
  Serialization:  Section 3.1 of [RFC8032]
  Multiplier Length:  32
  Multiplier Conversion:  Section 3.1 of [RFC8032]
  SPAKE M Constant:
     d048032c6ea0b6d697ddc2e86bda85a33adac920f1bf18e1b0c6d166a5cecdaf
  SPAKE N Constant:
     d3bfb518f44f3430f29d0c92af503865a1ed3281dc69b35dd868ba85f886c4ab
  Hash function:  SHA-256 [RFC6234]

12.2.2.2.  P-256

  ID Number:  2
  Name:  P-256
  Specification:  Section 2.4.2 of [SEC2]
  Serialization:  Section 2.3.3 of [SEC1] (compressed format)
  Multiplier Length:  32
  Multiplier Conversion:  Section 2.3.8 of [SEC1]
  SPAKE M Constant:
     02886e2f97ace46e55ba9dd7242579f2993b64e16ef3dcab95afd497333d8fa12f
  SPAKE N Constant:
     03d8bbd6c639c62937b04d997f38c3770719c629d7014d49a24b4f98baa1292b49
  Hash function:  SHA-256 [RFC6234]

12.2.2.3.  P-384

  ID Number:  3
  Name:  P-384
  Specification:  Section 2.5.1 of [SEC2]
  Serialization:  Section 2.3.3 of [SEC1] (compressed format)
  Multiplier Length:  48
  Multiplier Conversion:  Section 2.3.8 of [SEC1]
  SPAKE M Constant:
     030ff0895ae5ebf6187080a82d82b42e2765e3b2f8749c7e05eba366434b363d3d
     c36f15314739074d2eb8613fceec2853
  SPAKE N Constant:
     02c72cf2e390853a1c1c4ad816a62fd15824f56078918f43f922ca21518f9c543b
     b252c5490214cf9aa3f0baab4b665c10
  Hash function:  SHA-384 [RFC6234]

12.2.2.4.  P-521

  ID Number:  4
  Name:  P-521
  Specification:  Section 2.6.1 of [SEC2]
  Serialization:  Section 2.3.3 of [SEC1] (compressed format)
  Multiplier Length:  48
  Multiplier Conversion:  Section 2.3.8 of [SEC1]
  SPAKE M Constant:
     02003f06f38131b2ba2600791e82488e8d20ab889af753a41806c5db18d37d8560
     8cfae06b82e4a72cd744c719193562a653ea1f119eef9356907edc9b56979962d7
     aa
  SPAKE N Constant:
     0200c7924b9ec017f3094562894336a53c50167ba8c5963876880542bc669e494b
     2532d76c5b53dfb349fdf69154b9e0048c58a42e8ed04cef052a3bc349d95575cd
     25
  Hash function:  SHA-512 [RFC6234]

13.  References

13.1.  Normative References

  [ITU-T.X680.2021]
             ITU-T, "Information technology - Abstract Syntax Notation
             One (ASN.1): Specification of basic notation", ITU-T
             Recommendation X.680, ISO/IEC 8824-1:2021, February 2021.

  [ITU-T.X690.2021]
             ITU-T, "Information technology - ASN.1 encoding rules:
             Specification of Basic Encoding Rules (BER), Canonical
             Encoding Rules (CER) and Distinguished Encoding Rules
             (DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1:2021,
             February 2021.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3961]  Raeburn, K., "Encryption and Checksum Specifications for
             Kerberos 5", RFC 3961, DOI 10.17487/RFC3961, February
             2005, <https://www.rfc-editor.org/info/rfc3961>.

  [RFC4120]  Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
             Kerberos Network Authentication Service (V5)", RFC 4120,
             DOI 10.17487/RFC4120, July 2005,
             <https://www.rfc-editor.org/info/rfc4120>.

  [RFC6113]  Hartman, S. and L. Zhu, "A Generalized Framework for
             Kerberos Pre-Authentication", RFC 6113,
             DOI 10.17487/RFC6113, April 2011,
             <https://www.rfc-editor.org/info/rfc6113>.

  [RFC6234]  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
             (SHA and SHA-based HMAC and HKDF)", RFC 6234,
             DOI 10.17487/RFC6234, May 2011,
             <https://www.rfc-editor.org/info/rfc6234>.

  [RFC7748]  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
             for Security", RFC 7748, DOI 10.17487/RFC7748, January
             2016, <https://www.rfc-editor.org/info/rfc7748>.

  [RFC8032]  Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
             Signature Algorithm (EdDSA)", RFC 8032,
             DOI 10.17487/RFC8032, January 2017,
             <https://www.rfc-editor.org/info/rfc8032>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [SEC1]     Standards for Efficient Cryptography Group, "SEC 1:
             Elliptic Curve Cryptography", May 2009.

  [SEC2]     Standards for Efficient Cryptography Group, "SEC 2:
             Recommended Elliptic Curve Domain Parameters", January
             2010.

13.2.  Informative References

  [RFC6090]  McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
             Curve Cryptography Algorithms", RFC 6090,
             DOI 10.17487/RFC6090, February 2011,
             <https://www.rfc-editor.org/info/rfc6090>.

  [RFC6560]  Richards, G., "One-Time Password (OTP) Pre-
             Authentication", RFC 6560, DOI 10.17487/RFC6560, April
             2012, <https://www.rfc-editor.org/info/rfc6560>.

  [RFC8125]  Schmidt, J., "Requirements for Password-Authenticated Key
             Agreement (PAKE) Schemes", RFC 8125, DOI 10.17487/RFC8125,
             April 2017, <https://www.rfc-editor.org/info/rfc8125>.

  [SPAKE]    Abdalla, M. and D. Pointcheval, "Simple Password-Based
             Encrypted Key Exchange Protocols", CT-RSA 2005, Lecture
             Notes in Computer Science, Volume 3376, pages 191-208,
             Springer, DOI 10.1007/978-3-540-30574-3_14, February 2005,
             <https://doi.org/10.1007/978-3-540-30574-3_14>.

Appendix A.  ASN.1 Module

  KerberosV5SPAKE {
          iso(1) identified-organization(3) dod(6) internet(1)
          security(5) kerberosV5(2) modules(4) spake(8)
  } DEFINITIONS EXPLICIT TAGS ::= BEGIN

  IMPORTS
      EncryptedData, Int32
        FROM KerberosV5Spec2 { iso(1) identified-organization(3)
          dod(6) internet(1) security(5) kerberosV5(2) modules(4)
          krb5spec2(2) };
          -- as defined in RFC 4120.

  SPAKESupport ::= SEQUENCE {
      groups      [0] SEQUENCE (SIZE(1..MAX)) OF Int32,
      ...
  }

  SPAKEChallenge ::= SEQUENCE {
      group       [0] Int32,
      pubkey      [1] OCTET STRING,
      factors     [2] SEQUENCE (SIZE(1..MAX)) OF SPAKESecondFactor,
      ...
  }

  SPAKESecondFactor ::= SEQUENCE {
      type        [0] Int32,
      data        [1] OCTET STRING OPTIONAL
  }

  SPAKEResponse ::= SEQUENCE {
      pubkey      [0] OCTET STRING,
      factor      [1] EncryptedData, -- SPAKESecondFactor
      ...
  }

  PA-SPAKE ::= CHOICE {
      support     [0] SPAKESupport,
      challenge   [1] SPAKEChallenge,
      response    [2] SPAKEResponse,
      encdata     [3] EncryptedData,
      ...
  }

  PA-SPAKE-HINT ::= SEQUENCE {
      groups      [0] SEQUENCE (SIZE(1..MAX)) OF Int32,
      factors     [1] SEQUENCE (SIZE(1..MAX)) OF SPAKESecondFactor
  }

  END

Appendix B.  SPAKE M and N Value Selection

  The M and N values for the initial contents of the SPAKE group
  registry were generated using the following Python snippet, which
  assumes an elliptic curve implementation following the interface of
  Edwards25519Point.stdbase() and Edwards448Point.stdbase() in
  Appendix A of [RFC8032]:

  def iterhash(seed, n):
      h = seed
      for i in range(n):
          h = hashlib.sha256(h).digest()
      return h

  def bighash(seed, start, sz):
      n = -(-sz // 32)
      hashes = [iterhash(seed, i) for i in range(start, start + n)]
      return b''.join(hashes)[:sz]

  def canon_pointstr(ecname, s):
      if ecname == 'edwards25519':
          return s
      elif ecname == 'edwards448':
          return s[:-1] + bytes([s[-1] & 0x80])
      else:
          return bytes([(s[0] & 1) | 2]) + s[1:]

  def gen_point(seed, ecname, ec):
      for i in range(1, 1000):
          hval = bighash(seed, i, len(ec.encode()))
          pointstr = canon_pointstr(ecname, hval)
          try:
              p = ec.decode(pointstr)
              if p != ec.zero_elem() and p * p.l() == ec.zero_elem():
                  return pointstr, i
          except Exception:
              pass

  The initial seed strings are as follows:

  *  For group 1 M: edwards25519 point generation seed (M)

  *  For group 1 N: edwards25519 point generation seed (N)

  *  For group 2 M: 1.2.840.10045.3.1.7 point generation seed (M)

  *  For group 2 N: 1.2.840.10045.3.1.7 point generation seed (N)

  *  For group 3 M: 1.3.132.0.34 point generation seed (M)

  *  For group 3 N: 1.3.132.0.34 point generation seed (N)

  *  For group 4 M: 1.3.132.0.35 point generation seed (M)

  *  For group 4 N: 1.3.132.0.35 point generation seed (N)

Appendix C.  Test Vectors

  For the following text vectors:

  *  The key is the string-to-key of "password" with the salt
     "ATHENA.MIT.EDUraeburn" for the designated initial reply key
     encryption type.

  *  x and y were chosen randomly within the order of the designated
     group, then multiplied by the cofactor.

  *  The SPAKESupport message contains only the designated group's
     number.

  *  The SPAKEChallenge message offers only the SF-NONE second-factor
     type.

  *  The KDC-REQ-BODY message does not contain KDC options, but does
     contain the client principal name "[email protected]", the
     server principal name "krbtgt/ATHENA.MIT.EDU", the realm
     "ATHENA.MIT.EDU", the till field "19700101000000Z", the nonce
     zero, and an etype list containing only the designated encryption
     type.

  des3-cbc-sha1 edwards25519
  key: 850bb51358548cd05e86768c313e3bfef7511937dcf72c3e
  w (PRF+ output): 686d84730cb8679ae95416c6567c6a63
                   f2c9cef124f7a3371ae81e11cad42a37
  w (reduced multiplier): a1f1a25cbd8e3092667e2fddba8ecd24
                          f2c9cef124f7a3371ae81e11cad42a07
  x: 201012d07bfd48ddfa33c4aac4fb1e229fb0d043cfe65ebfb14399091c71a723
  y: 500b294797b8b042aca1bedc0f5931a4f52c537b3608b2d05cc8a2372f439f25
  X: ec274df1920dc0f690c8741b794127233745444161016ef950ad75c51db58c3e
  Y: d90974f1c42dac1cd4454561ac2d49af762f2ac87bf02436d461e7b661b43028
  T: 18f511e750c97b592acd30db7d9e5fca660389102e6bf610c1bfbed4616c8362
  S: 5d10705e0d1e43d5dbf30240ccfbde4a0230c70d4c79147ab0b317edad2f8ae7
  K: 25bde0d875f0feb5755f45ba5e857889d916ecf7476f116aa31dc3e037ec4292
  SPAKESupport: a0093007a0053003020101
  SPAKEChallenge: a1363034a003020101a122042018f511e750c97b592acd30
                  db7d9e5fca660389102e6bf610c1bfbed4616c8362a20930
                  073005a003020101
  Transcript hash after challenge: 22bb2271e34d329d52073c70b1d11879
                                   73181f0bc7614266bb79ee80d3335175
  Final transcript hash after pubkey: eaaa08807d0616026ff51c849efbf35b
                                      a0ce3c5300e7d486da46351b13d4605b
  KDC-REQ-BODY: 3075a00703050000000000a1143012a003020101a10b3009
                1b077261656275726ea2101b0e415448454e412e4d49542e
                454455a3233021a003020102a11a30181b066b7262746774
                1b0e415448454e412e4d49542e454455a511180f31393730
                303130313030303030305aa703020100a8053003020110
  K'[0]: baf12fae7cd958cbf1a29bfbc71f89ce49e03e295d89dafd
  K'[1]: 64f73dd9c41908206bcec1f719026b574f9d13463d7a2520
  K'[2]: 0454520b086b152c455829e6baeff78a61dfe9e3d04a895d
  K'[3]: 4a92260b25e3ef94c125d5c24c3e5bced5b37976e67f25c4

  rc4-hmac edwards25519
  key: 8846f7eaee8fb117ad06bdd830b7586c
  w (PRF+ output): 7c86659d29cf2b2ea93bfe79c3cefb88
                   50e82215b3ea6fcd896561d48048f49c
  w (reduced multiplier): 2713c1583c53861520b849bfef0525cd
                          4fe82215b3ea6fcd896561d48048f40c
  x: c8a62e7b626f44cad807b2d695450697e020d230a738c5cd5691cc781dce8754
  y: 18fe7c1512708c7fd06db270361f04593775bc634ceaf45347e5c11c38aae017
  X: b0bcbbdd25aa031f4608d0442dd4924be7731d49c089a8301859d77343ffb567
  Y: 7d1ab8aeda1a2b1f9eab8d11c0fda60b616005d0f37d1224c5f12b8649f579a5
  T: 7db465f1c08c64983a19f560bce966fe5306c4b447f70a5bca14612a92da1d63
  S: 38f8d4568090148ebc9fd17c241b4cc2769505a7ca6f3f7104417b72b5b5cf54
  K: 03e75edd2cd7e7677642dd68736e91700953ac55dc650e3c2a1b3b4acdb800f8
  SPAKESupport: a0093007a0053003020101
  SPAKEChallenge: a1363034a003020101a12204207db465f1c08c64983a19f5
                  60bce966fe5306c4b447f70a5bca14612a92da1d63a20930
                  073005a003020101
  Transcript hash after challenge: 3cde9ed9b562a09d816885b6c225f733
                                   6d9e2674bb4df903dfc894d963a2af42
  Final transcript hash after pubkey: f4b208458017de6ef7f6a307d47d87db
                                      6c2af1d291b726860f68bc08bfef440a
  KDC-REQ-BODY: 3075a00703050000000000a1143012a003020101a10b3009
                1b077261656275726ea2101b0e415448454e412e4d49542e
                454455a3233021a003020102a11a30181b066b7262746774
                1b0e415448454e412e4d49542e454455a511180f31393730
                303130313030303030305aa703020100a8053003020117
  K'[0]: 770b720c82384cbb693e85411eedecba
  K'[1]: 621deec88e2865837c4d3462bb50a1d5
  K'[2]: 1cc8f6333b9fa3b42662fd9914fbd5bb
  K'[3]: edb4032b7fc3806d5211a534dcbc390c

  aes128-cts-hmac-sha1-96 edwards25519
  key: fca822951813fb252154c883f5ee1cf4
  w (PRF+ output): 0d591b197b667e083c2f5f98ac891d3c
                   9f99e710e464e62f1fb7c9b67936f3eb
  w (reduced multiplier): 17c2a9030afb7c37839bd4ae7fdfeb17
                          9e99e710e464e62f1fb7c9b67936f30b
  x: 50be049a5a570fa1459fb9f666e6fd80602e4e87790a0e567f12438a2c96c138
  y: b877afe8612b406d96be85bd9f19d423e95be96c0e1e0b5824127195c3ed5917
  X: e73a443c678913eb4a0cad5cbd3086cf82f65a5a91b611e01e949f5c52efd6dd
  Y: 473c5b44ed2be9cb50afe1762b535b3930530489816ea6bd962622cccf39f6e8
  T: 9e9311d985c1355e022d7c3c694ad8d6f7ad6d647b68a90b0fe46992818002da
  S: fbe08f7f96cd5d4139e7c9eccb95e79b8ace41e270a60198c007df18525b628e
  K: c2f7f99997c585e6b686ceb62db42f17cc70932def3bb4cf009e36f22ea5473d
  SPAKESupport: a0093007a0053003020101
  SPAKEChallenge: a1363034a003020101a12204209e9311d985c1355e022d7c
                  3c694ad8d6f7ad6d647b68a90b0fe46992818002daa20930
                  073005a003020101
  Transcript hash after challenge: 4512310282c01b39dd9aebd0cc2a5e53
                                   2ed077a6c11d4c973c4593d525078797
  Final transcript hash after pubkey: 951285f107c87f0169b9c918a1f51f60
                                      cb1a75b9f8bb799a99f53d03add94b5f
  KDC-REQ-BODY: 3075a00703050000000000a1143012a003020101a10b3009
                1b077261656275726ea2101b0e415448454e412e4d49542e
                454455a3233021a003020102a11a30181b066b7262746774
                1b0e415448454e412e4d49542e454455a511180f31393730
                303130313030303030305aa703020100a8053003020111
  K'[0]: 548022d58a7c47eae8c49dccf6baa407
  K'[1]: b2c9ba0e13fc8ab3a9d96b51b601cf4a
  K'[2]: 69f0ee5fdb6c237e7fcd38d9f87df1bd
  K'[3]: 78f91e2240b5ee528a5cc8d7cbebfba5

  aes256-cts-hmac-sha1-96 edwards25519
  key: 01b897121d933ab44b47eb5494db15e50eb74530dbdae9b634d65020ff5d88c1
  w (PRF+ output): e902341590a1b4bb4d606a1c643cccb3
                   f2108f1b6aa97b381012b9400c9e3f4e
  w (reduced multiplier): 35b35ca126156b5bf4ec8b90e9545060
                          f2108f1b6aa97b381012b9400c9e3f0e
  x: 88c6c0a4f0241ef217c9788f02c32d00b72e4310748cd8fb5f94717607e6417d
  y: 88b859df58ef5c69bacdfe681c582754eaab09a74dc29cff50b328613c232f55
  X: 23c48eaff2721051946313840723b38f563c59b92043d6ffd752f95781af0327
  Y: 3d51486ec1d9be69bc45386bb675c013db87fd0488f6a9cacf6b43e8c81a0641
  T: 6f301aacae1220e91be42868c163c5009aeea1e9d9e28afcfc339cda5e7105b5
  S: 9e2cc32908fc46273279ec75354b4aeafa70c3d99a4d507175ed70d80b255dda
  K: cf57f58f6e60169d2ecc8f20bb923a8e4c16e5bc95b9e64b5dc870da7026321b
  SPAKESupport: a0093007a0053003020101
  SPAKEChallenge: a1363034a003020101a12204206f301aacae1220e91be428
                  68c163c5009aeea1e9d9e28afcfc339cda5e7105b5a20930
                  073005a003020101
  Transcript hash after challenge: 23a5e72eb4dedd1ca860f43736c458f0
                                   775c3bb1370a26af8a9374d521d70ec9
  Final transcript hash after pubkey: 1c605649d4658b58cbe79a5faf227acc
                                      16c355c58b7dade022f90c158fe5ed8e
  KDC-REQ-BODY: 3075a00703050000000000a1143012a003020101a10b3009
                1b077261656275726ea2101b0e415448454e412e4d49542e
                454455a3233021a003020102a11a30181b066b7262746774
                1b0e415448454e412e4d49542e454455a511180f31393730
                303130313030303030305aa703020100a8053003020112
  K'[0]: a9bfa71c95c575756f922871524b6528
         8b3f695573ccc0633e87449568210c23
  K'[1]: 1865a9ee1ef0640ec28ac007391cac62
         4c42639c714767a974e99aa10003015f
  K'[2]: e57781513fefdb978e374e156b0da0c1
         a08148f5eb26b8e157ac3c077e28bf49
  K'[3]: 008e6487293c3cc9fabbbcdd8b392d6d
         cb88222317fd7fe52d12fbc44fa047f1

  aes256-cts-hmac-sha1-96 P-256
  key: 01b897121d933ab44b47eb5494db15e50eb74530dbdae9b634d65020ff5d88c1
  w (PRF+ output): eb2984af18703f94dd5288b8596cd369
                   88d0d4e83bfb2b44de14d0e95e2090bd
  w (reduced multiplier): eb2984af18703f94dd5288b8596cd369
                          88d0d4e83bfb2b44de14d0e95e2090bd
  x: 935ddd725129fb7c6288e1a5cc45782198a6416d1775336d71eacd0549a3e80e
  y: e07405eb215663abc1f254b8adc0da7a16febaa011af923d79fdef7c42930b33
  X: 03bc802165aea7dbd98cc155056249fe0a37a9c203a7c0f7e872d5bf687bd105e2
  Y: 0340b8d91ce3852d0a12ae1f3e82c791fc86df6b346006431e968a1b869af7c735
  T: 024f62078ceb53840d02612195494d0d0d88de21feeb81187c71cbf3d01e71788d
  S: 021d07dc31266fc7cfd904ce2632111a169b7ec730e5f74a7e79700f86638e13c8
  K: 0268489d7a9983f2fde69c6e6a1307e9d252259264f5f2dfc32f58cca19671e79b
  SPAKESupport: a0093007a0053003020102
  SPAKEChallenge: a1373035a003020102a1230421024f62078ceb53840d0261
                  2195494d0d0d88de21feeb81187c71cbf3d01e71788da209
                  30073005a003020101
  Transcript hash after challenge: 0a142afca77c2e92b066572a90389eac
                                   40a6b1f1ed8b534d342591c0e7727e00
  Final transcript hash after pubkey: 20ad3c1a9a90fc037d1963a1c4bfb15a
                                      b4484d7b6cf07b12d24984f14652de60
  KDC-REQ-BODY: 3075a00703050000000000a1143012a003020101a10b3009
                1b077261656275726ea2101b0e415448454e412e4d49542e
                454455a3233021a003020102a11a30181b066b7262746774
                1b0e415448454e412e4d49542e454455a511180f31393730
                303130313030303030305aa703020100a8053003020112
  K'[0]: 7d3b906f7be49932db22cd3463f032d0
         6c9c078be4b1d076d201fc6e61ef531e
  K'[1]: 17d74e36f8993841fbb7feb12fa4f011
         243d3ae4d2ace55b39379294bbc4db2c
  K'[2]: d192c9044081a2aa6a97a6c69e2724e8
         e5671c2c9ce073dd439cdbaf96d7dab0
  K'[3]: 41e5bad6b67f12c53ce0e2720dd6a988
         7f877bf9463c2d5209c74c36f8d776b7

  aes256-cts-hmac-sha1-96 P-384
  key: 01b897121d933ab44b47eb5494db15e50eb74530dbdae9b634d65020ff5d88c1
  w (PRF+ output): 0304cfc55151c6bbe889653db96dbfe0ba4acafc024c1e88
                   40cb3a486f6d80c16e1b8974016aa4b7fa43042a9b3825b1
  w (reduced multiplier): 0304cfc55151c6bbe889653db96dbfe0
                          ba4acafc024c1e8840cb3a486f6d80c1
                          6e1b8974016aa4b7fa43042a9b3825b1
  x: f323ca74d344749096fd35d0adf20806e521460637176e84d977e9933c49d76f
     cfc6e62585940927468ff53d864a7a50
  y: 5b7c709acb175a5afb82860deabca8d0b341facdff0ac0f1a425799aa905d750
     7e1ea9c573581a81467437419466e472
  X: 0211e3334f117b76635dd802d4022f601680a1fd066a56606b7f246493a10351
     7797b81789b225bd5bb1d9ae1da2962250
  Y: 0383dfa413496e5e7599fc8c6430f8d6910d37cf326d81421bc92c0939b555c4
     ca2ef6a993f6d3db8cb7407655ef60866e
  T: 02a1524603ef14f184696f854229d3397507a66c63f841ba748451056be07879
     ac298912387b1c5cdff6381c264701be57
  S: 020d5adfdb92bc377041cf5837412574c5d13e0f4739208a4f0c859a0a302bc6
     a533440a245b9d97a0d34af5016a20053d
  K: 0264aa8c61da9600dfb0beb5e46550d63740e4ef29e73f1a30d543eb43c25499
     037ad16538586552761b093cf0e37c703a
  SPAKESupport: a0093007a0053003020103
  SPAKEChallenge: a1473045a003020103a133043102a1524603ef14f184696f
                  854229d3397507a66c63f841ba748451056be07879ac2989
                  12387b1c5cdff6381c264701be57a20930073005a0030201
                  01
  Transcript hash after challenge: 4d4095d9f94552e15015881a3f2cf458
                                   1be83217cf7ad830d2f051dba3ec8caa
                                   6e354eaa85738d7035317ac557f8c294
  Final transcript hash after pubkey: 5ac0d99ef9e5a73998797fe64f074673
                                      e3952dec4c7d1aacce8b75f64d2b0276
                                      a901cb8539b4e8ed69e4db0ce805b47b
  KDC-REQ-BODY: 3075a00703050000000000a1143012a003020101a10b3009
                1b077261656275726ea2101b0e415448454e412e4d49542e
                454455a3233021a003020102a11a30181b066b7262746774
                1b0e415448454e412e4d49542e454455a511180f31393730
                303130313030303030305aa703020100a8053003020112
  K'[0]: b917d37c16dd1d8567fbe379f64e1ee3
         6ca3fd127aa4e60f97e4afa3d9e56d91
  K'[1]: 93d40079dab229b9c79366829f4e7e72
         82e6a4b943ac7bac69922d516673f49a
  K'[2]: bfc4f16f12f683e71589f9a888e23287
         5ef293ac9793db6c919567cd7b94bcd4
  K'[3]: 3630e2b5b99938e7506733141e8ec344
         166f6407e5fc2ef107c156e764d1bc20

  aes256-cts-hmac-sha1-96 P-521
  key: 01b897121d933ab44b47eb5494db15e50eb74530dbdae9b634d65020ff5d88c1
  w (PRF+ output): de3a095a2b2386eff3eb15b735398da1caf95bc8425665d8
                   2370aff58b0471f34a57bccddf1ebf0a2965b58a93ee5b45
                   e85d1a5435d1c8c83662999722d542831f9a
  w (reduced multiplier): 003a095a2b2386eff3eb15b735398da1
                          caf95bc8425665d82370aff58b0471f3
                          4cce63791cfed967f0c94c16054b3e17
                          03133681bece1e05219f5426bc944b0f
                          bfb3
  x: 017c38701a14b490b6081dfc83524562be7fbb42e0b20426465e3e37952d30bc
     ab0ed857010255d44936a1515607964a870c7c879b741d878f9f9cdf5a865306
     f3f5
  y: 003e2e2950656fa231e959acdd984d125e7fa59cec98126cbc8f3888447911eb
     cd49428a1c22d5fdb76a19fbeb1d9edfa3da6cf55b158b53031d05d51433ade9
     b2b4
  X: 03003e95272223b210b48cfd908b956a36add04a7ff443511432f94ddd87e064
     1d680ba3b3d532c21fa6046192f6bfae7af81c4b803aa154e12459d1428f8f2f
     56e9f2
  Y: 030064916687960df496557ecab08298bf075429eca268c6dabbae24e258d568
     c62841664dc8ecf545369f573ea84548faa22f118128c0a87e1d47315afabb77
     3bb082
  T: 02017d3de19a3ec53d0174905665ef37947d142535102cd9809c0dfbd0dfe007
     353d54cf406ce2a59950f2bb540df6fbe75f8bbbef811c9ba06cc275adbd9675
     6696ec
  S: 02004d142d87477841f6ba053c8f651f3395ad264b7405ca5911fb9a55abd454
     fef658a5f9ed97d1efac68764e9092fa15b9e0050880d78e95fd03abf5931791
     6822b5
  K: 03007c303f62f09282cc849490805bd4457a6793a832cbeb55df427db6a31e99
     b055d5dc99756d24d47b70ad8b6015b0fb8742a718462ed423b90fa3fe631ac1
     3fa916
  SPAKESupport: a0093007a0053003020104
  SPAKEChallenge: a1593057a003020104a145044302017d3de19a3ec53d0174
                  905665ef37947d142535102cd9809c0dfbd0dfe007353d54
                  cf406ce2a59950f2bb540df6fbe75f8bbbef811c9ba06cc2
                  75adbd96756696eca20930073005a003020101
  Transcript hash after challenge: 554405860f8a80944228f1fa2466411d
                                   cf236162aa385e1289131b39e1fd59f2
                                   5e58b4c281ff059c28dc20f5803b87c6
                                   7571ce64cea01b39a21819d1ef1cdc7f
  Final transcript hash after pubkey: 8d6a89ae4d80cc4e47b6f4e48ea3e579
                                      19cc69598d0d3dc7c8bd49b6f1db1409
                                      ca0312944cd964e213aba98537041102
                                      237cff5b331e5347a0673869b412302e
  KDC-REQ-BODY: 3075a00703050000000000a1143012a003020101a10b3009
                1b077261656275726ea2101b0e415448454e412e4d49542e
                454455a3233021a003020102a11a30181b066b7262746774
                1b0e415448454e412e4d49542e454455a511180f31393730
                303130313030303030305aa703020100a8053003020112
  K'[0]: 1eb3d10bee8fab483adcd3eb38f3ebf1
         f4feb8db96ecc035f563cf2e1115d276
  K'[1]: 482b92781ce57f49176e4c94153cc622
         fe247a7dbe931d1478315f856f085890
  K'[2]: a2c215126dd3df280aab5a27e1e0fb7e
         594192cbff8d6d8e1b6f1818d9bb8fac
  K'[3]: cc06603de984324013a01f888de6d43b
         410a4da2dea53509f30e433c352fb668

  aes256-cts-hmac-sha1-96 edwards25519, accepted optimistic challenge
  key: 01b897121d933ab44b47eb5494db15e50eb74530dbdae9b634d65020ff5d88c1
  w (PRF+ output): e902341590a1b4bb4d606a1c643cccb3
                   f2108f1b6aa97b381012b9400c9e3f4e
  w (reduced multiplier): 35b35ca126156b5bf4ec8b90e9545060
                          f2108f1b6aa97b381012b9400c9e3f0e
  x: 70937207344cafbc53c8a55070e399c584cbafce00b836980dd4e7e74fad2a64
  y: 785d6801a2490df028903ac6449b105f2ff0db895b252953cdc2076649526103
  X: 13841224ea50438c1d9457159d05f2b7cd9d05daf154888eeed223e79008b47c
  Y: d01fc81d5ce20d6ea0939a6bb3e40ccd049f821baaf95e323a3657309ef75d61
  T: 83523b35f1565006cbfc4f159885467c2fb9bc6fe23d36cb1da43d199f1a3118
  S: 2a8f70f46cee9030700037b77f22cec7970dcc238e3e066d9d726baf183992c6
  K: d3c5e4266aa6d1b2873a97ce8af91c7e4d7a7ac456acced7908d34c561ad8fa6
  SPAKEChallenge: a1363034a003020101a122042083523b35f1565006cbfc4f
                  159885467c2fb9bc6fe23d36cb1da43d199f1a3118a20930
                  073005a003020101
  Transcript hash after challenge: 0332da8ba3095ccd127c51740cb905ba
                                   c76e90725e769570b9d8338e6d62a7f2
  Final transcript hash after pubkey: 26f07f9f8965307434d11ea855461d41
                                      e0cbabcc0a1bab48ecee0c6c1a4292b7
  KDC-REQ-BODY: 3075a00703050000000000a1143012a003020101a10b3009
                1b077261656275726ea2101b0e415448454e412e4d49542e
                454455a3233021a003020102a11a30181b066b7262746774
                1b0e415448454e412e4d49542e454455a511180f31393730
                303130313030303030305aa703020100a8053003020112
  K'[0]: 4569ec08b5de5c3cc19d941725913ace
         8d74524b521a341dc746acd5c3784d92
  K'[1]: 0d96ce1a4ac0f2e280a0cfc31742b064
         61d83d04ae45433db2d80478dd882a4c
  K'[2]: 58018c19315a1ba5d5bb9813b58029f0
         aec18a6f9ca59e0847de1c60bc25945c
  K'[3]: ed7e9bffd68c54d86fb19cd3c03f317f
         88a71ad9a5e94c28581d93fc4ec72b6a

  aes256-cts-hmac-sha1-96 P-521, rejected edwards25519 challenge
  key: 01b897121d933ab44b47eb5494db15e50eb74530dbdae9b634d65020ff5d88c1
  w (PRF+ output): de3a095a2b2386eff3eb15b735398da1caf95bc8425665d8
                   2370aff58b0471f34a57bccddf1ebf0a2965b58a93ee5b45
                   e85d1a5435d1c8c83662999722d542831f9a
  w (reduced multiplier): 003a095a2b2386eff3eb15b735398da1
                          caf95bc8425665d82370aff58b0471f3
                          4cce63791cfed967f0c94c16054b3e17
                          03133681bece1e05219f5426bc944b0f
                          bfb3
  x: 01687b59051bf40048d7c31d5a973d792fa12284b7a447e7f5938b5885ca0bb2
     c3f0bd30291a55fea08e143e2e04bdd7d19b753c7c99032f06cab0d9c2aa8f83
     7ef7
  y: 01ded675ebf74fe30c9a53710f577e9cf84f09f6048fe245a4600004884cc167
     733f9a9e43108fb83babe8754cd37cbd7025e28bc9ff870f084c7244f536285e
     25b4
  X: 03001bed88af987101ef52db5b8876f6287eb49a72163876c2cf99deb94f4c74
     9bfd118f0f400833cc8daad81971fe40498e6075d8ba0a2acfac35eb9ec8530e
     e0edd5
  Y: 02007bd3bf214200795ea449852976f241c9f50f445f78ff2714fffe42983f25
     cd9c9094ba3f9d7adadd6c251e9dc0991fc8210547e7769336a0ac406878fb94
     be2f1f
  T: 02014cb2e5b592ece5990f0ef30d308c061de1598bc4272b4a6599bed466fd15
     21693642abcf4dbe36ce1a2d13967de45f6c4f8d0fa8e14428bf03fb96ef5f1e
     d3e645
  S: 02016c64995e804416f748fd5fa3aa678cbc7cbb596a4f523132dc8af7ce84e5
     41f484a2c74808c6b21dcf7775baefa6753398425becc7b838b210ac5daa0cb0
     b710e2
  K: 0200997f4848ae2e7a98c23d14ac662030743ab37fccc2a45f1c721114f40bcc
     80fe6ec6aba49868f8aea1aa994d50e81b86d3e4d3c1130c8695b68907c673d9
     e5886a
  Optimistic SPAKEChallenge: a1363034a003020102a122042047ca8c
                             24c3a4a70b6eca228322529dadcfa85c
                             f58faceecf5d5c02907b9e2deba20930
                             073005a003020101
  SPAKESupport: a0093007a0053003020104
  SPAKEChallenge: a1593057a003020104a145044302014cb2e5b592ece5990f
                  0ef30d308c061de1598bc4272b4a6599bed466fd15216936
                  42abcf4dbe36ce1a2d13967de45f6c4f8d0fa8e14428bf03
                  fb96ef5f1ed3e645a20930073005a003020101
  Transcript hash after challenge: cb925b8baeae5e2867ab5b10ae1c941c
                                   4ff4b58a4812c1f7bd1c862ad480a8e1
                                   c6fcd5e88d846a2045e385841c91a75a
                                   d2035f0ff692717608e2a5a90842eff2
  Final transcript hash after pubkey: d0efed5e3e2c39c26034756d92a66fec
                                      3082ad793d0197f3f89ad36026f146a3
                                      996e548aa3fc49e2e82f8cac5d132c50
                                      5aa475b39e7be79cded22c26c41aa777
  KDC-REQ-BODY: 3075a00703050000000000a1143012a003020101a10b3009
                1b077261656275726ea2101b0e415448454e412e4d49542e
                454455a3233021a003020102a11a30181b066b7262746774
                1b0e415448454e412e4d49542e454455a511180f31393730
                303130313030303030305aa703020100a8053003020112
  K'[0]: 631fcc8596e7f40e59045950d72aa0b7
         bac2810a07b767050e983841cf3a2d4c
  K'[1]: 881464920117074dbc67155a8f3341d1
         121ef65f78ea0380bfa81a134c1c47b1
  K'[2]: 377b72ac3af2caad582d73ae4682fd56
         b531ee56706200dd6c38c42b8219837a
  K'[3]: 35ad8e4d580ed3f0d15ad928329773c0
         81bd19f9a56363f3a5f77c7e66108c26

  There are currently no encryption types with a seed size large enough
  to require multiple hash blocks during key derivation with any of the
  assigned hash functions.  To exercise this possibility, the following
  test vector illustrates what keys would be derived if there were a
  copy of the edwards25519 group with group number -1 and associated
  hash function SHA-1:

  AES256 edwards25519 SHA-1 group number -1
  key: 01b897121d933ab44b47eb5494db15e50eb74530dbdae9b634d65020ff5d88c1
  w (PRF+ output): 26da6b118cee6fa5ea795ed32d61490d
                   82b2f11102312f3f2fc04fb01c93df91
  w (reduced multiplier): d166c7cc9e72ca8c61f6a9185a987251
                          81b2f11102312f3f2fc04fb01c93df01
  x: 606c1b668008ed78fe2eee942e8f08007f3f1dcbef66d37fd69033525bda2030
  y: 10fc4e0bb1a902e58f632a1ea0bceb366360ac985f46996d956a02572bfcf050
  X: 389621509665abad35eaab26eab3a0f593c7b4380562aa5513c1140fd78ce048
  Y: de3ed05986eeac518958b566f9bad065b321402025cd188f3d198dc55c6d6b8d
  T: 2289a4f3c613e6e1df95e94aaa3c127dc062b9fceec3f9b62378dc729d61d0e3
  S: f9a7fa352930dedb422d567700bfcd39ba221e7f9ac3e6b36f2b63b68b88642c
  K: 6f61d6b18323b6c3ddaac7c56712845335384f095d3e116f69feb926a04f1340
  SPAKESupport: a0093007a00530030201ff
  SPAKEChallenge: a1363034a0030201ffa12204202289a4f3c613e6e1df95e9
                  4aaa3c127dc062b9fceec3f9b62378dc729d61d0e3a20930
                  073005a003020101
  Transcript hash after challenge: f5c051eb75290f92142c
                                   bbe80557ec2c85902c94
  Final transcript hash after pubkey: 9e26a3b148400c8f9cb8
                                      545331e4e7dcab399cc0
  KDC-REQ-BODY: 3075a00703050000000000a1143012a003020101a10b3009
                1b077261656275726ea2101b0e415448454e412e4d49542e
                454455a3233021a003020102a11a30181b066b7262746774
                1b0e415448454e412e4d49542e454455a511180f31393730
                303130313030303030305aa703020100a8053003020112
  K'[0]: 40bceb51bba474fd29ae65950022b704
         17b80d973fa8d8d6cd39833ff89964ad
  K'[1]: c29a7315453dc1cce938fa12a9e5c0db
         2894b2194da14c9cd4f7bc3a6a37223d
  K'[2]: f261984dba3c230fad99d324f871514e
         5aad670e44f00daef3264870b0851c25
  K'[3]: d24b2b46bab7c4d1790017d9116a7eeb
         ca88b0562a5ad8989c826cb7dab715c7

Acknowledgements

  Nico Williams (Cryptonector)

  Taylor Yu (MIT)

Authors' Addresses

  Nathaniel McCallum
  Red Hat, Inc.
  Email: [email protected]


  Simo Sorce
  Red Hat, Inc.
  Email: [email protected]


  Robbie Harwood
  Red Hat, Inc.
  Email: [email protected]


  Greg Hudson
  MIT
  Email: [email protected]