Internet Engineering Task Force (IETF)              A. Wiethuechter, Ed.
Request for Comments: 9575                                       S. Card
Category: Standards Track                             AX Enterprize, LLC
ISSN: 2070-1721                                             R. Moskowitz
                                                         HTT Consulting
                                                              June 2024


DRIP Entity Tag (DET) Authentication Formats and Protocols for Broadcast
                     Remote Identification (RID)

Abstract

  The Drone Remote Identification Protocol (DRIP), plus trust policies
  and periodic access to registries, augments Unmanned Aircraft System
  (UAS) Remote Identification (RID), enabling local real-time
  assessment of trustworthiness of received RID messages and observed
  UAS, even by Observers lacking Internet access.  This document
  defines DRIP message types and formats to be sent in Broadcast RID
  Authentication Messages to verify that attached and recently detached
  messages were signed by the registered owner of the DRIP Entity Tag
  (DET) claimed.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9575.

Copyright Notice

  Copyright (c) 2024 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
    1.1.  DRIP Entity Tag (DET) Authentication Goals for Broadcast
          RID
  2.  Terminology
    2.1.  Required Terminology
    2.2.  Definitions
  3.  UAS RID Authentication Background and Procedures
    3.1.  DRIP Authentication Protocol Description
      3.1.1.  Usage of DNS
      3.1.2.  Providing UAS RID Trust
    3.2.  ASTM Authentication Message Framing
      3.2.1.  Authentication Page
      3.2.2.  Authentication Payload Field
      3.2.3.  SAM Data Format
      3.2.4.  ASTM Broadcast RID Constraints
  4.  DRIP Authentication Formats
    4.1.  UA-Signed Evidence Structure
    4.2.  DRIP Link
    4.3.  DRIP Wrapper
      4.3.1.  Wrapped Count and Format Validation
      4.3.2.  Wrapper over Extended Transports
      4.3.3.  Wrapper Limitations
    4.4.  DRIP Manifest
      4.4.1.  Hash Count and Format Validation
      4.4.2.  Manifest Ledger Hashes
      4.4.3.  Hash Algorithms and Operation
    4.5.  DRIP Frame
  5.  Forward Error Correction
    5.1.  Encoding
    5.2.  Decoding
    5.3.  FEC Limitations
  6.  Requirements and Recommendations
    6.1.  Legacy Transports
    6.2.  Extended Transports
    6.3.  Authentication
    6.4.  Operational
      6.4.1.  DRIP Wrapper
      6.4.2.  UAS RID Trust Assessment
  7.  Summary of Addressed DRIP Requirements
  8.  IANA Considerations
    8.1.  IANA DRIP Registry
  9.  Security Considerations
    9.1.  Replay Attacks
    9.2.  Wrapper vs Manifest
    9.3.  VNA Timestamp Offsets for DRIP Authentication Formats
    9.4.  DNS Security in DRIP
  10. References
    10.1.  Normative References
    10.2.  Informative References
  Appendix A.  Authentication States
    A.1.  None: Black
    A.2.  Partial: Gray
    A.3.  Unsupported: Brown
    A.4.  Unverifiable: Yellow
    A.5.  Verified: Green
    A.6.  Trusted: Blue
    A.7.  Questionable: Orange
    A.8.  Unverified: Red
    A.9.  Conflicting: Purple
  Appendix B.  Operational Recommendation Analysis
    B.1.  Page Counts vs Frame Counts
      B.1.1.  Special Cases
    B.2.  Full Authentication Example
      B.2.1.  Raw Example
  Acknowledgments
  Authors' Addresses

1.  Introduction

  The initial regulations (e.g., [FAA-14CFR]) and standards (e.g.,
  [F3411]) for Unmanned Aircraft Systems (UAS) Remote Identification
  (RID) and tracking do not address trust.  However, this is a
  requirement that needs to be addressed for various different parties
  that have a stake in the safe operation of National Airspace Systems
  (NAS).  Drone Remote ID Protocol's (DRIP's) goal is to specify how
  RID can be made trustworthy and available in both Internet and local-
  only connected scenarios, especially in emergency situations.

  UAS often operate in a volatile environment.  A small Unmanned
  Aircraft (UA) offers little capacity for computation and
  communication.  UAS RID must also be accessible with ubiquitous and
  inexpensive devices without modification.  This limits options.  Most
  current small UAS are Internet of Things (IoT) devices even if they
  are not typically thought of as such.  Thus many IoT considerations
  apply here.  Some DRIP work, currently strongly scoped to UAS RID, is
  likely to be applicable to some other IoT use cases.

  Generally, two communication schemes for UAS RID are considered:
  Broadcast and Network.  This document focuses on adding trust to
  Broadcast RID (Section 3.2 of [RFC9153] and Section 1.2.2 of
  [RFC9434]).  As defined in [F3411] and outlined in [RFC9153] and
  [RFC9434], Broadcast RID is a one-way Radio Frequency (RF)
  transmission of Media Access Control (MAC) layer messages over
  Bluetooth or Wi-Fi.

  Senders can make any claims the RID message formats allow.  Observers
  have no standardized means to assess the trustworthiness of message
  content, nor verify whether the messages were sent by the UA
  identified therein, nor confirm that the UA identified therein is the
  one they are visually observing.  Indeed, Observers have no way to
  detect whether the messages were sent by a UA or spoofed by some
  other transmitter (e.g., a laptop or smartphone) anywhere in direct
  wireless broadcast range.  Authentication is the primary strategy for
  mitigating this issue.

1.1.  DRIP Entity Tag (DET) Authentication Goals for Broadcast RID

  ASTM [F3411] Authentication Messages (Message Type 0x2), when used
  with DET-based formats [RFC9374], enable a high level of trust that
  the content of other ASTM Messages was generated by their claimed
  registered source.  These messages are designed to provide the
  Observers with trustworthy and immediately actionable information.
  Appendix A provides a high-level overview of the various states of
  trustworthiness that may be used along with these formats.

  This authentication approach also provides some error correction
  (Section 5) as mandated by the United States (US) Federal Aviation
  Administration (FAA) [FAA-14CFR], which is missing from [F3411] over
  Legacy Transports (Bluetooth 4.x).

  These DRIP enhancements to ASTM's specification for RID and tracking
  [F3411] further support the important use case of Observers who may
  be offline at the time of observation.

  Section 7 summarizes the DRIP requirements [RFC9153] addressed
  herein.

2.  Terminology

2.1.  Required Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.2.  Definitions

  This document makes use of the terms (CAA, Observer, USS, UTM, etc.)
  defined in [RFC9153].  Other terms (such as DIME) are from [RFC9434],
  while others (HI, DET, RAA, HDA, etc.) are from [RFC9374].

  In addition, the following terms are defined for this document:

  Extended Transports:  Use of extended advertisements (Bluetooth 5.x),
     service info (Wi-Fi Neighbor Awareness Networking (NAN)), or IEEE
     802.11 Beacons with the vendor-specific information element as
     specified in [F3411].  Must use ASTM Message Pack (Message Type
     0xF).

  Legacy Transports:  Use of broadcast frames (Bluetooth 4.x) as
     specified in [F3411].

  Manifest:  An immutable list of items being transported (in this
     specific case over wireless communication).

  Observation Session:  The period of time during which a given
     Observer's receiver is processing (even if only intermittently) a
     series of UAS RID messages, at least some of which use DRIP
     extensions to [F3411], all nominally from the same UA executing a
     single flight operation.

  Note: For the remainder of this document, _Broadcast Endorsement:
  Parent, Child_ will be abbreviated as _BE: Parent, Child_. For
  example, _Broadcast Endorsement: RAA, HDA_ will be abbreviated as
  _BE: RAA, HDA_.

3.  UAS RID Authentication Background and Procedures

3.1.  DRIP Authentication Protocol Description

  [F3411] defines Authentication Message framing only.  It does not
  define authentication formats or methods.  It explicitly anticipates
  several signature options but does not fully define those.  Annex A1
  of [F3411] defines a Broadcast Authentication Verifier Service, which
  has a heavy reliance on Observer real-time connectivity to the
  Internet.  Fortunately, [F3411] also allows third-party standard
  Authentication Types using the Type 0x5 Specific Authentication
  Method (SAM), several of which DRIP defines herein.

  The standardization of specific formats to support the DRIP
  requirements in UAS RID for trustworthy communications over Broadcast
  RID is an important part of the chain of trust for a UAS ID.  Per
  Section 5 of [RFC9434], Authentication formats are needed to relay
  information for Observers to determine trust.  No existing formats
  (defined in [F3411] or other organizations leveraging this feature)
  provide functionality to satisfy this goal, resulting in the work
  reflected in this document.

3.1.1.  Usage of DNS

  Like most aviation matters, the overall objectives here are security
  and ultimately safety oriented.  Since DRIP depends on DNS for some
  of its functions, DRIP usage of DNS needs to be protected per best
  security practices.  Many participating nodes will have limited local
  processing power and/or poor, low-bandwidth QoS paths.  Appropriate
  and feasible security techniques will be highly dependent on the UAS
  and Observer situation.  Therefore, specification of particular DNS
  security options, transports, etc. is outside the scope of this
  document (see also Section 9.4).

  In DRIP, Observers MUST validate all signatures received.  This
  requires that the Host Identity (HI) correspond to a DET [RFC9374].
  HI's MAY be retrieved from a local cache, if present.  The local
  cache is pre-configured with well-known HIs (such as those of CAA
  DIMEs) and is further populated by received Broadcast Endorsements
  (BEs) (Section 3.1.2.1) and DNS lookups (when available).

  The Observer MUST perform a DNS query, when connectivity allows, to
  obtain a previously unknown HI.  If a query cannot be performed, the
  message SHOULD be cached by the Observer to be validated once the HI
  is obtained.

  A more comprehensive specification of DRIP's use of DNS is out of
  scope for this document and can be found in [DRIP-REG].

3.1.2.  Providing UAS RID Trust

  For DRIP, two actions together provide a mechanism for an Observer to
  trust in UAS RID using Authentication Messages.

  First is the transmission of an entire trust chain via Broadcast
  Endorsements (Section 3.1.2.1).  This provides a hierarchy of DIMEs
  down to and including an individual UA's registration of a claimed
  DET and corresponding HI (public key).  This alone cannot be trusted
  as having any relevance to the observed UA because replay attacks are
  trivial.

  After an Observer has gathered such a complete key trust chain (from
  pre-configured cache entries, Broadcast Endorsements received over
  the air and/or DNS lookups) and verified all of its links, that
  device can trust that the claimed DET and corresponding public key
  are properly registered, but the UA has not yet been proven to
  possess the corresponding private key.

  Second is for the UA to prove possession by dynamically signing data
  that is unique and unpredictable but easily verified by the Observer
  (Section 3.1.2.2).  Verification of this signed data MUST be
  performed by the Observer as part of the received UAS RID information
  trust assessment (Section 6.4.2).

3.1.2.1.  DIME Endorsements of Subordinate DETs

  Observers receive DRIP Link Authentication Messages (Section 4.2)
  containing Broadcast Endorsements by DIMEs of child DET
  registrations.  A series of these Endorsements confirms a path
  through the hierarchy, defined in [DRIP-REG], from the DET Prefix
  Owner all the way to an individual UA DET registration.

3.1.2.2.  UA-Signed Evidence

  To prove possession of the private key associated with the DET, the
  UA MUST sign and send data that is unique and unpredictable but
  easily validated by the Observer.  The data can be an ASTM Message
  that fulfills the requirements to be unpredictable but easily
  validated.  An Observer receives this UA-signed Evidence from DRIP-
  based Authentication Messages (Sections 4.3 or 4.4).  The Observer
  must verify the signature (cryptographically, as specified in
  Section 3.1.1) and validate the signed content (via non-cryptographic
  means, as specified in Section 6.3).

  Whether the content is true is a separate question that DRIP cannot
  address, but validation performed using observable and/or out-of-band
  data (Section 6) is possible and encouraged.

3.2.  ASTM Authentication Message Framing

  The Authentication Message (Message Type 0x2) is unique in the ASTM
  [F3411] Broadcast standard, as it is the only message that can be
  larger than the Legacy Transport size.  To address this limitation
  around transport size, it is defined as a set of "pages", each of
  which fits into a single Legacy Transport frame.  For Extended
  Transports, pages are still used but they are all in a single frame.

     |  Informational Note: Message Pack (Message Type 0xF) is also
     |  larger than the Legacy Transport size but is limited for use
     |  only on Extended Transports where it can be supported.

  The following subsections are a brief overview of the Authentication
  Message format defined in [F3411] for better context on how DRIP
  Authentication fills and uses various fields already defined by ASTM
  [F3411].

3.2.1.  Authentication Page

  This document leverages Authentication Type 0x5 (Specific
  Authentication Method (SAM)) as the principal authentication
  container, defining a set of SAM Types in Section 4.  Authentication
  Type is encoded in every Authentication Page in the _Page Header_.
  The SAM Type is defined as a field in the _Authentication Payload_
  (see Section 3.2.3).

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +---------------+---------------+---------------+---------------+
    |  Page Header  |                                               |
    +---------------+                                               |
    |                                                               |
    |                                                               |
    |                     Authentication Payload                    |
    |                                                               |
    |                                                               |
    +---------------+---------------+---------------+---------------+

           Figure 1: Standard ASTM Authentication Message Page

  _Page Header_:  (1 octet)

     Authentication Type (4 bits) and Page Number (4 bits)

  _Authentication Payload_:  (23 octets per page)

     Authentication Payload, including headers.  Null padded.  See
     Section 3.2.2.

  The Authentication Message is structured as a set of pages per
  Figure 1.  There is a technical maximum of 16 pages (indexed 0 to 15)
  that can be sent for a single Authentication Message, with each page
  carrying a maximum 23-octet _Authentication Payload_. See
  Section 3.2.4 for more details.  Over Legacy Transports, these
  messages are "fragmented", with each page sent in a separate Legacy
  Transport frame.

  Either as a single Authentication Message or a set of fragmented
  Authentication Message Pages, the structure is further wrapped by
  outer ASTM framing and the specific link framing.

3.2.2.  Authentication Payload Field

  Figure 2 is the source data view of the data fields found in the
  Authentication Message as defined by [F3411].  This data is placed
  into the _Authentication Payload_ shown in Figure 1, which spans
  multiple _Authentication Pages_.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +---------------+---------------+---------------+---------------+
    |                     Authentication Headers                    |
    |                               +---------------+---------------+
    |                               |                               |
    +---------------+---------------+                               |
    .                                                               .
    .                Authentication Data / Signature                .
    .                                                               .
    |                                                               |
    +---------------+---------------+---------------+---------------+
    |      ADL      |                                               |
    +---------------+                                               |
    .                                                               .
    .                       Additional Data                         .
    .                                                               .
    |                                                               |
    +---------------+---------------+---------------+---------------+

               Figure 2: ASTM Authentication Message Fields

  _Authentication Headers_:  (6 octets)

     As defined in [F3411].

  _Authentication Data / Signature_:  (0 to 255 octets)

     Opaque authentication data.  The length of this payload is known
     through a field in the _Authentication Headers_ (defined in
     [F3411]).

  _Additional Data Length (ADL)_:  (1 octet - unsigned)

     Length in octets of _Additional Data_. The value of _ADL_ is
     calculated as the minimum of 361 - Authentication Data / Signature
     Length and 255.  Only present with _Additional Data_.

  _Additional Data:_  (_ADL_ octets)

     Data that follows the _Authentication Data / Signature_ but is not
     considered part of the _Authentication Data_, and thus is not
     covered by a signature.  For DRIP, this field is used to carry
     Forward Error Correction (FEC) generated by transmitters and
     parsed by receivers as defined in Section 5.

3.2.3.  SAM Data Format

  Figure 3 is the general format to hold authentication data when using
  SAM and is placed inside the _Authentication Data / Signature_ field
  in Figure 2.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +---------------+---------------+---------------+---------------+
    |   SAM Type    |                                               |
    +---------------+                                               |
    .                                                               .
    .                     SAM Authentication Data                   .
    .                                                               .
    |                                                               |
    +---------------+---------------+---------------+---------------+

                        Figure 3: SAM Data Format

  _SAM Type_:  (1 octet)

     The following SAM Types are allocated to DRIP:

                 +==========+=============================+
                 | SAM Type | Description                 |
                 +==========+=============================+
                 | 0x01     | DRIP Link (Section 4.2)     |
                 +----------+-----------------------------+
                 | 0x02     | DRIP Wrapper (Section 4.3)  |
                 +----------+-----------------------------+
                 | 0x03     | DRIP Manifest (Section 4.4) |
                 +----------+-----------------------------+
                 | 0x04     | DRIP Frame (Section 4.5)    |
                 +----------+-----------------------------+

                          Table 1: DRIP SAM Types

     |  Note: ASTM International is the owner of these code points as
     |  they are defined in [F3411].  In accordance with Annex 5 of
     |  [F3411], the International Civil Aviation Organization (ICAO)
     |  has been selected by ASTM as the registrar to manage
     |  allocations of these code points.  The list is available at
     |  [ASTM-Remote-ID].

  _SAM Authentication Data_:  (0 to 200 octets)

     Contains opaque authentication data formatted as defined by the
     preceding SAM Type.

3.2.4.  ASTM Broadcast RID Constraints

3.2.4.1.  Wireless Frame Constraints

  A UA has the option to broadcast using Bluetooth (4.x and 5.x), Wi-Fi
  NAN, or IEEE 802.11 Beacon; see Section 6.  With Bluetooth, FAA and
  other Civil Aviation Authorities (CAA) mandate transmitting
  simultaneously over both 4.x and 5.x.  The same application-layer
  information defined in [F3411] MUST be transmitted over all the
  physical-layer interfaces performing RID, because Observer transports
  may be limited.  If an Observer can support multiple transports, it
  should use (display, report, etc.) the latest data regardless of the
  transport over which that data was received.

  Bluetooth 4.x presents a payload-size challenge in that it can only
  transmit 25 octets of payload per frame, while other transports can
  support larger payloads per frame.  As [F3411] message formats are
  the same for all media, and their framing was designed to fit within
  these legacy constraints, Extended Transports cannot send larger
  messages; instead, the Message Pack format encapsulates multiple
  messages (each of which fits within these legacy constraints).

  By definition Extended Transports provide FEC, but Legacy Transports
  lack FEC.  Thus over Legacy Transports, paged Authentication Messages
  may suffer the loss of one or more pages.  This would result in
  delivery to the Observer application of incomplete (typically
  unusable) messages, so DRIP FEC (Section 5) is specified to enable
  recovery of a single lost page and thereby reduce the likelihood of
  receiving incompletely reconstructable Authentication Messages.
  Authentication Messages sent using Extended Transports do not suffer
  this issue, as the full message (all pages) is sent using a single
  Message Pack.  Furthermore, the use of one-way RF broadcasts
  prohibits the use of any congestion-control or loss-recovery schemes
  that require ACKs or NACKs.

3.2.4.2.  Paged Authentication Message Constraints

  To keep consistent formatting across the different transports (Legacy
  and Extended) and their independent restrictions, the authentication
  data being sent is REQUIRED to fit within the page limit that the
  most constrained existing transport can support.  Under Broadcast
  RID, the Extended Transport that can hold the least amount of
  authentication data is Bluetooth 5.x at 9 pages.

  As such, DRIP transmitters are REQUIRED to adhere to the following
  when using the Authentication Message:

  1.  _Authentication Data / Signature_ data MUST fit in the first 9
      pages (Page Numbers 0 through 8).

  2.  The _Length_ field in the _Authentication Headers_ (which encodes
      the length in octets of _Authentication Data / Signature_ only)
      MUST NOT exceed the value of 201.  This includes the SAM Type but
      excludes _Additional Data_.

3.2.4.3.  Timestamps

  In ASTM [F3411], timestamps are a Unix-style timestamp with an epoch
  of 2019-01-01 00:00:00 UTC.  For DRIP, this format is adopted for
  Authentication to keep a common time format in Broadcast payloads.

  Under DRIP, there are two timestamps defined: Valid Not Before (VNB)
  and Valid Not After (VNA).

  Valid Not Before (VNB) Timestamp:  (4 octets)

     Timestamp denoting the recommended time at which to start trusting
     data.  MUST follow the format defined in [F3411] as described
     above.  MUST be set no earlier than the time the signature (across
     a given structure) is generated.

  Valid Not After (VNA) Timestamp:  (4 octets)

     Timestamp denoting the recommended time at which to stop trusting
     data.  MUST follow the format defined in [F3411] as described
     above.  Has an offset (relative to VNB) to avoid replay attacks.
     The exact offset is not defined in this document.  Best practice
     for identifying an acceptable offset should be used and should
     take into consideration the UA environment, propagation
     characteristics of the messages being sent, and clock differences
     between the UA and Observers.  For UA signatures in scenarios
     typical as of 2024, a reasonable offset would be to set VNA
     approximately 2 minutes after VNB; see Appendix B for examples
     that may aid in tuning this value.

4.  DRIP Authentication Formats

  All formats defined in this section are contained in the
  _Authentication Data / Signature_ field in Figure 2 and use the
  Specific Authentication Method (SAM, Authentication Type 0x5).  The
  first octet of the _Authentication Data / Signature_ of Figure 2 is
  used to multiplex among these various formats.

  When sending data over a medium that does not have underlying FEC,
  for example Legacy Transports, then FEC (per Section 5) MUST be used.

  Examples of Link, Wrapper, and Manifest are shown as part of an
  operational schedule in Appendix B.2.1.

4.1.  UA-Signed Evidence Structure

  The _UA-Signed Evidence Structure_ (Figure 4) is used by the UA
  during flight to sign over information elements using the private key
  associated with the current UA DET.  It is encapsulated by the _SAM
  Authentication Data_ field of Figure 3.

  This structure is used by the DRIP Wrapper (Section 4.3), Manifest
  (Section 4.4), and Frame (Section 4.5).  DRIP Link (Section 4.2) MUST
  NOT use it, as it will not fit in the ASTM Authentication Message
  with its intended content (i.e., a Broadcast Endorsement).

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +---------------+---------------+---------------+---------------+
    |                      VNB Timestamp by UA                      |
    +---------------+---------------+---------------+---------------+
    |                      VNA Timestamp by UA                      |
    +---------------+---------------+---------------+---------------+
    |                                                               |
    .                                                               .
    .                            Evidence                           .
    .                                                               .
    |                                                               |
    +---------------+---------------+---------------+---------------+
    |                                                               |
    |                              UA                               |
    |                        DRIP Entity Tag                        |
    |                                                               |
    +---------------+---------------+---------------+---------------+
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                          UA Signature                         |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    +---------------+---------------+---------------+---------------+

          Figure 4: Endorsement Structure for UA-Signed Evidence

  _Valid Not Before (VNB) Timestamp by UA_:  (4 octets)

     See Section 3.2.4.3.  Set by the UA.

  _Valid Not After (VNA) Timestamp by UA_:  (4 octets)

     See Section 3.2.4.3.  Set by the UA.

  _Evidence_:  (0 to 112 octets)

     The _Evidence_ field MUST be filled in with data in the form of an
     opaque object specified in the DRIP Wrapper (Section 4.3),
     Manifest (Section 4.4), or Frame (Section 4.5).

  _UA DRIP Entity Tag_:  (16 octets)

     This is a DET [RFC9374] currently being used by the UA for
     authentication; it is assumed to be a Specific Session ID (a type
     of UAS ID typically also used by the UA in the Basic ID Message).

  _UA Signature_:  (64 octets)

     Signature over the concatenation of preceding fields (_VNB_,
     _VNA_, _Evidence_, and _UA DET_) using the keypair of the UA DET.
     The signature algorithm is specified by the Hierarchical Host
     Identity Tags (HHIT) Suite ID of the DET.

  When using this structure, the UA is minimally self-endorsing its
  DET.  The HI of the UA DET can be looked up by mechanisms described
  in [DRIP-REG] or by extracting it from a Broadcast Endorsement (see
  Sections 4.2 and 6.3).

4.2.  DRIP Link

  This SAM Type (Figure 5) is used to transmit Broadcast Endorsements.
  For example, the _BE: HDA, UA_ is sent (see Section 6.3) as a DRIP
  Link message.

  DRIP Link is important as its contents are used to provide trust in
  the DET/HI pair that the UA is currently broadcasting.  This message
  does not require Internet connectivity to perform signature
  verification of the contents when the DIME DET/HI is in the
  Observer's cache.  It also provides the UA HI, when it is filled with
  a BE: HDA, UA, so that connectivity is not required when performing
  signature verification of other DRIP Authentication Messages.

  Various Broadcast Endorsements are sent during each UAS flight
  operation to ensure that the full Broadcast Endorsement chain is
  available offline.  See Section 6.3 for further details.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +---------------+---------------+---------------+---------------+
    |                    VNB Timestamp by Parent                    |
    +---------------+---------------+---------------+---------------+
    |                    VNA Timestamp by Parent                    |
    +---------------+---------------+---------------+---------------+
    |                                                               |
    |                              DET                              |
    |                            of Child                           |
    |                                                               |
    +---------------+---------------+---------------+---------------+
    |                                                               |
    |                                                               |
    |                                                               |
    |                           HI of Child                         |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    +---------------+---------------+---------------+---------------+
    |                                                               |
    |                              DET                              |
    |                           of Parent                           |
    |                                                               |
    +---------------+---------------+---------------+---------------+
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                     Signature by Parent                       |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    +---------------+---------------+---------------+---------------+

               Figure 5: Broadcast Endorsement / DRIP Link

  _VNB Timestamp by Parent_:  (4 octets)

     See Section 3.2.4.3.  Set by Parent Entity.

  _VNA Timestamp by Parent_:  (4 octets)

     See Section 3.2.4.3.  Set by Parent Entity.

  _DET of Child_:  (16 octets)

     DRIP Entity Tag of Child Entity.

  _HI of Child_:  (32 octets)

     Host Identity of Child Entity.

  _DET of Parent_:  (16 octets)

     DRIP Entity Tag of Parent Entity in DIME Hierarchy.

  _Signature by Parent_:  (64 octets)

     Signature over concatenation of preceding fields (_VNB_, _VNA_,
     _DET of Child_, _HI of Child_, and _DET of Parent_) using the
     keypair of the Parent DET.

  This DRIP Authentication Message is used in conjunction with other
  DRIP SAM Types (such as the Manifest or the Wrapper) that contain
  data (e.g., the ASTM Location/Vector Message, Message Type 0x2) that
  is guaranteed to be unique, unpredictable, and easily cross-checked
  by the receiving device.

  A hash of the final link (BE: HDA on UA) in the Broadcast Endorsement
  chain MUST be included in each DRIP Manifest (Section 4.4).

  Note: The Endorsement that proves a DET is registered MUST come from
  its immediate parent in the registration hierarchy, e.g., a DRIP
  Identity Management Entity (DIME) [DRIP-REG].  In the definitive
  hierarchy, the parent of the UA is its HHIT Domain Authority (HDA),
  the parent of an HDA is its Registered Assigning Authority (RAA),
  etc.  It is also assumed that all DRIP-aware entities use a DET as
  their identifier during interactions with other DRIP-aware entities.

4.3.  DRIP Wrapper

  This SAM Type is used to wrap and sign over a list of other [F3411]
  Broadcast RID messages.

  The _Evidence_ field of the _UA-Signed Evidence Structure_
  (Section 4.1) is populated with up to four ASTM Messages [F3411] in a
  contiguous octet sequence.  Only ASTM Message Types 0x0, 0x1, 0x3,
  0x4, and 0x5 are allowed and must be in Message Type order as defined
  by [F3411].  These messages MUST include the Message Type and
  Protocol Version octet and MUST NOT include the Message Counter octet
  (thus are fixed at 25 octets in length).

4.3.1.  Wrapped Count and Format Validation

  When decoding a DRIP Wrapper on a receiver, a calculation of the
  number of messages wrapped and a validation MUST be performed by
  using the number of octets (defined as wrapperLength) between the
  _VNA Timestamp by UA_ and the _UA DET_ as shown in Figure 6.

  <CODE BEGINS>
  if (wrapperLength MOD 25) != 0 {
    return DECODE_FAILURE;
  }
  wrappedCount = wrapperLength / 25;
  if (wrappedCount == 0) {
    // DECODE_SUCCESS; treat as DRIP Wrapper over extended transport
  }
  else if (wrappedCount > 4) {
    return DECODE_FAILURE;
  } else {
    // DECODE_SUCCESS; treat as standard DRIP Wrapper
  }
  <CODE ENDS>

        Figure 6: Pseudocode for Wrapper Validation and Number of
                           Messages Calculation

4.3.2.  Wrapper over Extended Transports

  When using Extended Transports, an optimization to DRIP Wrapper can
  be made to sign over co-located data in an ASTM Message Pack (Message
  Type 0xF).

  To perform this optimization, the _UA-Signed Evidence Structure_ is
  filled with the ASTM Messages to be in the ASTM Message Pack, the
  signature is generated, and then the _Evidence_ field is cleared,
  leaving the encoded form shown in Figure 7.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +---------------+---------------+---------------+---------------+
    |                      VNB Timestamp by UA                      |
    +---------------+---------------+---------------+---------------+
    |                      VNA Timestamp by UA                      |
    +---------------+---------------+---------------+---------------+
    |                                                               |
    |                              UA                               |
    |                        DRIP Entity Tag                        |
    |                                                               |
    +---------------+---------------+---------------+---------------+
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                          UA Signature                         |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    +---------------+---------------+---------------+---------------+

             Figure 7: DRIP Wrapper over Extended Transports

  To verify the signature, the receiver MUST concatenate all the
  messages in the Message Pack (excluding the Authentication Message
  found in the same Message Pack) in ASTM Message Type order and set
  the _Evidence_ field of the _UA-Signed Evidence Structure_ before
  performing signature verification.

  The functionality of a Wrapper in this form is equivalent to Message
  Set Signature (Authentication Type 0x3) when running over Extended
  Transports.  The Wrapper provides the same format but over both
  Extended and Legacy Transports, which allows the transports to be
  similar.  Message Set Signature also implies using the ASTM validator
  system architecture, which depends on Internet connectivity for
  verification that the receiver may not have at the time an
  Authentication Message is received.  This is something the Wrapper,
  and all DRIP Authentication Formats, avoid when the UA key is
  obtained via a DRIP Link Authentication Message.

4.3.3.  Wrapper Limitations

  The primary limitation of the Wrapper is the bounding of up to four
  ASTM Messages that can be sent within it.  Another limitation is that
  the format cannot be used as a surrogate for messages it is wrapping
  due to the potential that an Observer on the ground does not support
  DRIP.  Thus, when a Wrapper is being used, the wrapped data must
  effectively be sent twice, once as a single-framed message (as
  specified in [F3411]) and again within the Wrapper.

4.4.  DRIP Manifest

  This SAM Type is used to create message manifests that contain hashes
  of previously sent ASTM Messages.

  By hashing previously sent messages and signing them, we gain trust
  in a UA's previous reports without retransmitting them.  This is a
  way to evade the limitation of a maximum of four messages in the
  Wrapper (Section 4.3.3) and greatly reduce overhead.

  Observers MUST hash all received ASTM Messages and cross-check them
  against hashes in received Manifests.

  Judicious use of a Manifest enables an entire Broadcast RID message
  stream to be strongly authenticated with less than 100% overhead
  relative to a completely unauthenticated message stream (see
  Section 6.3 and Appendix B).

  The _Evidence_ field of the _UA-Signed Evidence Structure_
  (Section 4.1) is populated with 8-octet hashes of [F3411] Broadcast
  RID messages (up to 11) and three special hashes (Section 4.4.2).
  All of these hashes MUST be concatenated to form a contiguous octet
  sequence in the _Evidence_ field.  It is RECOMMENDED that the maximum
  number of ASTM Message Hashes used be 10 (see Appendix B.1.1.2).

  The _Previous Manifest Hash_, _Current Manifest Hash_, and _DRIP Link
  (BE: HDA, UA) Hash_ MUST always come before the _ASTM Message Hashes_
  as seen in Figure 8.

  An Observer MUST use the Manifest to verify each ASTM Message hashed
  therein that it has previously received.  It can do this without
  having received them all.  A Manifest SHOULD typically encompass a
  single transmission cycle of messages being sent; see Section 6.4 and
  Appendix B.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +---------------+---------------+---------------+---------------+
    |                       Previous Manifest                       |
    |                              Hash                             |
    +---------------+---------------+---------------+---------------+
    |                       Current Manifest                        |
    |                              Hash                             |
    +---------------+---------------+---------------+---------------+
    |                      DRIP Link (BE: HDA, UA)                  |
    |                              Hash                             |
    +---------------+---------------+---------------+---------------+
    |                                                               |
    .                                                               .
    .                      ASTM Message Hashes                      .
    .                                                               .
    |                                                               |
    +---------------+---------------+---------------+---------------+

                Figure 8: DRIP Manifest Evidence Structure

  _Previous Manifest Hash_:  (8 octets)

     Hash of the previously sent Manifest Message.

  _Current Manifest Hash_:  (8 octets)

     Hash of the current Manifest Message.

  _DRIP Link (BE: HDA, UA)_:  (8 octets)

     Hash of the DRIP Link Authentication Message carrying BE: HDA, UA
     (see Section 4.2).

  _ASTM Message Hash_:  (8 octets)

     Hash of a single full ASTM Message using hash operations described
     in Section 4.4.3.

4.4.1.  Hash Count and Format Validation

  When decoding a DRIP Manifest on a receiver, a calculation of the
  number of hashes and a validation can be performed by using the
  number of octets between the _UA DET_ and the _VNB Timestamp by UA_
  (defined as manifestLength) such as shown in Figure 9.

  <CODE BEGINS>
  if (manifestLength MOD 8) != 0 {
    return DECODE_FAILURE
  }
  hashCount = (manifestLength / 8) - 3;
  <CODE ENDS>

       Figure 9: Pseudocode for Manifest Sanity Check and Number of
                            Hashes Calculation

4.4.2.  Manifest Ledger Hashes

  The following three special hashes are included in all Manifests:

  *  the _Previous Manifest Hash_ links to the previous Manifest.

  *  the _Current Manifest Hash_ is of the Manifest in which it
     appears.

  *  the _DRIP Link (BE: HDA, UA) Hash_ ties the endorsed UA key to the
     Manifest chain.

  The Previous and Current hashes act as a ledger of provenance for the
  Manifest chain, which should be traced back if the Observer and UA
  were within Broadcast RID wireless range of each other for an
  extended period of time.

  The _DRIP Link (BE: HDA, UA)_ is included so there is a direct
  signature by the UA over the Broadcast Endorsement (see Section 4.2).
  Typical operation would expect that the list of _ASTM Message Hashes_
  contain nonce-like data.  To enforce a binding between the BE: HDA,
  UA and avoid trivial replay attack vectors (see Section 9.1), at
  least one _ASTM Message Hash_ MUST be from an [F3411] message that
  satisfies the fourth requirement in Section 6.3.  At least once per
  Observation Session, the Observer must process that message as
  specified in Section 6.3.

4.4.3.  Hash Algorithms and Operation

  The hash algorithm used for the Manifest is the same hash algorithm
  used in creation of the DET [RFC9374] that is signing the Manifest.
  This is encoded as part of the DET using the HHIT Suite ID.

  DETs that use cSHAKE128 [NIST.SP.800-185] compute the hash as
  follows:

     cSHAKE128(ASTM Message, 64, "", "Remote ID Auth Hash")

  For ORCHID Generation Algorithms (OGAs) other than "5" (EdDSA/
  cSHAKE128) [RFC9374], use the construct appropriate for the
  associated hash.  For example, the hash for "2" (ECDSA/SHA-384) is
  computed as follows:

     Ltrunc( SHA-384( ASTM Message | "Remote ID Auth Hash" ), 8 )

  When building a Manifest, this process MUST be followed:

  1.  The _Previous Manifest Hash_

      a.  is filled with a random nonce if and only if this is the
          first manifest being generated;

      b.  otherwise, it contains the previous manifest's _Current
          Manifest Hash_.

  2.  The _Current Manifest Hash_ is filled with null.

  3.  _ASTM Message Hashes_ are filled per Section 4.4.3.1 or
      Section 4.4.3.2.

  4.  A hash, as defined above in this section, is calculated over the
      _Previous Manifest Hash_, _Current Manifest Hash_ (null filled),
      and _ASTM Message Hashes_.

  5.  The _Current Manifest Hash_ (null filled) is replaced with the
      hash generated in Step r.

4.4.3.1.  Legacy Transport Hashing

  Under this transport, DRIP hashes the full ASTM Message being sent
  over the Bluetooth Advertising frame.  This is the 25-octet object
  that starts with the Message Type and Protocol Version octet along
  with the 24 octets of message data.  The hash MUST NOT include the
  Message Counter octet.

  For paged ASTM Messages (currently only Authentication Messages), all
  of the pages are concatenated together in Page Number order and
  hashed as one object.

4.4.3.2.  Extended Transport Hashing

  Under this transport, DRIP hashes the full ASTM Message Pack (Message
  Type 0xF) regardless of its content.  The hash MUST NOT include the
  Message Counter octet.

4.5.  DRIP Frame

  This SAM Type is defined to enable use of the _UA-Signed Evidence
  Structure_ (Section 4.1) in the future beyond the previously defined
  formats (Wrapper and Manifest) by the inclusion of a single octet to
  signal the format of _Evidence_ data (up to 111 octets).

  The content format of _Frame Evidence Data_ is not defined in this
  document.  Other specifications MUST define the contents and register
  for a _Frame Type_. At the time of publication (2024), there are no
  defined Frame Types; only an Experimental range has been defined.

  Observers MUST check the signature of the structure (Section 4.1) per
  Section 3.1.2.2 and MAY, if the specification of _Frame Type_ is
  known, parse the content in _Frame Evidence Data_.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +---------------+---------------+---------------+---------------+
    |  Frame Type   |                                               |
    +---------------+                                               .
    .                      Frame Evidence Data                      .
    .                                                               .
    |                                                               |
    +---------------+---------------+---------------+---------------+

                          Figure 10: DRIP Frame

  _Frame Type_:  (1 octet)

     As shown in Figure 10, the _Frame Type_ takes the first octet,
     which leaves 111 octets available for _Frame Evidence Data_.  See
     Section 8.1 for Frame Type allocations.

5.  Forward Error Correction

  For Broadcast RID, FEC is provided by the lower layers in Extended
  Transports.  The Bluetooth 4.x Legacy Transport does not support FEC,
  so the following application-level scheme is used with DRIP
  Authentication to add some FEC.  When sending data over a medium that
  does not have underlying FEC, for example Bluetooth 4.x, this section
  MUST be used.

  The Bluetooth 4.x lower layers have error detection but not
  correction.  Any frame in which Bluetooth detects an error is dropped
  and not delivered to higher layers (in our case, DRIP).  Thus it can
  be treated as an erasure.

  DRIP standardizes a single page FEC scheme using XOR parity across
  all page data of an Authentication Message.  This allows the
  correction of a single erased page in an Authentication Message.  If
  more than a single page is missing, then handling of an incomplete
  Authentication Message is determined by higher layers.

  Other FEC schemes, to protect more than a single page of an
  Authentication Message or multiple [F3411] Messages, are left for
  future standardization if operational experience proves it necessary
  and/or practical.

  The data added during FEC is not included in the _Authentication Data
  / Signature_, but instead in the _Additional Data_ field of Figure 2.
  This may cause the Authentication Message to exceed 9 pages, up to a
  maximum of 16 pages.

5.1.  Encoding

  When encoding, two things are REQUIRED:

  1.  The FEC data MUST start on a new Authentication Page.  To do
      this, the results of parity encoding MUST be placed in the
      _Additional Data_ field of Figure 2 with null padding before it
      to line up with the next page.  The _Additional Data Length_
      field MUST be set to number of padding octets + number of parity
      octets.

  2.  The _Last Page Index_ field (in Page 0) MUST be incremented from
      what it would have been without FEC by the number of pages
      required for the _Additional Data Length_ field, null padding,
      and FEC.

  To generate the parity, a simple XOR operation using the previous
  parity page and current page is used.  Only the 23-octet
  _Authentication Payload_ field of Figure 1 is used in the XOR
  operations.  For Page 0, a 23-octet null pad is used for the previous
  parity page.

  Figure 11 shows an example of the last two pages (out of N) of an
  Authentication Message using DRIP Single Page FEC.  The _Additional
  Data Length_ is set to 33, as there are always 23 octets of FEC data
  and there are 10 octets of padding in this example to line it up into
  Page N.

    Page N-1:
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +---------------+---------------+---------------+---------------+
    |  Page Header  |                                               |
    +---------------+                                               |
    |                Authentication Data / Signature                |
    |                                                               |
    |               +---------------+---------------+---------------+
    |               |    ADL=33     |                               |
    +---------------+---------------+                               |
    |                          Null Padding                         |
    |                                                               |
    +---------------+---------------+---------------+---------------+


    Page N:
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +---------------+---------------+---------------+---------------+
    |  Page Header  |                                               |
    +---------------+                                               |
    |                                                               |
    |                     Forward Error Correction                  |
    |                                                               |
    |                                                               |
    |                                                               |
    +---------------+---------------+---------------+---------------+

               Figure 11: Example Single Page FEC Encoding

5.2.  Decoding

  Frame decoding is independent of the transmit media.  However, the
  decoding process can determine from the first Authentication Page
  that there may be a Bluetooth 4.x FEC page at the end.  The decoding
  process MUST test for the presence of FEC and apply it as follows.

  To determine if FEC has been used, a check of the _Last Page Index_
  is performed.  In general, if the _Last Page Index_ field is one
  greater than that necessary to hold _Length_ octets of Authentication
  Data, then FEC has been used.  Note that if _Length_ octets are
  exhausted exactly at the end of an Authentication Page, the
  _Additional Data Length_ field will occupy the first octet of the
  following page.  The remainder of this page will be null padded under
  DRIP to align the FEC to its own page.  In this case, the _Last Page
  Index_ will have been incremented once for initializing the
  _Additional Data Length_ field and once for the FEC page, for a total
  of two additional pages, as in the last row of Table 5.

  To decode FEC in DRIP, a rolling XOR is used on each _Authentication
  Page_ received in the current Authentication Message.  A Message
  Counter, outside of the ASTM Message but specified in [F3411], is
  used to signal a different Authentication Message and to correlate
  pages to messages.  This Message Counter is only a single octet in
  length, so it will roll over (to 0x00) after reaching its maximum
  value (0xFF).  If only a single page is missing in the Authentication
  Message the resulting parity octets should be the data of the erased
  page.

  Authentication Page 0 contains various important fields, only located
  on that page, that help decode the full ASTM Authentication Message.
  If Page 0 has been reconstructed, the _Last Page Index_ and _Length_
  fields MUST be validated by DRIP.  The pseudocode in Figure 12 can be
  used for both checks.

  <CODE BEGINS>
  function decode_check(auth_pages[], decoded_lpi, decoded_length) {
    // check decoded_lpi does not exceed maximum value
    if (decoded_lpi >= 16) {
      return DECODE_FAILURE
    }

    // check that decoded length does not exceed DRIP maximum value
    if (decoded_length > 201) {
      return DECODE_FAILURE
    }

    // grab the page at index where length ends and extract its data
    auth_data = auth_pages[(decoded_length - 17) / 23].data
    // find the index of last auth byte
    last_auth_byte = (17 + (23 * last_auth_page)) - decoded_length

    // look for non-nulls after the last auth byte
    if (auth_data[(last_auth_byte + 2):] has non-nulls) {
      return DECODE_FAILURE
    }

    // check that byte directly after last auth byte is null
    if (auth_data[last_auth_byte + 1] equals null) {
      return DECODE_FAILURE
    }

    // we set our presumed Additional Data Length (ADL)
    presumed_adl = auth_data[last_auth_byte + 1]
    // use the presumed ADL to calculate a presumed
    //Last Page Index (LPI, a field defined in [F3411])
    presumed_lpi = (presumed_adl + decoded_length - 17) / 23

    // check that presumed LPI and decoded LPI match
    if (presumed_lpi not equal decoded_lpi) {
      return DECODE_FAILURE
    }
    return DECODE_SUCCESS
  }
  <CODE ENDS>

                 Figure 12: Pseudocode for Decode Checks

5.3.  FEC Limitations

  The worst-case scenario is when the _Authentication Data / Signature_
  ends perfectly on a page boundary (Page N-1).  This means the
  _Additional Data Length_ would start the next page (Page N) and have
  22 octets worth of null padding to align the FEC to begin at the
  start of the next page (Page N+1).  In this scenario, an entire page
  (Page N) is being wasted just to carry the _Additional Data Length_.

6.  Requirements and Recommendations

6.1.  Legacy Transports

  Under DRIP, the goal is to bring reliable receipt of the paged
  Authentication Message using Legacy Transports.  FEC (Section 5) MUST
  be used, per mandated RID rules (for example, the US FAA RID Rules
  [FAA-14CFR]), when using Legacy Transports (such as Bluetooth 4.x).

  Under [F3411], Authentication Messages are transmitted at the static
  rate (at least every 3 seconds).  Any DRIP Authentication Messages
  containing dynamic data (such as the DRIP Wrapper) MAY be sent at the
  dynamic rate (at least every 1 second).

6.2.  Extended Transports

  Under the ASTM specification, Extended Transports of RID must use the
  Message Pack (Message Type 0xF) format for all transmissions.  Under
  Message Pack, ASTM Messages are sent together (in Message Type order)
  in a single frame (up to 9 single-frame equivalent messages under
  Legacy Transports).  Message Packs are required by [F3411] to be sent
  at a rate of 1 per second (like dynamic messages).

  Message Packs are sent only over Extended Transports that provide
  FEC.  Thus, the DRIP decoders will never be presented with a Message
  Pack from which a constituent Authentication Page has been dropped;
  DRIP FEC could never provide benefit to a Message Pack, only consume
  its precious payload space.  Therefore, DRIP FEC (Section 5) MUST NOT
  be used in Message Packs.

6.3.  Authentication

  To fulfill the requirements in [RFC9153], a UA MUST:

  1.  send DRIP Link (Section 4.2) using the _BE: Apex, RAA_ (partially
      satisfying GEN-3); at least once per 5 minutes.  Apex in this
      context is the DET prefix owner.

  2.  send DRIP Link (Section 4.2) using the BE: RAA, HDA (partially
      satisfying GEN-3); at least once per 5 minutes.

  3.  send DRIP Link (Section 4.2) using the BE: HDA, UA (satisfying
      ID-5, GEN-1 and partially satisfying GEN-3); at least once per
      minute.

  4.  send any other DRIP Authentication Format (non-DRIP Link) where
      the UA is dynamically signing data that is guaranteed to be
      unique, unpredictable, and easily cross checked by the receiving
      device (satisfying ID-5, GEN-1 and GEN-2); at least once per 5
      seconds.

  An Observer's receiver must verify the signature (cryptographically,
  as specified in Section 3.1.1) on each of the 4 messages sent in the
  operations specified immediately above and the Observer MUST validate
  the signed content (via non-cryptographic means) of the 4th message
  sent in the last operation immediately above (the non-DRIP Link
  message).

  These transmission, receiver verification, and Observer validation
  requirements collectively satisfy GEN-3.

6.4.  Operational

  UAS operation may impact the frequency of sending DRIP Authentication
  Messages.  When a UA dwells at an approximate location, and the
  channel is heavily used by other devices, less frequent message
  authentication may be effective (to minimize RF packet collisions)
  for an Observer.  Contrast this with a UA transiting an area, where
  authenticated messages SHOULD be sufficiently frequent for an
  Observer to have a high probability of receiving an adequate number
  for validation during the transit.

  A RECOMMENDED operational configuration (in alignment with
  Section 6.3) with rationale can be found in Appendix B.  It
  recommends the following once per second:

  *  Under Legacy Transport:

     -  Two sets of those ASTM Messages required by a CAA in its
        jurisdiction (example: Basic ID, Location/Vector, and System)
        and one set of other ASTM Messages (example: Self ID, Operator
        ID)

     -  An FEC-protected DRIP Manifest enabling authentication of those
        ASTM Messages sent

     -  A single page of an FEC-protected DRIP Link

  *  Under Extended Transport:

     -  A Message Pack of ASTM Messages (up to 4) and a DRIP Wrapper
        (per Section 4.3.2)

     -  A Message Pack of a DRIP Link

6.4.1.  DRIP Wrapper

  If DRIP Wrappers are sent, they MUST be sent in addition to any
  required ASTM Messages in a given jurisdiction.  An implementation
  MUST NOT send DRIP Wrappers in place of any required ASTM Messages it
  may encapsulate.  Thus, messages within a Wrapper are sent twice:
  once in the clear and once authenticated within the Wrapper.

  The DRIP Wrapper has a specific use case for DRIP-aware Observers.
  For an Observer plotting Location/Vector Messages (Message Type 0x2)
  on a map, display of an embedded Location/Vector Message in a DRIP
  Wrapper can be marked differently (e.g., via color) to signify trust
  in the Location/Vector data.

6.4.2.  UAS RID Trust Assessment

  As described in Section 3.1.2, the Observer MUST perform validation
  of the data being received in Broadcast RID.  This is because trust
  in a key is different from trust that an observed UA possesses that
  key.

  A chain of DRIP Links provides trust in a key.  A message, signed by
  that key, containing data that changes rapidly and is not predictable
  far in advance (relative to typical operational flight times) but
  that can be validated by Observers, provides trust that some agent
  with access to that data also possesses that key.  If the validation
  involves correlating physical world observations of the UA with
  claims in that data, then the probability is high that the observed
  UA is (or is collaborating with or observed in real time by) the
  agent with the key.

  At least once per Observation session, after signature verification
  of any DRIP Authentication Message containing UAS RID information
  elements (e.g., DRIP Wrapper, Section 4.3), the Observer must use
  other sources of information to correlate against and perform
  validation (as specified in Section 6.3).  An example of another
  source of information is a visual confirmation of the UA position.

  When correlation of these different data streams does not match in
  acceptable thresholds, the data MUST be rejected as if the signature
  failed to validate.  Acceptable threshold limits and what happens
  after such a rejection are out of scope for this document.

7.  Summary of Addressed DRIP Requirements

  The following requirements as defined in [RFC9153] are addressed in
  this document:

  ID-5:  Non-spoofability

     Addressed using the DRIP Wrapper (Section 4.3), DRIP Manifest
     (Section 4.4), or DRIP Frame (Section 4.5).

  GEN-1:  Provable Ownership

     Addressed using the DRIP Link (Section 4.2) and DRIP Wrapper
     (Section 4.3), DRIP Manifest (Section 4.4), or DRIP Frame
     (Section 4.5).

  GEN-2:  Provable Binding

     Addressed using the DRIP Wrapper (Section 4.3), DRIP Manifest
     (Section 4.4) or DRIP Frame (Section 4.5).

  GEN-3:  Provable Registration

     Addressed using the DRIP Link (Section 4.2).

8.  IANA Considerations

8.1.  IANA DRIP Registry

  IANA has created the "DRIP SAM Types" and "DRIP Frame Types"
  registries within the "Drone Remote ID Protocol" registry group
  (https://www.iana.org/assignments/drip).

  DRIP SAM Types:
     This registry is a mirror for SAM Types containing the subset of
     allocations used by DRIP Authentication Messages.  Future
     additions MUST be done through ASTM's designated registrar, which
     is ICAO [ASTM-Remote-ID] at the time of publication of this RFC
     (2024).  The registration procedure for DRIP (only) SAM Types is
     Standards Action [RFC8126].  Requests for new DRIP SAM Type
     registrations will be coordinated by IANA and the ASTM-designated
     registrar of all SAM Types before being documented in Standards
     Track RFCs.  The following values have been allocated to the IETF:

      +==========+===========+=======================================+
      | SAM Type | Name      | Description                           |
      +==========+===========+=======================================+
      | 0x01     | DRIP Link | Format to hold Broadcast Endorsements |
      +----------+-----------+---------------------------------------+
      | 0x02     | DRIP      | Authenticate full ASTM Messages       |
      |          | Wrapper   |                                       |
      +----------+-----------+---------------------------------------+
      | 0x03     | DRIP      | Authenticate hashes of ASTM Messages  |
      |          | Manifest  |                                       |
      +----------+-----------+---------------------------------------+
      | 0x04     | DRIP      | Format for future DRIP authentication |
      |          | Frame     |                                       |
      +----------+-----------+---------------------------------------+

                          Table 2: DRIP SAM Types

  DRIP Frame Types:
     This 8-bit value registry is for Frame Types in DRIP Frame
     Authentication Messages.  Future additions to this registry are to
     be made through Expert Review (Section 4.5 of [RFC8126]) for
     values 0x01 to 0x9F and First Come First Served (Section 4.4 of
     [RFC8126]) for values 0xA0 to 0xEF.  The following values are
     defined:

       +=============+==============+===============================+
       | Frame Type  | Name         | Description                   |
       +=============+==============+===============================+
       | 0x00        | Reserved     | Reserved                      |
       +-------------+--------------+-------------------------------+
       | 0x01 - 0xEF | Unassigned   |                               |
       +-------------+--------------+-------------------------------+
       | 0xF0-0xFF   | Experimental | Reserved for Experimental Use |
       +-------------+--------------+-------------------------------+

                         Table 3: DRIP Frame Types

  Criteria that should be applied by the designated experts includes
  determining whether the proposed registration duplicates existing
  functionality and whether the registration description is clear and
  fits the purpose of this registry.

  Registration requests MUST be sent to [email protected]
  (mailto:[email protected]) and be evaluated by one or more
  designated experts within a three-week review period.  Within that
  review period, the designated experts will either approve or deny the
  registration request, and communicate their decision to the review
  list and IANA.  Denials should include an explanation and, if
  applicable, suggestions to successfully register the DRIP Frame Type.

  Registration requests that are undetermined for a period longer than
  28 days can be brought to the IESG's attention for resolution.

9.  Security Considerations

9.1.  Replay Attacks

  [F3411] (regardless of transport) lacks replay protection, as it more
  fundamentally lacks fully specified authentication.  An attacker can
  spoof the UA sender MAC address and UAS ID, replaying (with or
  without modification) previous genuine messages, and/or crafting
  entirely new messages.  Using DRIP in [F3411] Authentication Message
  framing enables verification that messages were signed with
  registered keys, but when naively used may be vulnerable to replay
  attacks.  Technologies such as Single Emitter Identification can
  detect such attacks, but they are not readily available and can be
  prohibitively expensive, especially for typical Observer devices such
  as smartphones.

  Replay attack detection using DRIP requires Observer devices to
  combine information from multiple Broadcast RID messages and from
  sources other than Broadcast RID.  A complete chain of Link messages
  (Section 4.2) from an Endorsement root of trust to the claimed sender
  must be collected and verified by the Observer device to provide
  trust in a key.  Successful signature verification, using that public
  key, of a Wrapper (Section 4.3) or Manifest (Section 4.4) message,
  authenticating content that is nonce-like (see below), provides trust
  that the sender actually possesses the corresponding private key.

  The term "nonce-like" describes data that is unique, changes
  frequently, is not accurately predictable long in advance, and is
  easily validated (i.e., can be checked quickly at low computational
  cost using readily available data) by the Observer.  A Location/
  Vector Message is an obvious choice.  This is described in
  Section 3.1.2.2 and Section 6.3 (requirement 4).  A Location/Vector
  Message [F3411] reporting precise UA position and velocity at a
  precise and very recent time can be checked by the Observer against
  visual observations of UA within both RF and Visual Line of Sight.

  For normative specification of the foregoing, see Sections 3.1.2 and
  6.4.2.  As non-normative clarification, the requirements are
  satisfied as follows:

  The public key corresponding to a given DET (i.e., the key attested
  in the DRIP Link (BE: HDA, UA) that is the last link in the relevant
  chain of DRIP Links) is used by an Observer's receiver to try to
  authenticate some signed message.

  If the signature check passes,

     _and_ the message was a Wrapper or Manifest,

     _and_ the wrapped or manifested message contained content that was
     nonce-like,

     _and_ the Observer validated that content by non-cryptographic
     means (e.g., if the wrapped or manifested message was a Location/
     Vector Message and the UA was visually observed to be in
     approximately the claimed location at the reported time),

  _only then_ can the Observer trust that the currently observed
  sending UA actually possesses the corresponding private key (and thus
  owns the corresponding DET).

  Messages that pass signature verification with trusted keys could
  still be replays if they contain only static information (e.g.,
  Broadcast Endorsements (Section 4.2), [F3411] Basic ID, or [F3411]
  Operator ID), or information that cannot be readily validated (e.g.,
  [F3411] Self-ID).  Replay of Link messages is harmless (unless sent
  so frequently as to cause RF data link congestion) and indeed can
  increase the likelihood of an Observer device collecting an entire
  trust chain in a short time window.  Replay of other messages
  ([F3411] Basic ID, [F3411] Operator ID, or [F3411] Self-ID) remains a
  vulnerability, unless they are combined with messages containing
  nonce-like data ([F3411] Location/Vector or [F3411] System) in a
  Wrapper or Manifest.  For specification of this last requirement, see
  Section 4.4.2.

9.2.  Wrapper vs Manifest

  Implementations have a choice of using Wrapper (Section 4.3),
  Manifest (Section 4.4), or a combination to satisfy the fourth
  requirement in Section 6.3.

  Wrapper is an attached signature on the full content of one or more
  [F3411] messages, providing strong authentication.  Wrapper is an
  attached signature of the full content of one or more [F3411]
  messages, providing strong authentication.  However, the size
  limitation means it cannot support such signatures over other
  Authentication Messages; thus, it cannot provide a direct binding to
  any part of the trust chain (Sections 3.1.2 and 6.4.2).

  Manifest explicitly provides the binding of the last link in the
  trust chain (with the inclusion of the hash of the Link containing
  BE: HDA, UA).  The use of hashes and their length also allows for a
  larger number (11 vs 4) of [F3411] messages to be authenticated,
  making it more efficient compared to the Wrapper.  However, the
  detached signature requires additional Observer overhead in storing
  and comparing hashes of received messages (some of which may not be
  received) with those in a Manifest.

  Appendix B contains a breakdown of frame counts and an example of a
  schedule using both Manifest and Wrapper.  Typical operation may see
  (as an example) 2x Basic ID, 2x Location/Vector, 2x System, 1x
  Operator ID and 1x Self ID broadcast per second to comply with
  jurisdiction mandates.  Each of these messages is a single frame in
  size.  A Link message is 8 frames long (including FEC).  This is a
  base frame count of *16 frames*.

  When Wrapper is used, up to four of the previous messages (except the
  Link) can be authenticated.  For this comparison, we will sign all
  the messages we can in two Wrappers.  This results in _20 frames_
  (with FEC).  Due to size constraints, the Link message is left
  unauthenticated.  The total frame count using Wrappers is *36 frames*
  (wrapper frame count + base frame count).

  When Manifest is used, up to 10 previous messages can be
  authenticated.  For this example, all messages (8) are hashed
  (including the Link) resulting in a single Manifest that is _9
  frames_ (with FEC).  The total frame count using Manifest is *25
  frames* (manifest frame count + base frame count).

9.3.  VNA Timestamp Offsets for DRIP Authentication Formats

  Note the discussion of VNA Timestamp offsets here is in the context
  of the DRIP Wrapper (Section 4.3), DRIP Manifest (Section 4.4), and
  DRIP Frame (Section 4.5).  For DRIP Link (Section 4.2), these offsets
  are set by the DIME and have their own set of considerations in
  [DRIP-REG].

  The offset of the _VNA Timestamp by UA_ is one that needs careful
  consideration for any implementation.  The offset should be shorter
  than any given flight duration (typically less than an hour) but be
  long enough to be received and processed by Observers (larger than a
  few seconds).  It is recommended that 3-5 minutes should be
  sufficient to serve this purpose in any scenario, but it is not
  limited by design.

9.4.  DNS Security in DRIP

  As stated in Section 3.1 specification of particular DNS security
  options, transports, etc. is outside the scope of this document.  The
  main specification for DNS operations in DRIP [DRIP-REG] will specify
  applicable best common security practices (e.g., from [RFC9364]).

10.  References

10.1.  Normative References

  [F3411]    ASTM International, "Standard Specification for Remote ID
             and Tracking", ASTM F3411-22A, DOI 10.1520/F3411-22A, July
             2022, <https://www.astm.org/f3411-22a.html>.

  [NIST.SP.800-185]
             Kelsey, J., Chang, S., and R. Perlner, "SHA-3 Derived
             Functions: cSHAKE, KMAC, TupleHash and ParallelHash", NIST
             Special Publication 800-185, DOI 10.6028/NIST.SP.800-185,
             December 2016,
             <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
             NIST.SP.800-185.pdf>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC9153]  Card, S., Ed., Wiethuechter, A., Moskowitz, R., and A.
             Gurtov, "Drone Remote Identification Protocol (DRIP)
             Requirements and Terminology", RFC 9153,
             DOI 10.17487/RFC9153, February 2022,
             <https://www.rfc-editor.org/info/rfc9153>.

  [RFC9374]  Moskowitz, R., Card, S., Wiethuechter, A., and A. Gurtov,
             "DRIP Entity Tag (DET) for Unmanned Aircraft System Remote
             ID (UAS RID)", RFC 9374, DOI 10.17487/RFC9374, March 2023,
             <https://www.rfc-editor.org/info/rfc9374>.

  [RFC9434]  Card, S., Wiethuechter, A., Moskowitz, R., Zhao, S., Ed.,
             and A. Gurtov, "Drone Remote Identification Protocol
             (DRIP) Architecture", RFC 9434, DOI 10.17487/RFC9434, July
             2023, <https://www.rfc-editor.org/info/rfc9434>.

10.2.  Informative References

  [ASTM-Remote-ID]
             International Civil Aviation Organization (ICAO), "Remote
             ID Number Registration", December 2023,
             <https://www.icao.int/airnavigation/IATF/Pages/ASTM-
             Remote-ID.aspx>.

  [DRIP-REG] Wiethuechter, A., Ed. and J. Reid, "DRIP Entity Tag (DET)
             Identity Management Architecture", Work in Progress,
             Internet-Draft, draft-ietf-drip-registries-16, 31 May
             2024, <https://datatracker.ietf.org/doc/html/draft-ietf-
             drip-registries-16>.

  [FAA-14CFR]
             Federal Aviation Administration (FAA), "Remote
             Identification of Unmanned Aircraft", January 2021,
             <https://www.govinfo.gov/content/pkg/FR-2021-01-15/
             pdf/2020-28948.pdf>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC9364]  Hoffman, P., "DNS Security Extensions (DNSSEC)", BCP 237,
             RFC 9364, DOI 10.17487/RFC9364, February 2023,
             <https://www.rfc-editor.org/info/rfc9364>.

Appendix A.  Authentication States

  ASTM Authentication has only three states: None, Invalid, and Valid.
  This is because, under ASTM, the authentication is done by an
  external service hosted somewhere on the Internet so it is assumed an
  authoritative response will always be returned.  This classification
  becomes more complex in DRIP with the support of "offline" scenarios
  where an Observer does not have Internet connectivity.  With the use
  of asymmetric cryptography, this means that the public key (PK) must
  somehow be obtained.  [DRIP-REG] provides more detail on how these
  keys are stored on the DNS and how DRIP Authentication Messages can
  be used to send PKs over Broadcast RID.

  There are a few keys of interest: the PK of the UA and the PKs of
  relevant DIMEs.  This document describes how to send the PK of the UA
  over the Broadcast RID messages.  The keys of DIMEs are sent over
  Broadcast RID using the same mechanisms (see Sections 4.2 and 6.3)
  but MAY be sent at a far lower rate due to potential operational
  constraints (such as saturation of limited bandwidth).  As such,
  there are scenarios where part of the key-chain may be unavailable at
  the moment a full Authentication Message is received and processed.

  The intent of this informative appendix is to recommend a way to
  classify these various states and convey it to the user through
  colors and state names/text.  These states can apply to either a
  single Authentication Message, a DET (and its associated public key),
  and/or a sender.

  Table 4 briefly describes each state and recommends an associated
  color.

      +==============+========+===================================+
      | State        | Color  | Details                           |
      +==============+========+===================================+
      | None         | Black  | No Authentication has been or is  |
      |              |        | being received (as yet)           |
      +--------------+--------+-----------------------------------+
      | Partial      | Gray   | Authentication being received but |
      |              |        | missing pages                     |
      +--------------+--------+-----------------------------------+
      | Unsupported  | Brown  | Authentication Type / SAM Type of |
      |              |        | received message not supported    |
      +--------------+--------+-----------------------------------+
      | Unverifiable | Yellow | Data needed for signature         |
      |              |        | verification is missing           |
      +--------------+--------+-----------------------------------+
      | Verified     | Green  | Valid signature verification and  |
      |              |        | content validation                |
      +--------------+--------+-----------------------------------+
      | Trusted      | Blue   | Evidence of Verified and DIME is  |
      |              |        | marked as only registering DETs   |
      |              |        | for trusted entities              |
      +--------------+--------+-----------------------------------+
      | Unverified   | Red    | Invalid signature verification or |
      |              |        | content validation                |
      +--------------+--------+-----------------------------------+
      | Questionable | Orange | Evidence of both"Verified and     |
      |              |        | Unverified for the same claimed   |
      |              |        | sender                            |
      +--------------+--------+-----------------------------------+
      | Conflicting  | Purple | Evidence of both Trusted and      |
      |              |        | Unverified for the same claimed   |
      |              |        | sender                            |
      +--------------+--------+-----------------------------------+

      Table 4: Authentication State Names, Colors, and Descriptions

A.1.  None: Black

  The default state where authentication information has not yet been
  received and is not currently being received.

A.2.  Partial: Gray

  A pending state where Authentication Pages are being received, but a
  full Authentication Message has yet to be compiled.

A.3.  Unsupported: Brown

  A state wherein authentication data is being or has been received but
  cannot be used, as the Authentication Type or SAM Type is not
  supported by the Observer.

A.4.  Unverifiable: Yellow

  A pending state where a full Authentication Message has been received
  but other information, such as public keys to verify signatures, is
  missing.

A.5.  Verified: Green

  A state where all Authentication Messages that have been received
  from that claimed sender up to that point pass signature verification
  and the requirement of Section 6.4.2 has been met.

A.6.  Trusted: Blue

  A state where all Authentication Messages that have been received
  from that claimed sender up to that point have passed signature
  verification, the requirement of Section 6.4.2 has been met, and the
  public key of the sending UA has been marked as trusted.

  The sending UA key will have been marked as trusted if the relevant
  DIMEs only register DETs (of subordinate DIMEs, UAS operators, and
  UA) that have been vetted as per their published registration
  policies, and those DIMEs have been marked, by the owner (individual
  or organizational) of the Observer, as per that owner's policy, as
  trusted to register DETs only for trusted parties.

A.7.  Questionable: Orange

  A state where there is a mix of Authentication Messages received that
  are Verified (Appendix A.5) and Unverified (Appendix A.8).

  State transitions from Verified to Questionable if a subsequent
  message fails verification, so it would have otherwise been marked
  Unverified.  State transitions from Unverified to Questionable if a
  subsequent message passes verification or validation, so it would
  otherwise have been marked Verified.  It may transition from either
  of those states upon mixed results on the requirement of
  Section 6.4.2.

A.8.  Unverified: Red

  A state where all Authentication Messages that have been received
  from that claimed sender up to that point failed signature
  verification or the requirement of Section 6.4.2.

A.9.  Conflicting: Purple

  A state where there is a mix of Authentication Messages received that
  are Trusted (Appendix A.6) and Unverified (Appendix A.8) and the
  public key of the aircraft is marked as trusted.

  State transitions from Trusted to Conflicting if a subsequent message
  fails verification, so it would have otherwise been marked
  Unverified.  State transitions from Unverified to Conflicting if a
  subsequent message passes verification or validation and policy
  checks, so it would otherwise have been marked Trusted.  It may
  transition from either of those states upon mixed results on the
  requirement of Section 6.4.2.

Appendix B.  Operational Recommendation Analysis

  The recommendations in Section 6.4 may seem heavy-handed and
  specific.  This informative appendix lays out the math and
  assumptions made that resulted in those recommendations and provides
  an example.

  In all jurisdictions known to the authors of this document as of its
  publication (2024), at least the following ASTM Messages are required
  to be transmitted at least once per second:

  *  Basic ID (0x1)

  *  Location (0x2)

  *  System (0x4)

  Europe also requires:

  *  Operator ID Message (0x5)

  Japan requires not one but two Basic ID messages:

  *  one carrying a manufacturer assigned serial number

  *  one carrying a CAA assigned registration number

  Japan also requires:

  *  Authentication (0x2) using their own unique scheme

  In all jurisdictions, one further message is optional, but highly
  recommended for carriage of additional information on the nature of
  the emergency if the Emergency value is sent in the Operational
  Status field of the Location/Vector Message:

  *  Self ID (0x3)

  To improve the likelihood of successful timely receipt of regulator
  required RID data elements, most implementations send at a higher
  rate, whether by repeating the same messages in the same one second
  interval, or updating message content and sending messages more
  frequently than once per second.  Excessive sending rate, however,
  could congest the RF spectrum, leading to collisions and counter-
  intuitively actually reducing the likelihood of timely receipt of RID
  data.

B.1.  Page Counts vs Frame Counts

  There are two formulas to determine the number of Authentication
  Pages required.  The following formula is for Wrapper:

  <CODE BEGINS>
  wrapper_struct_size = 89 + (25 * num_astm_messages)
  wrapper_page_count = ceiling((wrapper_struct_size - 17) / 23) + 1
  <CODE ENDS>

  The following formula is for Manifest:

  <CODE BEGINS>
  manifest_struct_size = 89 + (8 * (num_astm_hashes + 3))
  manifest_page_count = ceiling((manifest_struct_size - 17) / 23) + 1
  <CODE ENDS>

  A similar formula can be applied to Links, as they are of fixed size:

  <CODE BEGINS>
  link_page_count = ceiling((137 - 17) / 23) + 1 = 7
  <CODE ENDS>

  Comparing Wrapper and Manifest Authentication Message page counts
  against total frame counts, we have the following:

   +==========+=========+==========+=================+===============+
   | ASTM     | Wrapper | Manifest | ASTM Messages + | ASTM Messages |
   | Messages | (w/FEC) | (w/FEC)  | Wrapper (w/FEC) | + Manifest    |
   |          |         |          |                 | (w/FEC)       |
   +==========+=========+==========+=================+===============+
   | 0        | 5 (6)   | 6 (7)    | 5 (6)           | 6 (7)         |
   +----------+---------+----------+-----------------+---------------+
   | 1        | 6 (7)   | 6 (7)    | 7 (8)           | 7 (8)         |
   +----------+---------+----------+-----------------+---------------+
   | 2        | 7 (8)   | 6 (7)    | 9 (10)          | 8 (9)         |
   +----------+---------+----------+-----------------+---------------+
   | 3        | 8 (9)   | 7 (8)    | 11 (12)         | 10 (11)       |
   +----------+---------+----------+-----------------+---------------+
   | 4        | 9 (10)  | 7 (8)    | 13 (14)         | 11 (12)       |
   +----------+---------+----------+-----------------+---------------+
   | 5        | N/A     | 7 (8)    | N/A             | 12 (13)       |
   +----------+---------+----------+-----------------+---------------+
   | 6        | N/A     | 8 (9)    | N/A             | 14 (15)       |
   +----------+---------+----------+-----------------+---------------+
   | 7        | N/A     | 8 (9)    | N/A             | 15 (16)       |
   +----------+---------+----------+-----------------+---------------+
   | 8        | N/A     | 8 (9)    | N/A             | 16 (17)       |
   +----------+---------+----------+-----------------+---------------+
   | 9        | N/A     | 9 (10)   | N/A             | 18 (19)       |
   +----------+---------+----------+-----------------+---------------+
   | 10       | N/A     | 9 (10)   | N/A             | 19 (20)       |
   +----------+---------+----------+-----------------+---------------+
   | 11       | N/A     | 9 (11)   | N/A             | 20 (22)       |
   +----------+---------+----------+-----------------+---------------+

                      Table 5: Page and Frame Counts

  Link shares the same page counts as Manifest with 5 ASTM Messages.

B.1.1.  Special Cases

B.1.1.1.  Zero ASTM Messages

  Zero ASTM Messages (see Table 5) is where Extended Wrapper
  (Section 4.3.2) without FEC is used in Message Packs.  With a maximum
  of nine "message slots" in a Message Pack, an Extended Wrapper fills
  five slots; thus it can authenticate up to four ASTM Messages co-
  located in the same Message Pack.

B.1.1.2.  Eleven ASTM Messages

  Eleven ASTM Messages (see Table 5) is where a Manifest with FEC
  invokes the situation mentioned in Section 5.3.

  Eleven is the maximum number of ASTM Message Hashes that can be
  supported resulting in 14 total hashes.  This completely fills the
  _Evidence_ field of the _UA-Signed Evidence Structure_ making its
  total size 200 octets.  This fits on exactly 9 Authentication Pages
  ((201 - 17) / 23 == 8), so when the ADL is added, it is placed on the
  next page (Page 10).  Per rule 1 in Section 5.1, this means that all
  of Page 10 is null padded (expect the ADL octet) and FEC data fills
  Page 11, resulting in a plus-two page count when FEC is applied.

  This drives the recommendation is Section 4.4 to only use up to 10
  ASTM Message Hashes, not 11.

B.2.  Full Authentication Example

  This example (Figure 13) is focused on showing that 100% of ASTM
  Messages can be authenticated over Legacy Transports with up to 125%
  overhead in Authentication Pages.  Extended Transports are not shown
  in this example, because, for those, Authentication with DRIP is
  achieved using Extended Wrapper (Section 4.3.2).  Two ASTM Message
  Packs are sent in a given cycle: one containing up to four ASTM
  Messages and an Extended Wrapper (authenticating the pack), and one
  containing a Link message with a Broadcast Endorsement and up to two
  other ASTM Messages.

  This example transmit scheme covers and meets every known regulatory
  case enabling manufacturers to use the same firmware worldwide.

        +------------------------------------------------------+
        |                      Frame Slots                     |
        | 00 - 04           | 05 - 07       | 08 - 16 | 17     |
        +-------------------+---------------+---------+--------+
        | {A|B|C|D},V,S,I,O | {A|B|C|D},V,S | M[0,8]  | L/W[0] |
        +-------------------+---------------+---------+--------+
        | {A|B|C|D},V,S,I,O | {A|B|C|D},V,S | M[0,8]  | L/W[1] |
        +-------------------+---------------+---------+--------+
        | {A|B|C|D},V,S,I,O | {A|B|C|D},V,S | M[0,8]  | L/W[2] |
        +-------------------+---------------+---------+--------+
        | {A|B|C|D},V,S,I,O | {A|B|C|D},V,S | M[0,8]  | L/W[3] |
        +-------------------+---------------+---------+--------+
        | {A|B|C|D},V,S,I,O | {A|B|C|D},V,S | M[0,8]  | L/W[4] |
        +-------------------+---------------+---------+--------+
        | {A|B|C|D},V,S,I,O | {A|B|C|D},V,S | M[0,8]  | L/W[5] |
        +-------------------+---------------+---------+--------+
        | {A|B|C|D},V,S,I,O | {A|B|C|D},V,S | M[0,8]  | L/W[6] |
        +-------------------+---------------+---------+--------+
        | {A|B|C|D},V,S,I,O | {A|B|C|D},V,S | M[0,8]  | L/W[7] |
        +-------------------+---------------+---------+--------+

        A = Basic ID Message (0x0) ID Type 1
        B = Basic ID Message (0x0) ID Type 2
        C = Basic ID Message (0x0) ID Type 3
        D = Basic ID Message (0x0) ID Type 4
        V = Location/Vector Message (0x1)
        I = Self ID Message (0x3)
        S = System Message (0x4)
        O = Operator ID Message (0x5)

        L[y,z] = DRIP Link Authentication Message (0x2)
        W[y,z] = DRIP Wrapper Authentication Message (0x2)
        M[y,z] = DRIP Manifest Authentication Message (0x2)
          y = Start Page
          z = End Page

        # = Empty Frame Slot
        * = Message in DRIP Manifest Authentication Message

       Figure 13: Example of a Fully Authenticated Legacy Transport
                            Transmit Schedule

  Every common required message (Basic ID, Location/Vector, and System)
  is sent twice along with Operator ID and Self ID in a single second.
  The Manifest is over all messages (8) in slots 00 - 04 and 05 - 07.

  In two seconds, either a Link or Wrapper is sent.  The content and
  order of Links and Wrappers runs as follows:

  Link: HDA on UA
  Link: RAA on HDA
  Link: HDA on UA
  Link: Apex on RAA
  Link: HDA on UA
  Link: RAA on HDA
  Link: HDA on UA
  Wrapper: Location/Vector (0x1), System (0x4)
  Link: HDA on UA
  Link: RAA on HDA
  Link: HDA on UA
  Link: Apex on RAA
  Link: HDA on UA
  Link: RAA on HDA
  Link: HDA on UA
  Wrapper: Location/Vector (0x1), System (0x4)
  Link: IANA on UAS RID Apex

  After perfect receipt of all messages for a period of 8 seconds, all
  messages sent during that period have been authenticated using the
  Manifest (except for the Authentication Messages themselves).  Within
  136 seconds, the entire Broadcast Endorsement chain is received and
  can be validated.  Interspersed in this schedule are 4 messages sent
  not only in their basic [F3411] form, but also in DRIP Wrapper
  messages, together with their attached signatures, to defend against
  the possibility of attack against the detached signatures provided by
  the Manifest messages.

B.2.1.  Raw Example

  Assuming the following DET and HI:

  2001:3f:fe00:105:a29b:3ff4:2226:c04e
  b5fef530d450dedb59ebafa18b00d7f5ed0ac08a81975034297bea2b00041813

  The following ASTM Messages are to be sent in a single second:

  0240012001003ffe000105a29b3ff42226c04e000000000000
  12000000000000000000000000000000000000000060220000
  32004578616d706c652053656c662049440000000000000000
  420000000000000000000100000000000000000010ea510900
  52004578616d706c65204f70657261746f7220494400000000
  0240012001003ffe000105a29b3ff42226c04e000000000000
  12000000000000000000000000000000000000000060220000
  420000000000000000000100000000000000000010ea510900

  This is a Link with FEC that would be spread out over 8 seconds:

  2250078910ea510904314b8564b17e66662001003ffe000105
  2251a29b3ff42226c04eb5fef530d450dedb59ebafa18b00d7
  2252f5ed0ac08a81975034297bea2b000418132001003ffe00
  22530105b82bf1c99d87273103fc83f6ecd9b91842f205c222
  2254dd71d8e165ad18ca91daf9299a73eec850c756a7e9be46
  2255f51dddfa0f09db7bfdde14eec07c7a6dd1061c1d5ace94
  2256d9ad97940d280000000000000000000000000000000000
  2257a03b0f7a6feb0d198167045058cfc49f73129917024d22

  This is a Wrapper with FEC that would be spread out over 8 seconds:

  2250078b10ea510902e0dd7c6560115e671200000000000000
  22510000000000000000000000000060220000420000000000
  2252000000000100000000000000000010ea5109002001003f
  2253fe000105a29b3ff42226c04ef0ecad581a030ca790152a
  22542f08df5762a463e24a742d1c530ec977bbe0d113697e2b
  2255b909d6c7557bdaf1227ce86154b030daadda4a6b8474de
  22569a62f6c375020826000000000000000000000000000000
  2257f5e8eebcb04f8c2197526053e66c010d5d7297ff7c1fe0

  This is the Manifest with FEC sent in the same second as the original
  messages:

  225008b110ea510903e0dd7c6560115e670000000000000000
  2251d57594875f8608b4d61dc9224ecf8b842bd4862734ed01
  22522ca2e5f2b8a3e61547b81704766ba3eeb651be7eafc928
  22538884e3e28a24fd5529bc2bd4862734ed012ca2e5f2b8a3
  2254e61547b81704766ba3eeb62001003ffe000105a29b3ff4
  22552226c04efb729846e7d110903797066fd96f49a77c5a48
  2256c4c3b330be05bc4a958e9641718aaa31aeabad368386a2
  22579ed2dce2769120da83edbcdc0858dd1e357755e7860317
  2258e7c06a5918ea62a937391cbfe0983539de1b2e688b7c83

Acknowledgments

  The authors acknowledge the following individuals:

  *  Ryan Quigley, James Mussi, and Joseph Stanton of AX Enterprize,
     LLC for early prototyping to find holes in earlier drafts of this
     specification.

  *  Carsten Bormann for the simple approach of using bit-column-wise
     parity for erasure (dropped frame) FEC.

  *  Soren Friis for pointing out that Wi-Fi implementations would not
     always give access to the MAC Address, as was originally used in
     calculation of the hashes for DRIP Manifest.  Also, for confirming
     that Message Packs (0xF) can only carry up to 9 ASTM frames worth
     of data (9 Authentication Pages).

  *  Gabriel Cox (chair of the working group that produced [F3411]) for
     reviewing the specification for the SAM Type request as the ASTM
     Designated Expert.

  *  Mohamed Boucadair (Document Shepherd) for his many patches and
     comments.

  *  Eric Vyncke (DRIP AD) for his guidance regarding the document's
     path to publication.

  The authors also thank the following reviewers:

  *  Rick Salz (secdir)

  *  Matt Joras (genart)

  *  Di Ma (dnsdir)

  *  Gorry Fairhurst (tsvart)

  *  Carlos Bernardos (intdir)

  *  Behcet Sarikaya (iotdir)

  *  Martin Duke (IESG)

  *  Roman Danyliw (IESG)

  *  Murray Kucherawy (IESG)

  *  Erik Kline (IESG)

  *  Warren Kumari (IESG)

  *  Paul Wouters (IESG)

Authors' Addresses

  Adam Wiethuechter (editor)
  AX Enterprize, LLC
  4947 Commercial Drive
  Yorkville, NY 13495
  United States of America
  Email: [email protected]


  Stuart Card
  AX Enterprize, LLC
  4947 Commercial Drive
  Yorkville, NY 13495
  United States of America
  Email: [email protected]


  Robert Moskowitz
  HTT Consulting
  Oak Park, MI 48237
  United States of America
  Email: [email protected]