Internet Engineering Task Force (IETF)                          B. Varga
Request for Comments: 9566                                     J. Farkas
Category: Informational                                         Ericsson
ISSN: 2070-1721                                                 A. Malis
                                                       Malis Consulting
                                                             April 2024


Deterministic Networking (DetNet) Packet Replication, Elimination, and
           Ordering Functions (PREOF) via MPLS over UDP/IP

Abstract

  This document describes how the DetNet IP data plane can support the
  Packet Replication, Elimination, and Ordering Functions (PREOF) built
  on the existing MPLS PREOF solution defined for the DetNet MPLS data
  plane and the mechanisms defined by MPLS-over-UDP technology.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are candidates for any level of Internet
  Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9566.

Copyright Notice

  Copyright (c) 2024 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
  2.  Terminology
    2.1.  Terms Used in This Document
    2.2.  Abbreviations
  3.  Requirements for Adding PREOF to DetNet IP
  4.  Adding PREOF to DetNet IP
    4.1.  Solution Basics
    4.2.  Encapsulation
    4.3.  Packet Processing
    4.4.  Flow Aggregation
    4.5.  PREOF Processing
    4.6.  PREOF-Capable DetNet IP Domain
  5.  Control and Management Plane Parameters
  6.  Security Considerations
  7.  IANA Considerations
  8.  References
    8.1.  Normative References
    8.2.  Informative References
  Acknowledgements
  Authors' Addresses

1.  Introduction

  The DetNet Working Group has defined Packet Replication (PRF), Packet
  Elimination (PEF), and Packet Ordering (POF) Functions (represented
  as PREOF) to provide service protection by the DetNet service sub-
  layer [RFC8655].  The PREOF service protection method relies on
  copies of the same packet sent over multiple maximally disjoint paths
  and uses sequencing information to eliminate duplicates.  A possible
  implementation of PRF and PEF is described in [IEEE8021CB], and the
  related YANG data model is defined in [IEEE8021CBcv].  A possible
  implementation of POF is described in [RFC9550].  Figure 1 shows a
  DetNet flow on which PREOF are applied during forwarding from the
  source to the destination.

                                         +------------+
               +---------------E1---+    |            |
   +---+       |               |    +---R3---+        |          +---+
   |src|------R1           +---+             |        E3----O----+dst|
   +---+       |           |                 E2-------+          +---+
               +----------R2                 |
                           +-----------------+

   R: Replication Function (PRF)
   E: Elimination Function (PEF)
   O: Ordering Function (POF)

               Figure 1: PREOF Scenario in a DetNet Network

  In general, the use of PREOF require sequencing information to be
  included in the packets of a DetNet compound flow.  This can be done
  by adding a sequence number or timestamp as part of DetNet
  encapsulation.  Sequencing information is typically added once, at or
  close to the source.

  The DetNet MPLS data plane [RFC8964] specifies how sequencing
  information is encoded in the MPLS header.  However, the DetNet IP
  data plane described in [RFC8939] does not specify how sequencing
  information can be encoded in the IP packet.  This document provides
  sequencing information to DetNet IP nodes, so it results in an
  improved version of the DetNet IP data plane.  As suggested by
  [RFC8938], the solution uses existing standardized headers and
  encapsulations.  The improvement is achieved by reusing the DetNet
  MPLS-over-UDP/IP data plane [RFC9025] with the restriction of using
  zero F-Labels.

2.  Terminology

2.1.  Terms Used in This Document

  This document uses the terminology established in the DetNet
  architecture [RFC8655], and it is assumed that the reader is familiar
  with that document and its terminology.

2.2.  Abbreviations

  The following abbreviations are used in this document:

  DetNet        Deterministic Networking

  PEF           Packet Elimination Function

  POF           Packet Ordering Function

  PREOF         Packet Replication, Elimination, and Ordering Functions

  PRF           Packet Replication Function

3.  Requirements for Adding PREOF to DetNet IP

  The requirements for adding PREOF to DetNet IP are:

  *  to reuse existing DetNet data plane solutions (e.g., [RFC8964],
     [RFC9025]), and

  *  to allow the DetNet service sub-layer for IP packet-switched
     networks with minimal implementation effort.

  The described solution leverages MPLS header fields without requiring
  the support of the MPLS forwarding plane.

4.  Adding PREOF to DetNet IP

4.1.  Solution Basics

  The DetNet IP encapsulation supporting the DetNet service sub-layer
  is based on the "UDP tunneling" concept.  The solution creates a set
  of underlay UDP/IP tunnels between an overlay set of DetNet relay
  nodes.

  At the edge of a PREOF-capable DetNet IP domain, the DetNet flow is
  encapsulated in a UDP packet containing the sequence number used by
  PREOF within the domain.  This solution maintains the 6-tuple-based
  DetNet flow identification in DetNet transit nodes, which operate at
  the DetNet forwarding sub-layer between the DetNet service sub-layer
  nodes; therefore, it is compatible with [RFC8939].  Figure 2 shows
  how the PREOF-capable DetNet IP data plane fits into the DetNet sub-
  layers.

                   DetNet          IP
                      .
                      .
                +------------+
                |  Service   | d-CW, Service-ID (S-Label)
                +------------+
                | Forwarding | UDP/IP Header
                +------------+

                               *d-CW: DetNet Control Word

               Figure 2: PREOF-Capable DetNet IP Data Plane

4.2.  Encapsulation

  The PREOF-capable DetNet IP encapsulation builds on encapsulating
  DetNet pseudowire (PW) directly over UDP.  That is, it combines
  DetNet MPLS [RFC8964] with DetNet MPLS-in-UDP [RFC9025], without
  using any F-Labels, as shown in Figure 3.  DetNet flows are
  identified at the receiving DetNet service sub-layer processing node
  via the S-Label and/or the UDP/IP header information.  Sequencing
  information for PREOF is provided by the DetNet Control Word (d-CW)
  per [RFC8964].  The S-Label is used to identify both the DetNet flow
  and the DetNet App-flow type.  The UDP tunnel is used to direct the
  packet across the DetNet domain to the next DetNet service sub-layer
  processing node.

     +---------------------------------+
     |                                 |
     |         DetNet App-Flow         |
     |       (Original IP) Packet      |
     |                                 |
     +---------------------------------+ <--\
     |       DetNet Control Word       |    |
     +---------------------------------+    +--> PREOF-capable
     |       Service-ID (S-Label)      |    |    DetNet IP data
     +---------------------------------+    |    plane encapsulation
     |            UDP Header           |    |
     +---------------------------------+    |
     |            IP Header            |    |
     +---------------------------------+ <--/
     |            Data-Link            |
     +---------------------------------+
     |             Physical            |
     +---------------------------------+

             Figure 3: PREOF-Capable DetNet IP Encapsulation

4.3.  Packet Processing

  IP ingress and egress nodes of the PREOF-capable DetNet IP domain add
  and remove a DetNet service-specific d-CW and Service-ID (i.e.,
  S-Label).  Relay nodes can change Service-ID values when processing a
  DetNet flow, i.e., incoming and outgoing Service-IDs of a DetNet flow
  can be different.  Service-ID values are provisioned per DetNet
  service via configuration, e.g., via the Controller Plane described
  in [RFC8938].  In some PREOF topologies, the node performing
  replication sends the packets to multiple nodes performing, e.g., PEF
  or POF, and the replication node can use different Service-ID values
  for the different member flows for the same DetNet service.

  Note that the Service-ID is a local ID on the receiver side that
  identifies the DetNet flow at the downstream DetNet service sub-layer
  receiver.

4.4.  Flow Aggregation

  Two methods can be used for flow aggregation:

  *  aggregation using same UDP tunnel, and

  *  aggregation of DetNet flows as a new DetNet flow.

  In the first method, the different DetNet pseudowires use the same
  UDP tunnel, so they are treated as a single (aggregated) flow at the
  forwarding sub-layer.  At the service sub-layer, each flow uses a
  different Service-ID (see Figure 3).

  For the second method, an additional hierarchy is created by adding
  an additional Service-ID and d-CW tuple to the encapsulation.  The
  Aggregate-ID is a special case of a Service-ID, whose properties are
  known only at the aggregation and deaggregation end points.  It is a
  property of the Aggregate-ID that it is followed by a d-CW followed
  by a Service-ID/d-CW tuple.  Figure 4 shows the encapsulation in the
  case of aggregation.

     +---------------------------------+
     |                                 |
     |         DetNet App-Flow         |
     |         Payload  Packet         |
     |                                 |
     +---------------------------------+ <--\
     |       DetNet Control Word       |    |
     +---------------------------------+    +--> PREOF-capable
     |       Service-ID (S-Label)      |    |    DetNet IP data
     +---------------------------------+    |    plane encapsulation
     |       DetNet Control Word       |    |
     +---------------------------------+    |
     |      Aggregate-ID (A-Label)     |    |
     +---------------------------------+    |
     |           UDP Header            |    |
     +---------------------------------+    |
     |            IP Header            |    |
     +---------------------------------+ <--/
     |            Data-Link            |
     +---------------------------------+
     |             Physical            |
     +---------------------------------+

         Figure 4: Aggregating DetNet Flows as a New DetNet Flow

  The aggregation method is configured in the aggregation/deaggregation
  nodes.

  If several DetNet flows are aggregated in a single UDP tunnel, they
  all need to follow the same path in the network.

4.5.  PREOF Processing

  A node operating on a received DetNet flow at the DetNet service sub-
  layer uses the local context associated with a received Service-ID to
  determine which local DetNet operation(s) are applied to the received
  packet.  A unique Service-ID can be allocated and can be used to
  identify a DetNet flow regardless of which input interface or UDP
  tunnel receives the packet.  It is important to note that Service-ID
  values are driven by the receiver, not the sender.

  The DetNet forwarding sub-layer is supported by the UDP tunnel and is
  responsible for providing resource allocation and explicit routes.

  The outgoing PREOF encapsulation and processing can be implemented
  via the provisioning of UDP and IP header information.  Note, when
  PRF is performed at the DetNet service sub-layer, there are multiple
  member flows, and each member flow requires its own Service-ID, UDP
  header information, and IP header information.  The headers for each
  outgoing packet are formatted according to the configuration
  information, and the UDP Source Port value is set to uniquely
  identify the DetNet flow.  The packet is then handled as a PREOF-
  capable DetNet IP packet.

  The incoming PREOF processing can be implemented by assigning a
  Service-ID to the received DetNet flow and processing the information
  in the UDP and IP headers.  The provisioned information is used to
  identify incoming App-flows based on the combination of Service-ID
  and/or incoming encapsulation header information.

4.6.  PREOF-Capable DetNet IP Domain

  Figure 5 shows using PREOF in a PREOF-capable DetNet IP network,
  where service protection is provided end to end, and not only within
  sub-networks, as is depicted in Figure 4 <https://www.rfc-
  editor.org/rfc/rfc8939#figure-4> of [RFC8939].

            <---------- PREOF-capable DetNet IP --------------->
                                      ______
                            ____     /      \__
                 ____      /     \__/          \____________
  +----+      __/    \____/                                 \    +----+
  |src |_____/                                               \___| dst|
  +----+     \_______            DetNet network    __________/   +----+
                     \_______                    _/
                             \         __     __/
                              \_______/  \___/

                                         +------------+
               +---------------E1---+    |            |
  +----+       |               |    +---R3---+        |          +----+
  |src |------R1           +---+             |        E3----O----+ dst|
  +----+       |           |                 E2-------+          +----+
               +----------R2                 |
                           +-----------------+

                 Figure 5: PREOF-Capable DetNet IP Domain

5.  Control and Management Plane Parameters

  The information needed to identify individual and aggregated DetNet
  flows is summarized as follows:

  *  Service-ID information to be mapped to UDP/IP flows.  Note that,
     for example, a single Service-ID can map to multiple sets of UDP/
     IP information when PREOF is used.

  *  IPv4 or IPv6 Source Address field.

  *  IPv4 or IPv6 source address prefix length, where a zero (0) value
     effectively means that the address field is ignored.

  *  IPv4 or IPv6 Destination Address field.

  *  IPv4 or IPv6 destination address prefix length, where a zero (0)
     effectively means that the address field is ignored.

  *  IPv6 Flow Label field.

  *  IPv4 Protocol field being equal to "UDP".

  *  IPv6 (last) Next Header field being equal to "UDP".

  *  For the IPv4 Type of Service and IPv6 Traffic Class fields:

     -  Whether or not the Differentiated Services Code Point (DSCP)
        field is used in flow identification, as the use of the DSCP
        field for flow identification is optional.

     -  If the DSCP field is used to identify a flow, then the flow
        identification information (for that flow) includes a list of
        DSCPs used by the given DetNet flow.

  *  UDP Source Port.  Support for both exact and wildcard matching is
     required.  Port ranges can optionally be used.

  *  UDP Destination Port.  Support for both exact and wildcard
     matching is required.  Port ranges can optionally be used.

  *  For end systems, an optional maximum IP packet size that should be
     used for that outgoing DetNet IP flow.

  This information is provisioned per DetNet flow via configuration,
  e.g., via the Controller Plane.

  Ordering of the set of information used to identify an individual
  DetNet flow can, for example, be used to provide a DetNet service for
  a specific UDP flow, with unique Source and Destination Port field
  values, while providing a different service for the aggregate of all
  other flows with that same UDP Destination Port value.

  The minimum set of information for the configuration of the DetNet
  service sub-layer is summarized as follows:

  *  App-flow identification information

  *  Sequence number length

  *  Type of PREOF to be executed on the DetNet flow

  *  Service-ID(s) used by the member flows

  *  Associated forwarding sub-layer information

  *  Service aggregation information

  The minimum set of information for the configuration of the DetNet
  forwarding sub-layer is summarized as follows:

  *  UDP tunnel-specific information

  *  Traffic parameters

  These parameters are defined in the DetNet flow and service
  information model [RFC9016] and the DetNet YANG model.

  Note: this document focuses on the use of MPLS-over-UDP/IP
  encapsulation throughout an entire DetNet IP network, making MPLS-
  based DetNet Operations, Administration, and Maintenance (OAM)
  techniques applicable [RFC9546].  Using the described encapsulation
  only for a portion of a DetNet IP network that handles PREOF would
  complicate OAM.

6.  Security Considerations

  There are no new DetNet-related security considerations introduced by
  this solution.  Security considerations of DetNet MPLS [RFC8964] and
  DetNet MPLS over UDP/IP [RFC9025] apply.

7.  IANA Considerations

  This document has no IANA actions.

8.  References

8.1.  Normative References

  [RFC8655]  Finn, N., Thubert, P., Varga, B., and J. Farkas,
             "Deterministic Networking Architecture", RFC 8655,
             DOI 10.17487/RFC8655, October 2019,
             <https://www.rfc-editor.org/info/rfc8655>.

  [RFC8938]  Varga, B., Ed., Farkas, J., Berger, L., Malis, A., and S.
             Bryant, "Deterministic Networking (DetNet) Data Plane
             Framework", RFC 8938, DOI 10.17487/RFC8938, November 2020,
             <https://www.rfc-editor.org/info/rfc8938>.

  [RFC8939]  Varga, B., Ed., Farkas, J., Berger, L., Fedyk, D., and S.
             Bryant, "Deterministic Networking (DetNet) Data Plane:
             IP", RFC 8939, DOI 10.17487/RFC8939, November 2020,
             <https://www.rfc-editor.org/info/rfc8939>.

  [RFC8964]  Varga, B., Ed., Farkas, J., Berger, L., Malis, A., Bryant,
             S., and J. Korhonen, "Deterministic Networking (DetNet)
             Data Plane: MPLS", RFC 8964, DOI 10.17487/RFC8964, January
             2021, <https://www.rfc-editor.org/info/rfc8964>.

  [RFC9016]  Varga, B., Farkas, J., Cummings, R., Jiang, Y., and D.
             Fedyk, "Flow and Service Information Model for
             Deterministic Networking (DetNet)", RFC 9016,
             DOI 10.17487/RFC9016, March 2021,
             <https://www.rfc-editor.org/info/rfc9016>.

  [RFC9025]  Varga, B., Ed., Farkas, J., Berger, L., Malis, A., and S.
             Bryant, "Deterministic Networking (DetNet) Data Plane:
             MPLS over UDP/IP", RFC 9025, DOI 10.17487/RFC9025, April
             2021, <https://www.rfc-editor.org/info/rfc9025>.

  [RFC9546]  Mirsky, G., Chen, M., and B. Varga, "Operations,
             Administration, and Maintenance (OAM) for Deterministic
             Networking (DetNet) with the MPLS Data Plane", RFC 9546,
             DOI 10.17487/RFC9546, February 2024,
             <https://www.rfc-editor.org/info/rfc9546>.

8.2.  Informative References

  [IEEE8021CB]
             IEEE, "IEEE Standard for Local and metropolitan area
             networks -- Frame Replication and Elimination for
             Reliability", IEEE Std 802.1CB-2017,
             DOI 10.1109/IEEESTD.2017.8091139, October 2017,
             <https://doi.org/10.1109/IEEESTD.2017.8091139>.

  [IEEE8021CBcv]
             IEEE, "IEEE Standard for Local and metropolitan area
             networks -- Frame Replication and Elimination for
             Reliability - Amendment 1: Information Model, YANG Data
             Model, and Management Information Base Module", Amendment
             to IEEE Std 802.1CB-2017, IEEE Std 802.1CBcv-2021,
             DOI 10.1109/IEEESTD.2022.9715061, February 2022,
             <https://doi.org/10.1109/IEEESTD.2022.9715061>.

  [RFC9550]  Varga, B., Ed., Farkas, J., Kehrer, S., and T. Heer,
             "Deterministic Networking (DetNet): Packet Ordering
             Function", RFC 9550, DOI 10.17487/RFC9550, March 2024,
             <https://www.rfc-editor.org/info/rfc9550>.

Acknowledgements

  Authors extend their appreciation to Stewart Bryant, Pascal Thubert,
  David Black, Shirley Yangfan, and Greg Mirsky for their insightful
  comments and productive discussion that helped to improve the
  document.

Authors' Addresses

  Balazs Varga
  Ericsson
  Budapest
  Magyar Tudosok krt. 11.
  1117
  Hungary
  Email: [email protected]


  Janos Farkas
  Ericsson
  Budapest
  Magyar Tudosok krt. 11.
  1117
  Hungary
  Email: [email protected]


  Andrew G. Malis
  Malis Consulting
  Email: [email protected]