Network Working Group                                         D.L. Mills
Request for Comments: 956                               M/A-COM Linkabit
                                                         September 1985

             Algorithms for Synchronizing Network Clocks


Status of this Memo

  This RFC discussed clock synchronization algorithms for the
  ARPA-Internet community, and requests discussion and suggestions for
  improvements.  Distribution of this memo is unlimited.

Table of Contents

  1.      Introduction
  2.      Majority-Subset Algorithms
  3.      Clustering Algorithms
  4.      Application to Time-Synchronization Data
  5.      Summary and Conclusions
  6.      References
  Appendix
  A.      Experimental Determination of Internet Host Clock Accuracies
  A1.     UDP Time Protocol Experiment
  A2.     ICMP Timestamp Message Experiment
  A3.     Comparison of UDP and ICMP Time

List of Tables

  Table 1.  C(n,k) for n from 2 to 20
  Table 2.  Majority Subsets for n = 3,4,5
  Table 3.  Clustering Algorithm using UDP Time Protocol Data
  Table 4.  Clustering Algorithm using ICMP Timestamp Data
  Table 5.  ISI-MCON-GW Majority-Subset Algorithm
  Table 6.  ISI-MCON-GW Clustering Algorithm
  Table 7.  LL-GW (a) Majority-Subset Algorithm
  Table 8.  LL-GW (a) Clustering Algorithm
  Table 9.  LL-GW (b) Majority-Subset Algorithm
  Table 10. LL-GW (b) Clustering Algorithm
  Table A1. UDP Host Clock Offsets for Various Internet Hosts
  Table A2. UDP Offset Distribution < 9 sec
  Table A3. UDP Offset Distribution < 270 sec
  Table A4. ICMP Offset Distribution < 9 hours
  Table A5. ICMP Offset Distribution < 270 sec
  Table A6. ICMP Offset Distribution < 27 sec
  Table A7. ICMP Offset Distribution < .9 sec
  Table A8. Comparison of UDP and ICMP Host Clock Offsets






Mills                                                           [Page 1]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


1.  Introduction

  The recent interest within the Internet community in determining
  accurate time from a set of mutually suspicious network clocks has
  been prompted by several occasions in which gross errors were found
  in usually reliable, highly accurate clock servers after seasonal
  thunderstorms which disrupted their primary power supply.  To these
  sources of error should be added those due to malfunctioning
  hardware, defective software and operator mistakes, as well as random
  errors in the mechanism used to set and/or synchronize the clocks via
  Internet paths.  The results of these errors can range from simple
  disorientation to major disruption, depending upon the operating
  system, when files or messages are incorrectly timestamped or the
  order of critical network transactions is altered.

  This report suggests a stochastic model based on the principles of
  maximum-likelihood estimation, together with algorithms for computing
  a good estimator from a number of time-offset samples measured
  between one or more clocks connected via network links.  The model
  provides a rational method for detecting and resolving errors due to
  faulty clocks or excessively noisy links.  Included in this report
  are descriptions of certain experiments conducted with Internet hosts
  and ARPANET paths which give an indication of the effectiveness of
  the algorithms.

  Several mechanisms have been specified in the Internet protocol suite
  to record and transmit the time at which an event takes place,
  including the ICMP Timestamp message [6], Time Protocol [7], Daytime
  protocol [8] and IP Timestamp option [9].  A new Network Time
  Protocol [12] has been proposed as well.  Additional information on
  network time synchronization can be found in the References at the
  end of this document.  Synchronization protocols are described in [3]
  and [12] and synchronization algorithms in [2], [5] and [10].
  Experimental results on measured roundtrip delays and clock offsets
  in the Internet are discussed in [4] and [11].  A comprehensive
  mathematical treatment of clock synchronization can be found in [1].

  In [10] the problem of synchronizing a set of mutually suspicious
  clocks is discussed and algorithms offered which maximize in some
  sense the expectation that a correct set of "good" clocks can be
  extracted from the population including also "bad" ones.  The
  technique is based upon overlapping, discrete confidence intervals
  which are assigned a-priori.  The model assumes the reasonable
  presumption that "bad" clocks display errors far outside these
  confidence intervals, so can be easily identified and discarded from
  the voting process.



Mills                                                           [Page 2]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


  As apparent from the data summarized in Appendix A, host clocks in a
  real network commonly indicate various degrees of dispersion with
  respect to each other and to a standard-time reference such as a
  radio clock.  The sources of dispersion include random errors due to
  observational phenomena and the synchronization mechanism itself, if
  used, as well as systematic errors due to hardware or software
  failure, poor radio reception conditions or operator mistakes.  In
  general, it is not possible to accurately quantify whether the
  dispersion of any particular clock qualifies the clock as "good" or
  "bad," except on a statistical basis.  Thus, from a practical
  standpoint, a statistical-estimation approach to the problem is
  preferred over a discrete-decision one.

  A basic assumption in this report is that the majority of "good"
  clocks display errors clustered around a zero offset relative to
  standard time, as determined for example from a radio clock, while
  the remaining "bad" clocks display errors distributed randomly over
  the observing interval.  The problem is to select the good clocks
  from the bad and to estimate the correction to apply to the local
  clock in order to display the most accurate time.  The algorithms
  described in this report attempt to do this using maximum-likelihood
  techniques, which are theory.

  It should be noted that the algorithms discussed in [10] and in this
  report are are basically filtering and smoothing algorithms and can
  result in errors, sometimes gross ones, if the sample distribution
  departs far from a-priori assumptions.  Thus, a significant issue in
  the design of these algorithms is robustness in the face of skewed
  sample data sets.  The approach in [10] uses theorem-proving to
  justify the robustness of the discrete algorithms presented;
  however, the statistical models in this report are not suited for
  that.  The approach taken in this report is based on detailed
  observation and experiments, a summary of which is included as an
  appendix.  While this gives an excellent qualitative foundation upon
  which to judge robustness, additional quantitative confidence should
  be developed through the use of statistical mechanics.

2.  Majority-Subset Algorithms

  A stochastic model appropriate to a system of mutually suspicious
  clocks can be constructed as follows.  An experiment consists of one
  or more measurements of time differences or offsets between several
  clocks in the network.  Usually, but not necessarily, one of the
  clocks is the local clock at the observer and observations are
  conducted with each of several other clocks in the network.  The fact
  that some clocks are presumed more accurate or trusted more highly
  than others can be expressed by weighting the measurements


Mills                                                           [Page 3]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


  accordingly.  The result is a set of statistics, including means and
  variances, from which the observer is able to estimate the best time
  at which to set the local clock.

  A maximum-likelihood estimator is a statistic that maximizes the
  probability that a particular outcome of an experiment is due to a
  presumed set of assumptions on the constraints of the experiment.
  For example, if it is assumed that at least k of n observations
  include only samples from a single distribution, then a
  maximum-likelihood estimator for the mean of that distribution might
  be computed as follows: Determine the variance for every k-sample
  subset of the n observations. Then select the subset with smallest
  variance and use its mean as the estimator for the distribution mean.

  For instance, let n be the number of clocks and k be the next largest
  integer in n/2, that is, the minimum majority.  A majority subset is
  a subset consisting of k of the n offset measurements.  Each of these
  subsets can be represented by a selection of k out of n
  possibilities, with the total number of subsets equal to C(n,k).  The
  number of majority subsets is tallied for n from 2 to 20 in Table 1.

    (n,k)           C(n,k)                  (n,k)           C(n,k)
    ----------------------                  ----------------------
    (2,2)           1                       (11,6)          462
    (3,2)           3                       (12,7)          792
    (4,3)           4                       (13,7)          1716
    (5,3)           10                      (14,8)          3003
    (6,4)           15                      (15,8)          6435
    (7,4)           35                      (16,9)          11440
    (8,5)           56                      (17,9)          24310
    (9,5)           126                     (18,10)         43758
    (10,6)          210                     (19,10)         92378
                                            (20,11)         167960

                  Table 1. C(n,k) for n from 2 to 20

  Obviously, the number of computations required becomes awkward as n
  increases beyond about 10.  Representative majority subsets for n =
  3,4,5 are shown in Table 2.










Mills                                                           [Page 4]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


                C(3,2)          C(4,3)          C(5,3)
                ------          ------          ------
                1,2             1,2,3           1,2,3
                1,3             1,2,4           1,2,4
                2,3             1,3,4           1,2,5
                                2,3,4           1,3,4
                                                1,3,5
                                                1,4,5
                                                2,3,4
                                                2,3,5
                                                2,4,5
                                                3,4,5

               Table 2. Majority Subsets for n = 3,4,5

  Choosing n = 5, for example, requires calculation of the mean and
  variance for ten subsets indexed as shown in Table 2.

  A maximum-likelihood algorithm with provision for multiple samples
  and weights might operate as follows:  Let n be the number of clocks
  and w(1),w(2),...,w(n) a set of integer weights, with w(i) the weight
  associated with the ith clock.  For the ith clock three accumulators
  W(i), X(i) and Y(i) are provided, each initialized to zero.  The ith
  clock is polled some number of times, with each reply x causing n(i)
  to be added to W(i), as well as the weighted sample offset n(i)*x
  added to X(i) and its square (n(i)*x)2 added to Y(i).  Polling is
  continued for each of the n clocks in turn.

  Next, using a majority-subset table such as shown in Table 2,
  calculate the total weight W = sum(W(i)) and weighted sums X =
  sum(X(i)) and Y = sum(Y(i)*Y(i)) for each i in the jth majority
  subset (row). From W, X and Y calculate the mean m(j) and variance
  s(j):

             m(j) = X/W   and   s(j) = Y/W - m(j)*m(j) .

  When this is complete for all rows, select the row j with the
  smallest s(j) and return the associated mean m(j) as the
  maximum-likelihood estimate of the local-clock offset.










Mills                                                           [Page 5]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


3.  Clustering Algorithms

  Another method for developing a maximum-likelihood estimator is
  through the use of clustering algorithms.  These algorithms operate
  to associate points in a sample set with clusters on the basis of
  stochastic properties and are most useful when large numbers of
  samples are available.  One such algorithm operates on a sample set
  to selectively discard points presumed outside the cluster as
  follows:

     1.  Start with a sample set of n observations {x(1),x(2),...,x(n)

     2.  Compute the mean of the n observations in the sample set.
         Discard the single sample x(i) with value furthest from the
         mean, leaving n-1 observations in the set.

     3.  Continue with step 2 until only a single observation is left,
         at which point declare its value the maximum-likelihood
         estimator.

  This algorithm will usually (but not necessarily) converge to the
  desired result if the majority of observations are the result of
  "good" clocks, which by hypothesis are clustered about zero offset
  relative to the reference clock, with the remainder scattered
  randomly over the observation interval.

  The following Table 3 summarizes the results of this algorithm
  applied to the UDP data shown in Appendix A, which represents the
  measured clock offsets of 163 host clocks in the Internet system.
  These data were assembled using the UDP Time protocol [7], in which
  time is represented to a precision of one second.  Each line of the
  table represents the result of step 2 above along with the size of
  the sample set and its (unweighted) mean and variance.  The "Discard"
  column shows the value of the observation discarded at that step.















Mills                                                           [Page 6]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


                   Size    Mean    Var     Discard
                   -------------------------------
                   163     -210    9.1E+6  -38486
                   162     26      172289  3728
                   161     3       87727   3658
                   160     -20     4280    -566
                   150     -17     1272    88
                   100     -18     247     -44
                   50      -4      35      8
                   20      -1      0       -2
                   19      -1      0       -2
                   18      -1      0       -2
                   17      -1      0       1
                   16      -1      0       -1
                   15      -1      0       -1
                   14      -1      0       -1
                   13      0       0       0
                   1       0       0       0

      Table 3. Clustering Algorithm using UDP Time Protocol Data

  In Table 3 only a few of the 163 steps are shown, including those
  near the beginning which illustrate a rapid convergence as the
  relatively few outliers are discarded.  The large outlier discarded
  in the first step is almost certainly due to equipment or operator
  failure. The two outliers close to one hour discarded in the next two
  steps are probably simple operator mistakes like entering summer time
  instead of standard time.  By the time only 50 samples are left, the
  error has shrunk to about 4 sec and the largest outlier is within 12
  sec of the estimate.  By the time only 20 samples are left, the error
  has shrunk to about a second and the variance has vanished for
  practical purposes.

  The following Table 4 summarizes the results of the clustering
  algorithm applied to the ICMP data shown in Appendix A, which
  represents the measured clock offsets of 504 host clocks in the
  Internet system. These data were assembled using ICMP Timestamp
  messages [6], in which time is represented to a precision of one
  millisecond.  The columns in Table 4 should be interpreted in the
  same way as in Table 3, except that the data in Table 4 are in
  milliseconds, while the data in Table 3 are in seconds.








Mills                                                           [Page 7]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


                   Size    Mean    Var     Discard
                   -------------------------------
                   504     -3.0E+6 3.2E+14 8.6E+7
                   500     -3.3E+6 2.9E+14 8.6E+7
                   450     -1.6E+6 3.0E+13 -2.5E+7
                   400     29450   2.2E+11 3.6E+6
                   350     -3291   4.1E+9  -185934
                   300     3611    1.6E+9  -95445
                   250     2967    6.8E+8  66743
                   200     4047    2.3E+8  39288
                   150     1717    8.6E+7  21346
                   100     803     1.9E+7  10518
                   80      1123    8.4E+6  -4863
                   60      1119    3.1E+6  4677
                   50      502     1.5E+6  -2222
                   40      432     728856  2152
                   30      84      204651  -987
                   20      30      12810   338
                   15      28      2446    122
                   10      7       454     49
                   8       -2      196     24
                   6       -9      23      0
                   4       -10     5       -13
                   2       -8      0       -8

       Table 4. Clustering Algorithm using ICMP Timestamp Data

  As in Table 3 above, only some of the 504 steps are shown in Table 4.
  The distinguishing feature of the data in Table 4 is that the raw
  data are much more noisy - only some 30 host clocks are closer than
  one second from the reference clock, while half were further than one
  minute and over 100 further than one hour from it.  The fact that the
  algorithm converged to within 8 msec of the reference time under
  these conditions should be considered fairly remarkable in view of
  the probability that many of the outliers discarded are almost
  certainly due to defective protocol implementations.  Additional
  information on these experiments is presented in Appendix A.












Mills                                                           [Page 8]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


4.  Application to Time-Synchronization Data

  A variation of the above algorithms can be used to improve the offset
  estimates from a single clock by discarding noise samples produced by
  occasional retransmissions in the network, for example.  A set of n
  independent samples is obtained by polling the clock.  Then, a
  majority-subset table is used to compute the m(j) and s(j) statistics
  and the maximum-likelihood estimate determined as above.  For this
  purpose the majority-subset table could include larger subsets as
  well. In this manner the maximum-likelihood estimates from each of
  several clocks can be determined and used in the algorithm above.

  In order to test the effectiveness of this algorithm, a set of
  experiments was performed using two WIDEBAND/EISN gateways equipped
  with WWVB radio clocks and connected to the ARPANET.  These
  experiments were designed to determine the limits of accuracy when
  comparing these clocks via ARPANET paths.  One of the gateways
  (ISI-MCON-GW) is located at the Information Sciences Institute near
  Los Angeles, while the other (LL-GW) is located at Lincoln
  Laboratories near Boston.  Both gateways consist of PDP11/44
  computers running the EPOS operating system and clock-interface
  boards with oscillators phase-locked to the WWVB clock.

  The clock indications of the WIDEBAND/EISN gateways were compared
  with the DCNet WWVB reference clock using ICMP Timestamp messages,
  which record the individual timestamps with a precision of a
  millisecond. However, the path over the ARPANET between these
  gateways and the measurement host can introduce occasional
  measurement errors as large as several seconds.  In principle the
  effect of these errors can be minimized by using a large sample
  population;  however, use of the above algorithms allows higher
  accuracies to be obtained with far fewer samples.

  Measurements were made separately with each of the two gateways by
  sending an ICMP Timestamp Request message from the ARPANET address of
  DCN1 to the ARPANET address of the gateway and computing the
  round-trip delay and clock offset from the ICMP Timestamp Reply
  message.  This process was continued for 1000 message exchanges,
  which took from seven minutes to several hours, depending on the
  sample interval selected.

  The tables below summarize the results of both the majority-subset
  and clustering algorithms applied to the data from three experiments,
  one with ISI-MCON-GW and two with LL-GW.  The ISI-MCON-GW and LL-GW
  (a) experiments were designed to determine the limits of accuracy
  when using a continuous sequence of request/reply volleys, which



Mills                                                           [Page 9]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


  resulted in over two samples per second.  The remaining LL-GW (b)
  experiment was designed to determine the limits of accuracy using a
  much lower rate of about one sample every ten seconds.

  For each of the three experiments two tables are shown, one using the
  majority-subset algorithm and the other the clustering algorithm. The
  two rows of the majority-subset tables show the statistics derived
  both from the raw data and from the filtered data processed by a
  C(5,3) majority-subset algorithm.  In all cases the extrema and
  variance are dramatically less for the filtered data than the raw
  data, lending credence to the conjecture that the mean statistic for
  the filtered data is probably a good maximum-likelihood estimator of
  the true offset.

                             Mean    Var     Max     Min
            --------------------------------------------
            Raw data        637     2.1E+7  32751   -1096
            C(5,3)          -15     389     53      -103

            Table 5. ISI-MCON-GW Majority-Subset Algorithm

                   Size    Mean    Var     Discard
                   -------------------------------
                   1000    637     2.1E+7  32751
                   990     313     1.0E+7  32732
                   981     15      1.0E+6  32649
                   980     -18     2713    -1096
                   970     -15     521     -122
                   960     -15     433     -97
                   940     -15     332     -75
                   900     -15     239     26
                   800     -15     141     12
                   700     -16     87      5
                   600     -17     54      -31
                   500     -16     33      -5
                   400     -18     18      -9
                   300     -19     7       -12
                   200     -19     2       -21
                   100     -18     0       -19
                   1       -17     0       -17

              Table 6. ISI-MCON-GW Clustering Algorithm







Mills                                                          [Page 10]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


                             Mean    Dev     Max     Min
             --------------------------------------------
             Raw data        566     1.8E+7  32750   -143
             C(5,3)          -23     81      14      -69

             Table 7. LL-GW (a) Majority-Subset Algorithm

                   Size    Mean    Var     Discard
                   -------------------------------
                   1000    566     1.8E+7  32750
                   990     242     8.5E+6  32726
                   983     10      1.0E+6  32722
                   982     -23     231     -143
                   980     -23     205     -109
                   970     -22     162     29
                   960     -23     128     13
                   940     -23     105     -51
                   900     -24     89      1
                   800     -25     49      -9
                   700     -26     31      -36
                   600     -26     21      -34
                   500     -27     14      -20
                   400     -29     7       -23
                   300     -30     3       -33
                   200     -29     1       -27
                   100     -29     0       -28
                   1       -29     0       -29

               Table 8. LL-GW (a) Clustering Algorithm

                             Mean    Dev     Max     Min
            --------------------------------------------
            Raw data        378     2.1E+7  32760   -32758
            C(5,3)          -21     1681    329     -212

             Table 9. LL-GW (b) Majority-Subset Algorithm













Mills                                                          [Page 11]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


                   Size    Mean    Var     Discard
                   -------------------------------
                   1000    377     2.1E+7  -32758
                   990     315     1.0E+7  32741
                   981     18      1.1E+6  32704
                   980     -16     16119   -1392
                   970     -17     5382    554
                   960     -21     3338    311
                   940     -24     2012    168
                   900     -22     1027    -137
                   800     -23     430     -72
                   700     -23     255     -55
                   600     -22     167     -45
                   500     -22     109     -40
                   400     -21     66      -6
                   300     -18     35      -29
                   200     -17     15      -23
                   100     -19     3       -15
                   50      -21     0       -19
                   20      -21     0       -21
                   10      -20     0       -20
                   1       -20     0       -20

               Table 10. LL-GW (b) Clustering Algorithm

  The rows of the clustering tables show the result of selected steps
  in the algorithm as it discards samples furthest from the mean.  The
  first twenty steps or so discard samples with gross errors over 30
  seconds.  These samples turned out to be due to a defect in the
  timestamping procedure implemented in the WIDEBAND/EISN gateway code
  which caused gross errors in about two percent of the ICMP Timestamp
  Reply messages.  These samples were left in the raw data as received
  in order to determine how the algorithms would behave in such extreme
  cases.  As apparent from the tables, both the majority-subset and
  clustering algorithms effectively coped with the situation.

  In the statement of the clustering algorithm the terminating
  condition was specified as when only a single sample is left in the
  sample set.  However, it is not necessary to proceed that far.  For
  instance, it is known from the design of the experiment and the
  reference clocks that accuracies better than about ten milliseconds
  are probably unrealistic.  A rough idea of the accuracy of the mean
  is evident from the deviation, computed as the square root of the
  variance. Thus, attempts to continue the algorithm beyond the point
  where the variance drops below 100 or so are probably misguided.
  This occurs when between 500 and 900 samples remain in the sample



Mills                                                          [Page 12]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


  set, depending upon the particular experiment.  Note that in any case
  between 300 and 700 samples fall within ten milliseconds of the final
  estimate, depending on experiment.

  Comparing the majority-subset and clustering algorithms on the basis
  of variance reveals the interesting observation that the result of
  the C(5,3) majority-subset algorithm is equivalent to the clustering
  algorithm when between roughly 900 and 950 samples remain in the
  sample set.  This together with the moderately high variance in the
  ISI-MCON-GW and LL-GW (b) cases suggests a C(6,4) or even C(7,4)
  algorithm might yield greater accuracies.

5.  Summary and Conclusions

  The principles of maximum-likelihood estimation are well known and
  widely applied in communication electronics.  In this note two
  algorithms using these principles are proposed, one based on
  majority-subset techniques appropriate for cases involving small
  numbers of samples and the other based on clustering techniques
  appropriate for cases involving large numbers of samples.

  The algorithms were tested on raw data collected with Internet hosts
  and gateways over ARPANET paths for the purpose of setting a local
  host clock with respect to a remote reference while maintaining
  accuracies in the order of ten milliseconds.  The results demonstrate
  the effectiveness of these algorithms in detecting and discarding
  glitches due to hardware or software failure or operator mistakes.
  They also demonstrate that time synchronization can be maintained
  across the ARPANET in the order of ten milliseconds in spite of
  glitches many times the mean roundtrip delay.

  The results point to the need for an improved time-synchronization
  protocol combining the best features of the ICMP Timestamp message
  [6] and UDP Time protocol [7].  Among the features suggested for this
  protocol are the following:

     1.  The protocol should be based on UDP, which provides the
         flexibility to handle simultaneous, multiplexed queries and
         responses.

     2.  The message format should be based on the ICMP Timestamp
         message format, which provides the arrival and departure times
         at the server and allows the client to calculate the roundtrip
         delay and offset accurately.





Mills                                                          [Page 13]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


     3.  The data format should be based on the UDP Time format, which
         specifies 32-bit time in seconds since 1 January 1900, but
         extended additional bits for the fractional part of a second.

     4.  Provisions to specify the expected accuracy should be included
         along with information about the reference clock or
         synchronizing mechanism, as well as the expected drift rate
         and the last time the clock was set or synchronized.

  The next step should be formulating an appropriate protocol with the
  above features, together with implementation and test in the Internet
  environment.  Future development should result in a distributed,
  symmetric protocol, similar perhaps to those described in [1], for
  distributing highly reliable timekeeping information using a
  hierarchical set of trusted clocks.

6.  References

  1.  Lindsay, W.C., and A.V.  Kantak.  Network synchronization of
      random signals.  IEEE Trans.  Comm.  COM-28, 8 (August 1980),
      1260-1266.

  2.  Mills, D.L.  Time Synchronization in DCNET Hosts.  DARPA Internet
      Project Report IEN-173, COMSAT Laboratories, February 1981.

  3.  Mills, D.L.  DCNET Internet Clock Service.  DARPA Network Working
      Group Report RFC-778, COMSAT Laboratories, April 1981.

  4.  Mills, D.L.  Internet Delay Experiments.  DARPA Network Working
      Group Report RFC-889, M/A-COM Linkabit, December 1983.

  5.  Mills, D.L.  DCN Local-Network Protocols.  DARPA Network Working
      Group Report RFC-891, M/A-COM Linkabit, December 1983.

  6.  Postel, J.  Internet Control Message Protocol.  DARPA Network
      Working Group Report RFC-792, USC Information Sciences Institute,
      September 1981.

  7.  Postel, J.  Time Protocol.  DARPA Network Working Group Report
      RFC-868, USC Information Sciences Institute, May 1983.

  8.  Postel, J.  Daytime Protocol.  DARPA Network Working Group Report
      RFC-867, USC Information Sciences Institute, May 1983.

  9.  Su, Z.  A Specification of the Internet Protocol (IP) Timestamp
      Option.  DARPA Network Working Group Report RFC-781.  SRI
      International, May 1981.


Mills                                                          [Page 14]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


  10. Marzullo, K., and S.  Owicki.  Maintaining the Time in a
      Distributed System.  ACM Operating Systems Review 19, 3 (July
      1985), 44-54.

  11. Mills, D.L.  Experiments in Network Clock Synchronization.  DARPA
      Network Working Group Report RFC-957, M/A-COM Linkabit, September
      1985.

  12. Mills, D.L.  Network Time Protocol (NTP).  DARPA Network Working
      Group Report RFC-958, M/A-COM Linkabit, September 1985.

Appendix A.

  Experimental Determination of Internet Host Clock Accuracies

  Following is a summary of the results of three experiments designed
  to reveal the accuracies of various Internet host clocks.  The first
  experiment uses the UDP Time protocol, which is limited in precision
  to one second, while the second uses the ICMP Timestamp message,
  which extends the precision to one millisecond.  In the third
  experiment the results indicated by UDP and ICMP are compared.  In
  the UDP Time protocol time is indicated as a 32-bit field in seconds
  past 0000 UT on 1 January 1900, while in the ICMP Timestamp message
  time is indicated as a 32-bit field in milliseconds past 0000 UT of
  each day.

  All experiments described herein were conducted from Internet host
  DCN6.ARPA, which is normally synchronized to a WWV radio clock.  In
  order to improve accuracy during the experiments, the DCN6.ARPA host
  was resynchronized to a WWVB radio clock.  As the result of several
  experiments with other hosts equipped with WWVB and WWV radio clocks
  and GOES satellite clocks, it is estimated that the maximum
  measurement error in the following experiments is less than about 30
  msec relative to standard NBS time determined at the Boulder/Fort
  Collins transmitting sites.

  A1.  UDP Time Protocol Experiment

     In the first experiment four UDP Time protocol requests were sent
     at about three-second intervals to each of the 1775 hosts listed
     in the NIC Internet host table.  A total of 555 samples were
     received from 163 hosts and compared with a local reference based
     on a WWVB radio clock, which is known to be accurate to within a
     few milliseconds.  Not all of these hosts were listed as
     supporting the UDP Time protocol in the NIC Internet host table,
     while some that were listed as supporting this protocol either
     failed to respond or responded with various error messages.


Mills                                                          [Page 15]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


     In the following table "Host" is the canonical name of the host
     and "Count" the number of replies received.  The remaining data
     represent the time offset, in seconds, necessary to correct the
     local (reference) clock to agree with the host cited.  The "Max"
     and "Min" represent the maximum and minimum of these offsets,
     while "Mean" represents the mean value and "Var" the variance, all
     rounded to the nearest second.

        Host                    Count   Max     Min     Mean    Var
        -----------------------------------------------------------
        BBN-CLXX.ARPA           4       -11     -12     -11     0
        BBN-KIWI.ARPA           4       -11     -12     -11     0
        BBN-META.ARPA           4       -11     -12     -11     0
        BBNA.ARPA               1       22      22      22      0
        BBNG.ARPA               4       87      87      87      0
        BELLCORE-CS-GW.ARPA     3       72      71      71      0
        BLAYS.PURDUE.EDU        2       -1      -1      -1      0
        CMU-CC-TE.ARPA          4       -94     -95     -94     0
        CMU-CS-C.ARPA           3       6       5       5       0
        CMU-CS-CAD.ARPA         4       -37     -37     -37     0
        CMU-CS-CFS.ARPA         3       -42     -43     -42     0
        CMU-CS-G.ARPA           3       -30     -31     -30     0
        CMU-CS-GANDALF.ARPA     3       -42     -43     -42     0
        CMU-CS-H.ARPA           4       -36     -37     -36     0
        CMU-CS-IUS.ARPA         3       -44     -45     -44     0
        CMU-CS-IUS2.ARPA        3       -44     -44     -44     0
        CMU-CS-K.ARPA           3       -31     -31     -31     0
        CMU-CS-SAM.ARPA         4       -74     -75     -74     0
        CMU-CS-SPEECH.ARPA      4       -39     -40     -39     0
        CMU-CS-SPEECH2.ARPA     4       -49     -50     -49     0
        CMU-CS-SPICE.ARPA       4       -131    -132    -131    0
        CMU-CS-THEORY.ARPA      4       -36     -37     -36     0
        CMU-CS-UNH.ARPA         4       -44     -45     -44     0
        CMU-CS-VLSI.ARPA        4       -66     -66     -66     0
        CMU-RI-ARM.ARPA         3       -41     -41     -41     0
        CMU-RI-CIVE.ARPA        3       -44     -45     -44     0
        CMU-RI-FAS.ARPA         4       -27     -28     -27     0
        CMU-RI-ISL1.ARPA        4       -18     -19     -18     0
        CMU-RI-ISL3.ARPA        3       -49     -50     -49     0
        CMU-RI-LEG.ARPA         3       -33     -33     -33     0
        CMU-RI-ML.ARPA          4       42      42      42      0
        CMU-RI-ROVER.ARPA       4       -48     -49     -48     0
        CMU-RI-SENSOR.ARPA      2       -40     -41     -40     0
        CMU-RI-VI.ARPA          3       -65     -65     -65     0
        COLUMBIA.ARPA           1       8       8       8       0
        CU-ARPA.CS.CORNELL.EDU  4       5       3       4       0
        CYPRESS.ARPA            4       2       1       1       0


Mills                                                          [Page 16]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


        DCN1.ARPA               4       0       0       0       0
        DCN5.ARPA               4       0       0       0       0
        DCN6.ARPA               4       0       0       0       0
        DCN7.ARPA               4       -1      -1      0       0
        DCN9.ARPA               4       -3      -3      -3      0
        DEVVAX.TN.CORNELL.EDU   2       3659    3658    3658    0
        ENEEVAX.ARPA            4       73      72      72      0
        FORD-WDL1.ARPA          4       -59     -60     -59     0
        FORD1.ARPA              4       0       0       0       0
        GUENEVERE.PURDUE.EDU    3       1       0       0       0
        GVAX.CS.CORNELL.EDU     4       -18     -18     -18     0
        IM4U.ARPA               4       -6      -6      -6      0
        IPTO-FAX.ARPA           4       0       0       0       0
        KANKIN.ARPA             4       -3      -4      -3      0
        MERLIN.PURDUE.EDU       2       3       3       3       0
        MIT-ACHILLES.ARPA       4       16      16      16      0
        MIT-AGAMEMNON.ARPA      4       -63     -64     -63     0
        MIT-ANDROMACHE.ARPA     4       -28     -28     -28     0
        MIT-APHRODITE.ARPA      4       -7      -8      -7      0
        MIT-APOLLO.ARPA         4       -8      -9      -8      0
        MIT-ARES.ARPA           4       -25     -26     -25     0
        MIT-ARTEMIS.ARPA        4       -34     -35     -34     0
        MIT-ATHENA.ARPA         4       -37     -37     -37     0
        MIT-ATLAS.ARPA          4       -26     -26     -26     0
        MIT-CASTOR.ARPA         4       -35     -35     -35     0
        MIT-DAFFY-DUCK.ARPA     2       -72     -73     -72     0
        MIT-DEMETER.ARPA        4       -28     -29     -28     0
        MIT-GOLDILOCKS.ARPA     1       -20     -20     -20     0
        MIT-HECTOR.ARPA         4       -23     -24     -23     0
        MIT-HELEN.ARPA          4       6       5       5       0
        MIT-HERA.ARPA           4       -34     -35     -34     0
        MIT-HERACLES.ARPA       4       -36     -36     -36     0
        MIT-JASON.ARPA          4       -36     -37     -36     0
        MIT-MENELAUS.ARPA       4       -32     -33     -32     0
        MIT-MULTICS.ARPA        3       25      23      24      0
        MIT-ODYSSEUS.ARPA       4       20      19      19      0
        MIT-ORPHEUS.ARPA        4       -34     -35     -34     0
        MIT-PARIS.ARPA          4       -35     -35     -35     0
        MIT-POSEIDON.ARPA       4       -39     -41     -40     0
        MIT-PRIAM.ARPA          4       -24     -25     -24     0
        MIT-REAGAN.ARPA         4       115     115     115     0
        MIT-THESEUS.ARPA        4       -43     -44     -43     0
        MIT-TRILLIAN.ARPA       4       -38     -39     -38     0
        MIT-TWEETY-PIE.ARPA     3       106     105     105     0
        MIT-ZERMATT.ARPA        4       -75     -76     -75     0
        MIT-ZEUS.ARPA           4       -37     -39     -38     0
        MOL.ARPA                2       -3      -3      -3      0


Mills                                                          [Page 17]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


        MUNGO.THINK.COM         4       -1      -1      -1      0
        NETWOLF.ARPA            4       158     157     157     0
        ORBIT.ARPA              3       -4      -5      -4      0
        OSLO-VAX.ARPA           3       3729    3727    3728    1
        PATCH.ARPA              1       18      18      18      0
        RADC-MULTICS.ARPA       4       -14     -15     -14     0
        RICE-ZETA.ARPA          1       -31     -31     -31     0
        RICE.ARPA               1       7       7       7       0
        ROCHESTER.ARPA          4       -18     -18     -18     0
        ROCK.THINK.COM          4       2       2       2       0
        SCRC-QUABBIN.ARPA       4       -100    -100    -100    0
        SCRC-RIVERSIDE.ARPA     4       -128    -128    -128    0
        SCRC-STONY-BROOK.ARPA   4       -100    -100    -100    0
        SCRC-VALLECITO.ARPA     4       -57     -57     -57     0
        SCRC-YUKON.ARPA         4       -65     -65     -65     0
        SEBASTIAN.THINK.COM     4       -14     -15     -14     0
        SEISMO.CSS.GOV          3       -1      -1      0       0
        SRI-BISHOP.ARPA         4       -40     -41     -40     0
        SRI-DARWIN.ARPA         2       -29     -30     -29     0
        SRI-HUXLEY.ARPA         2       -28     -29     -28     0
        SRI-KIOWA.ARPA          4       -29     -30     -29     0
        SRI-LASSEN.ARPA         3       -11     -12     -11     0
        SRI-MENDEL.ARPA         4       74      73      73      0
        SRI-PINCUSHION.ARPA     4       -50     -51     -50     0
        SRI-RITTER.ARPA         4       -23     -24     -23     0
        SRI-TIOGA.ARPA          4       127     127     127     0
        SRI-UNICORN.ARPA        4       -38486  -38486  -38486  0
        SRI-WHITNEY.ARPA        4       -24     -24     -24     0
        SRI-YOSEMITE.ARPA       4       -26     -27     -26     0
        SU-AIMVAX.ARPA          2       -54     -55     -54     0
        SU-COYOTE.ARPA          1       14      14      14      0
        SU-CSLI.ARPA            4       -1      -1      -1      0
        SU-PSYCH.ARPA           1       -52     -52     -52     0
        SU-SAFE.ARPA            1       -60     -60     -60     0
        SU-SIERRA.ARPA          4       -53     -53     -53     0
        SU-SUSHI.ARPA           4       -105    -106    -105    0
        SU-WHITNEY.ARPA         2       -14     -14     -14     0
        TESLA.EE.CORNELL.EDU    3       -2      -3      -2      0
        THORLAC.THINK.COM       4       -20     -20     -20     0
        TRANTOR.ARPA            4       4       3       3       0
        TZEC.ARPA               4       -6      -7      -6      0
        UBALDO.THINK.COM        4       -13     -13     -13     0
        UCI-CIP.ARPA            2       -566    -567    -566    0
        UCI-CIP2.ARPA           2       -175    -175    -175    0
        UCI-CIP3.ARPA           2       -89     -90     -89     0
        UCI-CIP4.ARPA           2       -51     -51     -51     0
        UCI-CIP5.ARPA           2       -26     -28     -27     1


Mills                                                          [Page 18]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


        UCI-ICSA.ARPA           2       -24     -24     -24     0
        UCI-ICSC.ARPA           1       0       0       0       0
        UCI-ICSD.ARPA           1       -24     -24     -24     0
        UCI-ICSE.ARPA           1       -10     -10     -10     0
        UDEL-DEWEY.ARPA         1       88      88      88      0
        UDEL-MICRO.ARPA         2       64      64      64      0
        UIUC.ARPA               4       105     103     104     0
        UIUCDCSB.ARPA           4       65      65      65      0
        UMD1.ARPA               4       0       0       0       0
        UMICH1.ARPA             4       -1      -1      0       0
        UO.ARPA                 4       -2      -3      -2      0
        USC-ISI.ARPA            4       -45     -45     -45     0
        USC-ISIC.ARPA           4       28      26      27      0
        USC-ISID.ARPA           4       26      25      25      0
        USC-ISIE.ARPA           4       -53     -54     -53     0
        USC-ISIF.ARPA           4       -29     -29     -29     0
        USGS2-MULTICS.ARPA      3       75      74      74      0
        UT-ALAMO.ARPA           4       22      22      22      0
        UT-BARKLEY.ARPA         4       57      56      56      0
        UT-EMIL.ARPA            4       29      28      28      0
        UT-GOTTLOB.ARPA         4       42      41      41      0
        UT-HASKELL.ARPA         4       6       6       6       0
        UT-JACQUES.ARPA         4       21      20      20      0
        UT-SALLY.ARPA           3       1       0       0       0
        VALENTINE.THINK.COM     4       -10     -11     -10     0
        WENCESLAS.THINK.COM     4       -2      -3      -2      0
        XAVIER.THINK.COM        4       -14     -14     -14     0
        XEROX.ARPA              4       0       0       0       0
        YAXKIN.ARPA             3       -4      -5      -4      0
        YON.THINK.COM           4       -11     -12     -11     0
        ZAPHOD.PURDUE.EDU       4       -230    -231    -230    0
        ZOTZ.ARPA               4       17      16      16      0

        Table A1. UDP Host Clock Offsets for Various Internet Hosts

     The above list includes several host clocks known to be
     synchronized to various radio clocks, including DCN1.ARPA (WWVB),
     DCN6.ARPA (WWV) and FORD1.ARPA (GOES).  Under normal radio
     receiving conditions these hosts should be accurate to well within
     a second relative to NBS standard time.  Certain other host clocks
     are synchronized to one of these hosts using protocols described
     in RFC-891, including DCN5.ARPA, DCN7.ARPA and UMD1.ARPA
     (synchronized to DCN1.ARPA) and UMICH1.ARPA (synchronized to
     FORD1.ARPA).  It is highly likely, but not confirmed, that several
     other hosts with low offsets derive local time from one of these
     hosts or from other radio clocks.



Mills                                                          [Page 19]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


     The raw statistics computed from the weighted data indicate a mean
     of -261 sec, together with a maximum of 3729 sec and a minimum of
     -38486 sec.  Obviously, setting a local clock on the basis of
     these statistics alone would result in a gross error.

     A closer look at the distribution of the data reveals some
     interesting features.  Table A2 is a histogram showing the
     distribution within a few seconds of reference time.  In this and
     following tables, "Offset" is in seconds and indicates the
     lower-valued corner of the histogram bin, which extends to the
     next higher value, while "Count" indicates the number of samples
     falling in that bin.

                Offset  Count           Offset  Count
                -------------           -------------
                0 sec   13              (continued)
                1       1               -1      3
                2       1               -2      3
                3       2               -3      3
                4       1               -4      2
                5       2               -5      0
                6       1               -6      2
                7       1               -7      1
                8       1               -8      1
                9       0               -9      0
                > 9     30              < -9    95

                Table A2. Offset Distribution < 9 sec

     A total of 16 of the 163 host clocks are within a second in
     accuracy, while a total of 125 are off more than ten seconds.  It
     is considered highly likely that most of the 16 host clocks within
     a second in offset are synchronized directly or indirectly to a
     radio clock. Table A3 is a histogram showing the distribution over
     a larger scale.














Mills                                                          [Page 20]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


                Offset  Count           Offset  Count
                -------------           -------------
                0 sec   35              (continued)
                30      3               -30     50
                60      8               -60     42
                90      3               -90     8
                120     1               -120    4
                150     1               -150    2
                180     0               -180    1
                210     0               -210    0
                240     0               -240    1
                270     0               -270    0
                > 270   2               < -270  2

               Table A3. Offset Distribution < 270 sec

     A total of 138 of the 163 host clocks are within a minute in
     accuracy, while a total of four host clocks are off more than 4.5
     minutes.  It is considered likely that most host clocks, with the
     exception of the 16 identified above as probably synchronized to a
     radio clock, are set manually by an operator.  Inspection of the
     raw data shows some hosts to be very far off;  for instance,
     SRI-UNICORN.ARPA is off more than ten hours.  Note the interesting
     skew in the data, which show that most host clocks are set slow
     relative to standard time.

  A2.  ICMP Timestamp Messages Experiment

     The the second experiment four ICMP Timestamp messages were sent
     at about three-second intervals to each of the 1775 hosts and 110
     gateways listed in the NIC Internet host table.  A total of 1910
     samples were received from 504 hosts and gateways and compared
     with a local reference based on a WWVB radio clock, which is known
     to be accurate to within a few milliseconds.  Support for the ICMP
     Timestamp messages is optional in the DoD Internet protocol suite,
     so it is not surprising that most hosts and gateways do not
     support it.  Moreover, bugs are known to exist in several widely
     distributed implementations of this feature.  The situation proved
     an interesting and useful robustness test for the clustering
     algorithm described in the main body of this note.

     While the complete table of ICMP offsets by host is too large to
     reproduce here, the following Tables A4 through A7 show the
     interesting characteristics of the distribution.  The raw
     statistics computed from the weighted data indicate a mean of
     -2.8E+6 msec, together with a maximum of 8.6E+7 msec and a minimum
     of -8.6E+7 msec.  Setting a local clock on the basis of these


Mills                                                          [Page 21]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


     statistics alone would be ridiculous; however, as described in the
     main body of this note, use of the clustering algorithm improves
     the estimate to within 8 msec of the correct value.  The apparent
     improvement of about six orders in magnitude is so remarkable as
     to require a closer look at the distributions.

     The reasons for the remarkable success of the clustering algorithm
     are apparent from closer examination of the sequence of histograms
     shown in Tables A4 through A7.  Table A4 shows the distribution in
     the scale of hours, from which it is evident that 80 percent of
     the samples lie in a one-hour band either side of zero offset;
     but, strangely enough, there is a significant dispersion in
     samples outside of this band, especially in the negative region.
     It is almost certain that most or all of the latter samples
     represent defective ICMP Timestamp implementations.  Note that
     invalid timestamps and those with the high-order bit set
     (indicating unknown or nonstandard time) have already been
     excluded from these data.

                Offset  Count           Offset  Count
                -------------           -------------
                0 hr    204             (continued)
                1       10              -1      194
                2       0               -2      0
                3       0               -3      2
                4       0               -4      17
                5       0               -5      10
                6       0               -6      1
                7       0               -7      22
                8       0               -8      20
                9       0               -9      0
                > 9     0               < -9    13

             Table A4. ICMP Offset Distribution < 9 hours

     Table A5 shows the distribution compressed to the range of 4.5
     minutes.  About half of the 370 samples remaining after the
     outliers beyond 4.5 minutes are excluded lie in the band 30
     seconds either side of zero offset, with a gradual tapering off to
     the limits of the table. This type of distribution would be
     expected in the case of host clocks set manually by an operator.








Mills                                                          [Page 22]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


                Offset  Count           Offset  Count
                -------------           -------------
                0 sec   111             (continued)
                30      25              -30     80
                60      26              -60     28
                90      13              -90     18
                120     7               -120    19
                150     5               -150    9
                180     3               -180    10
                210     3               -210    6
                240     1               -240    2
                270     2               -270    2
                > 270   29              < -270  105

             Table A5. ICMP Offset Distribution < 270 sec

     Table A6 shows the distribution compressed to the range of 27
     seconds.  About 29 percent of the 188 samples remaining after the
     outliers beyond 27 seconds are excluded lie in the band 3 seconds
     either side of zero offset, with a gradual but less pronounced
     tapering off to the limits of the table.  This type of
     distribution is consistent with a transition region in which some
     clocks are set manually and some by some kind of protocol
     interaction with a reference clock.  A fair number of the clocks
     showing offsets in the 3-27 second range have probably been set
     using the UDP Time protocol at some time in the past, but have
     wandered away as the result of local-oscillator drifts.

                Offset  Count           Offset  Count
                -------------           -------------
                0 sec   32              (continued)
                3       15              -3      22
                6       9               -6      12
                9       6               -9      8
                12      13              -12     8
                15      5               -15     5
                18      8               -18     9
                21      8               -21     7
                24      9               -24     3
                27      6               -27     3
                > 27    114             < -27   202

             Table A6. ICMP Offset Distribution < 27 sec

     Finally, Table A7 shows the distribution compressed to the range
     of 0.9 second.  Only 30 of the original 504 samples have survived
     and only 12 of these are within a band 0.1 seconds either side of


Mills                                                          [Page 23]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


     zero offset. The latter include those clocks continuously
     synchronized to a radio clock, such as the DCNet clocks, some
     FORDnet and UMDnet clocks and certain others.

                Offset  Count           Offset  Count
                -------------           -------------
                0 sec   6               (continued)
                .1      3               -.1     6
                .2      1               -.2     3
                .3      1               -.3     0
                .4      0               -.4     0
                .5      1               -.5     2
                .6      0               -.6     0
                .7      1               -.7     0
                .8      4               -.8     2
                .9      0               -.9     0
                > .9    208             < -.9   266

             Table A7. ICMP Offset Distribution < .9 sec

    The most important observation that can be made about the above
     histograms is the pronounced central tendency in all of them, in
     spite of the scale varying over six orders of magnitude.  Thus, a
     clustering algorithm which operates to discard outliers from the
     mean will reliably converge on a maximum-likelihood estimate close
     to the actual value.

  A3.  Comparison of UDP and ICMP Time

     The third experiment was designed to assess the accuracies
     produced by the various host implementations of the UDP Time
     protocol and ICMP Timestamp messages.  For each of the hosts
     responding to the UDP Time protocol in the first experiment a
     separate test was conducted using both UDP and ICMP in the same
     test, so as to minimize the effect of clock drift.  Of the 162
     hosts responding to UDP requests, 45 also responded to ICMP
     requests with apparently correct time, but the remainder either
     responded with unknown or nonstandard ICMP time (29) or failed to
     respond to ICMP requests at all (88).

     Table A8 shows both the UDP time (seconds) and ICMP time
     (milliseconds) returned by each of the 45 hosts responding to both
     UDP and ICMP requests.  The data are ordered first by indicated
     UDP offset and then by indicated ICMP offset.  The seven hosts at
     the top of the table are continuously synchronized, directly or
     indirectly to a radio clock, as described earlier under the first



Mills                                                          [Page 24]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


     experiment.  It is probable, but not confirmed, that those hosts
     below showing discrepancies of a second or less are synchronized
     on occasion to one of these hosts.

        Host                    UDP time        ICMP time
        -------------------------------------------------
        DCN6.ARPA               0 sec           0 msec
        DCN7.ARPA               0               0
        DCN1.ARPA               0               -6
        DCN5.ARPA               0               -7
        UMD1.ARPA               0               8
        UMICH1.ARPA             0               -21
        FORD1.ARPA              0               31
        TESLA.EE.CORNELL.EDU    0               132
        SEISMO.CSS.GOV          0               174
        UT-SALLY.ARPA           -1              -240
        CU-ARPA.CS.CORNELL.EDU  -1              -514
        UCI-ICSE.ARPA           -1              -1896
        UCI-ICSC.ARPA           1               2000
        DCN9.ARPA               -7              -6610
        TRANTOR.ARPA            10              10232
        COLUMBIA.ARPA           11              12402
        GVAX.CS.CORNELL.EDU     -12             -11988
        UCI-CIP5.ARPA           -15             -17450
        RADC-MULTICS.ARPA       -16             -16600
        SU-WHITNEY.ARPA         17              17480
        UCI-ICSD.ARPA           -20             -20045
        SU-COYOTE.ARPA          21              21642
        MIT-MULTICS.ARPA        27              28265
        BBNA.ARPA               -34             -34199
        UCI-ICSA.ARPA           -37             -36804
        ROCHESTER.ARPA          -42             -41542
        SU-AIMVAX.ARPA          -50             -49575
        UCI-CIP4.ARPA           -57             -57060
        SU-SAFE.ARPA            -59             -59212
        SU-PSYCH.ARPA           -59             -58421
        UDEL-MICRO.ARPA         62              63214
        UIUCDCSB.ARPA           63              63865
        BELLCORE-CS-GW.ARPA     71              71402
        USGS2-MULTICS.ARPA      76              77018
        BBNG.ARPA               81              81439
        UDEL-DEWEY.ARPA         89              89283
        UCI-CIP3.ARPA           -102            -102148
        UIUC.ARPA               105             105843
        UCI-CIP2.ARPA           -185            -185250
        UCI-CIP.ARPA            -576            -576386
        OSLO-VAX.ARPA           3738            3739395


Mills                                                          [Page 25]



RFC 956                                                   September 1985
Algorithms for Synchronizing Network Clocks


        DEVVAX.TN.CORNELL.EDU   3657            3657026
        PATCH.ARPA              -86380          20411
        IPTO-FAX.ARPA           -86402          -1693
        NETWOLF.ARPA            10651435        -62164450

        Table A8. Comparison of UDP and ICMP Host Clock Offsets

     Allowing for various degrees of truncation and roundoff abuse in
     the various implementations, discrepancies of up to a second could
     be expected between UDP and ICMP time.  While the results for most
     hosts confirm this, some discrepancies are far greater, which may
     indicate defective implementations, excessive swapping delays and
     so forth.  For instance, the ICMP time indicated by UCI-CIP5.ARPA
     is almost 2.5 seconds less than the UDP time.

     Even though the UDP and ICMP times indicated by OSLO-VAX.ARPA and
     DEVVAX.TN.CORNELL.EDU agree within nominals, the fact that they
     are within a couple of minutes or so of exactly one hour early
     (3600 seconds) lends weight to the conclusion they were
     incorrectly set, probably by an operator who confused local summer
     and standard time.

     Something is clearly broken in the case of PATCH.ARPA,
     IPTO-FAX.ARPA and NETWOLF.ARPA.  Investigation of the PATCH.ARPA
     and IPTO-FAX.ARPA reveals that these hosts were set by hand
     accidently one day late (-86400 seconds), but otherwise close to
     the correct time-of-day.  Since the ICMP time rolls over at 2400
     UT, the ICMP offset was within nominals.  No explanation is
     available for the obviously defective UDP and ICMP times indicated
     by NETWOLF.ARPA, although it was operating within nominals at
     least in the first experiment.


















Mills                                                          [Page 26]