Internet Engineering Task Force (IETF)                K. Talaulikar, Ed.
Request for Comments: 9552                                 Cisco Systems
Obsoletes: 7752, 9029                                      December 2023
Category: Standards Track
ISSN: 2070-1721


Distribution of Link-State and Traffic Engineering Information Using BGP

Abstract

  In many environments, a component external to a network is called
  upon to perform computations based on the network topology and the
  current state of the connections within the network, including
  Traffic Engineering (TE) information.  This is information typically
  distributed by IGP routing protocols within the network.

  This document describes a mechanism by which link-state and TE
  information can be collected from networks and shared with external
  components using the BGP routing protocol.  This is achieved using a
  BGP Network Layer Reachability Information (NLRI) encoding format.
  The mechanism applies to physical and virtual (e.g., tunnel) IGP
  links.  The mechanism described is subject to policy control.

  Applications of this technique include Application-Layer Traffic
  Optimization (ALTO) servers and Path Computation Elements (PCEs).

  This document obsoletes RFC 7752 by completely replacing that
  document.  It makes some small changes and clarifications to the
  previous specification.  This document also obsoletes RFC 9029 by
  incorporating the updates that it made to RFC 7752.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9552.

Copyright Notice

  Copyright (c) 2023 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
    1.1.  Requirements Language
  2.  Motivation and Applicability
    2.1.  MPLS-TE with PCE
    2.2.  ALTO Server Network API
  3.  BGP Speaker Roles for BGP-LS
  4.  Advertising IGP Information into BGP-LS
  5.  Carrying Link-State Information in BGP
    5.1.  TLV Format
    5.2.  The Link-State NLRI
      5.2.1.  Node Descriptors
      5.2.2.  Link Descriptors
      5.2.3.  Prefix Descriptors
    5.3.  The BGP-LS Attribute
      5.3.1.  Node Attribute TLVs
      5.3.2.  Link Attribute TLVs
      5.3.3.  Prefix Attribute TLVs
    5.4.  Private Use
    5.5.  BGP Next-Hop Information
    5.6.  Inter-AS Links
    5.7.  OSPF Virtual Links and Sham Links
    5.8.  OSPFv2 Type 4 Summary-LSA & OSPFv3 Inter-Area-Router-LSA
    5.9.  Handling of Unreachable IGP Nodes
    5.10. Router-ID Anchoring Example: ISO Pseudonode
    5.11. Router-ID Anchoring Example: OSPF Pseudonode
    5.12. Router-ID Anchoring Example: OSPFv2 to IS-IS Migration
  6.  Link to Path Aggregation
    6.1.  Example: No Link Aggregation
    6.2.  Example: ASBR to ASBR Path Aggregation
    6.3.  Example: Multi-AS Path Aggregation
  7.  IANA Considerations
    7.1.  BGP-LS Registries
      7.1.1.  BGP-LS NLRI Types Registry
      7.1.2.  BGP-LS Protocol-IDs Registry
      7.1.3.  BGP-LS Well-Known Instance-IDs Registry
      7.1.4.  BGP-LS Node Flags Registry
      7.1.5.  BGP-LS MPLS Protocol Mask Registry
      7.1.6.  BGP-LS IGP Prefix Flags Registry
      7.1.7.  BGP-LS TLVs Registry
    7.2.  Guidance for Designated Experts
  8.  Manageability Considerations
    8.1.  Operational Considerations
      8.1.1.  Operations
      8.1.2.  Installation and Initial Setup
      8.1.3.  Migration Path
      8.1.4.  Requirements for Other Protocols and Functional
              Components
      8.1.5.  Impact on Network Operation
      8.1.6.  Verifying Correct Operation
    8.2.  Management Considerations
      8.2.1.  Management Information
      8.2.2.  Fault Management
      8.2.3.  Configuration Management
      8.2.4.  Accounting Management
      8.2.5.  Performance Management
      8.2.6.  Security Management
  9.  TLV/Sub-TLV Code Points Summary
  10. Security Considerations
  11. References
    11.1.  Normative References
    11.2.  Informative References
  Appendix A.  Changes from RFC 7752
  Acknowledgements
  Contributors
  Author's Address

1.  Introduction

  The contents of a Link-State Database (LSDB) or of an IGP's Traffic
  Engineering Database (TED) describe only the links and nodes within
  an IGP area.  Some applications, such as end-to-end Traffic
  Engineering (TE), would benefit from visibility outside one area or
  Autonomous System (AS) to make better decisions.

  The IETF has defined the Path Computation Element (PCE) [RFC4655] as
  a mechanism for achieving the computation of end-to-end TE paths that
  crosses the visibility of more than one TED or that requires CPU-
  intensive or coordinated computations.  The IETF has also defined the
  ALTO server [RFC5693] as an entity that generates an abstracted
  network topology and provides it to network-aware applications.

  Both a PCE and an ALTO server need to gather information about the
  topologies and capabilities of the network to be able to fulfill
  their function.

  This document describes a mechanism by which link-state and TE
  information can be collected from networks and shared with external
  components using the BGP routing protocol [RFC4271].  This is
  achieved using a BGP Network Layer Reachability Information (NLRI)
  encoding format.  The mechanism applies to physical and virtual
  (e.g., tunnel) links.  The mechanism described is subject to policy
  control.

  A router maintains one or more databases for storing link-state
  information about nodes and links in any given area.  Link attributes
  stored in these databases include: local/remote IP addresses, local/
  remote interface identifiers, link IGP metric, link TE metric, link
  bandwidth, reservable bandwidth, per Class-of-Service (CoS) class
  reservation state, preemption, and Shared Risk Link Groups (SRLGs).
  The router's BGP - Link State (BGP-LS) process can retrieve topology
  from these LSDBs and distribute it to a consumer, either directly or
  via a peer BGP Speaker (typically a dedicated route reflector), using
  the encoding specified in this document.

  An illustration of the collection of link-state and TE information
  and its distribution to consumers is shown in Figure 1 below.

              +-----------+
              | Consumer  |
              +-----------+
                    ^
                    |
              +-----------+             +-----------+
              |    BGP    |             |    BGP    |
              |  Speaker  |<----------->|  Speaker  |  +-----------+
              |    RR1    |             |    RRm    |  | Consumer  |
              +-----------+             +-----------+  +-----------+
                  ^   ^                       ^             ^
                  |   |                       |             |
            +-----+   +---------+             +---------+   |
            |                   |                       |   |
      +-----------+       +-----------+             +-----------+
      |    BGP    |       |    BGP    |             |    BGP    |
      |  Speaker  |       |  Speaker  |    . . .    |  Speaker  |
      |    R1     |       |     R2    |             |    Rn     |
      +-----------+       +-----------+             +-----------+
            ^                   ^                         ^
            |                   |                         |
           IGP                 IGP                       IGP

          Figure 1: Collection of Link-State and TE Information

  A BGP Speaker may apply a configurable policy to the information that
  it distributes.  Thus, it may distribute the real physical topology
  from the LSDB or the TED.  Alternatively, it may create an abstracted
  topology, where virtual, aggregated nodes are connected by virtual
  paths.  Aggregated nodes can be created, for example, out of multiple
  routers in a Point of Presence (POP).  Abstracted topology can also
  be a mix of physical and virtual nodes and physical and virtual
  links.  Furthermore, the BGP Speaker can apply policy to determine
  when information is updated to the consumer so that there is a
  reduction in information flow from the network to the consumers.
  Mechanisms through which topologies can be aggregated or virtualized
  are outside the scope of this document.

  This document focuses on the specifications related to the
  origination of IGP-derived information and their propagation via BGP-
  LS.  It also describes the advertisement into BGP-LS of information,
  either configured or derived, that is local to a node.  In general,
  the procedures in this document form part of the base BGP-LS protocol
  specification and apply to information from other sources that are
  introduced into BGP-LS.

  This document obsoletes [RFC7752] by completely replacing that
  document.  It makes some small changes and clarifications to the
  previous specification as documented in Appendix A.

1.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.  Motivation and Applicability

  This section describes use cases from which the requirements can be
  derived.

2.1.  MPLS-TE with PCE

  As described in [RFC4655], a PCE can be used to compute MPLS-TE paths
  within a "domain" (such as an IGP area) or across multiple domains
  (such as a multi-area AS or multiple ASes).

  *  Within a single area, the PCE offers enhanced computational power
     that may not be available on individual routers, sophisticated
     policy control and algorithms, and coordination of computation
     across the whole area.

  *  If a router wants to compute an MPLS-TE path across IGP areas,
     then its own TED lacks visibility of the complete topology.  That
     means that the router cannot determine the end-to-end path and
     cannot even select the right exit router (Area Border Router
     (ABR)) for an optimal path.  This is an issue for large-scale
     networks that need to segment their core networks into distinct
     areas but still want to take advantage of MPLS-TE.

  Previous solutions used per-domain path computation [RFC5152].  The
  source router could only compute the path for the first area because
  the router only has full topological visibility for the first area
  along the path but not for subsequent areas.  Per-domain path
  computation selects the exit ABR and other ABRs or AS Border Routers
  (ASBRs) as loose-hops [RFC3209] and using the IGP-computed shortest
  path topology for the remainder of the path.  This may lead to
  suboptimal paths, makes alternate/back-up path computation hard, and
  might result in no TE path being found when one does exist.

  The PCE presents a computation server that may have visibility into
  more than one IGP area or AS or may cooperate with other PCEs to
  perform distributed path computation.  The PCE needs access to the
  TED for the area(s) it serves, but [RFC4655] does not describe how
  this is achieved.  Many implementations make the PCE a passive
  participant in the IGP so that it can learn the latest state of the
  network, but this may be suboptimal when the network is subject to a
  high degree of churn or when the PCE is responsible for multiple
  areas.

  The following figure shows how a PCE can get its TED information
  using the mechanism described in this document.

               +----------+                           +---------+
               |  -----   |                           |   BGP   |
               | | TED |<-+-------------------------->| Speaker |
               |  -----   |   TED synchronization     |         |
               |    |     |        mechanism          +---------+
               |    |     |
               |    v     |
               |  -----   |
               | | PCE |  |
               |  -----   |
               +----------+
                    ^
                    | Request/
                    | Response
                    v
      Service  +----------+   Signaling  +----------+
      Request  | Head-End |   Protocol   | Adjacent |
      -------->|  Node    |<------------>|   Node   |
               +----------+              +----------+

    Figure 2: External PCE Node Using a TED Synchronization Mechanism

  The mechanism in this document allows the necessary TED information
  to be collected from the IGP within the network, filtered according
  to configurable policy, and distributed to the PCE as necessary.

2.2.  ALTO Server Network API

  An ALTO server [RFC5693] is an entity that generates an abstracted
  network topology and provides it to network-aware applications over a
  web-service-based API.  Example applications are peer-to-peer (P2P)
  clients or trackers, or Content Distribution Networks (CDNs).  The
  abstracted network topology comes in the form of two maps: a Network
  Map that specifies the allocation of prefixes to Partition
  Identifiers (PIDs) and a Cost Map that specifies the cost between
  PIDs listed in the Network Map. For more details, see [RFC7285].

  ALTO abstract network topologies can be auto-generated from the
  physical topology of the underlying network.  The generation would
  typically be based on policies and rules set by the operator.  Both
  prefix and TE data are required: prefix data is required to generate
  ALTO Network Maps and TE (topology) data is required to generate ALTO
  Cost Maps.  Prefix data is carried and originated in BGP, and TE data
  is originated and carried in an IGP.  The mechanism defined in this
  document provides a single interface through which an ALTO server can
  retrieve all the necessary prefixes and network topology data from
  the underlying network.  Note that an ALTO server can use other
  mechanisms to get network data, for example, peering with multiple
  IGP and BGP Speakers.

  The following figure shows how an ALTO server can get network
  topology information from the underlying network using the mechanism
  described in this document.

    +--------+
    | Client |<--+
    +--------+   |
                 |    ALTO    +--------+     Topology    +---------+
    +--------+   |  Protocol  |  ALTO  | Sync Mechanism  |   BGP   |
    | Client |<--+------------| Server |<----------------| Speaker |
    +--------+   |            |        |                 |         |
                 |            +--------+                 +---------+
    +--------+   |
    | Client |<--+
    +--------+

         Figure 3: ALTO Server Using Network Topology Information

3.  BGP Speaker Roles for BGP-LS

  In Figure 1, the BGP Speakers can be seen playing different roles in
  the distribution of information using BGP-LS.  This section
  introduces terms that explain the different roles of the BGP Speakers
  that are then used throughout the rest of this document.

  BGP-LS Producer:  The term BGP-LS Producer refers to a BGP Speaker
     that is originating link-state information into BGP.  BGP Speakers
     R1, R2, ... Rn originate link-state information from their
     underlying link-state IGP protocols into BGP-LS.  If R1 and R2 are
     in the same IGP flooding domain, then they would ordinarily
     originate the same link-state information into BGP-LS.  R1 may
     also originate information from sources other than IGP, e.g., its
     local node information.

  BGP-LS Consumer:  The term BGP-LS Consumer refers to a consumer
     application/process and not a BGP Speaker.  BGP Speakers RR1 and
     Rn are handing off the BGP-LS information that they have collected
     to a consumer application.  The BGP protocol implementation and
     the consumer application may be on the same or different nodes.
     This document only covers the BGP implementation.  The consumer
     application and the design of the interface between BGP and the
     consumer application may be implementation specific and are
     outside the scope of this document.  The communication of
     information MUST be unidirectional (i.e., from a BGP Speaker to
     the BGP-LS Consumer application), and a BGP-LS Consumer MUST NOT
     be able to send information to a BGP Speaker for origination into
     BGP-LS.

  BGP-LS Propagator:  The term BGP-LS Propagator refers to a BGP
     Speaker that is performing BGP protocol processing on the link-
     state information.  BGP Speaker RRm propagates the BGP-LS
     information between BGP Speaker Rn and BGP Speaker RR1.  The BGP
     implementation on RRm is propagating BGP-LS information.  It
     performs handling of BGP-LS UPDATE messages and performs the BGP
     Decision Process as part of deciding what information is to be
     propagated.  Similarly, BGP Speaker RR1 is receiving BGP-LS
     information from R1, R2, and RRm and propagating the information
     to the BGP-LS Consumer after performing BGP Decision Process.

  The above roles are not mutually exclusive.  The same BGP Speaker may
  be the BGP-LS Producer for some link-state information and BGP-LS
  Propagator for some other link-state information while also providing
  this information to a BGP-LS Consumer.

  The rest of this document refers to the role when describing
  procedures that are specific to that role.  When the role is not
  specified, then the said procedure applies to all BGP Speakers.

4.  Advertising IGP Information into BGP-LS

  The origination and propagation of IGP link-state information via BGP
  needs to provide a consistent and accurate view of the topology of
  the IGP domain.  BGP-LS provides an abstraction of the IGP specifics,
  and BGP-LS Consumers may be varied types of applications.

  The link-state information advertised in BGP-LS from the IGPs is
  derived from the IGP LSDB built using the OSPF Link-State
  Advertisements (LSAs) or the IS-IS Link-State Packets (LSPs).
  However, it does not serve as a verbatim reflection of the
  originating router's LSDB.  It does not include the LSA/LSP sequence
  number information since a single link-state object may be put
  together with information that is coming from multiple LSAs/LSPs.
  Also, not all of the information carried in LSAs/LSPs may be required
  or suitable for advertisement via BGP-LS (e.g., ASBR reachability in
  OSPF, OSPF virtual links, link-local-scoped information, etc.).  The
  LSAs/LSPs that are purged or aged out are not included in the BGP-LS
  advertisement even though they may be present in the LSDB (e.g., for
  the IGP flooding purposes).  The information from the LSAs/LSPs that
  is invalid or malformed or that which needs to be ignored per the
  respective IGP protocol specifications are also not included in the
  BGP-LS advertisement.

  The details of the interface between IGPs and BGP for the
  advertisement of link-state information are outside the scope of this
  document.  In some cases, the information derived from IGP processing
  (e.g., combination of link-state object from across multiple LSAs/
  LSPs, leveraging reachability and two-way connectivity checks, etc.)
  is required for the advertisement of link-state information into BGP-
  LS.

5.  Carrying Link-State Information in BGP

  The link-state information is carried in BGP UPDATE messages as: (1)
  BGP NLRI information carried within MP_REACH_NLRI and MP_UNREACH_NLRI
  attributes that describes link, node, or prefix objects and (2) a BGP
  path attribute (BGP-LS Attribute) that carries properties of the
  link, node, or prefix objects such as the link and prefix metric,
  auxiliary Router-IDs of nodes, etc.

  It is desirable to keep the dependencies on the protocol source of
  this attribute to a minimum and represent any content in an IGP-
  neutral way, such that applications that want to learn about a link-
  state topology do not need to know about any OSPF or IS-IS protocol
  specifics.

  This section mainly describes the procedures for a BGP-LS Producer to
  originate link-state information into BGP-LS.

5.1.  TLV Format

  Information in the Link-State NLRIs and the BGP-LS Attribute is
  encoded in Type/Length/Value triplets.  The TLV format is shown in
  Figure 4 and applies to both the NLRI and the BGP-LS Attribute
  encodings.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //                        Value (variable)                     //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                           Figure 4: TLV Format

  The Length field defines the length of the value portion in octets
  (thus, a TLV with no value portion would have a length of zero).  The
  TLV is not padded to 4-octet alignment.  Unknown and unsupported
  types MUST be preserved and propagated within both the NLRI and the
  BGP-LS Attribute.  The presence of unknown or unexpected TLVs MUST
  NOT result in the NLRI or the BGP-LS Attribute being considered
  malformed.  An example of an unexpected TLV is when a TLV is received
  along with an update for a link-state object other than the one that
  the TLV is specified as associated with.

  To compare NLRIs with unknown TLVs, all TLVs within the NLRI MUST be
  ordered in ascending order by TLV Type.  If there are multiple TLVs
  of the same type within a single NLRI, then the TLVs sharing the same
  type MUST be first in ascending order based on the Length field
  followed by ascending order based on the Value field.  Comparison of
  the Value fields is performed by treating the entire field as opaque
  binary data and ordered lexicographically (i.e., treating each byte
  of binary data as a symbol to compare, with the symbols ordered by
  their numerical value).  NLRIs having TLVs that do not follow the
  above ordering rules MUST be considered as malformed by a BGP-LS
  Propagator.  This insistence on canonical ordering ensures that
  multiple variant copies of the same NLRI from multiple BGP-LS
  Producers and the ambiguity arising therefrom is prevented.

  For both the NLRI and BGP-LS Attribute parts, all TLVs are considered
  as optional except where explicitly specified as mandatory or
  required in specific conditions.

  The TLVs within the BGP-LS Attribute SHOULD be ordered in ascending
  order by TLV type.  The BGP-LS Attribute with unordered TLVs MUST NOT
  be considered malformed.

  The origination of the same link-state information by multiple BGP-LS
  Producers may result in differences and inconsistencies due to the
  inclusion or exclusion of optional TLVs.  Different optional TLVs in
  the NLRI results in multiple NLRIs being generated for the same link-
  state object.  Different optional TLVs in the BGP-LS Attribute may
  result in the propagation of partial information.  To address these
  inconsistencies, the BGP-LS Consumer will need to recognize and merge
  the duplicate information or deal with missing information.  The
  deployment of BGP-LS Producers that consistently originate the same
  set of optional TLVs is recommended to mitigate such situations.

5.2.  The Link-State NLRI

  The MP_REACH_NLRI and MP_UNREACH_NLRI attributes are BGP's containers
  for carrying opaque information.  This specification defines three
  Link-State NLRI types that describe either a node, a link, or a
  prefix.

  All non-VPN link, node, and prefix information SHALL be encoded using
  AFI 16388 / SAFI 71.  VPN link, node, and prefix information SHALL be
  encoded using AFI 16388 / SAFI 72.

  For two BGP Speakers to exchange Link-State NLRI, they MUST use BGP
  Capabilities Advertisement to ensure that they are both capable of
  properly processing such NLRI.  This is done as specified in
  [RFC4760] by using capability code 1 (multiprotocol BGP), with AFI
  16388 / SAFI 71 for BGP-LS and AFI 16388 / SAFI 72 for BGP-LS-VPN.

  New Link-State NLRI types may be introduced in the future.  Since
  supported NLRI type values within the address family are not
  expressed in the Multiprotocol BGP (MP-BGP) capability [RFC4760], it
  is possible that a BGP Speaker has advertised support for BGP-LS but
  does not support a particular Link-State NLRI type.  To allow the
  introduction of new Link-State NLRI types seamlessly in the future
  without the need for upgrading all BGP Speakers in the propagation
  path (e.g., a route reflector), this document deviates from the
  default handling behavior specified by Section 5.4 (paragraph 2) of
  [RFC7606] for Link-State address family.  An implementation MUST
  handle unknown Link-State NLRI types as opaque objects and MUST
  preserve and propagate them.

  The format of the Link-State NLRI is shown in the following figures.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |            NLRI Type          |     Total NLRI Length         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    //                  Link-State NLRI (variable)                 //
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 5: Link-State AFI 16388 / SAFI 71 NLRI Format

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |            NLRI Type          |     Total NLRI Length         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    +                Route Distinguisher (8 octets)                 +
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    //                  Link-State NLRI (variable)                 //
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 6: Link-State VPN AFI 16388 / SAFI 72 NLRI Format

  The Total NLRI Length field contains the cumulative length, in
  octets, of the rest of the NLRI, not including the NLRI Type field or
  itself.  For VPN applications, it also includes the length of the
  Route Distinguisher.

                  +======+===========================+
                  | Type | NLRI Type                 |
                  +======+===========================+
                  |  1   | Node NLRI                 |
                  +------+---------------------------+
                  |  2   | Link NLRI                 |
                  +------+---------------------------+
                  |  3   | IPv4 Topology Prefix NLRI |
                  +------+---------------------------+
                  |  4   | IPv6 Topology Prefix NLRI |
                  +------+---------------------------+

                          Table 1: NLRI Types

  Route Distinguishers are defined and discussed in [RFC4364].

  The Node NLRI (NLRI Type = 1) is shown in the following figure.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+
    |  Protocol-ID  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           Identifier                          |
    +                           (8 octets)                          +
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //             Local Node Descriptors TLV (variable)           //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 7: The Node NLRI Format

  The Link NLRI (NLRI Type = 2) is shown in the following figure.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+
    |  Protocol-ID  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           Identifier                          |
    +                           (8 octets)                          +
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //            Local Node Descriptors TLV (variable)            //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //            Remote Node Descriptors TLV (variable)           //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //               Link Descriptors TLVs (variable)              //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 8: The Link NLRI Format

  The IPv4 and IPv6 Prefix NLRIs (NLRI Type = 3 and Type = 4) use the
  same format as shown in the following figure.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+
    |  Protocol-ID  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           Identifier                          |
    +                           (8 octets)                          +
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //            Local Node Descriptors TLV (variable)            //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //             Prefix Descriptors TLVs (variable)              //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 9: The IPv4/IPv6 Topology Prefix NLRI Format

  The Protocol-ID field can contain one of the following values:

           +=============+==================================+
           | Protocol-ID | NLRI information source protocol |
           +=============+==================================+
           |      1      | IS-IS Level 1                    |
           +-------------+----------------------------------+
           |      2      | IS-IS Level 2                    |
           +-------------+----------------------------------+
           |      3      | OSPFv2                           |
           +-------------+----------------------------------+
           |      4      | Direct                           |
           +-------------+----------------------------------+
           |      5      | Static configuration             |
           +-------------+----------------------------------+
           |      6      | OSPFv3                           |
           +-------------+----------------------------------+

                     Table 2: Protocol Identifiers

  The 'Direct' and 'Static configuration' protocol types SHOULD be used
  when BGP-LS is sourcing local information.  For all information
  derived from other protocols, the corresponding Protocol-ID MUST be
  used.  If BGP-LS has direct access to interface information and wants
  to advertise a local link, then the Protocol-ID 'Direct' SHOULD be
  used.  For modeling virtual links, such as described in Section 6,
  the Protocol-ID 'Static configuration' SHOULD be used.

  A router may run multiple protocol instances of OSPF or IS-IS whereby
  it becomes a border router between multiple IGP domains.  Both OSPF
  and IS-IS may also run multiple routing protocol instances over the
  same link.  See [RFC8202] and [RFC6549].  These instances define
  independent IGP routing domains.  The Identifier field carries an
  8-octet BGP-LS Instance Identifier (Instance-ID) number that is used
  to identify the IGP routing domain where the NLRI belongs.  The NLRIs
  representing link-state objects (nodes, links, or prefixes) from the
  same IGP routing instance should have the same BGP-LS Instance-ID.
  NLRIs with different BGP-LS Instance-IDs are considered to be from
  different IGP routing instances.

  To support multiple IGP instances, an implementation needs to support
  the configuration of unique BGP-LS Instance-IDs at the routing
  protocol instance level.  The BGP-LS Instance-ID 0 is RECOMMENDED to
  be used when there is only a single protocol instance in the network
  where BGP-LS is operational.  The network operator MUST assign the
  same BGP-LS Instance-IDs on all BGP-LS Producers within a given IGP
  domain.  Unique BGP-LS Instance-IDs MUST be assigned to routing
  protocol instances operating in different IGP domains.  This can
  allow the BGP-LS Consumer to build an accurate segregated multi-
  domain topology based on the BGP-LS Instance-ID.

  When the above-described semantics and recommendations are not
  followed, a BGP-LS Consumer may see more than one link-state object
  for the same node, link, or prefix (each with a different BGP-LS
  Instance-ID) when there are multiple BGP-LS Producers deployed.  This
  may also result in the BGP-LS Consumers getting an inaccurate
  network-wide topology.

  Each Node Descriptor, Link Descriptor, and Prefix Descriptor consists
  of one or more TLVs, as described in the following sections.  These
  Descriptor TLVs are applicable for the Node, Link, and Prefix NLRI
  Types for the protocols that are listed in Table 2.  Documents
  extending BGP-LS specifications with new NLRI Types and/or protocols
  MUST specify the NLRI descriptors for them.

  When adding, removing, or modifying a TLV/sub-TLV from a Link-State
  NLRI, the BGP-LS Producer MUST withdraw the old NLRI by including it
  in the MP_UNREACH_NLRI.  Not doing so can result in duplicate and
  inconsistent link-state objects hanging around in the BGP-LS table.

5.2.1.  Node Descriptors

  Each link is anchored by a pair of Router-IDs that are used by the
  underlying IGP, namely a 48-bit ISO System-ID for IS-IS and a 32-bit
  Router-ID for OSPFv2 and OSPFv3.  An IGP may use one or more
  additional auxiliary Router-IDs, mainly for Traffic Engineering
  purposes.  For example, IS-IS may have one or more IPv4 and IPv6 TE
  Router-IDs [RFC5305] [RFC6119].  When configured, these auxiliary TE
  Router-IDs (TLV 1028/1029) MUST be included in the node attribute
  described in Section 5.3.1 and MAY be included in the link attribute
  described in Section 5.3.2.  The advertisement of the TE Router-IDs
  can help a BGP-LS Consumer to correlate multiple link-state objects
  (e.g., in different IGP instances or areas/levels) to the same node
  in the network.

  It is desirable that the Router-ID assignments inside the Node
  Descriptors are globally unique.  However, there may be Router-ID
  spaces (e.g., ISO) where no global registry exists, or worse, Router-
  IDs have been allocated following the private-IP allocation described
  in [RFC1918].  BGP-LS uses the Autonomous System Number to
  disambiguate the Router-IDs, as described in Section 5.2.1.1.

5.2.1.1.  Globally Unique Node/Link/Prefix Identifiers

  One problem that needs to be addressed is the ability to identify an
  IGP node globally (by "globally", we mean within the BGP-LS database
  collected by all BGP-LS Speakers that talk to each other).  This can
  be expressed through the following two requirements:

  (A)   The same node MUST NOT be represented by two keys (otherwise,
        one node will look like two nodes).

  (B)   Two different nodes MUST NOT be represented by the same key
        (otherwise, two nodes will look like one node).

  We define an "IGP domain" to be the set of nodes (hence, by
  extension, links and prefixes) within which each node has a unique
  IGP representation by using the combination of OSPF Area-ID, Router-
  ID, Protocol-ID, Multi-Topology Identifier (MT-ID), and BGP-LS
  Instance-ID.  The problem is that BGP may receive node/link/prefix
  information from multiple independent "IGP domains", and we need to
  distinguish between them.  Moreover, we can't assume there is always
  one and only one IGP domain per AS.  During IGP transitions, it may
  happen that two redundant IGPs are in place.

  Furthermore, in deployments where BGP-LS is used to advertise
  topology from multiple ASes, the Autonomous System Number (ASN) is
  used to distinguish topology information reported from different
  ASes.

  The BGP-LS Instance-ID carried in the Identifier field, as described
  earlier along with a set of sub-TLVs described in Section 5.2.1.4,
  allows specification of a flexible key for any given node/link
  information such that the global uniqueness of the NLRI is ensured.
  Since the BGP-LS Instance-ID is operator assigned, its allocation
  scheme can ensure that each IGP domain is uniquely identified even
  across a multi-AS network.

5.2.1.2.  Local Node Descriptors

  The Local Node Descriptors TLV contains Node Descriptors for the node
  anchoring the local end of the link.  This is a mandatory TLV in all
  three types of NLRIs (node, link, and prefix).  The Type is 256.  The
  length of this TLV is variable.  The value contains one or more Node
  Descriptor sub-TLVs defined in Section 5.2.1.4.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    //              Node Descriptor Sub-TLVs (variable)            //
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 10: Local Node Descriptors TLV Format

5.2.1.3.  Remote Node Descriptors

  The Remote Node Descriptors TLV contains Node Descriptors for the
  node anchoring the remote end of the link.  This is a mandatory TLV
  for Link NLRIs.  The Type is 257.  The length of this TLV is
  variable.  The value contains one or more Node Descriptor sub-TLVs
  defined in Section 5.2.1.4.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    //              Node Descriptor Sub-TLVs (variable)            //
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 11: Remote Node Descriptors TLV Format

5.2.1.4.  Node Descriptor Sub-TLVs

  The Node Descriptor sub-TLV type code points and lengths are listed
  in the following table:

   +====================+================================+==========+
   | Sub-TLV Code Point | Description                    |   Length |
   +====================+================================+==========+
   |        512         | Autonomous System              |        4 |
   +--------------------+--------------------------------+----------+
   |        513         | BGP-LS Identifier (deprecated) |        4 |
   +--------------------+--------------------------------+----------+
   |        514         | OSPF Area-ID                   |        4 |
   +--------------------+--------------------------------+----------+
   |        515         | IGP Router-ID                  | Variable |
   +--------------------+--------------------------------+----------+

                   Table 3: Node Descriptor Sub-TLVs

  The sub-TLV values in Node Descriptor TLVs are defined as follows:

  Autonomous System:  Opaque value (32-bit AS Number).  This is an
     optional TLV.  The value SHOULD be set to the AS Number associated
     with the BGP process originating the link-state information.  An
     implementation MAY provide a configuration option on the BGP-LS
     Producer to use a different value, e.g., to avoid collisions when
     using private AS Numbers.

  BGP-LS Identifier:  Opaque value (32-bit ID).  This is an optional
     TLV that has been deprecated by this document (refer to Appendix A
     for more details).  It MAY be advertised for compatibility with
     [RFC7752] implementations.  See the final paragraph of this
     section for further considerations and a recommended default
     value.

  OSPF Area-ID:  Used to identify the 32-bit area to which the
     information advertised in the NLRI belongs.  This is a mandatory
     TLV when originating information from OSPF that is derived from
     area-scope LSAs.  The OSPF Area Identifier allows different NLRIs
     of the same router to be differentiated on a per-area basis.  It
     is not used for NLRIs when carrying information that is derived
     from AS-scope LSAs as that information is not associated with a
     specific area.

  IGP Router-ID:  Opaque value.  This is a mandatory TLV when
     originating information from IS-IS, OSPF, 'Direct', or 'Static
     configuration'.  For an IS-IS non-pseudonode, this contains a
     6-octet ISO Node-ID (ISO System-ID).  For an IS-IS pseudonode
     corresponding to a LAN, this contains the 6-octet ISO Node-ID of
     the Designated Intermediate System (DIS) followed by a 1-octet,
     nonzero PSN identifier (7 octets in total).  For an OSPFv2 or
     OSPFv3 non-pseudonode, this contains the 4-octet Router-ID.  For
     an OSPFv2 pseudonode representing a LAN, this contains the 4-octet
     Router-ID of the Designated Router (DR) followed by the 4-octet
     IPv4 address of the DR's interface to the LAN (8 octets in total).
     Similarly, for an OSPFv3 pseudonode, this contains the 4-octet
     Router-ID of the DR followed by the 4-octet interface identifier
     of the DR's interface to the LAN (8 octets in total).  The TLV
     size in combination with the protocol identifier enables the
     decoder to determine the type of the node.  For 'Direct' or
     'Static configuration', the value SHOULD be taken from an IPv4 or
     IPv6 address (e.g., loopback interface) configured on the node.
     When the node is running an IGP protocol, an implementation MAY
     choose to use the IGP Router-ID for 'Direct' or 'Static
     configuration'.

  At most, there MUST be one instance of each sub-TLV type present in
  any Node Descriptor.  The sub-TLVs within a Node Descriptor MUST be
  arranged in ascending order by sub-TLV type.  This needs to be done
  to compare NLRIs, even when an implementation encounters an unknown
  sub-TLV.  Using stable sorting, an implementation can do a binary
  comparison of NLRIs and hence allow incremental deployment of new key
  sub-TLVs.

  The BGP-LS Identifier was introduced by [RFC7752], and its use is
  being deprecated by this document.  Implementations SHOULD support
  the advertisement of this sub-TLV for backward compatibility in
  deployments where there are BGP-LS Producer implementations that
  conform to [RFC7752] to ensure consistency of NLRI encoding for link-
  state objects.  The default value of 0 is RECOMMENDED to be used when
  a BGP-LS Producer includes this sub-TLV when originating information
  into BGP-LS.  Implementations SHOULD provide an option to configure
  this value for backward compatibility reasons.  As a reminder, the
  use of the BGP-LS Instance-ID that is carried in the Identifier field
  is the way of segregation of link-state objects of different IGP
  domains in BGP-LS.

5.2.2.  Link Descriptors

  The Link Descriptor field is a set of Type/Length/Value (TLV)
  triplets.  The format of each TLV is shown in Section 5.1.  The Link
  Descriptor TLVs uniquely identify a link among multiple parallel
  links between a pair of anchor routers.  A link described by the Link
  Descriptor TLVs actually is a "half-link", a unidirectional
  representation of a logical link.  To fully describe a single logical
  link, two anchor routers advertise a half-link each, i.e., two Link
  NLRIs are advertised for a given point-to-point link.

  A link between two nodes is not considered as complete (or available)
  unless it is described by the two Link NLRIs corresponding to the
  half-link representation from the pair of anchor nodes.  This check
  is similar to the 'two-way connectivity check' that is performed by
  link-state IGPs.

  An implementation MAY suppress the advertisement of a Link NLRI,
  corresponding to a half-link, from a link-state IGP unless the IGP
  has verified that the link is being reported in the IS-IS LSP or OSPF
  Router LSA by both the nodes connected by that link.  This 'two-way
  connectivity check' is performed by link-state IGPs during their
  computation and can be leveraged before passing information for any
  half-link that is reported from these IGPs into BGP-LS.  This ensures
  that only those link-state IGP adjacencies that are established get
  reported via Link NLRIs.  Such a 'two-way connectivity check' could
  also be required in certain cases (e.g., with OSPF) to obtain the
  proper link identifiers of the remote node.

  The format and semantics of the Value fields in most Link Descriptor
  TLVs correspond to the format and semantics of Value fields in IS-IS
  Extended IS Reachability sub-TLVs, which are defined in [RFC5305],
  [RFC5307], and [RFC6119].  Although the encodings for Link Descriptor
  TLVs were originally defined for IS-IS, the TLVs can carry data
  sourced by either IS-IS or OSPF.

  The following TLVs are defined as Link Descriptors in the Link NLRI:

    +================+===================+============+=============+
    | TLV Code Point | Description       | IS-IS TLV/ | Reference   |
    |                |                   |  Sub-TLV   |             |
    +================+===================+============+=============+
    |      258       | Link Local/Remote |    22/4    | [RFC5307],  |
    |                | Identifiers       |            | Section 1.1 |
    +----------------+-------------------+------------+-------------+
    |      259       | IPv4 interface    |    22/6    | [RFC5305],  |
    |                | address           |            | Section 3.2 |
    +----------------+-------------------+------------+-------------+
    |      260       | IPv4 neighbor     |    22/8    | [RFC5305],  |
    |                | address           |            | Section 3.3 |
    +----------------+-------------------+------------+-------------+
    |      261       | IPv6 interface    |   22/12    | [RFC6119],  |
    |                | address           |            | Section 4.2 |
    +----------------+-------------------+------------+-------------+
    |      262       | IPv6 neighbor     |   22/13    | [RFC6119],  |
    |                | address           |            | Section 4.3 |
    +----------------+-------------------+------------+-------------+
    |      263       | Multi-Topology    |    ---     | Section     |
    |                | Identifier        |            | 5.2.2.1     |
    +----------------+-------------------+------------+-------------+

                      Table 4: Link Descriptor TLVs

  The information about a link present in the LSA/LSP originated by the
  local node of the link determines the set of TLVs in the Link
  Descriptor of the link.

     If interface and neighbor addresses, either IPv4 or IPv6, are
     present, then the interface/neighbor address TLVs MUST be
     included, and the Link Local/Remote Identifiers TLV MUST NOT be
     included in the Link Descriptor.  The Link Local/Remote
     Identifiers TLV MAY be included in the link attribute when
     available.  IPv4/IPv6 link-local addresses MUST NOT be carried in
     the IPv4/IPv6 interface/neighbor address TLVs (259/260/261/262) as
     descriptors of a link since they are not considered unique.

     If interface and neighbor addresses are not present and the link
     local/remote identifiers are present, then the Link Local/Remote
     Identifiers TLV MUST be included in the Link Descriptor.  The Link
     Local/Remote identifiers MUST be included in the Link Descriptor
     and in the case of links having only IPv6 link-local addressing on
     them.

     The Multi-Topology Identifier TLV MUST be included as a Link
     Descriptor if the underlying IGP link object is associated with a
     non-default topology.

  The TLVs/sub-TLVs corresponding to the interface addresses and/or the
  local/remote identifiers may not always be signaled in the IGPs
  unless their advertisement is enabled specifically.  In such cases,
  it is valid to advertise a BGP-LS Link NLRI without any of these
  identifiers.

5.2.2.1.  Multi-Topology Identifier

  The Multi-Topology Identifier (MT-ID) TLV carries one or more IS-IS
  or OSPF Multi-Topology Identifiers for a link, node, or prefix.

  The semantics of the IS-IS MT-ID are defined in Sections 7.1 and 7.2
  of [RFC5120].  The semantics of the OSPF MT-ID are defined in
  Section 3.7 of [RFC4915].  If the value in the MT-ID TLV is derived
  from OSPF, then the upper R bits of the MT-ID field MUST be set to 0
  and only the values from 0 to 127 are valid for the MT-ID.

  The format of the MT-ID TLV is shown in the following figure.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |          Length=2*n           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |R R R R|  Multi-Topology ID 1  |             ....             //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //             ....             |R R R R|  Multi-Topology ID n  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 12: Multi-Topology Identifier TLV Format

  The Type is 263, the length is 2*n, and n is the number of MT-IDs
  carried in the TLV.

  The MT-ID TLV MAY be included as a Link Descriptor, as a Prefix
  Descriptor, or in the BGP-LS Attribute of a Node NLRI.  When included
  as a Link or Prefix Descriptor, only a single MT-ID TLV containing
  the MT-ID of the topology where the link or the prefix is reachable
  is allowed.  In case one wants to advertise multiple topologies for a
  given Link or Prefix Descriptor, multiple NLRIs MUST be generated
  where each NLRI contains a single unique MT-ID.  When used as a Link
  or Prefix Descriptor for IS-IS, the Bits R are reserved and MUST be
  set to 0 (as per Section 7.2 of [RFC5120]) when originated and
  ignored on receipt.

  In the BGP-LS Attribute of a Node NLRI, one MT-ID TLV containing the
  array of MT-IDs of all topologies where the node is reachable is
  allowed.  When used in the Node Attribute TLV for IS-IS, the Bits R
  are set as per Section 7.1 of [RFC5120].

5.2.3.  Prefix Descriptors

  The Prefix Descriptor field is a set of Type/Length/Value (TLV)
  triplets.  Prefix Descriptor TLVs uniquely identify an IPv4 or IPv6
  prefix originated by a node.  The following TLVs are defined as
  Prefix Descriptors in the IPv4/IPv6 Prefix NLRI:

  +================+===========================+==========+===========+
  | TLV Code Point | Description               |  Length  | Reference |
  +================+===========================+==========+===========+
  |      263       | Multi-Topology            | variable | Section   |
  |                | Identifier                |          | 5.2.2.1   |
  +----------------+---------------------------+----------+-----------+
  |      264       | OSPF Route Type           |    1     | Section   |
  |                |                           |          | 5.2.3.1   |
  +----------------+---------------------------+----------+-----------+
  |      265       | IP Reachability           | variable | Section   |
  |                | Information               |          | 5.2.3.2   |
  +----------------+---------------------------+----------+-----------+

                     Table 5: Prefix Descriptor TLVs

  The Multi-Topology Identifier TLV MUST be included in the Prefix
  Descriptor if the underlying IGP prefix object is associated with a
  non-default topology.

5.2.3.1.  OSPF Route Type

  The OSPF Route Type TLV is an optional TLV corresponding to Prefix
  NLRIs originated from OSPF.  It is used to identify the OSPF route
  type of the prefix.  An OSPF prefix MAY be advertised in the OSPF
  domain with multiple route types.  The Route Type TLV allows the
  discrimination of these advertisements.  The OSPF Route Type TLV MUST
  be included in the advertisement when the type is either being
  signaled explicitly in the underlying LSA or can be determined via
  another LSA for the same prefix when it is not signaled explicitly
  (e.g., in the case of OSPFv2 Extended Prefix Opaque LSA [RFC7684]).
  The route type advertised in the OSPFv2 Extended Prefix TLV
  (Section 2.1 of [RFC7684]) does not make a distinction between Type 1
  and 2 for AS external and Not-So-Stubby Area (NSSA) external routes.
  In this case, the route type to be used in the BGP-LS advertisement
  can be determined by checking the OSPFv2 External or NSSA External
  LSA for the prefix.  A similar check for the base OSPFv2 LSAs can be
  done to determine the route type to be used when the route type value
  0 is carried in the OSPFv2 Extended Prefix TLV.

  The format of the OSPF Route Type TLV is shown in the following
  figure.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Route Type   |
    +-+-+-+-+-+-+-+-+

                  Figure 13: OSPF Route Type TLV Format

  The Type and Length fields of the TLV are defined in Table 5.  The
  Route Type field follows the route types defined in the OSPF protocol
  and can be one of the following:

  *  Intra-Area (0x1)

  *  Inter-Area (0x2)

  *  External 1 (0x3)

  *  External 2 (0x4)

  *  NSSA 1 (0x5)

  *  NSSA 2 (0x6)

5.2.3.2.  IP Reachability Information

  The IP Reachability Information TLV is a mandatory TLV for IPv4 &
  IPv6 Prefix NLRI types.  The TLV contains one IP address prefix (IPv4
  or IPv6) originally advertised in the IGP topology.  A router SHOULD
  advertise an IP Prefix NLRI for each of its BGP next hops.  The
  format of the IP Reachability Information TLV is shown in the
  following figure:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Prefix Length | IP Prefix (variable)                         //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 14: IP Reachability Information TLV Format

  The Type and Length fields of the TLV are defined in Table 5.  The
  following two fields determine the reachability information of the
  address family.  The Prefix Length field contains the length of the
  prefix in bits.  The IP Prefix field contains an IP address prefix
  followed by the minimum number of trailing bits needed to make the
  end of the field fall on an octet boundary.  Any trailing bits MUST
  be set to 0.  Thus, the IP Prefix field contains the most significant
  octets of the prefix, i.e., 1 octet for prefix length 1 up to 8, 2
  octets for prefix length 9 up to 16, 3 octets for prefix length 17 up
  to 24, 4 octets for prefix length 25 up to 32, etc.

5.3.  The BGP-LS Attribute

  The BGP-LS Attribute (assigned value 29 by IANA) is an optional, non-
  transitive BGP Attribute that is used to carry link, node, and prefix
  parameters and attributes.  It is defined as a set of Type/Length/
  Value (TLV) triplets, as described in the following section.  This
  attribute SHOULD only be included with Link-State NLRIs.  The use of
  this attribute for other address families is outside the scope of
  this document.

  The Node Attribute TLVs, Link Attribute TLVs, and Prefix Attribute
  TLVs are sets of TLVs that may be encoded in the BGP-LS Attribute
  associated with a Node NLRI, Link NLRI, and Prefix NLRI respectively.

  The size of the BGP-LS Attribute may potentially grow large,
  depending on the amount of link-state information associated with a
  single Link-State NLRI.  The BGP specification [RFC4271] mandates a
  maximum BGP message size of 4096 octets.  It is RECOMMENDED that
  implementations support the extended message size for BGP [RFC8654]
  to accommodate a larger size of information within the BGP-LS
  Attribute.  BGP-LS Producers MUST ensure that the TLVs included in
  the BGP-LS Attribute does not result in a BGP UPDATE message for a
  single Link-State NLRI that crosses the maximum limit for a BGP
  message.

  An implementation MAY adopt mechanisms to avoid this problem that may
  be based on the BGP-LS Consumer applications' requirement; these
  mechanisms are beyond the scope of this specification.  However, if
  an implementation chooses to mitigate the problem by excluding some
  TLVs from the BGP-LS Attribute, this exclusion SHOULD be done
  consistently by all BGP-LS Producers within a given BGP-LS domain.
  In the event of inconsistent exclusion of TLVs from the BGP-LS
  Attribute, the result would be a differing set of attributes of the
  link-state object being propagated to BGP-LS Consumers based on the
  BGP Decision Process at BGP-LS Propagators.

  When a BGP-LS Propagator finds that it is exceeding the maximum BGP
  message size due to the addition or update of some other BGP
  Attribute (e.g., AS_PATH), it MUST consider the BGP-LS Attribute to
  be malformed, apply the 'Attribute Discard' error-handling approach
  [RFC7606], and handle the propagation as described in Section 8.2.2.
  When a BGP-LS Propagator needs to perform 'Attribute Discard' for
  reducing the BGP UPDATE message size as specified in Section 4 of
  [RFC8654], it MUST first discard the BGP-LS Attribute to enable the
  detection and diagnosis of this error condition as discussed in
  Section 8.2.2.  This brings the deployment consideration that the
  consistent propagation of BGP-LS information with a BGP UPDATE
  message size larger than 4096 octets can only happen along a set of
  BGP Speakers that all support the contents of [RFC8654].

5.3.1.  Node Attribute TLVs

  The following Node Attribute TLVs are defined for the BGP-LS
  Attribute associated with a Node NLRI:

      +================+================+==========+=============+
      | TLV Code Point | Description    |   Length | Reference   |
      +================+================+==========+=============+
      |      263       | Multi-Topology | variable | Section     |
      |                | Identifier     |          | 5.2.2.1     |
      +----------------+----------------+----------+-------------+
      |      1024      | Node Flag Bits |        1 | Section     |
      |                |                |          | 5.3.1.1     |
      +----------------+----------------+----------+-------------+
      |      1025      | Opaque Node    | variable | Section     |
      |                | Attribute      |          | 5.3.1.5     |
      +----------------+----------------+----------+-------------+
      |      1026      | Node Name      | variable | Section     |
      |                |                |          | 5.3.1.3     |
      +----------------+----------------+----------+-------------+
      |      1027      | IS-IS Area     | variable | Section     |
      |                | Identifier     |          | 5.3.1.2     |
      +----------------+----------------+----------+-------------+
      |      1028      | IPv4 Router-ID |        4 | [RFC5305],  |
      |                | of Local Node  |          | Section 4.3 |
      +----------------+----------------+----------+-------------+
      |      1029      | IPv6 Router-ID |       16 | [RFC6119],  |
      |                | of Local Node  |          | Section 4.1 |
      +----------------+----------------+----------+-------------+

                      Table 6: Node Attribute TLVs

5.3.1.1.  Node Flag Bits TLV

  The Node Flag Bits TLV carries a bitmask describing node attributes.
  The value is a 1-octet-length bit array of flags, where each bit
  represents a node-operational state or attribute.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |O|T|E|B|R|V|   |
    +-+-+-+-+-+-+-+-+

                   Figure 15: Node Flag Bits TLV Format

  The bits are defined as follows:

                   +=====+==============+============+
                   | Bit | Description  | Reference  |
                   +=====+==============+============+
                   | 'O' | Overload Bit | [ISO10589] |
                   +-----+--------------+------------+
                   | 'A' | Attached Bit | [ISO10589] |
                   +-----+--------------+------------+
                   | 'E' | External Bit | [RFC2328]  |
                   +-----+--------------+------------+
                   | 'B' | ABR Bit      | [RFC2328]  |
                   +-----+--------------+------------+
                   | 'R' | Router Bit   | [RFC5340]  |
                   +-----+--------------+------------+
                   | 'V' | V6 Bit       | [RFC5340]  |
                   +-----+--------------+------------+

                   Table 7: Node Flag Bits Definitions

  The bits that are not defined MUST be set to 0 by the originator and
  MUST be ignored by the receiver.

5.3.1.2.  IS-IS Area Identifier TLV

  An IS-IS node can be part of only a single IS-IS area.  However, a
  node can have multiple synonymous area addresses.  Each of these area
  addresses is carried in the IS-IS Area Identifier TLV.  If multiple
  area addresses are present, multiple TLVs are used to encode them.
  The IS-IS Area Identifier TLV may be present in the BGP-LS Attribute
  only when advertised in the Link-State Node NLRI.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //               IS-IS Area Identifier (variable)              //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 16: IS-IS Area Identifier TLV Format

5.3.1.3.  Node Name TLV

  The Node Name TLV is optional.  The encoding semantics for the node
  name has been borrowed from [RFC5301].  The Value field identifies
  the symbolic name of the router node.  This symbolic name can be the
  Fully Qualified Domain Name (FQDN) for the router, a substring of the
  FQDN (e.g., a hostname), or any string that an operator wants to use
  for the router.  The use of the FQDN or a substring of it is strongly
  RECOMMENDED.  The maximum length of the Node Name TLV is 255 octets.

  The Value field is encoded in 7-bit ASCII.  If a user interface for
  configuring or displaying this field permits Unicode characters, then
  the user interface is responsible for applying the ToASCII and/or
  ToUnicode algorithm as described in [RFC5890] to achieve the correct
  format for transmission or display.

  [RFC5301] describes an IS-IS-specific extension, and [RFC5642]
  describes an OSPF extension for the advertisement of the node name,
  which may be encoded in the Node Name TLV.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //                     Node Name (variable)                    //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 17: Node Name Format

5.3.1.4.  Local IPv4/IPv6 Router-ID TLVs

  The local IPv4/IPv6 Router-ID TLVs are used to describe auxiliary
  Router-IDs that the IGP might be using, e.g., for TE and migration
  purposes such as correlating a Node-ID between different protocols.
  If there is more than one auxiliary Router-ID of a given type, then
  each one is encoded as a separate TLV.

5.3.1.5.  Opaque Node Attribute TLV

  The Opaque Node Attribute TLV is an envelope that transparently
  carries optional Node Attribute TLVs advertised by a router.  An
  originating router shall use this TLV for encoding information
  specific to the protocol advertised in the NLRI header Protocol-ID
  field or new protocol extensions to the protocol as advertised in the
  NLRI header Protocol-ID field for which there is no protocol-neutral
  representation in the BGP Link-State NLRI.  The primary use of the
  Opaque Node Attribute TLV is to bridge the document lag between a new
  IGP link-state attribute and its protocol-neutral BGP-LS extension
  being defined.  Once the protocol-neutral BGP-LS extensions are
  defined, the BGP-LS implementations may still need to advertise the
  information both within the Opaque Attribute TLV and the new TLV
  definition for incremental deployment and transition.

  In the case of OSPF, this TLV MUST NOT be used to advertise TLVs
  other than those in the OSPF Router Information (RI) LSA [RFC7770].

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //               Opaque Node Attributes (variable)             //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 18: Opaque Node Attribute Format

  The Type is as specified in Table 6.  The length is variable.

5.3.2.  Link Attribute TLVs

  Link Attribute TLVs are TLVs that may be encoded in the BGP-LS
  Attribute with a Link NLRI.  Each 'Link Attribute' is a Type/Length/
  Value (TLV) triplet formatted as defined in Section 5.1.  The format
  and semantics of the Value fields in some Link Attribute TLVs
  correspond to the format and semantics of the Value fields in IS-IS
  Extended IS Reachability sub-TLVs, which are defined in [RFC5305] and
  [RFC5307].  Other Link Attribute TLVs are defined in this document.
  Although the encodings for Link Attribute TLVs were originally
  defined for IS-IS, the TLVs can carry data sourced by either IS-IS or
  OSPF.

  The following Link Attribute TLVs are defined for the BGP-LS
  Attribute associated with a Link NLRI:

     +================+=================+============+=============+
     | TLV Code Point | Description     | IS-IS TLV/ | Reference   |
     |                |                 |  Sub-TLV   |             |
     +================+=================+============+=============+
     |      1028      | IPv4 Router-ID  |  134/---   | [RFC5305],  |
     |                | of Local Node   |            | Section 4.3 |
     +----------------+-----------------+------------+-------------+
     |      1029      | IPv6 Router-ID  |  140/---   | [RFC6119],  |
     |                | of Local Node   |            | Section 4.1 |
     +----------------+-----------------+------------+-------------+
     |      1030      | IPv4 Router-ID  |  134/---   | [RFC5305],  |
     |                | of Remote Node  |            | Section 4.3 |
     +----------------+-----------------+------------+-------------+
     |      1031      | IPv6 Router-ID  |  140/---   | [RFC6119],  |
     |                | of Remote Node  |            | Section 4.1 |
     +----------------+-----------------+------------+-------------+
     |      1088      | Administrative  |    22/3    | [RFC5305],  |
     |                | group (color)   |            | Section 3.1 |
     +----------------+-----------------+------------+-------------+
     |      1089      | Maximum link    |    22/9    | [RFC5305],  |
     |                | bandwidth       |            | Section 3.4 |
     +----------------+-----------------+------------+-------------+
     |      1090      | Max. reservable |   22/10    | [RFC5305],  |
     |                | link bandwidth  |            | Section 3.5 |
     +----------------+-----------------+------------+-------------+
     |      1091      | Unreserved      |   22/11    | [RFC5305],  |
     |                | bandwidth       |            | Section 3.6 |
     +----------------+-----------------+------------+-------------+
     |      1092      | TE Default      |   22/18    | Section     |
     |                | Metric          |            | 5.3.2.3     |
     +----------------+-----------------+------------+-------------+
     |      1093      | Link Protection |   22/20    | [RFC5307],  |
     |                | Type            |            | Section 1.2 |
     +----------------+-----------------+------------+-------------+
     |      1094      | MPLS Protocol   |    ---     | Section     |
     |                | Mask            |            | 5.3.2.2     |
     +----------------+-----------------+------------+-------------+
     |      1095      | IGP Metric      |    ---     | Section     |
     |                |                 |            | 5.3.2.4     |
     +----------------+-----------------+------------+-------------+
     |      1096      | Shared Risk     |    ---     | Section     |
     |                | Link Group      |            | 5.3.2.5     |
     +----------------+-----------------+------------+-------------+
     |      1097      | Opaque Link     |    ---     | Section     |
     |                | Attribute       |            | 5.3.2.6     |
     +----------------+-----------------+------------+-------------+
     |      1098      | Link Name       |    ---     | Section     |
     |                |                 |            | 5.3.2.7     |
     +----------------+-----------------+------------+-------------+

                       Table 8: Link Attribute TLVs

5.3.2.1.  IPv4/IPv6 Router-ID TLVs

  The local/remote IPv4/IPv6 Router-ID TLVs are used to describe
  auxiliary Router-IDs that the IGP might be using, e.g., for TE
  purposes.  All auxiliary Router-IDs of both the local and the remote
  node MUST be included in the link attribute of each Link NLRI.  If
  there is more than one auxiliary Router-ID of a given type, then
  multiple TLVs are used to encode them.

5.3.2.2.  MPLS Protocol Mask TLV

  The MPLS Protocol Mask TLV carries a bitmask describing which MPLS
  signaling protocols are enabled.  The length of this TLV is 1.  The
  value is a bit array of 8 flags, where each bit represents an MPLS
  Protocol capability.

  Generation of the MPLS Protocol Mask TLV is only valid for and SHOULD
  only be used with originators that have local link insight, for
  example, the Protocol-IDs 'Static configuration' or 'Direct' as per
  Table 2.  The MPLS Protocol Mask TLV MUST NOT be included in NLRIs
  with the other Protocol-IDs listed in Table 2.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |L|R|  Reserved |
    +-+-+-+-+-+-+-+-+

                    Figure 19: MPLS Protocol Mask TLV

  The following bits are defined, and the reserved bits MUST be set to
  zero and SHOULD be ignored on receipt:

    +=====+=============================================+===========+
    | Bit | Description                                 | Reference |
    +=====+=============================================+===========+
    | 'L' | Label Distribution Protocol (LDP)           | [RFC5036] |
    +-----+---------------------------------------------+-----------+
    | 'R' | Extension to RSVP for LSP Tunnels (RSVP-TE) | [RFC3209] |
    +-----+---------------------------------------------+-----------+

                  Table 9: MPLS Protocol Mask TLV Codes

  The bits that are not defined MUST be set to 0 by the originator and
  MUST be ignored by the receiver.

5.3.2.3.  TE Default Metric TLV

  The TE Default Metric TLV carries the Traffic Engineering metric for
  this link.  The length of this TLV is fixed at 4 octets.  If a source
  protocol uses a metric width of fewer than 32 bits, then the high-
  order bits of this field MUST be padded with zero.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                    TE Default Link Metric                     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 20: TE Default Metric TLV Format

5.3.2.4.  IGP Metric TLV

  The IGP Metric TLV carries the metric for this link.  The length of
  this TLV is variable, depending on the metric width of the underlying
  protocol.  IS-IS small metrics are 6 bits in size but are encoded in
  a 1-octet field; therefore, the two most significant bits of the
  field MUST be set to 0 by the originator and MUST be ignored by the
  receiver.  OSPF link metrics have a length of 2 octets.  IS-IS wide
  metrics have a length of 3 octets.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //      IGP Link Metric (variable length)      //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 21: IGP Metric TLV Format

5.3.2.5.  Shared Risk Link Group TLV

  The Shared Risk Link Group (SRLG) TLV carries the Shared Risk Link
  Group information (see Section 2.3 ("Shared Risk Link Group
  Information") of [RFC4202]).  It contains a data structure consisting
  of a (variable) list of SRLG values, where each element in the list
  has 4 octets, as shown in Figure 22.  The length of this TLV is 4 *
  (number of SRLG values).

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                  Shared Risk Link Group Value                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //                         ............                        //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                  Shared Risk Link Group Value                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 22: Shared Risk Link Group TLV Format

  The SRLG TLV for OSPF-TE is defined in [RFC4203].  In IS-IS, the SRLG
  information is carried in two different TLVs: the GMPLS-SRLG TLV (for
  IPv4) (Type 138) defined in [RFC5307] and the IPv6 SRLG TLV (Type
  139) defined in [RFC6119].  Both IPv4 and IPv6 SRLG information is
  carried in a single TLV.

5.3.2.6.  Opaque Link Attribute TLV

  The Opaque Link Attribute TLV is an envelope that transparently
  carries optional Link Attribute TLVs advertised by a router.  An
  originating router shall use this TLV for encoding information
  specific to the protocol advertised in the NLRI header Protocol-ID
  field or new protocol extensions to the protocol as advertised in the
  NLRI header Protocol-ID field for which there is no protocol-neutral
  representation in the BGP Link-State NLRI.  The primary use of the
  Opaque Link Attribute TLV is to bridge the document lag between a new
  IGP link-state attribute and its 'protocol-neutral' BGP-LS extension
  being defined.  Once the protocol-neutral BGP-LS extensions are
  defined, the BGP-LS implementations may still need to advertise the
  information both within the Opaque Attribute TLV and the new TLV
  definition for incremental deployment and transition.

  In the case of OSPFv2, this TLV MUST NOT be used to advertise
  information carried using TLVs other than those in the OSPFv2
  Extended Link Opaque LSA [RFC7684].  In the case of OSPFv3, this TLV
  MUST NOT be used to advertise TLVs other than those in the OSPFv3 E-
  Router-LSA or E-Link-LSA [RFC8362].

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //                Opaque Link Attributes (variable)            //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 23: Opaque Link Attribute TLV Format

5.3.2.7.  Link Name TLV

  The Link Name TLV is optional.  The Value field identifies the
  symbolic name of the router link.  This symbolic name can be the FQDN
  for the link, a substring of the FQDN, or any string that an operator
  wants to use for the link.  The use of the FQDN or a substring of it
  is strongly RECOMMENDED.  The maximum length of the Link Name TLV is
  255 octets.

  The Value field is encoded in 7-bit ASCII.  If a user interface for
  configuring or displaying this field permits Unicode characters, then
  the user interface is responsible for applying the ToASCII and/or
  ToUnicode algorithm as described in [RFC5890] to achieve the correct
  format for transmission or display.

  How a router derives and injects link names is outside of the scope
  of this document.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //                     Link Name (variable)                    //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 24: Link Name TLV Format

5.3.3.  Prefix Attribute TLVs

  Prefixes are learned from the IGP topology (IS-IS or OSPF) with a set
  of IGP attributes (such as metric, route tags, etc.) that are
  advertised in the BGP-LS Attribute with Prefix NLRI types 3 and 4.

  The following Prefix Attribute TLVs are defined for the BGP-LS
  Attribute associated with a Prefix NLRI:

    +================+=================+==========+=================+
    | TLV Code Point | Description     |   Length | Reference       |
    +================+=================+==========+=================+
    |      1152      | IGP Flags       |        1 | Section 5.3.3.1 |
    +----------------+-----------------+----------+-----------------+
    |      1153      | IGP Route Tag   |      4*n | [RFC5130]       |
    +----------------+-----------------+----------+-----------------+
    |      1154      | IGP Extended    |      8*n | [RFC5130]       |
    |                | Route Tag       |          |                 |
    +----------------+-----------------+----------+-----------------+
    |      1155      | Prefix Metric   |        4 | [RFC5305]       |
    +----------------+-----------------+----------+-----------------+
    |      1156      | OSPF Forwarding |        4 | [RFC2328]       |
    |                | Address         |          |                 |
    +----------------+-----------------+----------+-----------------+
    |      1157      | Opaque Prefix   | variable | Section 5.3.3.6 |
    |                | Attribute       |          |                 |
    +----------------+-----------------+----------+-----------------+

                     Table 10: Prefix Attribute TLVs

5.3.3.1.  IGP Flags TLV

  The IGP Flags TLV contains one octet of IS-IS and OSPF flags and bits
  originally assigned to the prefix.  The IGP Flags TLV is encoded as
  follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |D|N|L|P|       |
    +-+-+-+-+-+-+-+-+

                      Figure 25: IGP Flag TLV Format

  The Value field contains bits defined according to the table below:

             +=====+===========================+===========+
             | Bit | Description               | Reference |
             +=====+===========================+===========+
             | 'D' | IS-IS Up/Down Bit         | [RFC5305] |
             +-----+---------------------------+-----------+
             | 'N' | OSPF "no unicast" Bit     | [RFC5340] |
             +-----+---------------------------+-----------+
             | 'L' | OSPF "local address" Bit  | [RFC5340] |
             +-----+---------------------------+-----------+
             | 'P' | OSPF "propagate NSSA" Bit | [RFC5340] |
             +-----+---------------------------+-----------+

                   Table 11: IGP Flag Bits Definitions

  The bits that are not defined MUST be set to 0 by the originator and
  MUST be ignored by the receiver.

5.3.3.2.  IGP Route Tag TLV

  The IGP Route Tag TLV carries original IGP Tags (IS-IS [RFC5130] or
  OSPF) of the prefix and is encoded as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //                    Route Tags (one or more)                 //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 26: IGP Route Tag TLV Format

  The length is a multiple of 4.

  The Value field contains one or more Route Tags as learned in the IGP
  topology.

5.3.3.3.  IGP Extended Route Tag TLV

  The IGP Extended Route Tag TLV carries IS-IS Extended Route Tags of
  the prefix [RFC5130] and is encoded as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //                Extended Route Tag (one or more)             //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 27: IGP Extended Route Tag TLV Format

  The length is a multiple of 8.

  The Extended Route Tag field contains one or more Extended Route Tags
  as learned in the IGP topology.

5.3.3.4.  Prefix Metric TLV

  The Prefix Metric TLV is an optional attribute and may only appear
  once.  If present, it carries the metric of the prefix as known in
  the IGP topology, as described in Section 4 of [RFC5305] (and
  therefore represents the reachability cost to the prefix).  If not
  present, it means that the prefix is advertised without any
  reachability.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                            Metric                             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 28: Prefix Metric TLV Format

  The length is 4.

5.3.3.5.  OSPF Forwarding Address TLV

  The OSPF Forwarding Address TLV [RFC2328] [RFC5340] carries the OSPF
  forwarding address as known in the original OSPF advertisement.  The
  forwarding address can be either IPv4 or IPv6.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //                Forwarding Address (variable)                //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 29: OSPF Forwarding Address TLV Format

  The length is 4 for an IPv4 forwarding address and 16 for an IPv6
  forwarding address.

5.3.3.6.  Opaque Prefix Attribute TLV

  The Opaque Prefix Attribute TLV is an envelope that transparently
  carries optional Prefix Attribute TLVs advertised by a router.  An
  originating router shall use this TLV for encoding information
  specific to the protocol advertised in the NLRI header Protocol-ID
  field or it shall use new protocol extensions for the protocol as
  advertised in the NLRI header Protocol-ID field for which there is no
  protocol-neutral representation in the BGP Link-State NLRI.  The
  primary use of the Opaque Prefix Attribute TLV is to bridge the
  document lag between a new IGP link-state attribute and its protocol-
  neutral BGP-LS extension being defined.  Once the protocol-neutral
  BGP-LS extensions are defined, the BGP-LS implementations may still
  need to advertise the information both within the Opaque Attribute
  TLV and the new TLV definition for incremental deployment and
  transition.

  In the case of OSPFv2, this TLV MUST NOT be used to advertise
  information carried using TLVs other than those in the OSPFv2
  Extended Prefix Opaque LSA [RFC7684].  In the case of OSPFv3, this
  TLV MUST NOT be used to advertise TLVs other than those in the OSPFv3
  E-Inter-Area-Prefix-LSA, E-Intra-Area-Prefix-LSA, E-AS-External-LSA,
  and E-NSSA-LSA [RFC8362].

  The format of the TLV is as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Type             |             Length            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    //              Opaque Prefix Attributes  (variable)           //
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 30: Opaque Prefix Attribute TLV Format

  The Type is as specified in Table 10.  The length is variable.

5.4.  Private Use

  TLVs for Vendor Private Use are supported using the code point range
  reserved as indicated in Section 7.  For such TLV use in the NLRI or
  BGP-LS Attribute, the format described in Section 5.1 is to be used
  and a 4-octet field MUST be included as the first field in the value
  to carry the Enterprise Code.  For a private use NLRI type, a 4-octet
  field MUST be included as the first field in the NLRI immediately
  following the Total NLRI Length field of the Link-State NLRI format
  as described in Section 5.2 to carry the Enterprise Code [ENTNUM].
  This enables the use of vendor-specific extensions without conflicts.

  Multiple instances of private-use TLVs MAY appear in the BGP-LS
  Attribute.

5.5.  BGP Next-Hop Information

  BGP link-state information for both IPv4 and IPv6 networks can be
  carried over either an IPv4 BGP session or an IPv6 BGP session.  If
  an IPv4 BGP session is used, then the next hop in the MP_REACH_NLRI
  SHOULD be an IPv4 address.  Similarly, if an IPv6 BGP session is
  used, then the next hop in the MP_REACH_NLRI SHOULD be an IPv6
  address.  Usually, the next hop will be set to the local endpoint
  address of the BGP session.  The next-hop address MUST be encoded as
  described in [RFC4760].  The Length field of the next-hop address
  will specify the next-hop address family.  If the next-hop length is
  4, then the next hop is an IPv4 address; if the next-hop length is
  16, then it is a global IPv6 address; and if the next-hop length is
  32, then there is one global IPv6 address followed by an IPv6 link-
  local address.  The IPv6 link-local address should be used as
  described in [RFC2545].  For VPN Subsequent Address Family Identifier
  (SAFI), as per custom, an 8-byte Route Distinguisher set to all zero
  is prepended to the next hop.

  The BGP Next-Hop is used by each BGP-LS Speaker to validate the NLRI
  it receives.  In case identical NLRIs are sourced by multiple BGP-LS
  Producers, the BGP Next-Hop is used to tiebreak as per the standard
  BGP path decision process.  This specification doesn't mandate any
  rule regarding the rewrite of the BGP Next-Hop.

5.6.  Inter-AS Links

  The main source of TE information is the IGP, which is not active on
  inter-AS links.  In some cases, the IGP may have information of
  inter-AS links [RFC5392] [RFC9346].  In other cases, an
  implementation SHOULD provide a means to inject inter-AS links into
  BGP-LS.  The exact mechanism used to advertise the inter-AS links is
  outside the scope of this document.

5.7.  OSPF Virtual Links and Sham Links

  In an OSPF [RFC2328] [RFC5340] network, OSPF virtual links serve to
  connect physically separate components of the backbone to establish/
  maintain continuity of the backbone area.  While OSPF virtual links
  are modeled as point-to-point, unnumbered links in the OSPF topology,
  their characteristics and purpose are different from other types of
  links in the OSPF topology.  They are advertised using a distinct
  "virtual link" type in OSPF LSAs.  The mechanism for the
  advertisement of OSPF virtual links via BGP-LS is outside the scope
  of this document.

  In an OSPF network, sham links [RFC4577] [RFC6565] are used to
  provide intra-area connectivity between VPN Routing and Forwarding
  (VRF) instances on Provider Edge (PE) routers over the VPN provider's
  network.  These links are advertised in OSPF as point-to-point,
  unnumbered links and represent connectivity over a service provider
  network using encapsulation mechanisms like MPLS.  As such, the
  mechanism for the advertisement of OSPF sham links follows the same
  procedures as other point-to-point, unnumbered links as described
  previously in this document.

5.8.  OSPFv2 Type 4 Summary-LSA & OSPFv3 Inter-Area-Router-LSA

  OSPFv2 [RFC2328] defines the type 4 summary-LSA and OSPFv3 [RFC5340]
  defines the inter-area-router-LSA for an Area Border Router (ABR) to
  advertise reachability to an AS Border Router (ASBR) that is external
  to the area yet internal to the AS.  The nature of information
  advertised by OSPF using this type of LSA does not map to either a
  node, a link, or a prefix as discussed in this document.  Therefore,
  the mechanism for the advertisement of the information carried by
  these LSAs is outside the scope of this document.

5.9.  Handling of Unreachable IGP Nodes

  Consider an OSPF network as shown in Figure 31, where R2 and R3 are
  the BGP-LS Producers and also the OSPF Area Border Routers (ABRs).
  The link between R2 and R3 is in area 0, while the other links are in
  area 1 as indicated by the a0 and a1 references respectively against
  the links.

  A BGP-LS Consumer talks to BGP route reflector RR0, which is a BGP-LS
  Propagator that is aggregating the BGP-LS feed from BGP-LS Producers
  R2 and R3.  Here, R2 and R3 provide a redundant topology feed via
  BGP-LS to RR0.  Normally, RR0 would receive two identical copies of
  all the Link-State NLRIs from both R2 and R3 and it would pick one of
  them (say R2) based on the standard BGP Decision Process.

                    BGP-LS Consumer
                           ^
                           |
                          RR0
                   (BGP Route Reflector)
                        /      \
                       /        \
                a1    /   a0     \    a1
           R1 ------ R2 -------- R3 ------ R4
       a1  |                               |  a1
           |                               |
           R5 ---------------------------- R6
                          a1

         Figure 31: Incorrect Reporting Due to BGP Path Selection

  Consider a scenario where the link between R5 and R6 is lost (thereby
  partitioning the area 1), and consider its impact on the OSPF LSDB at
  R2 and R3.

  Now, R5 will remove the link R5-R6 from its Router LSA, and this
  updated LSA is available at R2.  R2 also has a stale copy of R6's
  Router LSA that still has the link R6-R5 in it.  Based on this view
  in its LSDB, R2 will advertise only the half-link R6-R5 that it
  derives from R6's stale Router LSA.

  At the same time, R6 has removed the link R6-R5 from its Router LSA,
  and this updated LSA is available at R3.  Similarly, R3 also has a
  stale copy of R5's Router LSA having the link R5-R6 in it.  Based on
  its LSDB, R3 will advertise only the half-link R5-R6 that it derives
  from R5's stale Router LSA.

  Now, the BGP-LS Consumer receives both the Link NLRIs corresponding
  to the half-links from R2 and R3 via RR0.  When viewed together, it
  would not detect or realize that area 1 is partitioned.  Also, if R2
  continues to report Node and Prefix NLRIs corresponding to the stale
  copy of R4's and R6's Router LSAs, then RR0 could prefer them over
  the valid Node and Prefix NLRIs for R4 and R6 that it is receiving
  from R3 depending on RR0's BGP Decision Process.  This would result
  in the BGP-LS Consumer getting stale and inaccurate topology
  information.  This problem scenario is avoided if R2 were to not
  advertise the link-state information corresponding to R4 and R6 and
  if R3 were to not advertise similarly for R1 and R5.

  A BGP-LS Producer SHOULD withdraw all link-state objects advertised
  by it in BGP when the node that originated its corresponding LSPs/
  LSAs is determined to have become unreachable in the IGP.  An
  implementation MAY continue to advertise link-state objects
  corresponding to unreachable nodes in a deployment use case where the
  BGP-LS Consumer is interested in receiving a topology feed
  corresponding to a complete IGP LSDB view.  In such deployments, it
  is expected that the problem described above is mitigated by the BGP-
  LS Consumer via appropriate handling of such a topology feed in
  addition to the use of either a direct BGP peering with the BGP-LS
  Producer nodes or mechanisms such as those described in [RFC7911]
  when using RRs.  Details of these mechanisms are outside the scope of
  this document.

  If the BGP-LS Producer does withdraw link-state objects associated
  with an IGP node based on the failure of reachability check for that
  node, then it MUST re-advertise those link-state objects after that
  node becomes reachable again in the IGP domain.

5.10.  Router-ID Anchoring Example: ISO Pseudonode

  The encoding of a broadcast LAN in IS-IS provides a good example of
  how Router-IDs are encoded.  Consider Figure 32.  This represents a
  broadcast LAN between a pair of routers.  The "real" (non-pseudonode)
  routers have both an IPv4 Router-ID and an IS-IS Node-ID.  The
  pseudonode does not have an IPv4 Router-ID.  Node1 is the DIS for the
  LAN.  Two unidirectional links, (Node1, Pseudonode1) and
  (Pseudonode1, Node2), are being generated.

  The Link NLRI of (Node1, Pseudonode1) is encoded as follows.  The IGP
  Router-ID TLV of the local Node Descriptor is 6 octets long and
  contains the ISO-ID of Node1, 1920.0000.2001.  The IGP Router-ID TLV
  of the remote Node Descriptor is 7 octets long and contains the ISO-
  ID of Pseudonode1, 1920.0000.2001.02.  The BGP-LS Attribute of this
  link contains one local IPv4 Router-ID TLV (TLV type 1028) containing
  192.0.2.1, the IPv4 Router-ID of Node1.

  The Link NLRI of (Pseudonode1, Node2) is encoded as follows.  The IGP
  Router-ID TLV of the local Node Descriptor is 7 octets long and
  contains the ISO-ID of Pseudonode1, 1920.0000.2001.02.  The IGP
  Router-ID TLV of the remote Node Descriptor is 6 octets long and
  contains the ISO-ID of Node2, 1920.0000.2002.  The BGP-LS Attribute
  of this link contains one remote IPv4 Router-ID TLV (TLV type 1030)
  containing 192.0.2.2, the IPv4 Router-ID of Node2.

    +-----------------+    +-----------------+    +-----------------+
    |      Node1      |    |   Pseudonode1   |    |      Node2      |
    |1920.0000.2001.00|--->|1920.0000.2001.02|--->|1920.0000.2002.00|
    |     192.0.2.1   |    |                 |    |     192.0.2.2   |
    +-----------------+    +-----------------+    +-----------------+

                       Figure 32: IS-IS Pseudonodes

5.11.  Router-ID Anchoring Example: OSPF Pseudonode

  The encoding of a broadcast LAN in OSPF provides a good example of
  how Router-IDs and local Interface IPs are encoded.  Consider
  Figure 33.  This represents a broadcast LAN between a pair of
  routers.  The "real" (non-pseudonode) routers have both an IPv4
  Router-ID and an Area Identifier.  The pseudonode does have an IPv4
  Router-ID, an IPv4 Interface Address (for disambiguation), and an
  OSPF Area.  Node1 is the DR for the LAN; hence, its local IP address
  198.51.100.1 is used as both the Router-ID and Interface IP for the
  pseudonode keys.  Two unidirectional links, (Node1, Pseudonode1) and
  (Pseudonode1, Node2), are being generated.

  The Link NLRI of (Node1, Pseudonode1) is encoded as follows:

  *  Local Node Descriptor

     TLV #515:  IGP Router-ID: 192.0.2.1

     TLV #514:  OSPF Area-ID: ID:0.0.0.0

  *  Remote Node Descriptor

     TLV #515:  IGP Router-ID: 192.0.2.1:198.51.100.1

     TLV #514:  OSPF Area-ID: ID:0.0.0.0

  The Link NLRI of (Pseudonode1, Node2) is encoded as follows:

  *  Local Node Descriptor

     TLV #515:  IGP Router-ID: 192.0.2.1:198.51.100.1

     TLV #514:  OSPF Area-ID: ID:0.0.0.0

  *  Remote Node Descriptor

     TLV #515:  IGP Router-ID: 192.0.2.2

     TLV #514:  OSPF Area-ID: ID:0.0.0.0

       198.51.100.1/24             198.51.100.2/24
  +-------------+    +-------------+    +-------------+
  |   Node1     |    | Pseudonode1 |    |    Node2    |
  |  192.0.2.1  |--->|  192.0.2.1  |--->|  192.0.2.2  |
  |             |    |198.51.100.1 |    |             |
  |   Area 0    |    |   Area 0    |    |    Area 0   |
  +-------------+    +-------------+    +-------------+

                       Figure 33: OSPF Pseudonodes

  The LAN subnet 198.51.100.0/24 is not included in the Router LSA of
  Node1 or Node2.  The Network LSA for this LAN advertised by the DR
  Node1 contains the subnet mask for the LAN along with the DR address.
  A Prefix NLRI corresponding to the LAN subnet is advertised with the
  Pseudonode1 used as the local node using the DR address and the
  subnet mask from the Network LSA.

5.12.  Router-ID Anchoring Example: OSPFv2 to IS-IS Migration

  Graceful migration from one IGP to another requires coordinated
  operation of both protocols during the migration period.  Such
  coordination requires identifying a given physical link in both IGPs.
  The IPv4 Router-ID provides that "glue", which is present in the Node
  Descriptors of the OSPF Link NLRI and in the link attribute of the
  IS-IS Link NLRI.

  Consider a point-to-point link between two routers, A and B, which
  initially were OSPFv2-only routers and then had IS-IS enabled on
  them.  Node A has IPv4 Router-ID and ISO-ID; node B has IPv4 Router-
  ID, IPv6 Router-ID, and ISO-ID.  Each protocol generates one Link
  NLRI for the link (A, B), both of which are carried by BGP-LS.  The
  OSPFv2 Link NLRI for the link is encoded with the IPv4 Router-ID of
  nodes A and B in the local and remote Node Descriptors, respectively.
  The IS-IS Link NLRI for the link is encoded with the ISO-ID of nodes
  A and B in the local and remote Node Descriptors, respectively.  In
  addition, the BGP-LS Attribute of the IS-IS Link NLRI contains the
  TLV type 1028 containing the IPv4 Router-ID of node A, TLV type 1030
  containing the IPv4 Router-ID of node B, and TLV type 1031 containing
  the IPv6 Router-ID of node B.  In this case, by using IPv4 Router-ID,
  the link (A, B) can be identified in both the IS-IS and OSPF
  protocols.

6.  Link to Path Aggregation

  Distribution of all links available on the global Internet is
  certainly possible; however, it is not desirable from a scaling and
  privacy point of view.  Therefore, an implementation may support a
  link to path aggregation.  Rather than advertising all specific links
  of a domain, an ASBR may advertise an "aggregate link" between a non-
  adjacent pair of nodes.  The "aggregate link" represents the
  aggregated set of link properties between a pair of non-adjacent
  nodes.  The actual methods to compute the path properties (of
  bandwidth, metric, etc.) are outside the scope of this document.  The
  decision of whether to advertise all specific links or aggregated
  links is an operator's policy choice.  To highlight the varying
  levels of exposure, the following deployment examples are discussed.

6.1.  Example: No Link Aggregation

  Consider Figure 34.  Both AS1 and AS2 operators want to protect their
  inter-AS {R1, R3}, {R2, R4} links using RSVP - Fast Reroute (RSVP-
  FRR) LSPs.  If R1 wants to compute its link-protection LSP to R3, it
  needs to "see" an alternate path to R3.  Therefore, the AS2 operator
  exposes its topology.  All BGP-TE-enabled routers in AS1 "see" the
  full topology of AS2 and therefore can compute a backup path.  Note
  that the computing router decides if the direct link between {R3, R4}
  or the {R4, R5, R3} path is used.

         AS1   :   AS2
               :
          R1-------R3
           |   :   | \
           |   :   |  R5
           |   :   | /
          R2-------R4
               :
               :

                      Figure 34: No Link Aggregation

6.2.  Example: ASBR to ASBR Path Aggregation

  The brief difference between the "no-link aggregation" example and
  this example is that no specific link gets exposed.  Consider
  Figure 35.  The only link that gets advertised by AS2 is an
  "aggregate" link between R3 and R4.  This is enough to tell AS1 that
  there is a backup path.  However, the actual links being used are
  hidden from the topology.

         AS1   :   AS2
               :
          R1-------R3
           |   :   |
           |   :   |
           |   :   |
          R2-------R4
               :
               :

                     Figure 35: ASBR Link Aggregation

6.3.  Example: Multi-AS Path Aggregation

  Service providers in control of multiple ASes may even decide to not
  expose their internal inter-AS links.  Consider Figure 36.  AS3 is
  modeled as a single node that connects to the border routers of the
  aggregated domain.

         AS1   :   AS2   :   AS3
               :         :
          R1-------R3-----
           |   :         : \
           |   :         :   vR0
           |   :         : /
          R2-------R4-----
               :         :
               :         :

                     Figure 36: Multi-AS Aggregation

7.  IANA Considerations

  As this document obsoletes [RFC7752] and [RFC9029], IANA has updated
  all registration information that references those documents to
  instead reference this document.

  IANA has assigned address family number 16388 (BGP-LS) in the
  "Address Family Numbers" registry.

  IANA has assigned SAFI values 71 (BGP-LS) and 72 (BGP-LS-VPN) in the
  "SAFI Values" registry under the "Subsequent Address Family
  Identifiers (SAFI) Parameters" registry group.

  IANA has assigned value 29 (BGP-LS Attribute) in the "BGP Path
  Attributes" registry under the "Border Gateway Protocol (BGP)
  Parameters" registry group.

  IANA has created a "Border Gateway Protocol - Link-State (BGP-LS)
  Parameters" registry group at <https://www.iana.org/assignments/bgp-
  ls-parameters>.

  This section also incorporates all the changes to the allocation
  procedures for the BGP-LS IANA registry group as well as the
  guidelines for designated experts introduced by [RFC9029].

7.1.  BGP-LS Registries

  All of the registries listed in the following subsections are
  specific to BGP-LS and are accessible under this registry.

7.1.1.  BGP-LS NLRI Types Registry

  The "BGP-LS NLRI Types" registry has been set up for assignment for
  the two-octet-sized code points for BGP-LS NLRI types and populated
  with the values shown below:

         +=============+===========================+===========+
         |     Type    | NLRI Type                 | Reference |
         +=============+===========================+===========+
         |      0      | Reserved                  |  RFC 9552 |
         +-------------+---------------------------+-----------+
         |      1      | Node NLRI                 |  RFC 9552 |
         +-------------+---------------------------+-----------+
         |      2      | Link NLRI                 |  RFC 9552 |
         +-------------+---------------------------+-----------+
         |      3      | IPv4 Topology Prefix NLRI |  RFC 9552 |
         +-------------+---------------------------+-----------+
         |      4      | IPv6 Topology Prefix NLRI |  RFC 9552 |
         +-------------+---------------------------+-----------+
         | 65000-65535 | Private Use               |  RFC 9552 |
         +-------------+---------------------------+-----------+

                       Table 12: BGP-LS NLRI Types

  A range is reserved for Private Use [RFC8126].  All other allocations
  within the registry are to be made using the "Expert Review" policy
  [RFC8126], which requires documentation of the proposed use of the
  allocated value and approval by the designated expert assigned by the
  IESG.

7.1.2.  BGP-LS Protocol-IDs Registry

  The "BGP-LS Protocol-IDs" registry has been set up for assignment for
  the one-octet-sized code points for BGP-LS Protocol-IDs and populated
  with the values shown below:

     +=============+==================================+===========+
     | Protocol-ID | NLRI information source protocol | Reference |
     +=============+==================================+===========+
     |      0      | Reserved                         |  RFC 9552 |
     +-------------+----------------------------------+-----------+
     |      1      | IS-IS Level 1                    |  RFC 9552 |
     +-------------+----------------------------------+-----------+
     |      2      | IS-IS Level 2                    |  RFC 9552 |
     +-------------+----------------------------------+-----------+
     |      3      | OSPFv2                           |  RFC 9552 |
     +-------------+----------------------------------+-----------+
     |      4      | Direct                           |  RFC 9552 |
     +-------------+----------------------------------+-----------+
     |      5      | Static configuration             |  RFC 9552 |
     +-------------+----------------------------------+-----------+
     |      6      | OSPFv3                           |  RFC 9552 |
     +-------------+----------------------------------+-----------+
     |   200-255   | Private Use                      |  RFC 9552 |
     +-------------+----------------------------------+-----------+

                     Table 13: BGP-LS Protocol-IDs

  A range is reserved for Private Use [RFC8126].  All other allocations
  within the registry are to be made using the "Expert Review" policy
  [RFC8126], which requires documentation of the proposed use of the
  allocated value and approval by the designated expert assigned by the
  IESG.

7.1.3.  BGP-LS Well-Known Instance-IDs Registry

  The "BGP-LS Well-Known Instance-IDs" registry that was set up via
  [RFC7752] is no longer required.  IANA has marked this registry
  obsolete and changed its registration procedure to "registry closed".

7.1.4.  BGP-LS Node Flags Registry

  The "BGP-LS Node Flags" registry has been created for the one-octet-
  sized flags field of the Node Flag Bits TLV (1024) and populated with
  the initial values shown below:

               +=====+======================+===========+
               | Bit | Description          | Reference |
               +=====+======================+===========+
               |  0  | Overload Bit (O-bit) |  RFC 9552 |
               +-----+----------------------+-----------+
               |  1  | Attached Bit (A-bit) |  RFC 9552 |
               +-----+----------------------+-----------+
               |  2  | External Bit (E-bit) |  RFC 9552 |
               +-----+----------------------+-----------+
               |  3  | ABR Bit (B-bit)      |  RFC 9552 |
               +-----+----------------------+-----------+
               |  4  | Router Bit (R-bit)   |  RFC 9552 |
               +-----+----------------------+-----------+
               |  5  | V6 Bit (V-bit)       |  RFC 9552 |
               +-----+----------------------+-----------+
               | 6-7 | Unassigned           |           |
               +-----+----------------------+-----------+

                      Table 14: BGP-LS Node Flags

  Allocations within the registry are to be made using the "Expert
  Review" policy [RFC8126], which requires documentation of the
  proposed use of the allocated value and approval by the designated
  expert assigned by the IESG.

7.1.5.  BGP-LS MPLS Protocol Mask Registry

  The "BGP-LS MPLS Protocol Mask" registry has been created for the
  one-octet-sized flags field of the MPLS Protocol Mask TLV (1094) and
  populated with the initial values shown below:

     +=====+===========================================+===========+
     | Bit | Description                               | Reference |
     +=====+===========================================+===========+
     |  0  | Label Distribution Protocol (L-bit)       |  RFC 9552 |
     +-----+-------------------------------------------+-----------+
     |  1  | Extension to RSVP for LSP Tunnels (R-bit) |  RFC 9552 |
     +-----+-------------------------------------------+-----------+
     | 2-7 | Unassigned                                |           |
     +-----+-------------------------------------------+-----------+

                   Table 15: BGP-LS MPLS Protocol Mask

  Allocations within the registry are to be made using the "Expert
  Review" policy [RFC8126], which requires documentation of the
  proposed use of the allocated value and approval by the designated
  expert assigned by the IESG.

7.1.6.  BGP-LS IGP Prefix Flags Registry

  The "BGP-LS IGP Prefix Flags" registry has been created for the one-
  octet-sized flags field of the IGP Flags TLV (1152) and populated
  with the initial values shown below:

         +=====+===================================+===========+
         | Bit | Description                       | Reference |
         +=====+===================================+===========+
         |  0  | IS-IS Up/Down Bit (D-bit)         |  RFC 9552 |
         +-----+-----------------------------------+-----------+
         |  1  | OSPF "no unicast" Bit (N-bit)     |  RFC 9552 |
         +-----+-----------------------------------+-----------+
         |  2  | OSPF "local address" Bit (L-bit)  |  RFC 9552 |
         +-----+-----------------------------------+-----------+
         |  3  | OSPF "propagate NSSA" Bit (P-bit) |  RFC 9552 |
         +-----+-----------------------------------+-----------+
         | 4-7 | Unassigned                        |           |
         +-----+-----------------------------------+-----------+

                    Table 16: BGP-LS IGP Prefix Flags

  Allocations within the registry are to be made using the "Expert
  Review" policy [RFC8126], which requires documentation of the
  proposed use of the allocated value and approval by the designated
  expert assigned by the IESG.

7.1.7.  BGP-LS TLVs Registry

  The "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and
  Attribute TLVs" registry was created via [RFC7752].  Per this
  document, IANA has renamed that registry to "BGP-LS NLRI and
  Attribute TLVs" and removed the column for "IS-IS TLV/Sub-TLV".  The
  registration procedures are as follows:

           +================+================================+
           | TLV Code Point | Registration Process           |
           +================+================================+
           |     0-255      | Reserved (not to be allocated) |
           +----------------+--------------------------------+
           |   256-64999    | Expert Review                  |
           +----------------+--------------------------------+
           |  65000-65535   | Private Use                    |
           +----------------+--------------------------------+

                Table 17: BGP-LS TLVs Registration Process

  A range is reserved for Private Use [RFC8126].  All other allocations
  except for the reserved range within the registry are to be made
  using the "Expert Review" policy [RFC8126], which requires
  documentation of the proposed use of the allocated value and approval
  by the designated expert assigned by the IESG.

  The registry was pre-populated with the values shown in Table 18, and
  the reference for each allocation has been changed to this document
  and the respective section where those TLVs are specified.

7.2.  Guidance for Designated Experts

  In all cases of review by the designated expert described here, the
  designated expert is expected to check the clarity of purpose and use
  of the requested code points.  The following points apply to the
  registries discussed in this document:

  1.  Application for a code point allocation may be made to the
      designated experts at any time and MUST be accompanied by
      technical documentation explaining the use of the code point.
      Such documentation SHOULD be presented in the form of an
      Internet-Draft but MAY arrive in any form that can be reviewed
      and exchanged among reviewers.

  2.  The designated experts SHOULD only consider requests that arise
      from Internet-Drafts that have already been accepted as working
      group documents or that are planned for progression as AD-
      Sponsored documents in the absence of a suitably chartered
      working group.

  3.  In the case of working group documents, the designated experts
      MUST check with the working group chairs that there is a
      consensus within the working group to allocate at this time.  In
      the case of AD-Sponsored documents, the designated experts MUST
      check with the AD for approval to allocate at this time.

  4.  If the document is not adopted by the IDR Working Group (or its
      successor), the designated expert MUST notify the IDR mailing
      list (or its successor) of the request and MUST provide access to
      the document.  The designated expert MUST allow two weeks for any
      response.  Any comments received MUST be considered by the
      designated expert as part of the subsequent step.

  5.  The designated experts MUST then review the assignment requests
      on their technical merit.  The designated experts MAY raise
      issues related to the allocation request with the authors and on
      the IDR (or successor) mailing list for further consideration
      before the assignments are made.

  6.  The designated expert MUST ensure that any request for a code
      point does not conflict with work that is active or already
      published within the IETF.

  7.  Once the designated experts have approved, IANA will update the
      registry by marking the allocated code points with a reference to
      the associated document.

  8.  In the event that the document is a working group document or is
      AD-Sponsored and fails to progress to publication as an RFC, the
      working group chairs or AD SHOULD contact IANA to coordinate
      about marking the code points as deprecated.  A deprecated code
      point is not marked as allocated for use and is not available for
      allocation in a future document.  The WG chairs may inform IANA
      that a deprecated code point can be completely deallocated (i.e.,
      made available for new allocations) at any time after it has been
      deprecated if there is a shortage of unallocated code points in
      the registry.

8.  Manageability Considerations

  This section is structured as recommended in [RFC5706].

8.1.  Operational Considerations

8.1.1.  Operations

  Existing BGP operational procedures apply.  No new operation
  procedures are defined in this document.  It is noted that the NLRI
  information present in this document carries purely application-level
  data that has no immediate impact on the corresponding forwarding
  state computed by BGP.  As such, any churn in reachability
  information has a different impact than regular BGP updates, which
  need to change the forwarding state for an entire router.
  Distribution of the BGP-LS NLRIs SHOULD be handled by dedicated route
  reflectors in most deployments providing a level of isolation and
  fault containment between different BGP address families.  In the
  event of dedicated route reflectors not being available, other
  alternate mechanisms like separation of BGP instances or separate BGP
  sessions (e.g., using different addresses for peering) for Link-State
  information distribution SHOULD be used.

  It is RECOMMENDED that operators deploying BGP-LS enable two or more
  BGP-LS Producers in each IGP flooding domain to achieve redundancy in
  the origination of link-state information into BGP-LS.  It is also
  RECOMMENDED that operators ensure BGP peering designs that ensure
  redundancy in the BGP update propagation paths (e.g., using at least
  a pair of route reflectors) and ensure that BGP-LS Consumers are
  receiving the topology information from at least two BGP-LS Speakers.

  In a multi-domain IGP network, the correct provisioning of the BGP-LS
  Instance-IDs on the BGP-LS Producers is required for consistent
  reporting of the multi-domain link-state topology.  Refer to
  Section 5.2 for more details.

8.1.2.  Installation and Initial Setup

  Configuration parameters defined in Section 8.2.3 SHOULD be
  initialized to the following default values:

  *  The Link-State NLRI capability is turned off for all neighbors.

  *  The maximum rate at which Link-State NLRIs will be advertised/
     withdrawn from neighbors is set to 200 updates per second.

8.1.3.  Migration Path

  The proposed extension is only activated between BGP peers after
  capability negotiation.  Moreover, the extensions can be turned on/
  off on an individual peer basis (see Section 8.2.3), so the extension
  can be gradually rolled out in the network.

8.1.4.  Requirements for Other Protocols and Functional Components

  The protocol extension defined in this document does not put new
  requirements on other protocols or functional components.

8.1.5.  Impact on Network Operation

  The frequency of Link-State NLRI updates could interfere with regular
  BGP prefix distribution.  A network operator should use a dedicated
  route reflector infrastructure to distribute Link-State NLRIs as
  discussed in Section 8.1.1.

  Distribution of Link-State NLRIs SHOULD be limited to a single admin
  domain, which can consist of multiple areas within an AS or multiple
  ASes.

8.1.6.  Verifying Correct Operation

  Existing BGP procedures apply.  In addition, an implementation SHOULD
  allow an operator to:

  *  List neighbors with whom the speaker is exchanging Link-State
     NLRIs.

8.2.  Management Considerations

8.2.1.  Management Information

  The IDR Working Group has documented and continues to document parts
  of the Management Information Base and YANG models for managing and
  monitoring BGP Speakers and the sessions between them.  It is
  currently believed that the BGP session running BGP-LS is not
  substantially different from any other BGP session and can be managed
  using the same data models.

8.2.2.  Fault Management

  This section describes the fault management actions, as described in
  [RFC7606], that are to be performed for the handling of BGP UPDATE
  messages for BGP-LS.

  A Link-State NLRI MUST NOT be considered malformed or invalid based
  on the inclusion/exclusion of TLVs or contents of the TLV fields
  (i.e., semantic errors), as described in Sections 5.1 and 5.2.

  A BGP-LS Speaker MUST perform the following syntactic validation of
  the Link-State NLRI to determine if it is malformed.

  *  The sum of all TLV lengths found in the BGP MP_REACH_NLRI
     attribute corresponds to the BGP MP_REACH_NLRI length.

  *  The sum of all TLV lengths found in the BGP MP_UNREACH_NLRI
     attribute corresponds to the BGP MP_UNREACH_NLRI length.

  *  The sum of all TLV lengths found in a Link-State NLRI corresponds
     to the Total NLRI Length field of all its descriptors.

  *  The length of the TLVs and, when the TLV is recognized then, the
     length of its sub-TLVs in the NLRI are valid.

  *  The syntactic correctness of the NLRI fields has been verified as
     per [RFC7606].

  *  The rule regarding the ordering of TLVs has been followed as
     described in Section 5.1.

  *  For NLRIs carrying either a Local or Remote Node Descriptor TLV,
     there is not more than one instance of a sub-TLV present.

  When the error that is determined allows for the router to skip the
  malformed NLRI(s) and continue the processing of the rest of the BGP
  UPDATE message (e.g., when the TLV ordering rule is violated), then
  it MUST handle such malformed NLRIs as 'NLRI discard' (i.e.,
  processing similar to what is described in Section 5.4 of [RFC7606]).
  In other cases, where the error in the NLRI encoding results in the
  inability to process the BGP UPDATE message (e.g., length-related
  encoding errors), then the router SHOULD handle such malformed NLRIs
  as 'AFI/SAFI disable' when other AFI/SAFI besides BGP-LS are being
  advertised over the same session.  Alternately, the router MUST
  perform a 'session reset' when the session is only being used for
  BGP-LS or if 'AFI/SAFI disable' action is not possible.

  A BGP-LS Attribute MUST NOT be considered malformed or invalid based
  on the inclusion/exclusion of TLVs or contents of the TLV fields
  (i.e., semantic errors), as described in Sections 5.1 and 5.3.

  A BGP-LS Speaker MUST perform the following syntactic validation of
  the BGP-LS Attribute to determine if it is malformed.

  *  The sum of all TLV lengths found in the BGP-LS Attribute
     corresponds to the BGP-LS Attribute length.

  *  The syntactic correctness of the Attributes (including the BGP-LS
     Attribute) have been verified as per [RFC7606].

  *  The length of each TLV and, when the TLV is recognized then, the
     length of its sub-TLVs in the BGP-LS Attribute are valid.

  When the error that is determined allows for the router to skip the
  malformed BGP-LS Attribute and continue the processing of the rest of
  the BGP UPDATE message (e.g., when the BGP-LS Attribute length and
  the total Path Attribute Length are correct but some TLV/sub-TLV
  length within the BGP-LS Attribute is invalid), then it MUST handle
  such malformed BGP-LS Attribute as 'Attribute Discard'.  In other
  cases, where the error in the BGP-LS Attribute encoding results in
  the inability to process the BGP UPDATE message, the handling is the
  same as described above for the malformed NLRI.

  Note that the 'Attribute Discard' action results in the loss of all
  TLVs in the BGP-LS Attribute and not the removal of a specific
  malformed TLV.  The removal of specific malformed TLVs may give a
  wrong indication to a BGP-LS Consumer of that specific information
  being deleted or not available.

  When a BGP Speaker receives an UPDATE message with Link-State NLRI(s)
  in the MP_REACH_NLRI but without the BGP-LS Attribute, it is most
  likely an indication that a BGP Speaker preceding it has performed
  the 'Attribute Discard' fault handling.  An implementation SHOULD
  preserve and propagate the Link-State NLRIs, unless denied by local
  policy, in such an UPDATE message so that the BGP-LS Consumers can
  detect the loss of link-state information for that object and not
  assume its deletion/withdrawal.  This also makes it possible for a
  network operator to trace back to the BGP-LS Propagator that detected
  the fault with the BGP-LS Attribute.

  An implementation SHOULD log a message for any errors found during
  syntax validation for further analysis.

  A BGP-LS Propagator, even when it has a coexisting BGP-LS Consumer on
  the same node, should not perform semantic validation of the Link-
  State NLRI or the BGP-LS Attribute to determine if it is malformed or
  invalid.  Some types of semantic validation that are not to be
  performed by a BGP-LS Propagator are as follows (and this is not to
  be considered as an exhaustive list):

  *  presence of a mandatory TLV

  *  the length of a fixed-length TLV is correct or the length of a
     variable length TLV is valid or permissible

  *  the values of TLV fields are valid or permissible

  *  the inclusion and use of TLVs/sub-TLVs with specific Link-State
     NLRI types is valid

  Each TLV may indicate the valid and permissible values and their
  semantics that can be used only by a BGP-LS Consumer for its semantic
  validation.  However, the handling of any errors may be specific to
  the particular application and outside the scope of this document.

8.2.3.  Configuration Management

  An implementation SHOULD allow the operator to specify neighbors to
  which Link-State NLRIs will be advertised and from which Link-State
  NLRIs will be accepted.

  An implementation SHOULD allow the operator to specify the maximum
  rate at which Link-State NLRIs will be advertised/withdrawn from
  neighbors.

  An implementation SHOULD allow the operator to specify the maximum
  number of Link-State NLRIs stored in a router's Routing Information
  Base (RIB).

  An implementation SHOULD allow the operator to create abstracted
  topologies that are advertised to neighbors and create different
  abstractions for different neighbors.

  An implementation MUST allow the operator to configure an 8-octet
  BGP-LS Instance-ID.  Refer to Section 5.2 for guidance to the
  operator for the configuration of BGP-LS Instance-ID.

  An implementation SHOULD allow the operator to configure Autonomous
  System Number (ASN) and BGP-LS identifiers (refer to
  Section 5.2.1.4).

  An implementation SHOULD allow the operator to configure a 4096-byte
  size limit for a BGP-LS UPDATE message on a BGP-LS Producer or allow
  larger values when they know that all BGP-LS Speakers support the
  extended message size [RFC8654].

8.2.4.  Accounting Management

  Not Applicable.

8.2.5.  Performance Management

  An implementation SHOULD provide the following statistics:

  *  Total number of Link-State NLRI updates sent/received

  *  Number of Link-State NLRI updates sent/received, per neighbor

  *  Number of errored received Link-State NLRI updates, per neighbor

  *  Total number of locally originated Link-State NLRIs

  These statistics should be recorded as absolute counts since the
  system or session start time.  An implementation MAY also enhance
  this information by recording peak per-second counts in each case.

8.2.6.  Security Management

  An operator MUST define an import policy to limit inbound updates as
  follows:

  *  Drop all updates from peers that are only serving BGP-LS
     Consumers.

  An implementation MUST have the means to limit inbound updates.

9.  TLV/Sub-TLV Code Points Summary

  This section contains the global table of all TLVs/sub-TLVs defined
  in this document.

    +================+=========================+===================+
    | TLV Code Point | Description             | Reference Section |
    +================+=========================+===================+
    |      256       | Local Node Descriptors  | Section 5.2.1.2   |
    +----------------+-------------------------+-------------------+
    |      257       | Remote Node Descriptors | Section 5.2.1.3   |
    +----------------+-------------------------+-------------------+
    |      258       | Link Local/Remote       | Section 5.2.2     |
    |                | Identifiers             |                   |
    +----------------+-------------------------+-------------------+
    |      259       | IPv4 interface address  | Section 5.2.2     |
    +----------------+-------------------------+-------------------+
    |      260       | IPv4 neighbor address   | Section 5.2.2     |
    +----------------+-------------------------+-------------------+
    |      261       | IPv6 interface address  | Section 5.2.2     |
    +----------------+-------------------------+-------------------+
    |      262       | IPv6 neighbor address   | Section 5.2.2     |
    +----------------+-------------------------+-------------------+
    |      263       | Multi-Topology          | Section 5.2.2.1   |
    |                | Identifier              |                   |
    +----------------+-------------------------+-------------------+
    |      264       | OSPF Route Type         | Section 5.2.3.1   |
    +----------------+-------------------------+-------------------+
    |      265       | IP Reachability         | Section 5.2.3.2   |
    |                | Information             |                   |
    +----------------+-------------------------+-------------------+
    |      512       | Autonomous System       | Section 5.2.1.4   |
    +----------------+-------------------------+-------------------+
    |      513       | BGP-LS Identifier       | Section 5.2.1.4   |
    |                | (deprecated)            |                   |
    +----------------+-------------------------+-------------------+
    |      514       | OSPF Area-ID            | Section 5.2.1.4   |
    +----------------+-------------------------+-------------------+
    |      515       | IGP Router-ID           | Section 5.2.1.4   |
    +----------------+-------------------------+-------------------+
    |      1024      | Node Flag Bits          | Section 5.3.1.1   |
    +----------------+-------------------------+-------------------+
    |      1025      | Opaque Node Attribute   | Section 5.3.1.5   |
    +----------------+-------------------------+-------------------+
    |      1026      | Node Name               | Section 5.3.1.3   |
    +----------------+-------------------------+-------------------+
    |      1027      | IS-IS Area Identifier   | Section 5.3.1.2   |
    +----------------+-------------------------+-------------------+
    |      1028      | IPv4 Router-ID of Local | Sections 5.3.1.4  |
    |                | Node                    | and 5.3.2.1       |
    +----------------+-------------------------+-------------------+
    |      1029      | IPv6 Router-ID of Local | Sections 5.3.1.4  |
    |                | Node                    | and 5.3.2.1       |
    +----------------+-------------------------+-------------------+
    |      1030      | IPv4 Router-ID of       | Section 5.3.2.1   |
    |                | Remote Node             |                   |
    +----------------+-------------------------+-------------------+
    |      1031      | IPv6 Router-ID of       | Section 5.3.2.1   |
    |                | Remote Node             |                   |
    +----------------+-------------------------+-------------------+
    |      1088      | Administrative group    | Section 5.3.2     |
    |                | (color)                 |                   |
    +----------------+-------------------------+-------------------+
    |      1089      | Maximum link bandwidth  | Section 5.3.2     |
    +----------------+-------------------------+-------------------+
    |      1090      | Max. reservable link    | Section 5.3.2     |
    |                | bandwidth               |                   |
    +----------------+-------------------------+-------------------+
    |      1091      | Unreserved bandwidth    | Section 5.3.2     |
    +----------------+-------------------------+-------------------+
    |      1092      | TE Default Metric       | Section 5.3.2.3   |
    +----------------+-------------------------+-------------------+
    |      1093      | Link Protection Type    | Section 5.3.2     |
    +----------------+-------------------------+-------------------+
    |      1094      | MPLS Protocol Mask      | Section 5.3.2.2   |
    +----------------+-------------------------+-------------------+
    |      1095      | IGP Metric              | Section 5.3.2.4   |
    +----------------+-------------------------+-------------------+
    |      1096      | Shared Risk Link Group  | Section 5.3.2.5   |
    +----------------+-------------------------+-------------------+
    |      1097      | Opaque Link Attribute   | Section 5.3.2.6   |
    +----------------+-------------------------+-------------------+
    |      1098      | Link Name               | Section 5.3.2.7   |
    +----------------+-------------------------+-------------------+
    |      1152      | IGP Flags               | Section 5.3.3.1   |
    +----------------+-------------------------+-------------------+
    |      1153      | IGP Route Tag           | Section 5.3.3.2   |
    +----------------+-------------------------+-------------------+
    |      1154      | IGP Extended Route Tag  | Section 5.3.3.3   |
    +----------------+-------------------------+-------------------+
    |      1155      | Prefix Metric           | Section 5.3.3.4   |
    +----------------+-------------------------+-------------------+
    |      1156      | OSPF Forwarding Address | Section 5.3.3.5   |
    +----------------+-------------------------+-------------------+
    |      1157      | Opaque Prefix Attribute | Section 5.3.3.6   |
    +----------------+-------------------------+-------------------+

           Table 18: Summary Table of TLV/Sub-TLV Code Points

10.  Security Considerations

  Procedures and protocol extensions defined in this document do not
  affect the BGP security model.  See the Security Considerations
  section of [RFC4271] for a discussion of BGP security.  Also, refer
  to [RFC4272] and [RFC6952] for analysis of security issues for BGP.

  The operator should ensure that a BGP-LS Speaker does not accept
  UPDATE messages from a peer that only provides information to a BGP-
  LS Consumer by using the policy configuration options discussed in
  Sections 8.2.3 and 8.2.6.  Generally, an operator is aware of the
  BGP-LS Speaker's role and link-state peerings.  Therefore, the
  operator can protect the BGP-LS Speaker from peers sending updates
  that may represent erroneous information, feedback loops, or false
  input.

  An error or tampering of the link-state information that is
  originated into BGP-LS and propagated through the network for use by
  BGP-LS Consumers applications can result in the malfunction of those
  applications.  Some examples of such risks are the origination of
  incorrect information that is not present or consistent with the IGP
  LSDB at the BGP-LS Producer, incorrect ordering of TLVs in the NLRI,
  or inconsistent origination from multiple BGP-LS Producers and
  updates to either the NLRI or BGP-LS Attribute during propagation
  (including discarding due to errors).  These are not new risks from a
  BGP protocol perspective; however, in the case of BGP-LS, impact
  reflects on the consumer applications instead of BGP routing
  functionalities.

  Additionally, it may be considered that the export of link-state and
  TE information as described in this document constitutes a risk to
  confidentiality of mission-critical or commercially sensitive
  information about the network.  BGP peerings are not automatic and
  require configuration; thus, it is the responsibility of the network
  operator to ensure that only trusted BGP Speakers are configured to
  receive such information.  Similar security considerations also arise
  on the interface between BGP Speakers and BGP-LS Consumers, but their
  discussion is outside the scope of this document.

11.  References

11.1.  Normative References

  [ENTNUM]   IANA, "Private Enterprise Numbers (PENs)",
             <https://www.iana.org/assignments/enterprise-numbers/>.

  [ISO10589] ISO, "Information technology - Telecommunications and
             information exchange between systems - Intermediate System
             to Intermediate System intra-domain routeing information
             exchange protocol for use in conjunction with the protocol
             for providing the connectionless-mode network service (ISO
             8473)", ISO/IEC 10589:2002, November 2002.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC2328]  Moy, J., "OSPF Version 2", STD 54, RFC 2328,
             DOI 10.17487/RFC2328, April 1998,
             <https://www.rfc-editor.org/info/rfc2328>.

  [RFC2545]  Marques, P. and F. Dupont, "Use of BGP-4 Multiprotocol
             Extensions for IPv6 Inter-Domain Routing", RFC 2545,
             DOI 10.17487/RFC2545, March 1999,
             <https://www.rfc-editor.org/info/rfc2545>.

  [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
             and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
             Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
             <https://www.rfc-editor.org/info/rfc3209>.

  [RFC4202]  Kompella, K., Ed. and Y. Rekhter, Ed., "Routing Extensions
             in Support of Generalized Multi-Protocol Label Switching
             (GMPLS)", RFC 4202, DOI 10.17487/RFC4202, October 2005,
             <https://www.rfc-editor.org/info/rfc4202>.

  [RFC4203]  Kompella, K., Ed. and Y. Rekhter, Ed., "OSPF Extensions in
             Support of Generalized Multi-Protocol Label Switching
             (GMPLS)", RFC 4203, DOI 10.17487/RFC4203, October 2005,
             <https://www.rfc-editor.org/info/rfc4203>.

  [RFC4271]  Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
             Border Gateway Protocol 4 (BGP-4)", RFC 4271,
             DOI 10.17487/RFC4271, January 2006,
             <https://www.rfc-editor.org/info/rfc4271>.

  [RFC4577]  Rosen, E., Psenak, P., and P. Pillay-Esnault, "OSPF as the
             Provider/Customer Edge Protocol for BGP/MPLS IP Virtual
             Private Networks (VPNs)", RFC 4577, DOI 10.17487/RFC4577,
             June 2006, <https://www.rfc-editor.org/info/rfc4577>.

  [RFC4760]  Bates, T., Chandra, R., Katz, D., and Y. Rekhter,
             "Multiprotocol Extensions for BGP-4", RFC 4760,
             DOI 10.17487/RFC4760, January 2007,
             <https://www.rfc-editor.org/info/rfc4760>.

  [RFC4915]  Psenak, P., Mirtorabi, S., Roy, A., Nguyen, L., and P.
             Pillay-Esnault, "Multi-Topology (MT) Routing in OSPF",
             RFC 4915, DOI 10.17487/RFC4915, June 2007,
             <https://www.rfc-editor.org/info/rfc4915>.

  [RFC5036]  Andersson, L., Ed., Minei, I., Ed., and B. Thomas, Ed.,
             "LDP Specification", RFC 5036, DOI 10.17487/RFC5036,
             October 2007, <https://www.rfc-editor.org/info/rfc5036>.

  [RFC5120]  Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi
             Topology (MT) Routing in Intermediate System to
             Intermediate Systems (IS-ISs)", RFC 5120,
             DOI 10.17487/RFC5120, February 2008,
             <https://www.rfc-editor.org/info/rfc5120>.

  [RFC5130]  Previdi, S., Shand, M., Ed., and C. Martin, "A Policy
             Control Mechanism in IS-IS Using Administrative Tags",
             RFC 5130, DOI 10.17487/RFC5130, February 2008,
             <https://www.rfc-editor.org/info/rfc5130>.

  [RFC5301]  McPherson, D. and N. Shen, "Dynamic Hostname Exchange
             Mechanism for IS-IS", RFC 5301, DOI 10.17487/RFC5301,
             October 2008, <https://www.rfc-editor.org/info/rfc5301>.

  [RFC5305]  Li, T. and H. Smit, "IS-IS Extensions for Traffic
             Engineering", RFC 5305, DOI 10.17487/RFC5305, October
             2008, <https://www.rfc-editor.org/info/rfc5305>.

  [RFC5307]  Kompella, K., Ed. and Y. Rekhter, Ed., "IS-IS Extensions
             in Support of Generalized Multi-Protocol Label Switching
             (GMPLS)", RFC 5307, DOI 10.17487/RFC5307, October 2008,
             <https://www.rfc-editor.org/info/rfc5307>.

  [RFC5340]  Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF
             for IPv6", RFC 5340, DOI 10.17487/RFC5340, July 2008,
             <https://www.rfc-editor.org/info/rfc5340>.

  [RFC5642]  Venkata, S., Harwani, S., Pignataro, C., and D. McPherson,
             "Dynamic Hostname Exchange Mechanism for OSPF", RFC 5642,
             DOI 10.17487/RFC5642, August 2009,
             <https://www.rfc-editor.org/info/rfc5642>.

  [RFC5890]  Klensin, J., "Internationalized Domain Names for
             Applications (IDNA): Definitions and Document Framework",
             RFC 5890, DOI 10.17487/RFC5890, August 2010,
             <https://www.rfc-editor.org/info/rfc5890>.

  [RFC6119]  Harrison, J., Berger, J., and M. Bartlett, "IPv6 Traffic
             Engineering in IS-IS", RFC 6119, DOI 10.17487/RFC6119,
             February 2011, <https://www.rfc-editor.org/info/rfc6119>.

  [RFC6565]  Pillay-Esnault, P., Moyer, P., Doyle, J., Ertekin, E., and
             M. Lundberg, "OSPFv3 as a Provider Edge to Customer Edge
             (PE-CE) Routing Protocol", RFC 6565, DOI 10.17487/RFC6565,
             June 2012, <https://www.rfc-editor.org/info/rfc6565>.

  [RFC7606]  Chen, E., Ed., Scudder, J., Ed., Mohapatra, P., and K.
             Patel, "Revised Error Handling for BGP UPDATE Messages",
             RFC 7606, DOI 10.17487/RFC7606, August 2015,
             <https://www.rfc-editor.org/info/rfc7606>.

  [RFC7684]  Psenak, P., Gredler, H., Shakir, R., Henderickx, W.,
             Tantsura, J., and A. Lindem, "OSPFv2 Prefix/Link Attribute
             Advertisement", RFC 7684, DOI 10.17487/RFC7684, November
             2015, <https://www.rfc-editor.org/info/rfc7684>.

  [RFC7770]  Lindem, A., Ed., Shen, N., Vasseur, JP., Aggarwal, R., and
             S. Shaffer, "Extensions to OSPF for Advertising Optional
             Router Capabilities", RFC 7770, DOI 10.17487/RFC7770,
             February 2016, <https://www.rfc-editor.org/info/rfc7770>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8362]  Lindem, A., Roy, A., Goethals, D., Reddy Vallem, V., and
             F. Baker, "OSPFv3 Link State Advertisement (LSA)
             Extensibility", RFC 8362, DOI 10.17487/RFC8362, April
             2018, <https://www.rfc-editor.org/info/rfc8362>.

  [RFC8654]  Bush, R., Patel, K., and D. Ward, "Extended Message
             Support for BGP", RFC 8654, DOI 10.17487/RFC8654, October
             2019, <https://www.rfc-editor.org/info/rfc8654>.

11.2.  Informative References

  [RFC1918]  Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.
             J., and E. Lear, "Address Allocation for Private
             Internets", BCP 5, RFC 1918, DOI 10.17487/RFC1918,
             February 1996, <https://www.rfc-editor.org/info/rfc1918>.

  [RFC4272]  Murphy, S., "BGP Security Vulnerabilities Analysis",
             RFC 4272, DOI 10.17487/RFC4272, January 2006,
             <https://www.rfc-editor.org/info/rfc4272>.

  [RFC4364]  Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
             Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
             2006, <https://www.rfc-editor.org/info/rfc4364>.

  [RFC4655]  Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
             Computation Element (PCE)-Based Architecture", RFC 4655,
             DOI 10.17487/RFC4655, August 2006,
             <https://www.rfc-editor.org/info/rfc4655>.

  [RFC5152]  Vasseur, JP., Ed., Ayyangar, A., Ed., and R. Zhang, "A
             Per-Domain Path Computation Method for Establishing Inter-
             Domain Traffic Engineering (TE) Label Switched Paths
             (LSPs)", RFC 5152, DOI 10.17487/RFC5152, February 2008,
             <https://www.rfc-editor.org/info/rfc5152>.

  [RFC5392]  Chen, M., Zhang, R., and X. Duan, "OSPF Extensions in
             Support of Inter-Autonomous System (AS) MPLS and GMPLS
             Traffic Engineering", RFC 5392, DOI 10.17487/RFC5392,
             January 2009, <https://www.rfc-editor.org/info/rfc5392>.

  [RFC5693]  Seedorf, J. and E. Burger, "Application-Layer Traffic
             Optimization (ALTO) Problem Statement", RFC 5693,
             DOI 10.17487/RFC5693, October 2009,
             <https://www.rfc-editor.org/info/rfc5693>.

  [RFC5706]  Harrington, D., "Guidelines for Considering Operations and
             Management of New Protocols and Protocol Extensions",
             RFC 5706, DOI 10.17487/RFC5706, November 2009,
             <https://www.rfc-editor.org/info/rfc5706>.

  [RFC6549]  Lindem, A., Roy, A., and S. Mirtorabi, "OSPFv2 Multi-
             Instance Extensions", RFC 6549, DOI 10.17487/RFC6549,
             March 2012, <https://www.rfc-editor.org/info/rfc6549>.

  [RFC6952]  Jethanandani, M., Patel, K., and L. Zheng, "Analysis of
             BGP, LDP, PCEP, and MSDP Issues According to the Keying
             and Authentication for Routing Protocols (KARP) Design
             Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013,
             <https://www.rfc-editor.org/info/rfc6952>.

  [RFC7285]  Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel, S.,
             Previdi, S., Roome, W., Shalunov, S., and R. Woundy,
             "Application-Layer Traffic Optimization (ALTO) Protocol",
             RFC 7285, DOI 10.17487/RFC7285, September 2014,
             <https://www.rfc-editor.org/info/rfc7285>.

  [RFC7752]  Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
             S. Ray, "North-Bound Distribution of Link-State and
             Traffic Engineering (TE) Information Using BGP", RFC 7752,
             DOI 10.17487/RFC7752, March 2016,
             <https://www.rfc-editor.org/info/rfc7752>.

  [RFC7911]  Walton, D., Retana, A., Chen, E., and J. Scudder,
             "Advertisement of Multiple Paths in BGP", RFC 7911,
             DOI 10.17487/RFC7911, July 2016,
             <https://www.rfc-editor.org/info/rfc7911>.

  [RFC8202]  Ginsberg, L., Previdi, S., and W. Henderickx, "IS-IS
             Multi-Instance", RFC 8202, DOI 10.17487/RFC8202, June
             2017, <https://www.rfc-editor.org/info/rfc8202>.

  [RFC9029]  Farrel, A., "Updates to the Allocation Policy for the
             Border Gateway Protocol - Link State (BGP-LS) Parameters
             Registries", RFC 9029, DOI 10.17487/RFC9029, June 2021,
             <https://www.rfc-editor.org/info/rfc9029>.

  [RFC9346]  Chen, M., Ginsberg, L., Previdi, S., and D. Xiaodong, "IS-
             IS Extensions in Support of Inter-Autonomous System (AS)
             MPLS and GMPLS Traffic Engineering", RFC 9346,
             DOI 10.17487/RFC9346, February 2023,
             <https://www.rfc-editor.org/info/rfc9346>.

Appendix A.  Changes from RFC 7752

  This section lists the high-level changes from RFC 7752 and provides
  reference to the document sections wherein those have been
  introduced.

  1.   Updated Figure 1 in Section 1 and added Section 3 to illustrate
       the different roles of a BGP implementation in conveying link-
       state information.

  2.   Clarified aspects related to advertisement of link-state
       information from IGPs into BGP-LS in Section 4.

  3.   In Section 5.1, clarified aspects about TLV handling that apply
       to both the NLRI and BGP-LS Attribute parts as well as those
       that are applicable only for the NLRI portion.  An
       implementation may have missed the part about the handling of an
       unknown TLV and so, based on [RFC7606] guidelines, might discard
       the unknown NLRI types.  This aspect is now unambiguously
       clarified in Section 5.2.  Also, the TLVs in the BGP-LS
       Attribute that are not ordered are not to be considered
       malformed.

  4.   Clarified aspects of mandatory and optional TLVs in both NLRI
       and BGP-LS Attribute portions all through the document.

  5.   In Section 5.3, the handling of a large-sized BGP-LS Attribute
       with growth in BGP-LS information is explained along with
       mitigation of errors arising out of it.

  6.   Clarified that the document describes the NLRI descriptor TLVs
       for the protocols and NLRI types specified in this document as
       well as future BGP-LS extensions must describe the same for
       other protocols and NLRI types that they introduce.

  7.   In Section 5.2, clarified the use of the Identifier field in the
       Link-State NLRI.  It was defined ambiguously to refer to only
       multi-instance IGP on a single link while it can also be used
       for multiple IGP protocol instances on a router.  The IANA
       registry is accordingly being removed.

  8.   The BGP-LS Identifier TLV in the Node Descriptors has been
       deprecated.  Its use was not well specified by [RFC7752], and
       there has been some amount of confusion between implementors on
       its usage for identification of IGP domains as against the use
       of the Identifier field carrying the BGP-LS Instance-ID when
       running multiple instances of IGP routing protocols.  The
       original purpose of the BGP-LS Identifier was that, in
       conjunction with the ASN, it would uniquely identify the BGP-LS
       domain and that the combination of ASN and BGP-LS ID would be
       globally unique.  However, the BGP-LS Instance-ID carried in the
       Identifier field in the fixed part of the NLRI also provides a
       similar functionality.  Hence, the inclusion of the BGP-LS
       Identifier TLV is not necessary.  If advertised, all BGP-LS
       Speakers within an IGP flooding-set (set of IGP nodes within
       which an LSP/LSA is flooded) had to use the same (ASN, BGP-LS
       ID) tuple, and if an IGP domain consists of multiple flooding-
       sets, then all BGP-LS Speakers within the IGP domain had to use
       the same (ASN, BGP-LS ID) tuple.

  9.   Clarified that the Area-ID TLV is mandatory in the Node
       Descriptor for the origination of information from OSPF except
       for when sourcing information from AS-scope LSAs where this TLV
       is not applicable.  Also clarified the IS-IS area and area
       addresses.

  10.  Moved the MT-ID TLV from the Node Descriptor section to under
       the Link Descriptor section since it is not a Node Descriptor
       sub-TLV.  Fixed the ambiguity in the encoding of OSPF MT-ID in
       this TLV.  Updated the IS-IS specification reference section and
       described the differences in the applicability of the R flags
       when the MT-ID TLV is used as the Link Descriptor TLV and Prefix
       Attribute TLV.  The MT-ID TLV use is now elevated to SHOULD when
       it is enabled in the underlying IGP.

  11.  Clarified that IPv6 link-local addresses are not advertised in
       the Link Descriptor TLVs and the local/remote identifiers are to
       be used instead for links with IPv6 link-local addresses only.

  12.  Updated the usage of OSPF Route Type TLV to mandate its use for
       OSPF prefixes in Section 5.2.3.1 since this is required for
       segregation of intra-area prefixes that are used to reach a node
       (e.g., a loopback) from other types of inter-area and external
       prefixes.

  13.  Clarified the specific OSPFv2 and OSPFv3 protocol TLV space to
       be used in the Node, Link, and Prefix Opaque Attribute TLVs.

  14.  Clarified that the length of the Node Flag Bits and IGP Flags
       TLVs are to be one octet.

  15.  Updated the Node Name TLV in Section 5.3.1.3 with the OSPF
       specification.

  16.  Clarified the size of the IS-IS Narrow Metric advertisement via
       the IGP Metric TLV and the handling of the unused bits.

  17.  Clarified the advertisement of the prefix corresponding to the
       LAN segment in an OSPF network in Section 5.11.

  18.  Clarified the advertisement and support for OSPF-specific
       concepts like virtual links, sham links, and Type 4 LSAs in
       Sections 5.7 and 5.8.

  19.  Introduced the Private Use TLV code point space and specified
       their encoding in Section 5.4.

  20.  In Section 5.9, introduced where issues related to the
       consistency of reporting IGP link-state along with their
       solutions are covered.

  21.  Added a recommendation for isolation of BGP-LS sessions from
       other BGP route exchanges to avoid errors and faults in BGP-LS
       affecting the normal BGP routing.

  22.  Updated the Fault Management section with detailed rules based
       on the role of the BGP Speaker in the BGP-LS information
       propagation flow.

  23.  Changed the management of BGP-LS IANA registries from
       "Specification Required" to "Expert Review" along with updated
       guidelines for designated experts, more specifically, the
       inclusion of changes introduced via [RFC9029] that are obsoleted
       by this document.

  24.  Added BGP-LS IANA registries with "Expert Review" policy for the
       flag fields of various TLVs that was missed out.  Renamed the
       BGP-LS TLV registry and removed the "IS-IS TLV/Sub-TLV" column
       from it.

Acknowledgements

  This document update to the BGP-LS specification [RFC7752] is a
  result of feedback and input from the discussions in the IDR Working
  Group.  It also incorporates certain details and clarifications based
  on implementation and deployment experience with BGP-LS.

  Cengiz Alaettinoglu and Parag Amritkar brought forward the need to
  clarify the advertisement of a LAN subnet for OSPF.

  We would like to thank Balaji Rajagopalan, Srihari Sangli, Shraddha
  Hegde, Andrew Stone, Jeff Tantsura, Acee Lindem, Les Ginsberg, Jie
  Dong, Aijun Wang, Nandan Saha, Joel Halpern, and Gyan Mishra for
  their review and feedback on this document.  Thanks to Tom Petch for
  his review and comments on the IANA Considerations section.  We would
  also like to thank Jeffrey Haas for his detailed shepherd review and
  input for improving the document.

  The detailed AD review by Alvaro Retana and his suggestions have
  helped improve this document significantly.

  We would like to thank Robert Varga for his significant contribution
  to [RFC7752].

  We would like to thank Nischal Sheth, Alia Atlas, David Ward, Derek
  Yeung, Murtuza Lightwala, John Scudder, Kaliraj Vairavakkalai, Les
  Ginsberg, Liem Nguyen, Manish Bhardwaj, Matt Miller, Mike Shand,
  Peter Psenak, Rex Fernando, Richard Woundy, Steven Luong, Tamas
  Mondal, Waqas Alam, Vipin Kumar, Naiming Shen, Carlos Pignataro,
  Balaji Rajagopalan, Yakov Rekhter, Alvaro Retana, Barry Leiba, and
  Ben Campbell for their comments on [RFC7752].

Contributors

  The following persons contributed significant text to [RFC7752] and
  this document.  They should be considered coauthors.

  Hannes Gredler
  Rtbrick
  Email: [email protected]


  Jan Medved
  Cisco Systems Inc.
  United States of America
  Email: [email protected]


  Stefano Previdi
  Huawei Technologies
  Italy
  Email: [email protected]


  Adrian Farrel
  Old Dog Consulting
  Email: [email protected]


  Saikat Ray
  Individual
  United States of America
  Email: [email protected]


Author's Address

  Ketan Talaulikar (editor)
  Cisco Systems
  India
  Email: [email protected]