Internet Engineering Task Force (IETF)                            X. Min
Request for Comments: 9521                                     ZTE Corp.
Category: Standards Track                                      G. Mirsky
ISSN: 2070-1721                                                 Ericsson
                                                          S. Pallagatti
                                                                 VMware
                                                            J. Tantsura
                                                                 Nvidia
                                                              S. Aldrin
                                                                 Google
                                                           January 2024


     Bidirectional Forwarding Detection (BFD) for Generic Network
                Virtualization Encapsulation (Geneve)

Abstract

  This document describes the use of the Bidirectional Forwarding
  Detection (BFD) protocol in point-to-point Generic Network
  Virtualization Encapsulation (Geneve) unicast tunnels used to make up
  an overlay network.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9521.

Copyright Notice

  Copyright (c) 2024 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
  2.  Conventions Used in This Document
    2.1.  Abbreviations
    2.2.  Requirements Language
  3.  BFD Packet Transmission over a Geneve Tunnel
  4.  BFD Encapsulation with the Inner Ethernet/IP/UDP Header
    4.1.  Demultiplexing a BFD Packet When the Payload Is Ethernet
  5.  BFD Encapsulation with the Inner IP/UDP Header
    5.1.  Demultiplexing a BFD Packet When the Payload Is IP
  6.  Security Considerations
  7.  IANA Considerations
  8.  References
    8.1.  Normative References
    8.2.  Informative References
  Acknowledgements
  Authors' Addresses

1.  Introduction

  "Geneve: Generic Network Virtualization Encapsulation" [RFC8926]
  provides an encapsulation scheme that allows building an overlay
  network of tunnels by decoupling the address space of the attached
  virtual hosts from that of the network.

  This document describes the use of the Bidirectional Forwarding
  Detection (BFD) protocol [RFC5880] to enable monitoring the
  continuity of the path between two Geneve tunnel endpoints, which may
  be a Network Virtualization Edge (NVE) or another device acting as a
  Geneve tunnel endpoint.  Specifically, the asynchronous mode of BFD,
  as defined in [RFC5880], is used to monitor a point-to-point (P2P)
  Geneve tunnel.  The support for the BFD Echo function is outside the
  scope of this document.  For simplicity, an NVE is used to represent
  the Geneve tunnel endpoint.  A Tenant System (TS) is used to
  represent the physical or virtual device attached to a Geneve tunnel
  endpoint from the outside.  A Virtual Access Point (VAP) is the NVE
  side of the interface between the NVE and the TS, and a VAP is a
  logical network port (virtual or physical) into a specific virtual
  network.  For detailed definitions and descriptions of NVE, TS, and
  VAP, please refer to [RFC7365] and [RFC8014].

  The use cases and the deployment of BFD for Geneve are mostly
  consistent with what's described in Sections 1 and 3 of [RFC8971].
  One exception is the usage of the Management Virtual Network
  Identifier (VNI), which is described in [GENEVE-OAM] and is outside
  the scope of this document.

  As specified in Section 4.2 of [RFC8926], Geneve MUST be used with
  congestion controlled traffic or within a Traffic-Managed Controlled
  Environment (TMCE) to avoid congestion; that requirement also applies
  to BFD traffic.  Specifically, considering the complexity and
  immaturity of the BFD congestion control mechanism, BFD for Geneve
  MUST be used within a TMCE unless BFD is really congestion
  controlled.  As an alternative to a real congestion control, an
  operator of a TMCE deploying BFD for Geneve is required to provision
  the rates at which BFD is transmitted to avoid congestion and false
  failure detection.

2.  Conventions Used in This Document

2.1.  Abbreviations

  BFD:  Bidirectional Forwarding Detection

  FCS:  Frame Check Sequence

  Geneve:  Generic Network Virtualization Encapsulation

  NVE:  Network Virtualization Edge

  TMCE:  Traffic-Managed Controlled Environment

  TS:  Tenant System

  VAP:  Virtual Access Point

  VNI:  Virtual Network Identifier

  VXLAN:  Virtual eXtensible Local Area Network

2.2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

3.  BFD Packet Transmission over a Geneve Tunnel

  Since the Geneve data packet payload may be either an Ethernet frame
  or an IP packet, this document defines two formats of BFD packet
  encapsulation in Geneve.  The BFD session is originated and
  terminated at the VAP of an NVE.  The selection of the BFD packet
  encapsulation is based on how the VAP encapsulates the data packets.
  If the payload is IP, then BFD over IP is carried in the payload.  If
  the payload is Ethernet, then BFD over IP over Ethernet is carried in
  the payload.  This occurs in the same manner as BFD over IP in the IP
  payload case, regardless of what the Ethernet payload might normally
  carry.

4.  BFD Encapsulation with the Inner Ethernet/IP/UDP Header

  If the VAP that originates the BFD packets is used to encapsulate
  Ethernet data frames, then the BFD packets are encapsulated in Geneve
  as described below.  The Geneve packet formats over IPv4 and IPv6 are
  defined in Sections 3.1 and 3.2 of [RFC8926], respectively.  The
  outer IP/UDP and Geneve headers are encoded by the sender as defined
  in [RFC8926].  Note that the outer IP header and the inner IP header
  may not be of the same address family.  In other words, an outer IPv6
  header accompanied by an inner IPv4 header and an outer IPv4 header
  accompanied by an inner IPv6 header are both possible.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                      Outer Ethernet Header                    ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                        Outer IPvX Header                      ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                        Outer UDP Header                       ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                          Geneve Header                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                      Inner Ethernet Header                    ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                        Inner IPvX Header                      ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                         Inner UDP Header                      ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                        BFD Control Packet                     ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Outer Ethernet FCS                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Figure 1: Geneve Encapsulation of a BFD Control Packet with the Inner
                          Ethernet/IP/UDP Header

  The BFD packet MUST be carried inside the inner Ethernet frame of the
  Geneve packet.  The inner Ethernet frame carrying the BFD Control
  packet has the following format:

  Inner Ethernet Header:
     Destination MAC:  Media Access Control (MAC) address of a VAP of
        the terminating NVE.

     Source MAC:  MAC address of a VAP of the originating NVE.

  IP Header:
     Source IP:  IP address of a VAP of the originating NVE.  If the
        VAP of the originating NVE has no IP address, then the IP
        address 0.0.0.0 for IPv4 or ::/128 for IPv6 MUST be used.

     Destination IP:  IP address of a VAP of the terminating NVE.  If
        the VAP of the terminating NVE has no IP address, then the IP
        address 127.0.0.1 for IPv4 or ::1/128 for IPv6 MUST be used.

     TTL or Hop Limit:  The TTL for IPv4 or Hop Limit for IPv6 MUST be
        set to 255 in accordance with [RFC5881], which specifies the
        IPv4/IPv6 single-hop BFD.

     The fields of the UDP header and the BFD Control packet are
     encoded as specified in [RFC5881].

  When the BFD packets are encapsulated in Geneve in this way, the
  Geneve header defined in [RFC8926] follows the value set below.

  *  The Opt Len field MUST be set as consistent with the Geneve
     specification ([RFC8926]) depending on whether or not Geneve
     options are present in the frame.  The use of Geneve options with
     BFD is beyond the scope of this document.

  *  The O bit MUST be set to 1, which indicates this packet contains a
     control message.

  *  The C bit MUST be set to 0, which indicates there isn't any
     critical option.

  *  The Protocol Type field MUST be set to 0x6558 (Ethernet frame).

  *  The Virtual Network Identifier (VNI) field MUST be set to the VNI
     number that the originating VAP is mapped to.

4.1.  Demultiplexing a BFD Packet When the Payload Is Ethernet

  Once a packet is received, the NVE validates the packet as described
  in [RFC8926].  When the payload is Ethernet, the Protocol Type field
  equals 0x6558.  The destination MAC address of the inner Ethernet
  frame matches the MAC address of a VAP, which is mapped to the same
  VNI as the received VNI.  Then, the destination IP, the UDP
  destination port, and the TTL or Hop Limit of the inner IP packet
  MUST be validated to determine whether the received packet can be
  processed by BFD (i.e., the three field values of the inner IP packet
  MUST be in compliance with what's defined in Section 4 of this
  document, as well as Section 4 of [RFC5881]).  If the validation
  fails, the received packet MUST NOT be processed by BFD.

  In BFD over Geneve, a BFD session is originated and terminated at a
  VAP.  Usually one NVE owns multiple VAPs.  Since multiple BFD
  sessions may be running between two NVEs, there needs to be a
  mechanism for demultiplexing received BFD packets to the proper
  session.  Furthermore, due to the fact that [RFC8014] allows for
  N-to-1 mapping between VAPs and VNIs at one NVE, multiple BFD
  sessions between two NVEs for the same VNI are allowed.  Also, note
  that a BFD session can only be established between two VAPs that are
  mapped to the same VNI and that use the same way to encapsulate data
  packets.

  If the BFD packet is received with the value of the Your
  Discriminator field set to 0, then the BFD session SHOULD be
  identified using the VNI number and the inner Ethernet/IP header.
  The inner Ethernet/IP header stands for the source MAC, the source
  IP, the destination MAC, and the destination IP.  An implementation
  MAY use the inner UDP port source number to aid in demultiplexing
  incoming BFD Control packets.  If it fails to identify the BFD
  session, the incoming BFD Control packets MUST be dropped, and an
  exception event indicating the failure should be reported to the
  management.

  If the BFD packet is received with a non-zero Your Discriminator,
  then the BFD session MUST be demultiplexed only with the Your
  Discriminator as the key.

5.  BFD Encapsulation with the Inner IP/UDP Header

  If the VAP that originates the BFD packets is used to encapsulate IP
  data packets, then the BFD packets are encapsulated in Geneve as
  described below.  The Geneve packet formats over IPv4 and IPv6 are
  defined in Sections 3.1 and 3.2 of [RFC8926], respectively.  The
  outer IP/UDP and Geneve headers are encoded by the sender as defined
  in [RFC8926].  Note that the outer IP header and the inner IP header
  may not be of the same address family.  In other words, an outer IPv6
  header accompanied by an inner IPv4 header and an outer IPv4 header
  accompanied by an inner IPv6 header are both possible.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                         Ethernet Header                       ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                        Outer IPvX Header                      ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                        Outer UDP Header                       ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                          Geneve Header                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                        Inner IPvX Header                      ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                         Inner UDP Header                      ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                        BFD Control Packet                     ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               FCS                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 2: Geneve Encapsulation of a BFD Control Packet with the
                           Inner IP/UDP Header

  The BFD packet MUST be carried inside the inner IP packet of the
  Geneve packet.  The inner IP packet carrying the BFD Control packet
  has the following format:

  Inner IP Header:
     Source IP:  IP address of a VAP of the originating NVE.

     Destination IP:  IP address of a VAP of the terminating NVE.

     TTL or Hop Limit:  The TTL for IPv4 or Hop Limit for IPv6 MUST be
        set to 255 in accordance with [RFC5881], which specifies the
        IPv4/IPv6 single-hop BFD.

     The fields of the UDP header and the BFD Control packet are
     encoded as specified in [RFC5881].

  When the BFD packets are encapsulated in Geneve in this way, the
  Geneve header defined in [RFC8926] follows the value set below.

  *  The Opt Len field MUST be set as consistent with the Geneve
     specification ([RFC8926]) depending on whether or not Geneve
     options are present in the frame.  The use of Geneve options with
     BFD is beyond the scope of this document.

  *  The O bit MUST be set to 1, which indicates this packet contains a
     control message.

  *  The C bit MUST be set to 0, which indicates there isn't any
     critical option.

  *  The Protocol Type field MUST be set to 0x0800 (IPv4) or 0x86DD
     (IPv6), depending on the address family of the inner IP packet.

  *  The Virtual Network Identifier (VNI) field MUST be set to the VNI
     number that the originating VAP is mapped to.

5.1.  Demultiplexing a BFD Packet When the Payload Is IP

  Once a packet is received, the NVE validates the packet as described
  in [RFC8926].  When the payload is IP, the Protocol Type field equals
  0x0800 or 0x86DD.  The destination IP address of the inner IP packet
  matches the IP address of a VAP, which is mapped to the same VNI as
  the received VNI.  Then, the UDP destination port and the TTL or Hop
  Limit of the inner IP packet MUST be validated to determine whether
  or not the received packet can be processed by BFD (i.e., the two
  field values of the inner IP packet MUST be in compliance with what's
  defined in Section 5 of this document as well as Section 4 of
  [RFC5881]).  If the validation fails, the received packet MUST NOT be
  processed by BFD.

  If the BFD packet is received with the value of the Your
  Discriminator field set to 0, then the BFD session SHOULD be
  identified using the VNI number and the inner IP header.  The inner
  IP header stands for the source IP and the destination IP.  An
  implementation MAY use the inner UDP port source number to aid in
  demultiplexing incoming BFD Control packets.  If it fails to identify
  the BFD session, the incoming BFD Control packets MUST be dropped,
  and an exception event indicating the failure should be reported to
  the management.

  If the BFD packet is received with a non-zero Your Discriminator,
  then the BFD session MUST be demultiplexed only with the Your
  Discriminator as the key.

6.  Security Considerations

  Security issues discussed in [RFC8926] and [RFC5880] apply to this
  document.  Particularly, the BFD is an application that is run at the
  two Geneve tunnel endpoints.  The IP underlay network and/or the
  Geneve option can provide security between the peers, which are
  subject to the issue of overload described below.  The BFD introduces
  no security vulnerabilities when run in this manner.  Considering
  Geneve does not have any inherent security mechanisms, BFD
  authentication as specified in [RFC5880] is RECOMMENDED to be
  utilized.

  This document supports establishing multiple BFD sessions between the
  same pair of NVEs.  For each BFD session over a pair of VAPs residing
  in the same pair of NVEs, there SHOULD be a mechanism to control the
  maximum number of such sessions that can be active at the same time.
  Particularly, assuming an example that each NVE of the pair of NVEs
  has N VAPs using Ethernet as the payload, then there could be N
  squared BFD sessions running between the pair of NVEs.  Considering N
  could be a high number, the N squared BFD sessions could result in
  overload of the NVE.  In this case, it's recommended that N BFD
  sessions covering all N VAPs are run for the pair of NVEs.  Generally
  speaking, the number of BFD sessions is supposed to be enough as long
  as all VAPs of the pair of NVEs are covered.

7.  IANA Considerations

  This document has no IANA actions.

8.  References

8.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC5880]  Katz, D. and D. Ward, "Bidirectional Forwarding Detection
             (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
             <https://www.rfc-editor.org/info/rfc5880>.

  [RFC5881]  Katz, D. and D. Ward, "Bidirectional Forwarding Detection
             (BFD) for IPv4 and IPv6 (Single Hop)", RFC 5881,
             DOI 10.17487/RFC5881, June 2010,
             <https://www.rfc-editor.org/info/rfc5881>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8926]  Gross, J., Ed., Ganga, I., Ed., and T. Sridhar, Ed.,
             "Geneve: Generic Network Virtualization Encapsulation",
             RFC 8926, DOI 10.17487/RFC8926, November 2020,
             <https://www.rfc-editor.org/info/rfc8926>.

8.2.  Informative References

  [GENEVE-OAM]
             Mirsky, G., Boutros, S., Black, D., and S. Pallagatti,
             "OAM for use in GENEVE", Work in Progress, Internet-Draft,
             draft-ietf-nvo3-geneve-oam-09, 6 December 2023,
             <https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-
             geneve-oam-09>.

  [RFC7365]  Lasserre, M., Balus, F., Morin, T., Bitar, N., and Y.
             Rekhter, "Framework for Data Center (DC) Network
             Virtualization", RFC 7365, DOI 10.17487/RFC7365, October
             2014, <https://www.rfc-editor.org/info/rfc7365>.

  [RFC8014]  Black, D., Hudson, J., Kreeger, L., Lasserre, M., and T.
             Narten, "An Architecture for Data-Center Network
             Virtualization over Layer 3 (NVO3)", RFC 8014,
             DOI 10.17487/RFC8014, December 2016,
             <https://www.rfc-editor.org/info/rfc8014>.

  [RFC8971]  Pallagatti, S., Ed., Mirsky, G., Ed., Paragiri, S.,
             Govindan, V., and M. Mudigonda, "Bidirectional Forwarding
             Detection (BFD) for Virtual eXtensible Local Area Network
             (VXLAN)", RFC 8971, DOI 10.17487/RFC8971, December 2020,
             <https://www.rfc-editor.org/info/rfc8971>.

Acknowledgements

  The authors would like to acknowledge Reshad Rahman, Jeffrey Haas,
  and Matthew Bocci for their guidance on this work.

  The authors would like to acknowledge David Black for his explanation
  on the mapping relation between VAPs and VNIs.

  The authors would like to acknowledge Stewart Bryant, Anoop Ghanwani,
  Jeffrey Haas, Reshad Rahman, Matthew Bocci, Andrew Alston, Magnus
  Westerlund, Paul Kyzivat, Sheng Jiang, Carl Wallace, Roman Danyliw,
  John Scudder, Donald Eastlake 3rd, Éric Vyncke, Zaheduzzaman Sarker,
  and Lars Eggert for their thorough review and very helpful comments.

Authors' Addresses

  Xiao Min
  ZTE Corp.
  Nanjing
  China
  Phone: +86 18061680168
  Email: [email protected]


  Greg Mirsky
  Ericsson
  United States of America
  Email: [email protected]


  Santosh Pallagatti
  VMware
  India
  Email: [email protected]


  Jeff Tantsura
  Nvidia
  United States of America
  Email: [email protected]


  Sam Aldrin
  Google
  United States of America
  Email: [email protected]