Internet Research Task Force (IRTF)                          C. Gündoğan
Request for Comments: 9510                                        Huawei
Updates: 8609                                                TC. Schmidt
Category: Experimental                                       HAW Hamburg
ISSN: 2070-1721                                                  D. Oran
                                    Network Systems Research and Design
                                                            M. Wählisch
                                                             TU Dresden
                                                          February 2024


Alternative Delta Time Encoding for Content-Centric Networking (CCNx)
               Using Compact Floating-Point Arithmetic

Abstract

  Content-Centric Networking (CCNx) utilizes delta time for a number of
  functions.  When using CCNx in environments with constrained nodes or
  bandwidth-constrained networks, it is valuable to have a compressed
  representation of delta time.  In order to do so, either accuracy or
  dynamic range has to be sacrificed.  Since the current uses of delta
  time do not require both simultaneously, one can consider a
  logarithmic encoding.  This document updates RFC 8609 ("CCNx messages
  in TLV Format") to specify this alternative encoding.

  This document is a product of the IRTF Information-Centric Networking
  Research Group (ICNRG).

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for examination, experimental implementation, and
  evaluation.

  This document defines an Experimental Protocol for the Internet
  community.  This document is a product of the Internet Research Task
  Force (IRTF).  The IRTF publishes the results of Internet-related
  research and development activities.  These results might not be
  suitable for deployment.  This RFC represents the consensus of the
  Information-Centric Networking Research Group of the Internet
  Research Task Force (IRTF).  Documents approved for publication by
  the IRSG are not candidates for any level of Internet Standard; see
  Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9510.

Copyright Notice

  Copyright (c) 2024 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.

Table of Contents

  1.  Introduction
  2.  Terminology
  3.  Usage of Time Values in CCNx
    3.1.  Relative Time in CCNx
    3.2.  Absolute Time in CCNx
  4.  A Compact Time Representation with Logarithmic Range
  5.  Protocol Integration of the Compact Time Representation
    5.1.  Interest Lifetime
    5.2.  Recommended Cache Time
  6.  IANA Considerations
  7.  Security Considerations
  8.  References
    8.1.  Normative References
    8.2.  Informative References
  Appendix A.  Test Vectors
  Appendix B.  Efficient Time Value Approximation
  Acknowledgments
  Authors' Addresses

1.  Introduction

  CCNx is well suited for Internet of Things (IoT) applications
  [RFC7927].  Low-Power Wireless Personal Area Network (LoWPAN)
  adaptation layers (e.g., [RFC9139]) confirm the advantages of a
  space-efficient packet encoding for low-power and lossy networks.
  CCNx utilizes absolute and delta time values for a number of
  functions.  When using CCNx in resource-constrained environments, it
  is valuable to have a compact representation of time values.
  However, any compact time representation has to sacrifice accuracy or
  dynamic range.  For some time uses, this is relatively
  straightforward to achieve; for other uses, it is not.  As a result
  of experiments in bandwidth-constrained IEEE 802.15.4 deployments
  [ICNLOWPAN], this document discusses the various cases of time
  values, proposes a compact encoding for delta times, and updates
  [RFC8609] to utilize this encoding format in CCNx messages.

  This document has received fruitful reviews by the members of the
  research group (see the Acknowledgments section).  It is the
  consensus of ICNRG that this document should be published in the IRTF
  Stream of the RFC series.  This document does not constitute an IETF
  standard.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  This document uses the terminology of [RFC8569] and [RFC8609] for
  CCNx entities.

  The following terms are used in the document and defined as follows:

  byte:         synonym for octet

  time value:   a time offset measured in seconds

  time code:    an 8-bit encoded time value as defined in [RFC5497]

3.  Usage of Time Values in CCNx

3.1.  Relative Time in CCNx

  CCNx, as currently specified in [RFC8569], utilizes delta time for
  only the lifetime of an Interest message (see Sections 2.1, 2.2,
  2.4.2, and 10.3 of [RFC8569]).  It is a hop-by-hop header value, and
  is currently encoded via the T_INTLIFE TLV as a 64-bit integer
  (Section 3.4.1 of [RFC8609]).  While formally an optional TLV, every
  Interest message is expected to carry the Interest Lifetime TLV in
  all but some corner cases; hence, having compact encoding is
  particularly valuable to keep Interest messages short.

  Since the current uses of delta time do not require both accuracy and
  dynamic range simultaneously, one can consider a logarithmic encoding
  such as that specified in [IEEE.754.2019] and as outlined in
  Section 4.  This document updates CCNx messages in TLV format
  [RFC8609] to permit this alternative encoding for selected time
  values.

3.2.  Absolute Time in CCNx

  CCNx, as currently specified in [RFC8569], utilizes absolute time for
  various important functions.  Each of these absolute time usages
  poses a different challenge for a compact representation.  These are
  discussed in the following subsections.

3.2.1.  Signature Time and Expiry Time

  Signature Time is the time the signature of a Content Object was
  generated (see Sections 8.2-8.4 of [RFC8569]).  Expiry Time indicates
  the time after which a Content Object is considered expired
  (Section 4 of [RFC8569]).  Both values are content message TLVs and
  represent absolute timestamps in milliseconds since the POSIX epoch.
  They are currently encoded via the T_SIGTIME and T_EXPIRY TLVs as
  64-bit unsigned integers (see Sections 3.6.4.1.4.5 and 3.6.2.2.2 of
  [RFC8609], respectively).

  Both time values could be in the past or in the future, potentially
  by a large delta.  They are also included in the security envelope of
  the message.  Therefore, it seems there is no practical way to define
  an alternative compact encoding that preserves its semantics and
  security properties; therefore, this approach is not considered
  further.

3.2.2.  Recommended Cache Time

  Recommended Cache Time (RCT) for a Content Object (Section 4 of
  [RFC8569]) is a hop-by-hop header stating the expiration time for a
  cached Content Object in milliseconds since the POSIX epoch.  It is
  currently encoded via the T_CACHETIME TLV as a 64-bit unsigned
  integer (see Section 3.4.2 of [RFC8609]).

  A Recommended Cache Time could be far in the future, but it cannot be
  in the past and is likely to be a reasonably short offset from the
  current time.  Therefore, this document allows the Recommended Cache
  Time to be interpreted as a relative time value rather than an
  absolute time, because the semantics associated with an absolute time
  value do not seem to be critical to the utility of this value.  This
  document therefore updates the Recommended Cache Time with the
  following rule set:

  *  Use absolute time as per [RFC8609]

  *  Use relative time, if the compact time representation is used (see
     Sections 4 and 5)

  If relative time is used, the time offset recorded in a message will
  typically not account for residence times on lower layers (e.g., for
  processing, queuing) and link delays for every hop.  Thus, the
  Recommended Cache Time cannot be as accurate as when absolute time is
  used.  This document targets low-power networks, where delay bounds
  are rather loose or do not exist.  An accumulated error due to
  transmission delays in the range of milliseconds and seconds for the
  Recommended Cache Time is still tolerable in these networks and does
  not impact the protocol performance.

  Networks with tight latency bounds use dedicated hardware, optimized
  software routines, and traffic engineering to reduce latency
  variations.  Time offsets can then be corrected on every hop to yield
  exact cache times.

4.  A Compact Time Representation with Logarithmic Range

  This document uses the compact time representation described in
  "Information-Centric Networking (ICN) Adaptation to Low-Power
  Wireless Personal Area Networks (LoWPANs)" (see Section 7 of
  [RFC9139]) that was inspired by [RFC5497] and [IEEE.754.2019].  Its
  logarithmic encoding supports a representation ranging from
  milliseconds to years.  Figure 1 depicts the logarithmic nature of
  this time representation.

   || |  |   |    |     |      |       |        |         |          |
   +-----------------------------------------------------------------+
   milliseconds                                                  years

      Figure 1: A logarithmic range representation allows for higher
      precision in the smaller time ranges and still supports large
                               time deltas.

  Time codes encode exponent and mantissa values in a single byte.  In
  contrast to the representation in [IEEE.754.2019], time codes only
  encode non-negative numbers and hence do not include a separate bit
  to indicate integer signedness.  Figure 2 shows the configuration of
  a time code: an exponent width of 5 bits, and a mantissa width of 3
  bits.

                <---          one byte wide          --->
                +----+----+----+----+----+----+----+----+
                |      exponent (b)      | mantissa (a) |
                +----+----+----+----+----+----+----+----+
                  0    1    2    3    4    5    6    7

       Figure 2: A time code with exponent and mantissa to encode a
                  logarithmic range time representation.

  The base unit for time values is seconds.  A time value is calculated
  using the following formula (adopted from [RFC5497] and [RFC9139]),
  where (a) represents the mantissa, (b) the exponent, and (C) a
  constant factor set to C := 1/32.

  Subnormal (b == 0):  (0 + a/8) * 2 * C

  Normalized (b > 0):  (1 + a/8) * 2^b * C

  The subnormal form provides a gradual underflow between zero and the
  smallest normalized number.  Eight time values exist in the subnormal
  range [0s,~0.0546875s] with a step size of ~0.0078125s between each
  time value.  This configuration also encodes the following convenient
  numbers in seconds: [1, 2, 4, 8, 16, 32, 64, ...].  Appendix A
  includes test vectors to illustrate the logarithmic range.

  An example algorithm to encode a time value into the corresponding
  exponent and mantissa is given as pseudocode in Figure 3.  Not all
  time values can be represented by a time code.  For these instances,
  a time code is produced that represents a time value closest to and
  smaller than the initial time value input.

   input: float v    // time value
  output:   int a, b // mantissa, exponent of time code

  (a, b) encode (v):

      if (v == 0)
          return (0, 0)

      if (v < 2 * C)                              // subnormal
          a = floor (v * 4 / C)                   // round down
          return (a, 0)
      else                                        // normalized
          if (v > (1 + 7/8) * 2^31 * C)           // check bounds
              return (7, 31)                      // return maximum
          else
              b = floor (log2(v / C))             // round down
              a = floor ((v / (2^b * C) - 1) * 8) // round down
              return (a, b)

                    Figure 3: Algorithm in pseudocode.

  For example, no specific time code for 0.063 exists.  However, this
  algorithm maps to the closest valid time code that is smaller than
  0.063, i.e., exponent 1 and mantissa 0 (the same as for time value
  0.0625).

5.  Protocol Integration of the Compact Time Representation

  A straightforward way to accommodate the compact time approach is to
  use a 1-byte length field to indicate this alternative encoding while
  retaining the existing TLV registry entries.  This approach has
  backward compatibility problems, but it is still considered for the
  following reasons:

  *  Both CCNx RFCs ([RFC8569] and [RFC8609]) are Experimental and not
     Standards Track; hence, expectations for forward and backward
     compatibility are not as stringent.  "Flag day" upgrades of
     deployed CCNx networks, while inconvenient, are still feasible.

  *  The major use case for these compressed encodings are smaller-
     scale IoT and/or sensor networks where the population of
     consumers, producers, and forwarders is reasonably small.

  *  Since the current TLVs have hop-by-hop semantics, they are not
     covered by any signed hash and hence may be freely re-encoded by
     any forwarder.  That means a forwarder supporting the new encoding
     can translate freely between the two encodings.

  *  The alternative of assigning new TLV registry values does not
     substantially mitigate the interoperability problems anyway.

5.1.  Interest Lifetime

  The Interest Lifetime definition in [RFC8609] allows for a variable-
  length lifetime representation, where a length of 1 encodes the
  linear range [0,255] in milliseconds.  This document changes the
  definition to always encode 1-byte Interest Lifetime values in the
  compact time value representation (see Figure 4).  For any other
  length, Interest Lifetimes are encoded as described in Section 3.4.1
  of [RFC8609].

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +---------------+---------------+---------------+---------------+
  |           T_INTLIFE           |           Length = 1          |
  +---------------+---------------+---------------+---------------+
  | COMPACT_TIME  |
  +---------------+

    Figure 4: Changes to the definition of the Interest Lifetime TLV.

5.2.  Recommended Cache Time

  The Recommended Cache Time definition in [RFC8609] specifies an
  absolute time representation that is of a length fixed to 8 bytes.
  This document changes the definition to always encode 1-byte
  Recommended Cache Time values in the compact relative time value
  representation (see Figure 5).  For any other length, Recommended
  Cache Times are encoded as described in Section 3.4.2 of [RFC8609].

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +---------------+---------------+---------------+---------------+
  |          T_CACHETIME          |           Length = 1          |
  +---------------+---------------+---------------+---------------+
  | COMPACT_TIME  |
  +---------------+

    Figure 5: Changes to the definition of the Recommended Cache Time
                                   TLV.

  The packet processing is adapted to calculate an absolute time from
  the relative time code based on the absolute reception time.  On
  transmission, a new relative time code is calculated based on the
  current system time.

6.  IANA Considerations

  This document has no IANA actions.

7.  Security Considerations

  This document makes no semantic changes to [RFC8569], nor to any of
  the security properties of the message encodings described in
  [RFC8609]; hence, it has the same security considerations as those
  two documents.  Careful consideration is needed for networks that
  deploy forwarders with support (updated forwarder) and without
  support (legacy forwarder) for this compact time representation:

  Interest Lifetime:  A legacy forwarder interprets a time code as an
     Interest Lifetime between 0 and 255 milliseconds.  This may lead
     to a degradation of network performance, since Pending Interest
     Table (PIT) entries timeout quicker than expected.  An updated
     forwarder interprets short lifetimes set by a legacy forwarder as
     time codes, thus configuring timeouts of up to 4 years.  This
     leads to an inefficient occupation of state space.

  Recommended Cache Time:  A legacy forwarder considers a Recommended
     Cache Time with length 1 as a structural or syntactical error and
     it SHOULD discard the packet (Section 10.3.9 of [RFC8569]).
     Otherwise, a legacy forwarder interprets time codes as absolute
     time values far in the past, which impacts cache utilization.

8.  References

8.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8569]  Mosko, M., Solis, I., and C. Wood, "Content-Centric
             Networking (CCNx) Semantics", RFC 8569,
             DOI 10.17487/RFC8569, July 2019,
             <https://www.rfc-editor.org/info/rfc8569>.

  [RFC8609]  Mosko, M., Solis, I., and C. Wood, "Content-Centric
             Networking (CCNx) Messages in TLV Format", RFC 8609,
             DOI 10.17487/RFC8609, July 2019,
             <https://www.rfc-editor.org/info/rfc8609>.

8.2.  Informative References

  [ICNLOWPAN]
             Gündoğan, C., Kietzmann, P., Schmidt, T., and M. Wählisch,
             "Designing a LoWPAN convergence layer for the Information
             Centric Internet of Things", Computer Communications, Vol.
             164, No. 1, p. 114-123, Elsevier, December 2020,
             <https://doi.org/10.1016/j.comcom.2020.10.002>.

  [IEEE.754.2019]
             IEEE, "Standard for Floating-Point Arithmetic", IEEE
             Std 754-2019, DOI 10.1109/IEEESTD.2019.8766229, June 2019,
             <https://standards.ieee.org/content/ieee-standards/en/
             standard/754-2019.html>.

  [RFC5497]  Clausen, T. and C. Dearlove, "Representing Multi-Value
             Time in Mobile Ad Hoc Networks (MANETs)", RFC 5497,
             DOI 10.17487/RFC5497, March 2009,
             <https://www.rfc-editor.org/info/rfc5497>.

  [RFC7927]  Kutscher, D., Ed., Eum, S., Pentikousis, K., Psaras, I.,
             Corujo, D., Saucez, D., Schmidt, T., and M. Waehlisch,
             "Information-Centric Networking (ICN) Research
             Challenges", RFC 7927, DOI 10.17487/RFC7927, July 2016,
             <https://www.rfc-editor.org/info/rfc7927>.

  [RFC9139]  Gündoğan, C., Schmidt, T., Wählisch, M., Scherb, C.,
             Marxer, C., and C. Tschudin, "Information-Centric
             Networking (ICN) Adaptation to Low-Power Wireless Personal
             Area Networks (LoWPANs)", RFC 9139, DOI 10.17487/RFC9139,
             November 2021, <https://www.rfc-editor.org/info/rfc9139>.

Appendix A.  Test Vectors

  The test vectors in Table 1 show sample time codes and their
  corresponding time values according to the algorithm outlined in
  Section 4.

                  +===========+======================+
                  | Time Code | Time Value (seconds) |
                  +===========+======================+
                  |    0x00   |            0.0000000 |
                  +-----------+----------------------+
                  |    0x01   |            0.0078125 |
                  +-----------+----------------------+
                  |    0x04   |            0.0312500 |
                  +-----------+----------------------+
                  |    0x08   |            0.0625000 |
                  +-----------+----------------------+
                  |    0x15   |            0.2031250 |
                  +-----------+----------------------+
                  |    0x28   |            1.0000000 |
                  +-----------+----------------------+
                  |    0x30   |            2.0000000 |
                  +-----------+----------------------+
                  |    0xF8   |     67108864.0000000 |
                  +-----------+----------------------+
                  |    0xFF   |    125829120.0000000 |
                  +-----------+----------------------+

                         Table 1: Test Vectors

Appendix B.  Efficient Time Value Approximation

  A forwarder frequently converts compact time into milliseconds to
  compare Interest Lifetimes and the duration of cache entries.  On
  many architectures, multiplication and division perform slower than
  addition, subtraction, and bit shifts.  The following equations
  approximate the formulas in Section 4, and scale from seconds into
  the milliseconds range by applying a factor of 2^10 instead of 10^3.
  This results in an error of 2.4%.

  b == 0:   2^10 * a * 2^-3 * 2^1 * 2^-5
            = a << 3

  b > 0:    (2^10 + a * 2^-3 * 2^10) * 2^b * 2^-5
            = (1 << 5 + a << 2) << b

Acknowledgments

  We would like to thank the active members of ICNRG for their
  constructive thoughts.  In particular, we thank Marc Mosko and Ken
  Calvert for their valuable feedback on the encoding scheme and
  protocol integration.  Special thanks also go to Carsten Bormann for
  his constructive in-depth comments during the IRSG review.

Authors' Addresses

  Cenk Gündoğan
  Huawei Technologies Duesseldorf GmbH
  Riesstrasse 25
  D-80992 Munich
  Germany
  Email: [email protected]


  Thomas C. Schmidt
  HAW Hamburg
  Berliner Tor 7
  D-20099 Hamburg
  Germany
  Email: [email protected]
  URI:   http://inet.haw-hamburg.de/members/schmidt


  Dave Oran
  Network Systems Research and Design
  4 Shady Hill Square
  Cambridge, MA 02138
  United States of America
  Email: [email protected]


  Matthias Wählisch
  TUD Dresden University of Technology
  Helmholtzstr. 10
  D-01069 Dresden
  Germany
  Email: [email protected]