Internet Engineering Task Force (IETF)                            Y. Lee
Request for Comments: 9504                                       Samsung
Category: Standards Track                                       H. Zheng
ISSN: 2070-1721                                      Huawei Technologies
                                                    O. Gonzalez de Dios
                                                             Telefonica
                                                               V. Lopez
                                                                  Nokia
                                                                 Z. Ali
                                                                  Cisco
                                                          December 2023


Path Computation Element Communication Protocol (PCEP) Extensions for
           Stateful PCE Usage in GMPLS-Controlled Networks

Abstract

  The Path Computation Element Communication Protocol (PCEP) has been
  extended to support stateful PCE functions where the stateful PCE
  maintains information about paths and resource usage within a
  network; however, these extensions do not cover all requirements for
  GMPLS networks.

  This document provides the extensions required for PCEP so as to
  enable the usage of a stateful PCE capability in GMPLS-controlled
  networks.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9504.

Copyright Notice

  Copyright (c) 2023 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Revised BSD License text as described in Section 4.e of the
  Trust Legal Provisions and are provided without warranty as described
  in the Revised BSD License.

Table of Contents

  1.  Introduction
    1.1.  Conventions Used in This Document
  2.  Terminology
  3.  General Context of Stateful PCE and PCEP for GMPLS
  4.  Main Requirements
  5.  Overview of Stateful PCEP Extensions for GMPLS Networks
    5.1.  Capability Advertisement for Stateful PCEP in GMPLS
    5.2.  LSP Synchronization
    5.3.  LSP Delegation and Cleanup
    5.4.  LSP Operations
  6.  PCEP Object Extensions
    6.1.  Existing Extensions Used for Stateful GMPLS
    6.2.  New Extensions
      6.2.1.  GMPLS-CAPABILITY TLV in OPEN Object
      6.2.2.  New LSP Exclusion Subobject in the XRO
      6.2.3.  New Flags in the LSP-EXTENDED-FLAG TLV in LSP Object
  7.  Update to Error Handling
    7.1.  Error Handling in PCEP Capabilities Advertisement
    7.2.  Error Handling in LSP Reoptimization
    7.3.  Error Handling in Route Exclusion
    7.4.  Error Handling for the Generalized END-POINTS Object
  8.  IANA Considerations
    8.1.  New Flags in the GMPLS-CAPABILITY TLV
    8.2.  New Subobject for the Exclude Route Object
    8.3.  Flags Field for the LSP Exclusion Subobject
    8.4.  New Flags in the LSP-EXTENDED-FLAGS TLV
    8.5.  New PCEP Error Codes
  9.  Manageability Considerations
    9.1.  Control of Function through Configuration and Policy
    9.2.  Information and Data Models
    9.3.  Liveness Detection and Monitoring
    9.4.  Verifying Correct Operation
    9.5.  Requirements on Other Protocols and Functional Components
    9.6.  Impact on Network Operation
  10. Security Considerations
  11. References
    11.1.  Normative References
    11.2.  Informative References
  Appendix A.  PCEP Messages
    A.1.  The PCRpt Message
    A.2.  The PCUpd Message
    A.3.  The PCInitiate Message
  Acknowledgements
  Contributors
  Authors' Addresses

1.  Introduction

  [RFC4655] presents the architecture of a PCE-based model for
  computing Multiprotocol Label Switching (MPLS) and Generalized MPLS
  (GMPLS) Traffic Engineering Label Switched Paths (TE LSPs).  To
  perform such a constrained computation, a PCE stores the network
  topology (i.e., TE links and nodes) and resource information (i.e.,
  TE attributes) in its TE Database (TED).  A PCE that only maintains a
  TED is referred to as a "stateless PCE".  [RFC5440] describes the
  Path Computation Element Communication Protocol (PCEP) for
  interaction between a Path Computation Client (PCC) and a PCE or
  between two PCEs, enabling computation of TE LSPs.  PCEP is further
  extended to support GMPLS-controlled networks as per [RFC8779].

  Stateful PCEs are shown to be helpful in many application scenarios,
  in both MPLS and GMPLS networks, as illustrated in [RFC8051].
  Further discussion of the concept of a stateful PCE can be found in
  [RFC7399].  In order for these applications to be able to exploit the
  capability of stateful PCEs, extensions to stateful PCEP for GMPLS
  are required.

  [RFC8051] describes how a stateful PCE can be applied to solve
  various problems for MPLS-TE and GMPLS networks and the benefits it
  brings to such deployments.

  [RFC8231] specifies a set of extensions to PCEP to enable stateful
  control of TE LSPs where they are configured on the PCC and control
  over them could be delegated to the PCE.  Furthermore, [RFC8281]
  describes the setup and teardown of PCE-initiated LSPs under the
  active stateful PCE model, without the need for local configuration
  on the PCC.  However, both documents omit the specification for
  technology-specific objects and TLVs, and they do not cover GMPLS-
  controlled networks (e.g., Wavelength Switched Optical Network
  (WSON), Optical Transport Network (OTN), Synchronous Optical Network
  (SONET) / Synchronous Digital Hierarchy (SDH)).

  This document focuses on the extensions that are necessary in order
  for the deployment of stateful PCEs and the requirements for PCE-
  initiated LSPs in GMPLS-controlled networks.  Section 3 provides a
  general context of the usage of stateful PCEs and PCEP for GMPLS.
  The various requirements for stateful GMPLS, including PCE initiation
  for GMPLS LSPs, are provided in Section 4.  An overview of the PCEP
  extensions is specified in Section 5.  A solution to address such
  requirements with PCEP object extensions is specified in Section 6.

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.  Terminology

  Terminology used in this document is the same as terminology used in
  [RFC5440], [RFC8231], [RFC8281], and [RFC8779].

3.  General Context of Stateful PCE and PCEP for GMPLS

  This section is built on the basis of stateful PCEs specified in
  [RFC8231] and PCEP for GMPLS specified in [RFC8779].

  The operation of a stateful PCE on LSPs can be divided into two
  types: active stateful PCE and passive stateful PCE (as described in
  [RFC8051]).

  *  For active stateful PCEs, a Path Computation Update Request
     (PCUpd) message is sent from the PCE to the PCC to update the LSP
     state for the LSPs delegated to the PCE.  Any changes to the
     delegated LSPs generate a Path Computation State Report (PCRpt)
     message from the PCC to the PCE to convey the changes of the LSPs.
     Any modifications to the objects and TLVs that are identified in
     this document to support GMPLS-specific attributes will be carried
     in the PCRpt and PCUpd messages.

  *  For passive stateful PCEs, Path Computation Request (PCReq) and
     Path Computation Reply (PCRep) messages are used to request path
     computation.  GMPLS-specific objects and TLVs are defined in
     [RFC8779], which this document builds on and adds the stateful PCE
     aspects where applicable.  A passive stateful PCE makes use of
     PCRpt messages when reporting LSP state changes sent by PCCs to
     PCEs.  Any modifications to the objects and TLVs that are
     identified in this document to support GMPLS-specific attributes
     will be carried in the PCRpt message.

  Furthermore, the LSP Initiation function of PCEP is defined in
  [RFC8281] to allow the PCE to initiate LSP establishment after the
  path is computed.  An LSP Initiate Request (PCInitiate) message is
  used to trigger the end node to set up the LSP.  Any modifications to
  the objects and TLVs that are identified in this document to support
  GMPLS-specific attributes will be carried in the PCInitiate messages.

  [RFC8779] defines GMPLS-specific objects and TLVs in stateless PCEP;
  this document makes use of these objects and TLVs without
  modifications where applicable.  Where these objects and TLVs require
  modifications to incorporate stateful PCEs, they are described in
  this document.  PCE-initiated LSPs follow the principle specified in
  [RFC8281], and the GMPLS-specific extensions are also included in
  this document.

4.  Main Requirements

  This section notes the main functional requirements for PCEP
  extensions to support stateful PCEs for use in GMPLS-controlled
  networks, based on the description in [RFC8051].  Many requirements
  are common across a variety of network types (e.g., MPLS-TE networks
  and GMPLS networks) and the protocol extensions to meet the
  requirements are already described in [RFC8231] (such as LSP update,
  delegation, and state synchronization/report).  Protection context
  information that describes the GMPLS requirement can also follow the
  description in [RFC8745].  This document does not repeat the
  description of those protocol extensions.  This document presents
  protocol extensions for a set of requirements that are specific to
  the use of a stateful PCE in a GMPLS-controlled network.

  The requirements for GMPLS-specific stateful PCEs are as follows:

  *  Advertisement of the stateful PCE capability.  This generic
     requirement is covered in Section 5.4 of [RFC8231].  The GMPLS-
     CAPABILITY TLV specified in Section 2.1 of [RFC8779] and its
     extension in this document need to be advertised as well.

  *  All the PCEP messages need to be capable of indicating GMPLS-
     specific switching capabilities.  GMPLS LSP creation,
     modification, and deletion require knowledge of LSP switching
     capabilities (e.g., Time-Division Multiplex Capable (TDM), Layer 2
     Switch Capable (L2SC), OTN-TDM, Lambda Switch Capable (LSC), etc.)
     and the Generalized Payload Identifier (G-PID) to be used
     according to [RFC3471] and [RFC3473].  It also requires that
     traffic parameters that are both data flow and technology specific
     be defined.  These traffic parameters are also known as "Traffic
     Specification" or "Tspec".  Such information would need to be
     included in various PCEP messages.

  *  In some technologies, path calculation is tightly coupled with
     label selection along the route.  For example, path calculation in
     a Wavelength Division Multiplexing (WDM) network may include
     lambda continuity and/or lambda feasibility constraints; hence, a
     path computed by the PCE is associated with a specific lambda
     (label).  Thus, in such networks, the label information needs to
     be provided to a PCC in order for a PCE to initiate GMPLS LSPs
     under the active stateful PCE model, i.e., Explicit Label Control
     (ELC) may be required.

  *  Stateful PCEP messages also need to indicate the protection
     context information for the LSP specified by GMPLS, as defined in
     [RFC4872] and [RFC4873].

5.  Overview of Stateful PCEP Extensions for GMPLS Networks

5.1.  Capability Advertisement for Stateful PCEP in GMPLS

  Capability advertisement is specified in [RFC8231]; it can be
  achieved by using the STATEFUL-PCE-CAPABILITY TLV in the Open
  message.  Another GMPLS-CAPABILITY TLV is defined in [RFC8779].  A
  subregistry to manage the Flag field of the GMPLS-CAPABILITY TLV has
  been created by IANA as requested by [RFC8779].  The following bits
  are introduced by this document in the GMPLS-CAPABILITY TLV as flags
  to indicate the capability for LSP report, update, and initiation in
  GMPLS networks: LSP-REPORT-CAPABILITY (31), LSP-UPDATE-CAPABILITY
  (30), and LSP-INSTANTIATION-CAPABILITY (29).

5.2.  LSP Synchronization

  After the session between the PCC and a stateful PCE is initialized,
  the PCE must learn the state of a PCC's LSPs (including its
  attributes) before it can perform path computations or update LSP
  attributes in a PCC.  This process is known as "LSP state
  synchronization".  The LSP attributes, including bandwidth,
  associated route, and protection information etc., are stored by the
  PCE in the LSP database (LSP-DB).  Note that, as described in
  [RFC8231], the LSP state synchronization covers both the bulk
  reporting of LSPs at initialization as well as the reporting of new
  or modified LSPs during normal operation.  Incremental LSP-DB
  synchronization may be desired in a GMPLS-controlled network; it is
  specified in [RFC8232].

  The format of the PCRpt message is specified in [RFC8231] and
  extended in [RFC8623] to include the END-POINTS object.  The END-
  POINTS object is extended for GMPLS in [RFC8779].  The END-POINTS
  object can be carried in the PCRpt message as specified in [RFC8623].
  The END-POINTS object type for GMPLS is included in the PCRpt message
  as per the same.

  The following objects are extended for GMPLS in [RFC8779] and are
  also used in the PCRpt in the same manner: BANDWIDTH, LSP Attributes
  (LSPA), Include Route Object (IRO), and Exclude Route Object (XRO).
  These objects are carried in the PCRpt message as specified in
  [RFC8231] (as the attribute-list defined in Section 6.5 of [RFC5440]
  and extended by many other documents that define PCEP extensions for
  specific scenarios).

  The SWITCH-LAYER object is defined in [RFC8282].  This object is
  carried in the PCRpt message as specified in Section 3.2 of
  [RFC8282].

5.3.  LSP Delegation and Cleanup

  The LSP delegation and cleanup procedure specified in [RFC8281] are
  equally applicable to GMPLS LSPs and this document does not modify
  the associated usage.

5.4.  LSP Operations

  Both passive and active stateful PCE mechanisms in [RFC8231] are
  applicable in GMPLS-controlled networks.  Remote LSP Initiation in
  [RFC8281] is also applicable in GMPLS-controlled networks.

6.  PCEP Object Extensions

6.1.  Existing Extensions Used for Stateful GMPLS

  Existing extensions defined in [RFC8779] can be used in stateful PCEP
  with no or slight changes for GMPLS network control, including the
  following:

  END-POINTS:  The END-POINTS object was specified in [RFC8779] to
     include GMPLS capabilities.  All stateful PCEP messages MUST
     include the END-POINTS object with Generalized Endpoint object
     type, containing the LABEL-REQUEST TLV.  Further note that:

     *  As per [RFC8779], for stateless GMPLS path computation, the
        Generalized END-POINTS object may contain a LABEL-REQUEST and/
        or LABEL-SET TLV.  In this document, only the LABEL-REQUEST TLV
        is used to specify the switching type, encoding type, and G-PID
        of the LSP.

     *  If unnumbered endpoint addresses are used for the LSP, the
        UNNUMBERED-ENDPOINT TLV [RFC8779] MUST be used to specify the
        unnumbered endpoint addresses.

     *  The Generalized END-POINTS object MAY contain other TLVs
        defined in [RFC8779].

  RP:  The Request Parameter (RP) object extension (together with the
     Routing Granularity (RG) flag defined in [RFC8779]) is applicable
     in stateful PCEP for GMPLS networks.

  BANDWIDTH:  Generalized BANDWIDTH is specified in [RFC8779] to
     represent GMPLS features, including asymmetric bandwidth and G-PID
     information.

  LSPA:  LSPA Extensions in Section 2.8 of [RFC8779] are applicable in
     stateful PCEP for GMPLS networks.

  IRO:  IRO Extensions in Section 2.6 of [RFC8779] are applicable in
     stateful PCEP for GMPLS networks.

  XRO:  XRO Extensions in Section 2.7 of [RFC8779] are applicable in
     stateful PCEP for GMPLS networks.  A new flag is defined in
     Section 6.2.3 of this document.

  ERO:  The Explicit Route Object (ERO) is not extended in [RFC8779],
     nor is it in this document.

  SWITCH-LAYER:  The SWITCH-LAYER definition in Section 3.2 of
     [RFC8282] is applicable in stateful PCEP messages for GMPLS
     networks.

6.2.  New Extensions

6.2.1.  GMPLS-CAPABILITY TLV in OPEN Object

  In [RFC8779], IANA allocates value 45 (GMPLS-CAPABILITY) from the
  "PCEP TLV Type Indicators" subregistry.  This specification adds
  three flags to the Flag field of this TLV to indicate the Report,
  Update, and Initiation capabilities.

  R (LSP-REPORT-CAPABILITY (31) -- 1 bit):
     If set to 1 by a PCC, the R flag indicates that the PCC is capable
     of reporting the current state of a GMPLS LSP whenever there's a
     change to the parameters or operational status of the GMPLS LSP.
     If set to 1 by a PCE, the R flag indicates that the PCE is
     interested in receiving GMPLS LSP State Reports whenever there is
     a parameter or operational status change to the LSP.  The LSP-
     REPORT-CAPABILITY flag must be advertised by both a PCC and a PCE
     for PCRpt messages to be allowed on a PCEP session for GMPLS LSP.

  U (LSP-UPDATE-CAPABILITY (30) -- 1 bit):
     If set to 1 by a PCC, the U flag indicates that the PCC allows
     modification of GMPLS LSP parameters.  If set to 1 by a PCE, the U
     flag indicates that the PCE is capable of updating GMPLS LSP
     parameters.  The LSP-UPDATE-CAPABILITY flag must be advertised by
     both a PCC and a PCE for PCUpd messages to be allowed on a PCEP
     session for GMPLS LSP.

  I (LSP-INSTANTIATION-CAPABILITY (29) -- 1 bit):
     If set to 1 by a PCC, the I flag indicates that the PCC allows
     instantiation of a GMPLS LSP by a PCE.  If set to 1 by a PCE, the
     I flag indicates that the PCE supports instantiating GMPLS LSPs.
     The LSP-INSTANTIATION-CAPABILITY flag must be set by both the PCC
     and PCE in order to enable PCE-initiated LSP instantiation.

6.2.2.  New LSP Exclusion Subobject in the XRO

  [RFC5521] defines a mechanism for a PCC to request or demand that
  specific nodes, links, or other network resources be excluded from
  paths computed by a PCE.  A PCC may wish to request the computation
  of a path that avoids all links and nodes traversed by some other
  LSP.

  To this end, this document defines a new subobject for use with route
  exclusion defined in [RFC5521].  The LSP Exclusion subobject is as
  follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |X|Type (11)    |     Length    |   Reserved    |    Flags      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  //                    Symbolic Path Name                       //
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 1: New LSP Exclusion Subobject Format

  X:  This field is the same as the X-bit defined in the XRO subobjects
     in Section 2.1.1 of [RFC5521] where it says:

        The X-bit indicates whether the exclusion is mandatory or
        desired.  0 indicates that the resource specified MUST be
        excluded from the path computed by the PCE.  1 indicates that
        the resource specified SHOULD be excluded from the path
        computed by the PCE, but MAY be included subject to PCE policy
        and the absence of a viable path that meets the other
        constraints and excludes the resource.

  Type:  The subobject type for an LSP Exclusion subobject.  Value of
     11.

  Length:  The Length contains the total length of the subobject in
     bytes, including the Type and Length fields.

  Reserved:  Reserved MUST be set to zero on transmission and ignored
     on receipt.

  Flags:  This field may be used to further specify the exclusion
     constraint with regard to the LSP.  Currently, no flags are
     defined.

  Symbolic Path Name:  This is the identifier given to an LSP.  Its
     syntax and semantics are identical to those of the Symbolic Path
     Name field defined in Section 7.3.2 of [RFC8231] where it says:
     "symbolic name for the LSP, unique in the PCC.  It SHOULD be a
     string of printable ASCII characters, without a NULL terminator."
     The symbolic path name in the LSP Exclusion subobject MUST only
     vary from being a string of printable ASCII characters without a
     NULL terminator when it is matching the value contained in another
     subobject.  It is worth noting that given that the symbolic path
     name is unique in the context of the headnode, only LSPs that
     share the same headnode or PCC could be excluded.

     This subobject MAY be present multiple times in the XRO to exclude
     resources from multiple LSPs.  When a stateful PCE receives a
     PCReq message carrying this subobject, it MUST search for the
     identified LSP in its LSP-DB and then exclude from the new path
     computation all resources used by the identified LSP.

     Note that this XRO subobject could also be used by non-GMPLS LSPs.
     The usage of the XRO subobject for any non-GMPLS LSPs is not in
     the scope of this document.

6.2.3.  New Flags in the LSP-EXTENDED-FLAG TLV in LSP Object

  The LSP object is defined in Section 7.3 of [RFC8231], and the new
  extended flags TLV is defined in [RFC9357].  This TLV is used in
  PCUpd, PCRpt and PCInitiate messages for GMPLS, with the following
  flags defined in this document:

  G (GMPLS LSP (0) -- 1 bit):
     If set to 1, it indicates the LSP is a GMPLS LSP.

  B (Bidirectional LSP (1) -- 1 bit):
     If set to 0, it indicates a request to create a unidirectional
     LSP.  If set to 1, it indicates a request to create a
     bidirectional co-routed LSP.

  RG (Routing Granularity (2-3) -- 2 bits):
     The RG flag for GMPLS is also defined in the LSP-EXTENDED-FLAG
     TLV.  The values are defined as per [RFC8779]:

     00:  reserved
     01:  node
     10:  link
     11:  label

7.  Update to Error Handling

  A PCEP-ERROR object is used to report a PCEP error and is
  characterized by an Error-Type that specifies the type of error and
  an Error-value that provides additional information about the error.
  This section adds additional error handling procedures to those
  specified in Section 3 of [RFC8779].  Please note that all error
  handling specified in Section 3 of [RFC8779] is applicable and MUST
  be supported for a stateful PCE in GMPLS networks.

7.1.  Error Handling in PCEP Capabilities Advertisement

  The PCEP extensions described in this document for stateful PCEs with
  GMPLS capabilities MUST NOT be used if the PCE has not advertised its
  capabilities with GMPLS as per Section 6.2.1.

  If the PCC understands the U flag that indicates the stateful LSP-
  UPDATE-CAPABILITY, but did not advertise this capability, then upon
  receipt of a PCUpd message for GMPLS LSP from the PCE, it SHOULD
  generate a PCErr with Error-Type 19 ("Invalid Operation") Error-value
  25 ("Attempted LSP update request for GMPLS if stateful PCE
  capability not advertised") and terminate the PCEP session.  Such a
  PCC MAY decide to utilize the capability even though it did not
  advertise support for it.

  If the PCE understands the R flag that indicates the stateful LSP-
  REPORT-CAPABILITY, but did not advertise this capability, then upon
  receipt of a PCRpt message for GMPLS LSP from the PCC, it SHOULD
  generate a PCErr with Error-Type 19 ("Invalid Operation") Error-value
  26 ("Attempted LSP State Report for GMPLS if stateful PCE capability
  not advertised") and terminate the PCEP session.  Such a PCE MAY
  decide to utilize the capability even though it did not advertise
  support for it.

  If the PCC understands the I flag that indicates LSP-INSTANTIATION-
  CAPABILITY, but did not advertise this capability, then upon receipt
  of a PCInitiate message for GMPLS LSP from the PCE, it SHOULD
  generate a PCErr with Error-Type 19 ("Invalid Operation") Error-value
  27 ("Attempted LSP instantiation request for GMPLS if stateful PCE
  instantiation capability for not advertised") and terminate the PCEP
  session.  Such a PCC MAY decide to utilize the capability even though
  it did not advertise support for it.

7.2.  Error Handling in LSP Reoptimization

  A stateful PCE is expected to perform an LSP reoptimization when
  receiving a message with the R bit set in the RP object.  If no LSP
  state information is available to carry out reoptimization, the
  stateful PCE SHOULD report Error-Type 19 ("Invalid Operation") Error-
  value 23 ("LSP state info unavailable for reoptimization"), although
  such a PCE MAY consider the reoptimization to have successfully
  completed.  Note that this error message could also be used by non-
  GMPLS LSPs.

7.3.  Error Handling in Route Exclusion

  The LSP Exclusion subobject in XRO, as defined in Section 6.2.2 of
  this document, MAY be present multiple times.  When a stateful PCE
  receives a PCEP message carrying this subobject, it searches for the
  identified LSP in its LSP-DB.  It then excludes from the new path
  computation all the resources used by the identified LSP.  If the
  stateful PCE cannot recognize the symbolic path name of the
  identified LSP, it SHOULD send an error message PCErr reporting
  Error-Type 19 ("Invalid Operation") Error-value 24 ("LSP state info
  for route exclusion not found").  Along with the unrecognized
  symbolic path name, it MAY also provide information to the requesting
  PCC using the error-reporting techniques described in [RFC5440].  An
  implementation MAY choose to ignore the requested exclusion when the
  LSP cannot be found because it could claim that it has avoided using
  all resources associated with an LSP that doesn't exist.

7.4.  Error Handling for the Generalized END-POINTS Object

  Note that the END-POINTS object in stateful PCEP messages was
  introduced for Point-to-Multipoint (P2MP) [RFC8623].  Similarly, the
  END-POINTS object MUST be carried for the GMPLS LSP.  If the END-
  POINTS object is missing and the GMPLS flag in LSP-EXTENDED-FLAG is
  set, the receiving PCE or PCC MUST send a PCErr message with Error-
  Type 6 ("Mandatory Object missing") and Error-value 3 ("END-POINTS
  object missing") (defined in [RFC5440]).  Similarly, if the END-
  POINTS object with the Generalized Endpoint object type is received
  but the LSP-EXTENDED-FLAG TLV is missing in the LSP object or the G
  flag in the LSP-EXTENDED-FLAG TLV is not set, the receiving PCE or
  PCC MUST send a PCErr message with Error-Type 19 ("Invalid
  Operation") Error-value 28 ("Use of the Generalized Endpoint object
  type for non-GMPLS LSPs").

  If the END-POINTS object with Generalized Endpoint object type is
  missing the LABEL-REQUEST TLV, the receiving PCE or PCC MUST send a
  PCErr message with Error-Type 6 ("Mandatory Object missing") Error-
  value 20 ("LABEL-REQUEST TLV missing").

8.  IANA Considerations

8.1.  New Flags in the GMPLS-CAPABILITY TLV

  [RFC8779] defines the GMPLS-CAPABILITY TLV; per that RFC, IANA
  created the "GMPLS-CAPABILITY TLV Flag Field" registry to manage the
  values of the GMPLS-CAPABILITY TLV's Flag field.  This document
  registers new bits in this registry as follows:

         +=====+==================================+===========+
         | Bit | Capability Description           | Reference |
         +=====+==================================+===========+
         | 31  | LSP-REPORT-CAPABILITY (R)        | RFC 9504  |
         +-----+----------------------------------+-----------+
         | 30  | LSP-UPDATE-CAPABILITY (U)        | RFC 9504  |
         +-----+----------------------------------+-----------+
         | 29  | LSP-INSTANTIATION-CAPABILITY (I) | RFC 9504  |
         +-----+----------------------------------+-----------+

                                Table 1

8.2.  New Subobject for the Exclude Route Object

  IANA maintains the various XRO subobject types within the "XRO
  Subobjects" subregistry of the "Path Computation Element Protocol
  (PCEP) Numbers" registry.  IANA has allocated a codepoint for another
  XRO subobject as follows:

                   +=======+=============+===========+
                   | Value | Description | Reference |
                   +=======+=============+===========+
                   | 11    | LSP         | RFC 9504  |
                   +-------+-------------+-----------+

                                 Table 2

8.3.  Flags Field for the LSP Exclusion Subobject

  IANA has created a registry named "LSP Exclusion Subobject Flag
  Field", within the "Path Computation Element Protocol (PCEP) Numbers"
  group, to manage the Flag field of the LSP Exclusion subobject in the
  XRO.  No flag is currently defined for this Flag field in this
  document.

  Codespace of the Flag field (LSP Exclusion Subobject)

              +=====+========================+===========+
              | Bit | Capability Description | Reference |
              +=====+========================+===========+
              | 0-7 | Unassigned             | RFC 9504  |
              +-----+------------------------+-----------+

                                Table 3

  New values are to be assigned by Standards Action [RFC8126].  Each
  bit should be registered with the following entries:

  *  Bit number (counting from bit 0 as the most significant bit)

  *  Capability description

  *  Reference to defining RFC

8.4.  New Flags in the LSP-EXTENDED-FLAGS TLV

  [RFC9357] requested IANA to create a subregistry, named the "LSP-
  EXTENDED-FLAG TLV Flag Field", within the "Path Computation Element
  Protocol (PCEP) Numbers" registry, to manage the Flag field of the
  LSP-EXTENDED-FLAG TLV.

  IANA has made assignments from this registry as follows:

          +=====+=================================+===========+
          | Bit | Capability Description          | Reference |
          +=====+=================================+===========+
          | 0   | GMPLS LSP (G)                   | RFC 9504  |
          +-----+---------------------------------+-----------+
          | 1   | Bidirectional Co-routed LSP (B) | RFC 9504  |
          +-----+---------------------------------+-----------+
          | 2-3 | Routing Granularity (RG)        | RFC 9504  |
          +-----+---------------------------------+-----------+

                                 Table 4

8.5.  New PCEP Error Codes

  IANA has made the following allocations in the "PCEP-ERROR Object
  Error Types and Values" registry.

   +============+===========+===========================+===========+
   | Error-Type | Meaning   | Error-value               | Reference |
   +============+===========+===========================+===========+
   | 6          | Mandatory | 20: LABEL-REQUEST TLV     | RFC 9504  |
   |            | Object    | missing                   |           |
   |            | missing   |                           |           |
   +------------+-----------+---------------------------+-----------+
   | 19         | Invalid   | 23: LSP state info        | RFC 9504  |
   |            | Operation | unavailable for           |           |
   |            |           | reoptimization            |           |
   |            |           +---------------------------+-----------+
   |            |           | 24: LSP state info for    | RFC 9504  |
   |            |           | route exclusion not found |           |
   |            |           +---------------------------+-----------+
   |            |           | 25: Attempted LSP update  | RFC 9504  |
   |            |           | request for GMPLS if      |           |
   |            |           | stateful PCE capability   |           |
   |            |           | not advertised            |           |
   |            |           +---------------------------+-----------+
   |            |           | 26: Attempted LSP State   | RFC 9504  |
   |            |           | Report for GMPLS if       |           |
   |            |           | stateful PCE capability   |           |
   |            |           | not advertised            |           |
   |            |           +---------------------------+-----------+
   |            |           | 27: Attempted LSP         | RFC 9504  |
   |            |           | instantiation request for |           |
   |            |           | GMPLS if stateful PCE     |           |
   |            |           | instantiation capability  |           |
   |            |           | not advertised            |           |
   |            |           +---------------------------+-----------+
   |            |           | 28: Use of the            | RFC 9504  |
   |            |           | Generalized Endpoint      |           |
   |            |           | object type for non-GMPLS |           |
   |            |           | LSPs                      |           |
   +------------+-----------+---------------------------+-----------+

                                Table 5

9.  Manageability Considerations

  General PCE management considerations are discussed in [RFC4655] and
  [RFC5440], and GMPLS-specific PCEP management considerations are
  described in [RFC8779].  In this document, the management
  considerations for stateful PCEP extension in GMPLS are described.

  This section follows the guidance of [RFC6123].

9.1.  Control of Function through Configuration and Policy

  In addition to the parameters already listed in Section 8.1 of
  [RFC5440], a PCEP implementation SHOULD allow configuration of the
  following PCEP session parameters on a PCC.  However, an
  implementation MAY choose to make these features available on all
  PCEP sessions:

  *  The ability to send stateful PCEP messages for GMPLS LSPs.

  *  The ability to use path computation constraints (e.g., XRO).

  In addition to the parameters already listed in Section 8.1 of
  [RFC5440], a PCEP implementation SHOULD allow configuration of the
  following PCEP session parameters on a PCE:

  *  The ability to compute paths in a stateful manner in GMPLS
     networks.

  *  A set of GMPLS-specific constraints.

  These parameters may be configured as default parameters for any PCEP
  session the PCEP speaker participates in or they may apply to a
  specific session with a given PCEP peer or a specific group of
  sessions with a specific group of PCEP peers.

9.2.  Information and Data Models

  The YANG module in [PCE-PCEP-YANG] can be used to configure and
  monitor PCEP states and messages.  To make sure that the YANG module
  is useful for the extensions as described in this document, it would
  need to include advertised GMPLS stateful capabilities etc.  A future
  version of [PCE-PCEP-YANG] will include this.

  As described in [YANG-PATH-COMPUTATION], a YANG-based interface can
  be used in some cases to request GMPLS path computations, instead of
  PCEP.  Refer to [YANG-PATH-COMPUTATION] for details.

9.3.  Liveness Detection and Monitoring

  This document makes no change to the basic operation of PCEP, so
  there are no changes to the requirements for liveness detection and
  monitoring in [RFC4657] and Section 8.3 of [RFC5440].

9.4.  Verifying Correct Operation

  This document makes no change to the basic operations of PCEP and the
  considerations described in Section 8.4 of [RFC5440].  New errors
  defined by this document should satisfy the requirement to log error
  events.

9.5.  Requirements on Other Protocols and Functional Components

  When the detailed route information is included for LSP state
  synchronization (either at the initial stage or during the LSP State
  Report process), this requires the ingress node of an LSP to carry
  the Record Route Object (RRO) object in order to enable the
  collection of such information.

9.6.  Impact on Network Operation

  The management considerations concerning the impact on network
  operations described in Section 4.6 of [RFC8779] apply here.

10.  Security Considerations

  The security considerations elaborated in [RFC5440] apply to this
  document.  The PCEP extensions to support GMPLS-controlled networks
  should be considered under the same security as for MPLS networks, as
  noted in [RFC7025].  Therefore, the PCEP extension to support GMPLS
  specified in [RFC8779] is used as the foundation of this document;
  the security considerations in [RFC8779] should also be applicable to
  this document.  The secure transport of PCEP specified in [RFC8253]
  allows the usage of Transport Layer Security (TLS).  The same can
  also be used by the PCEP extension defined in this document.

  This document provides additional extensions to PCEP so as to
  facilitate stateful PCE usage in GMPLS-controlled networks, on top of
  [RFC8231] and [RFC8281].  Security issues caused by the extension in
  [RFC8231] and [RFC8281] are not altered by the additions in this
  document.  The security considerations in [RFC8231] and [RFC8281],
  including both issues and solutions, apply to this document as well.

11.  References

11.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC5440]  Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
             Element (PCE) Communication Protocol (PCEP)", RFC 5440,
             DOI 10.17487/RFC5440, March 2009,
             <https://www.rfc-editor.org/info/rfc5440>.

  [RFC5511]  Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax
             Used to Form Encoding Rules in Various Routing Protocol
             Specifications", RFC 5511, DOI 10.17487/RFC5511, April
             2009, <https://www.rfc-editor.org/info/rfc5511>.

  [RFC5521]  Oki, E., Takeda, T., and A. Farrel, "Extensions to the
             Path Computation Element Communication Protocol (PCEP) for
             Route Exclusions", RFC 5521, DOI 10.17487/RFC5521, April
             2009, <https://www.rfc-editor.org/info/rfc5521>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8231]  Crabbe, E., Minei, I., Medved, J., and R. Varga, "Path
             Computation Element Communication Protocol (PCEP)
             Extensions for Stateful PCE", RFC 8231,
             DOI 10.17487/RFC8231, September 2017,
             <https://www.rfc-editor.org/info/rfc8231>.

  [RFC8253]  Lopez, D., Gonzalez de Dios, O., Wu, Q., and D. Dhody,
             "PCEPS: Usage of TLS to Provide a Secure Transport for the
             Path Computation Element Communication Protocol (PCEP)",
             RFC 8253, DOI 10.17487/RFC8253, October 2017,
             <https://www.rfc-editor.org/info/rfc8253>.

  [RFC8281]  Crabbe, E., Minei, I., Sivabalan, S., and R. Varga, "Path
             Computation Element Communication Protocol (PCEP)
             Extensions for PCE-Initiated LSP Setup in a Stateful PCE
             Model", RFC 8281, DOI 10.17487/RFC8281, December 2017,
             <https://www.rfc-editor.org/info/rfc8281>.

  [RFC8779]  Margaria, C., Ed., Gonzalez de Dios, O., Ed., and F.
             Zhang, Ed., "Path Computation Element Communication
             Protocol (PCEP) Extensions for GMPLS", RFC 8779,
             DOI 10.17487/RFC8779, July 2020,
             <https://www.rfc-editor.org/info/rfc8779>.

  [RFC9357]  Xiong, Q., "Label Switched Path (LSP) Object Flag
             Extension for Stateful PCE", RFC 9357,
             DOI 10.17487/RFC9357, February 2023,
             <https://www.rfc-editor.org/info/rfc9357>.

11.2.  Informative References

  [PCE-PCEP-YANG]
             Dhody, D., Ed., Beeram, V. P., Hardwick, J., and J.
             Tantsura, "A YANG Data Model for Path Computation Element
             Communications Protocol (PCEP)", Work in Progress,
             Internet-Draft, draft-ietf-pce-pcep-yang-22, 11 September
             2023, <https://datatracker.ietf.org/doc/html/draft-ietf-
             pce-pcep-yang-22>.

  [RFC3471]  Berger, L., Ed., "Generalized Multi-Protocol Label
             Switching (GMPLS) Signaling Functional Description",
             RFC 3471, DOI 10.17487/RFC3471, January 2003,
             <https://www.rfc-editor.org/info/rfc3471>.

  [RFC3473]  Berger, L., Ed., "Generalized Multi-Protocol Label
             Switching (GMPLS) Signaling Resource ReserVation Protocol-
             Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
             DOI 10.17487/RFC3473, January 2003,
             <https://www.rfc-editor.org/info/rfc3473>.

  [RFC4655]  Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
             Computation Element (PCE)-Based Architecture", RFC 4655,
             DOI 10.17487/RFC4655, August 2006,
             <https://www.rfc-editor.org/info/rfc4655>.

  [RFC4657]  Ash, J., Ed. and J.L. Le Roux, Ed., "Path Computation
             Element (PCE) Communication Protocol Generic
             Requirements", RFC 4657, DOI 10.17487/RFC4657, September
             2006, <https://www.rfc-editor.org/info/rfc4657>.

  [RFC4872]  Lang, J.P., Ed., Rekhter, Y., Ed., and D. Papadimitriou,
             Ed., "RSVP-TE Extensions in Support of End-to-End
             Generalized Multi-Protocol Label Switching (GMPLS)
             Recovery", RFC 4872, DOI 10.17487/RFC4872, May 2007,
             <https://www.rfc-editor.org/info/rfc4872>.

  [RFC4873]  Berger, L., Bryskin, I., Papadimitriou, D., and A. Farrel,
             "GMPLS Segment Recovery", RFC 4873, DOI 10.17487/RFC4873,
             May 2007, <https://www.rfc-editor.org/info/rfc4873>.

  [RFC6123]  Farrel, A., "Inclusion of Manageability Sections in Path
             Computation Element (PCE) Working Group Drafts", RFC 6123,
             DOI 10.17487/RFC6123, February 2011,
             <https://www.rfc-editor.org/info/rfc6123>.

  [RFC7025]  Otani, T., Ogaki, K., Caviglia, D., Zhang, F., and C.
             Margaria, "Requirements for GMPLS Applications of PCE",
             RFC 7025, DOI 10.17487/RFC7025, September 2013,
             <https://www.rfc-editor.org/info/rfc7025>.

  [RFC7399]  Farrel, A. and D. King, "Unanswered Questions in the Path
             Computation Element Architecture", RFC 7399,
             DOI 10.17487/RFC7399, October 2014,
             <https://www.rfc-editor.org/info/rfc7399>.

  [RFC8051]  Zhang, X., Ed. and I. Minei, Ed., "Applicability of a
             Stateful Path Computation Element (PCE)", RFC 8051,
             DOI 10.17487/RFC8051, January 2017,
             <https://www.rfc-editor.org/info/rfc8051>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8232]  Crabbe, E., Minei, I., Medved, J., Varga, R., Zhang, X.,
             and D. Dhody, "Optimizations of Label Switched Path State
             Synchronization Procedures for a Stateful PCE", RFC 8232,
             DOI 10.17487/RFC8232, September 2017,
             <https://www.rfc-editor.org/info/rfc8232>.

  [RFC8282]  Oki, E., Takeda, T., Farrel, A., and F. Zhang, "Extensions
             to the Path Computation Element Communication Protocol
             (PCEP) for Inter-Layer MPLS and GMPLS Traffic
             Engineering", RFC 8282, DOI 10.17487/RFC8282, December
             2017, <https://www.rfc-editor.org/info/rfc8282>.

  [RFC8623]  Palle, U., Dhody, D., Tanaka, Y., and V. Beeram, "Stateful
             Path Computation Element (PCE) Protocol Extensions for
             Usage with Point-to-Multipoint TE Label Switched Paths
             (LSPs)", RFC 8623, DOI 10.17487/RFC8623, June 2019,
             <https://www.rfc-editor.org/info/rfc8623>.

  [RFC8745]  Ananthakrishnan, H., Sivabalan, S., Barth, C., Minei, I.,
             and M. Negi, "Path Computation Element Communication
             Protocol (PCEP) Extensions for Associating Working and
             Protection Label Switched Paths (LSPs) with Stateful PCE",
             RFC 8745, DOI 10.17487/RFC8745, March 2020,
             <https://www.rfc-editor.org/info/rfc8745>.

  [YANG-PATH-COMPUTATION]
             Busi, I., Ed., Belotti, S., Ed., de Dios, O. G., Sharma,
             A., and Y. Shi, "A YANG Data Model for requesting path
             computation", Work in Progress, Internet-Draft, draft-
             ietf-teas-yang-path-computation-21, 7 July 2023,
             <https://datatracker.ietf.org/doc/html/draft-ietf-teas-
             yang-path-computation-21>.

Appendix A.  PCEP Messages

  This section uses the Routing Backus-Naur Form (RBNF) [RFC5511] to
  illustrate the PCEP messages.  The RBNF in this section is reproduced
  for informative purposes.  It is also expanded to show the GMPLS-
  specific objects.

A.1.  The PCRpt Message

  According to [RFC8231], the PCRpt message is used to report the
  current state of an LSP.  This document extends the message in
  reporting the status of LSPs with GMPLS characteristics.

  The format of the PCRpt message is as follows:

  <PCRpt Message> ::= <Common Header>
                      <state-report-list>

  Where:

  <state-report-list> ::= <state-report>[<state-report-list>]
  <state-report> ::= [<SRP>]
                     <LSP>
                     [<END-POINTS>]
                     <path>

  Where:

  <path> ::= <intended-path>
             [<actual-attribute-list><actual-path>]
             <intended-attribute-list>
  <actual-attribute-list> ::=[<BANDWIDTH>]
                             [<metric-list>]

  Where:

  *  The END-POINTS object MUST be carried in a PCRpt message when the
     G flag is set in the LSP-EXTENDED-FLAG TLV in the LSP object for a
     GMPLS LSP.

  *  <intended-path> is represented by the ERO object defined in
     Section 7.9 of [RFC5440] and augmented in [RFC8779] with ELC.

  *  <actual-attribute-list> consists of the actual computed and
     signaled values of the <BANDWIDTH> and <metric-lists> objects
     defined in [RFC5440].

  *  <actual-path> is represented by the RRO object defined in
     Section 7.10 of [RFC5440].

  *  <intended-attribute-list> is the attribute-list defined in
     Section 6.5 of [RFC5440] and extended by many other documents that
     define PCEP extensions for specific scenarios as shown below:

  <attribute-list> ::= [<of-list>]
                       [<LSPA>]
                       [<BANDWIDTH>]
                       [<metric-list>]
                       [<IRO>][<XRO>]
                       [<INTER-LAYER>]
                       [<SWITCH-LAYER>]
                       [<REQ-ADAP-CAP>]
                       [<SERVER-INDICATION>]

A.2.  The PCUpd Message

  The format of a PCUpd message is as follows:

  <PCUpd Message> ::= <Common Header>
                      <update-request-list>

  Where:

  <update-request-list> ::= <update-request>[<update-request-list>]
  <update-request> ::= <SRP>
                       <LSP>
                       [<END-POINTS>]
                       <path>

  Where:

  <path> ::= <intended-path><intended-attribute-list>

  Where:

  *  The END-POINTS object MUST be carried in a PCUpd message for the
     GMPLS LSP.

  *  <intended-path> is represented by the ERO object defined in
     Section 7.9 of [RFC5440], augmented in [RFC8779] with ELC.

  *  <intended-attribute-list> is the attribute-list defined in
     [RFC5440] and extended by many other documents that define PCEP
     extensions for specific scenarios and as shown for PCRpt above.

A.3.  The PCInitiate Message

  According to [RFC8281], the PCInitiate message is used allow LSP
  Initiation.  This document extends the message in initiating LSPs
  with GMPLS characteristics.  The format of a PCInitiate message is as
  follows:

  <PCInitiate Message> ::= <Common Header>
                           <PCE-initiated-lsp-list>

  Where:

  <Common Header> is defined in <xref target="RFC5440" />.
  <PCE-initiated-lsp-list> ::= <PCE-initiated-lsp-request>
                               [<PCE-initiated-lsp-list>]
  <PCE-initiated-lsp-request> ::= (<PCE-initiated-lsp-instantiation>|
                                   <PCE-initiated-lsp-deletion>)
  <PCE-initiated-lsp-instantiation> ::= <SRP>
                                        <LSP>
                                        [<END-POINTS>]
                                        <ERO>
                                        [<attribute-list>]
  <PCE-initiated-lsp-deletion> ::= <SRP>
                                   <LSP>

  The format of the PCInitiate message is unchanged from Section 5.1 of
  [RFC8281].  All fields are similar to the PCRpt and the PCUpd
  messages.

Acknowledgements

  We would like to thank Adrian Farrel, Cyril Margaria, George Swallow,
  Jan Medved, Sue Hares, and John Scudder for the useful comments and
  discussions.

  Thanks to Dhruv Dhody for Shepherding this document and providing
  useful comments.

Contributors

  Xian Zhang
  Huawei Technologies
  Email: [email protected]


  Dhruv Dhody
  Huawei Technology
  India
  Email: [email protected]


  Yi Lin
  Huawei Technologies
  Email: [email protected]


  Fatai Zhang
  Huawei Technologies
  Email: [email protected]


  Ramon Casellas
  CTTC
  Av. Carl Friedrich Gauss n7
  08860 Barcelona Castelldefels
  Spain
  Email: [email protected]


  Siva Sivabalan
  Cisco Systems
  Email: [email protected]


  Clarence Filsfils
  Cisco Systems
  Email: [email protected]


  Robert Varga
  Pantheon Technologies
  Email: [email protected]


Authors' Addresses

  Young Lee
  Samsung
  Email: [email protected]


  Haomian Zheng
  Huawei Technologies
  Email: [email protected]


  Oscar Gonzalez de Dios
  Telefonica
  Email: [email protected]


  Victor Lopez
  Nokia
  Email: [email protected]


  Zafar Ali
  Cisco
  Email: [email protected]